EXACT AND APPROXIMATION ALGORITHMS FOR THE TACTICAL
FIXED INTERVAL SCHEDULING PROBLEM

LEO G. KROON

Erasmus University, Rotterdam, The Netherlands

MARC SALOMON
Tilburg University, Tilburg, The Netherlands

LUK N. VAN WASSENHOVE

INSEAD, Boulevard de Constance, France
(Received December 1993; revision received March 1995; accepted March 1996)

The Tactical Fixed Interval Scheduling Problem (TFISP) is the problem of determining the minimum number of parallel nonidentical
machines, such that a feasible schedule exists for a given set of jobs. In TFISP, each job must belong to a specific job class and must
be carried out in a prespecified time interval. The problem is complicated by the restrictions that (1) each machine can handle only
one job at a time, (2) each machine can handle only jobs from a subset of the job classes, and (3) preemption is not allowed. In this
paper we discuss the occurrence of TFISP in practice, we analyze the computational complexity of TFISP, and we present exact and

approximation algorithms for solving TFISP. The paper concludes with a computational study.

he Tactical Fixed Interval Scheduling Problem

(TFISP) is the problem of determining the minimum
number of parallel nonidentical machines, such that a fea-
sible nonpreemptive schedule exists for a given set of jobs.
Each job belongs to a specific job class, and has a fixed
start time, a fixed finish time, and a processing time that
equals the length of the time interval between the job’s
start and finish time. Each machine is allowed to process
jobs only from a prespecified subset of job classes and can
process, at most, only one job at a time.

In what follows, we describe two practical situations in
which variants of this problem occur.

In a strategic expansion study for Schiphol Amsterdam
Airport, one of the objectives was to obtain insight into the
future required gate capacity at the terminal for different
scenarios relative to flight intensities.!

At the airport, passengers are transferred between the
platform where the aircraft arrive and the terminal either
by gate, or if no gate is available, by bus. Since most pas-
sengers prefer a transfer by gate over a transfer by bus one
of the important service objectives of the airport is to
handle as many passengers as possible by gate. Aside from
this service aspect, a number of other side-constraints must
be taken into account with respect to the gates. For exam-
ple, if an aircraft is assigned to a gate upon arrival at the
airport, the aircraft occupies the gate during its complete
ground time (i.e., the time between arrival and departure).
During its ground time, no other aircraft can use the gate.
Another important side constraint is that for technical rea-
sons, each gate is suitable to handle only a limited set of
different aircraft types.

In this study, the management of the airport wanted to
obtain insight into the influence of higher flight intensities
on the required gate capacity. To do so, different scenarios
were developed with respect to the timetables. For each
flight intensity, a number of timetables were generated.
TFISP was used to calculate the number of required gates
for each scenario. In TFISP, each incoming aircraft was
modeled as a job with a fixed arrival and departure time,
and each gate was modeled as a machine that could handle
one job at a time. The technical constraint that gates could
handle only aircraft from a predetermined set of aircraft
types was also taken into account. TFISP then determined
the required number of gates, such that, in principle, all
incoming aircraft could be assigned to a gate. Of course, in
day-to-day planning, buses are still needed to handle un-
foreseen circumstances, such as delays of aircraft.

The above study was carried out by the authors in coop-
eration with ORTEC Consultants, Gouda, The Nether-
lands. It resulted in the implementation of a Decision
Support System (DSS) to support the strategic planning
department at the airport.

TFISP is also used as the core model in a DSS for
tactical capacity planning of aircraft maintenance person-
nel for KLM Royal Dutch Airlines. The problem context
ere is as follows. Aircraft that arrive at Schiphol Amsterdam
Airport usually require a number of short maintenance in-
spections. If the carrier has a maintenance contract with
KLM, then these inspections are carried out by engineers
from KLM’s maintenance department. The processing times,
as well as the order in which the inspections have to be
carried out, are specified by the maintenance norms. As a

Subject classifications: Programming: integer; production/scheduling: approximations, heuristics; analysis of algorithms: computational complexity.

Area of review: MANUFACTURING.

Operations Research
Vol. 45, No. 4, July-August 1997

0030-364X/97/4504-0624 $05.00
© 1997 INFORMS

consequence, the timetables of the airline companies and the
maintenance norms determine the fixed intervals in which the
maintenance inspections have to be carried out in order to
avoid aircraft delays. The capacity planning problem is fur-
ther complicated by the rule that, for safety reasons, each
engineer is licensed to carry out inspections on two different
aircraft types only.

The major problem the management of the mainte-
nance department is faced with is to determine the most
efficient size and composition of the feams in which the
engineers operate, i.c., to determine the minimum number
of engineers per team and the licenses they should have
under different scenarios with respect to flight intensities
and composition of the fleet. A detailed description of this
problem, and the DSS that has been developed to analyse
it, is found in Kroon (1990), Dijkstra et al. (1991), and
Dijkstra et al. (1994).

This paper is structured as follows. A formulation of
TFISP, both as an integer program and as a network flow
problem with additional side constraints, is given in Sec-
tion 1. In Section 2 we discuss the literature on TFISP.
The computational complexity of TFISP and its preemptive
variant is analyzed in Section 3. Lower and upper bound-
ing procedures are described in the Sections 4 and 5, re-
spectively. In Section 6 the results of a computational
study are presented. Finally, Section 7 summarizes the re-
sults and conclusions of this paper.

1. MODEL FORMULATIONS

In this section we give a formulation of TFISP, both as an
integer program and as a network flow problem with addi-
tional side constraints.

Recall that in TFISP the objective is to find the mini-
mum number of parallel nonidentical machines required to
carry out a number of jobs over a fixed planning horizon.
Each job has a fixed start and finish time. Preemption of a
job is not allowed.

We introduce the following notation to formally define
TFISP: suppose there are J jobs to be carried out over a
planning horizon [0, 7]. The start and finish time of job j
are represented by s, and f,, and the job class of job j is
represented by 4, The number of different job classes
is denoted by A. Furthermore, each machine is allowed to
handle jobs from a limited number of job classes only. The
number of different machine classes is denoted by C.
The set 54, is defined as the set of job classes that can be
carried out by machines in machine classc¢ (¢ = 1, ..., C).
The set $. consists of all jobs that can be carried out by
machines in machine class c. Since the objective is to find
the minimum number of required machines, we assume
that no machine class is dominated, i.e., there is no ma-
chine class ¢ such that s¢, C s for some other machine
class ¢’. The set €, denotes the set of machine classes that
can be used for carrying out jobs in job classa (@ = 1,.. .,
A). The set T is the set of start times of jobs that can be
handled by machine class ¢; thus . = {slj € %}

KROON, SALOMON, AND VAN WASSENHOVE / 625

Furthermore, the set § denotes the set of all start times of
jobs; thus T = {s|j = 1,...,J}. The job overlap at time
instant 7, denoted by L', and the maximum job overlap,
denoted by L, are defined by:

Li=|{jls, <t<f}, L=max{L'|t€ T}

If « is a set of job classes, then the maximum job overlap
of the jobs j with ¢, € a, which is denoted by L, is
defined in an analogous way. If a is one of the job classes,
then L ,, is abbreviated to L,. Similarly, if ¢ is a machine
class, then L y_is abbreviated to L.

Next, we describe TFISP as an integer program. We
define integer decision variables Y, to represent the re-
quired number of machines in machine class ¢, and binary
decision variables x,, to denote whether job j is carried
out by a machine in machine class c. Z,p is the minimum
total number of machines. Now, TFISP can be formulated
as the following integer program:

c

ZIP = min E Yc’ (1)
c=1

subject to:

> x,.<Y, ¢c=1,...,CtE Y., (2)
Ulsy=st<fi/ved}
D ox.=1, j=1,...,J, 3)
cEGy,
x]‘CE{O,l}, j=1,...,];c€<€al, 4)
y.e{0,1,2,...}, ¢=1,...,C. (5)

The objective function (1) ensures that a machine config-
uration is obtained for which the total number of machines
is minimal. The set of constraints (2) guarantees (i) that
the number of jobs processed in parallel by the machines
in machine class ¢ never exceeds Y, and (ii) that the jobs
can be carried out in a nonpreemptive way (Kroon et al.
1992, and Lemma 1). Furthermore, constraints (3) state
that each job is processed exactly once. Finally, (4) are the
binary constraints on the assignment variables, and (5) re-
quires the number of machines in each machine class to be
integer valued.

Note that some constraints of (2) may be redundant.
Consider for instance the situation in which ¢,, 1, € I and
(t1, ;) N {flj € $.} = . Then, for machine class c, the
restriction corresponding to time instant #; is redundant,
since it is dominated by the restriction corresponding to
time instant ¢,.

Next, we describe TFISP as a network flow model with
side constraints. The underlying directed graph G contains
C subgraphs G,, each one corresponding to one of the
machine classes. The nodeset N, of G, is in one-to-one
correspondence with the set of start and finish times of the
jobs that can be handled by machine class c. The nodeset
N, is also denoted as {n_,lr = 1,...,p.}, where p. = [N.
Here, it is assumed that for r = 2, ..., p. the nodes n,_,
and n,, correspond to subsequent time instants. A partic-
ular job j with j € $, is represented in G, by an arc from

Copyright © 2001 All Rights Reserved

626 / KROON, SALOMON, AND VAN WASSENHOVE

jobclass 1 3
job class 2 ™
jobclass 3 mm

-~ N

3

’__/"’\T

Figure 1. An instance of TFISP and the corresponding graph G. Here A = 3, C = 2, and a machine in machine class ¢ can

handle jobs in the job classes ¢ and 3.

the node corresponding to s, to the node corresponding to
- This arc has upper capacity one. In G, there is for r =
2,...,p. an arc from n,,_, to n,, with unlimited capacity.
In order to reduce the number of nodes and arcs of the
graph G, we refer to the graph compression procedure of
Kroon et al. (1992).

The graphs G, are linked together by a super source P
and a super sink Q. There is an arc from P to each of the
nodes n_ ;, and there is an arc from each of the nodes n,
to the super sink Q. Both arcs have unlimited capac1ty
Figure 1 shows an example of a set of jobs and the corre-
sponding graph G.

The side constraints that must be satisfied specify that
all flows must be integer, and that for each job the total
amount of flow in the corresponding arcs must be exactly
one unit. Now, in TFISP the objective is to send an
amount of flow from the super source P to the super sink
Q in such a way that: (i) all capacity constraints are satis-
fied, (ii) all side constraints are satisfied, and (iii) the total
amount of flow is minimal.

2. LITERATURE REVIEW

TFISP is a generalization of the well-known Fixed Job
Scheduling Problem (FJSP). In this problem all jobs have
a fixed start time and a fixed finish time and belong to the
same job class. Furthermore, the machines are identical.
FJSP is the problem of determining the minimum number
of machines such that a nonpreemptive schedule exists for
all jobs. This problem was studied by Dantzig and Fulker-
son (1954) and by Gertsbakh and Stern (1978) in the

context of fleet planning. It was also studied by Hashimoto
and Stevens (1971) and by Gupta et al. (1979) in the con-
text of computer wiring. An optimal solution to this prob-
lem is described by Lemma 1.

Lemma 1. The minimum number of machines required to
carry out all jobs of an instance of FISP equals the maxi-
mum job overlap of the jobs.

Lemma 1 is a direct consequence of Dilworth’s theorem
on partially ordered sets, stating that in any partially or-
dered set the minimum number of chains required for
covering all elements is equal to the size of a maximum
antichain (Dilworth 1950). An O(J log J) algorithm for
determining the maximum job overlap of the jobs is de-
scribed by Hashimoto and Stevens (1971) and by Gupta et
al. (1979).

Figure 2 shows an instance of FJSP. As the maximum
job overlap L equals 4, the minimum number of machines
required to carry out all jobs equals 4 as well. Fischetti et
al. (1987, 1989, 1992) describe variants of FISP with side
constraints either on the total workload per machine or
on the spread time per machine (ie., the difference be-
tween the finish time of the last assigned job and the start
time of the first assigned job). It is shown that these vari-
ants of FISP, which are related to the bus driver schedul-
ing problem, are NP-hard. Several upper and lower
bounding procedures, together with their corresponding
performance guarantees, are described.

Also, the case with 4 = 3 and C = 2, in which a ma-
chine in machine class ¢ is allowed to carry out jobs in job

e S SOV T-E-2001 AtHRidhts-ReSe e e

KROON, SALOMON, AND VAN WASSENHOVE |/ 627

1 8 — —

3 10]

time

Figure 2. An instance of FISP with J = 10 and L = 4.

classes ¢ and 3, can be solved in polynomial time. One
approach for solving this special case of TFISP consists of
iteratively solving a minimum cost flow problem, as was
proposed by Dondeti and Emmons (1992). Kroon (1990)
has shown that this special case of TFISP can also be
solved by a polynomial round-off procedure.

Round-off procedure

STEP (i). Let Z,p denote the value of the optimal solu-
tion to the LP relaxation of TFISP.

STEP (ii). If Zyp is integer, then the solution to the LP
relaxation is all integer, and hence, optimal for TFISP.
Otherwise, an optimal solution can be found by solving the
extended LP relaxation, which is obtained by adding
the constraint Y; + Y, = [Z,p] to the original LP relaxation.

Kolen and Kroon (1992) prove that the nonpreemptive
variant of TFISP is NP-hard in the strong sense if the
number of machine classes C satisfies C > 2 (except for a
few special cases). Dondeti and Emmons (1993) consider
the preemptive variant of TFISP. They conjecture that this
problem is NP-hard. In this paper we show that for a fixed
number of machine classes, this problem can be solved in
polynomial time. However, if the number of machine
classes is not fixed, then the problem is NP-hard in the
strong sense.

Another problem closely related to TFISP is the Opera-
tional Fixed Interval Scheduling Problem (OFISP), where
the machine configuration consists of a given set of paral-
lel nonidentical machines, where a value is associated with
each job, and where the objective is to find a feasible
schedule for a subset of jobs of maximum total value. It
should be noted that OFISP differs from TFISP in two
related aspects. First, the objective in TFISP is to find the
minimum number of machines required for a feasible
schedule for all jobs, while the objective in OFISP is to
select a set of jobs with maximum total value if the machine
configuration is given. As a consequence, the second differ-
ence consists herein, that in TFISP all jobs must be pro-
cessed exactly once, while in OFISP a job must be
processed at most once.

Arkin and Silverberg (1987) show that OFISP can be
solved in O(/*') by the application of dynamic
programming. Here, M denotes the total number of ma-
chines. Carter (1989) presents a Lagrangian relaxation

algorithm for a variant of OFISP occurring in the context of
classroom scheduling. Carter and Tovey (1992) present an
analysis of the computational complexity of several variants
of this classroom scheduling problem. Finally, Kroon et al.
(1992) present an approximation algorithm for solving
OFISP. Their algorithm is based on Lagrangian relaxation
and decomposition, and on the application of a straightfor-
ward dual-ascent heuristic,

3. COMPLEXITY RESULTS

In this section we consider TFISP as well as a variant of
TFISP that allows for preemption of the jobs. Here, pre-
emption is defined as the possibility of spliting a job j into
at least two parts (s,, p) and (p, f,), which are carried out
by different machines. As already stated, the complexity of
the preemptive variant was conjectured by Dondeti and
Emmons (1993). We provide a complete overview of the
complexity of the preemptive and nonpreemptive variant
of TFISP. We start with the following auxiliary lemma
concerning the preemptive variant of TFISP.

Lemma 1. Each preemptive schedule R can be transformed
into a preemptive schedule R', in which all preemptions
occur only at time instants t € . The number of machines
in each machine class is equal for R and R'.

Proof. Note first that we can restrict ourselves to sched-
ules with a finite number of preemptions. Now, suppose
we have a preemptive schedule R, where at least one job is
preempted at a time instant ¢ & J. Choose o <1 such that
during the time interval (o,) the status of each machine
remains unchanged. That is, during this time interval, ma-
chine m is either idle or carrying out one job, say job j,,.
Next, let 7 be defined as 7 = min({s|j = 1,...,J; 5, > t}
U {T}).

Now, the schedule during the interval (¢, 7) is modified
in the following way. If machine m was idle during the
time interval (o, t), then machine m is also idle during the
interval (¢, r). If machine m was carrying out job j,, during
the time interval (o, t), then let e, be defined by e,, =
min{ f,,,,, 7}. Next, machine m is carrying out job j,, during
the time interval (t, e,,) and is idle during the time interval
(€ 7). By this transformation we obtain a new preemptive
schedule, where the preemption at time instant ¢ no longer

Copyright © 2001 All Rights Reserved

628 / KROON, SALOMON, AND VAN WASSENHOVE

Table 1
Computational Complexity of TFISP.
C Fixed
C Variable C=s2 C>2

Preemption NP-Hard Polynomially Solvable Polynomially Solvable
Allowed (Lemma 3) (Section 2) (Lemma 4)
Preemption NP-Hard Polynomially Solvable NP-hard
Not Allowed (Lemma 3) (Section 2) (Kolen and Kroon, 1992)

occurs. However, another preemption may have been in-
troduced at time instant 7 € J. By eliminating in this way
all preemptions at time instants ¢ & J, we ultimately end
up with a schedule R’ as specified. Note that the number
of required machines does not change under these
transformations. [7]

Lemma 3. TFISP is NP-hard in the strong sense, even if
preemption is allowed.

Proof. This lemma is proved by a reduction from Three
Dimensional Matching (3DM). A definition of 3DM is
given in Appendix 1. Hence, let I, be an instance of 3DM
containing three disjoint sets ¥, ¥, and %, cach one con-
taining 4 elements, and a set W that is a subset of £ X ¥
X %. Now an instance I, of TFISP is constructed as fol-
lows. The set of job classes equals ¥ U % U %. Thus the
number of job classes equals 34. The following jobs of
the form (s;, f,, a,) must be carried out:

(0,1, x) forallx e,
(1,2,y) forally € W,
(2,3,2) forallze %,

Each element of W corresponds to one machine class. A
machine in machine class (x, y, z) € W is allowed to carry
out jobs in the job classes x, y, and z. Now it is evident
that the following statement holds: I, is a “yes” instance
of 3DM if and only if all jobs in I, can be carried out by
A machines. Note that if all jobs can be carried out by A
machines, then all machines must belong to different ma-
chine classes. In I, the set of used machine classes corre-
sponds to the set W' in 7;. The number of required
machines will not be reduced by allowing preemption,
since each pair of jobs either has identical start and finish
times or is nonoverlapping. [

Lemma 4. If the number of machine classes is fixed and
preemption is allowed, then TFISP is solvable in polyno-
mial time.

Proof. First, note that if the number of machine classes is
fixed, then the maximum number of job classes is fixed as
well, since 4 < 2°¢. Next, suppose we have a tentative
solution for a given instance of TFISP. Let Y, ..., Ye
represent the number of machines in each of the machine
classes in this solution. According to Lemma 2,

preemptions need to occur only at time instants belonging
to the set J. Suppose the jobs have been ordered such that
§_y<s forj=2,...,J Then all time intervals (5-1,5,)
can be considered independently of each other in order to
check the feasibility of the tentative solution. Now, we
calculate fora = 1,..., A and t € T the job overlap of
the jobs in job class @ at time instant ¢+ € F. This job
overlap is denoted by L, and can be obtained in 6(J log)
time, as was discussed in Section 2.

Next, let x;, denote the integer number of machines in
machine class ¢ that are used to carry out jobs in job class
a at time instant # € J. In order to check the feasibility of
the tentative solution, it has to be decided whether a fea-
sible solution to the following set of constraints exists:

2 xt,=L! foralla=1,...,4andt€E g, (6)
cEC,
2 xl,<Y, forallc=1,...,Candt€E §. @)
aEHA,
For fixed Y, . .., Y, this problem is a feasibility check for

0(|F]) ~ O(J) independent transportation problems. The
latter result was previously noted by Dondeti and Emmons
(1993). Each transportation problem has C sources and 4
destinations, and source ¢ and destination a are connected
if and only if machine class c is allowed to handle jobs in
job class a. Each of these transportation problems can be
solved in polynomial time. Thus for fixed Yy, ..., Y. the
feasibility of problems (6) and (7) can be checked in 0(J%)
time for some fixed K. Furthermore, the numbers Yi,...,
Yc in an optimal solution to TFISP obviously satisfy the
relations:

C
Y.<L, L<YY. <]/ (8)

c=

By verifying each set {Y,Jc = 1,..., C} satisfying (8), a
feasible preemptive schedule will be obtained in which the
number of machines is minimal. As the number of differ-
ent sets {YJc = 1, ..., C} satistying (8) is O(JC), TFISP
can be solved in O(JX*) time. Since both C and K are
fixed, TFISP is solvable in polynomial time. []

If the number of machine classes is fixed, and preemp-
tion is not allowed, then the computational complexity of
TFISP depends on the number of machine classes. In this
case, TFISP can be solved in polynomial time if C < 2, as

Copyrght © 2001 Al Rights Reserved

was discussed in Section 2. If C > 2, then TFISP is NP-
hard (Kolen and Kroon, 1992). Table I summarizes the
complexity results obtained for TFISP.

4. LOWER BOUNDS

Lower bounds to Z;p are obtained upon relaxation of some
of the constraints. We consider the following relaxations.

e Relaxation of the constraints that all jobs should be
processed by machines that are allowed to process jobs
of that particular job class. In the remaining problem,
all machines are allowed to process all jobs. We denote
this relaxation by Class Relaxation (CR). According to
Lemma 1, the corresponding lower bound Z. is ob-
tained in polynomial time by computing the maximum
job overlap.

e Relaxation of the constraints that all jobs must be pro-
cessed in a nonpreemptive way. This relaxation is called
Nonpreemptive Relaxation (NR). For fixed C, the cor-
responding lower bound Zyg can be obtained in poly-
nomial time by applying the algorithm specified in the
proof of Lemma 4. However, for computational effi-
ciency we decided to compute this bound by solving the
integer program (min X, Y, subject to (6) and (7), and
Y, integer for all ¢) using a standard branch-and-bound
algorithm.

¢ Relaxation of the integrality constraints (4) and (5). The
remaining LP relaxation can be solved in polynomial
time. The corresponding lower bound is denoted by
Zip.

o Lagrangian relaxation of the constraints (3), ensuring
that each job is carried out exactly once. The resulting
Lagrangian Relaxation (LR) is written as:

LR:
C 7
ZLR('U) = min 2 Yc + E 'U](l - E xj,C) (1')
c=1 i=1 CcEG,,
[J
—min > (Y. - 2 yx)+ 2 v, (1"
c=1 Lles})=1

subject to (2), (4), and (5),

where v, is the (unconstrained) Lagrangian multiplier cor-
responding to job j.

Obviously, LR decomposes into C subproblems. Each
subproblem corresponds to a machine class ¢, and can be
represented by the graph G_.(v). This graph G.(v) is ob-
tained from the graph G, by changing the cost coefficient
of each arc corresponding to job j into —v,. Note that in
calculating Z; x(v) the amount of flow that must be trans-
ported in G, is not known in advance, as the amount of
flow in this graph represents Y,. Therefore, Z; p(v) is cal-
culated by the following incrementing minimum cost flow
procedure.

KROON, SALOMON, AND VAN WASSENHOVE / 629

Incrementing Minimum Cost Flow Procedure

Forc:=1,...,Cdo
{ f:=0;Z!:=0; Optimal : = false;
Repeat
fi=f+1
Find a minimum cost flow of f units of flow from
n.; ton., on the graph G (v).
Call the resulting solution Z;
IfZ, + 1 <Z% then Z} .= Z_ else Optimal :=

true;
Until Optimal,
Y.:=f—-1;, }

The lower bound Z;g(v) to Zpp is now obtained as
361 (Z% + Y.) + Z/_, y. This lower bound can be ob-
tained in polynomial time, since ({) the minimum cost-flow
problems on the subgraphs G.(v) can be solved by a
strongly polynomial algorithm (see Ahuja et al. 1993), (i)
the amount of flow Y, is bounded by L., and (iii) L, < J.

For updating the Lagrangian multipliers we use the sub-
gradient optimization procedure described by Fisher
(1981). For the actual implementation of our procedure,
we have adopted the following stopping criteria: the pro-
cedure is stopped when either (i) Lagrangian multipliers
have been updated J times, or (if) the difference between
the Lagrangian lower bound and the “greedy” upper bound
(as discussed in Section 5) has become less than 1. The
latter implies that the optimal solution has been obtained.
The best Lagrangian lower bound that we found upon
execution of the procedure is denoted by Z;x. Due to
convergence problems, we often found Z;x < max,
Z, x(v) in our computational study (Section 6).

Remark. In the initial implementation of the LR proce-
dure we have tried several alternative stopping criteria and
updating mechanisms for the Lagrangian multipliers, in-
cluding dual ascent. However, the effects of these alterna-
tive stopping criteria and updating mechanisms on the
quality of the solutions and on the convergence speed were
only marginal.

Lemma 5. No other than the following dominance rela-
tions exist between the introduced lower bounds:

Zer <Zp, Zer S Zngs mSlXZLR('U) = Zp,
ZCR = max ZLB(U)'

Proof.

e Problem CR is obtained by replacing &, by {1, ..., 4}.
By doing so, the problem reduces to FISP, which can be
solved to optimality by Linear Programming. Indeed,
the coefficient matrix of any instance of FJSP is an in-
terval matrix that is totally unimodular. As a conse-
quence, Zcg < Zypp.

e Obviously, the maximum job overlap does not change
by allowing preemption of the jobs. Furthermore, Zyg
is greater than or equal to the maximum job overlap.
This implies Zcgr < Zng.

Copyright © 2001 All Rights Reserved

630 / KROON, SALOMON, AND VAN WASSENHOVE

o The relation max, Z, zx(v) = Zp follows from the fact
that in LR the side constraints (3), which disturb the
network flow structure of TFISP, are dualized into the
objective (1). Hence, upon dualization of (3), LR de-
composes into C subproblems which all have a network
flow structure. As a consequence, each of these sub-
problems has the integrality property, which states that
its LP relaxation has only integral extremal solutions.
Thus, the relation max, Z; z(v) = Z;p is a direct conse-
quence of Geoffrion (1974).

¢ The relation Z-g < max, Z; x(v) follows from the rela-
tions max, Z; g(v) = Z;p and Zg < Zyp.

¢ The absence of a dominance relation between Z; , and
Zyr can be seen from the following instances involving
three job classes and three machine classes. Let o, =
{1, 2, 3}\{c} for ¢ = 1, 2, 3; if the three jobs G6pfhra)=
0, 1, 1), (1, 3, 2), and (3, 4, 3) must be carried out,
then Z, , = %and Zxr = 2. However, if the jobs (0, 2, 3)
and (2, 4, 1) are added, then Z;, = % and Zyg = 2.

e The absence of a dominance relation between max,
Zyz(v) and Zyy follows from Z,p, = max, Z, x(v) and
the absence of a dominance relation between Z;p and

Zyre

5. UPPER BOUNDS

Upper bounds to Z; are obtained by constructing a feasi-
ble solution to TFISP. We consider the following upper
bounds.

* An upper bound obtained by covering all job classes by
an appropriate set of machine classes. This bound, de-
noted by Class Covering (CC), is described below.

¢ An upper bound obtained by applying a greedy heuristic
to obtain a feasible solution for all jobs. This greedy
bound is denoted by GR.

First, we will explain the CC bound. Let « be a set of job
classes. We say that « is a feasible subset of job classes if
a C d, for some machine class c. Next, let {ay, ..., ay}
be a collection of feasible subsets covering all job classes.
Thus, US_; @, = {1,..., A}. A feasible subset a, in this
cover is said to be nonredundant if the collection {ay, ...,
ant\{a,} does not cover all job classes.

Lemma 6. If {a,, ..., ay} is a collection of feasible sub-
sets covering all job classes, then =Y_, L, is an upper
bound to Zp. If all feasible subsets in the cover are non-
redundant, then this upper bound is tight.

Proof. If o, C A, is a feasible subset, then all jobs j with
4, € a, can be carried out by L, machines in machine
class ¢. Hence, if {a;, ..., ay} is a collection of feasible
subsets covering all job classes, then all jobs can be carried
out by 3N, L. machines. The fact that the bound is tight
if all feasible subsets in {a;,..., ay} are nonredundant
can be seen as follows. Obviously, each subset «,, contains
at least one job class that is not covered by the other
subsets. The first job class with this property is denoted by

a(n). We now consider an instance of TFISP with the
following structure: the time horizon has been split up into
N subintervals, and the nth subinterval contains only jobs
in job class a(n). For this instance of TFISP we have Z;p =
PN L.. O

In general, finding a cover {ay,..., ay} of all job
classes is not difficult. However, if one is interested in a
tight upper bound, then the cover of the job classes should
be minimal in some sense. In order to obtain a minimal
cover, let {ay, ..., ag} be an exhaustive list of all feasible
subsets. Note that § = 0(C24). The covering problem to
be solved involves the binary decision variables x(s =
1, ..., S). These variables indicate whether feasible subset
s should be taken into the cover of the job classes:

s
Zcc = min > L, x,,
s=1

subject to:

S x,=1 a=1,..., A4,
{sla€a;}

x, €1{0,1} s=1,...,8.

If the numbers A and C are fixed, then Z.. can be ob-
tained by complete enumeration in an amount of time that
is independent of the number of jobs. If 4 and C are not
fixed, then calculating Z involves the solution of an un-
capacitated facility location problem, which can be accom-
plished by the DUALOC procedure of Erlenkotter (1978).

A special covering of all job classes is obtained by as-
suming that all feasible subsets are singletons. In that case,
one obtains the upper bound 7_, L,. This upper bound
can be determined in G(J log J) time.

In the remaining part of this section we describe a greedy
heuristic that we have implemented to obtain a feasible
solution for an instance of TFISP, and hence, an upper
bound Zgg to Zp. This heuristic is based on repetitively
increasing the number of machines until finally all jobs can
be carried out by the minimum cost machine configura-
tion. The heuristic uses the Lagrangian multipliers v ob-
tained from the Lagrangian relaxation procedure. More
formally, a single pass of the heuristic is described as
follows:

Greedy Heuristic:

$:= {all jobs};
Y,:=0forc=1,...,C,
Repeat.

Search for the locally best machine class c*;

Yo :=Y,. + 1.

$ = $\all jobs that can be carried out by one addi-

tional machine of c*}

Until $ = §.
Note that in the description of the upper bounding proce-
dure the method for finding the locally best machine class
c* is still unspecified. The method that we have imple-
mented for obtaining c* is as follows. Suppose that, after a

e Copyright © 2001 All Rights Reserved

number of iterations, we are faced with a machine config-
uration and $ # §. The latter means that the capacity of
the machine configuration is still not large enough to carry
out all jobs. Then we tentatively increase for each machine
class the number of machines by one, and obtain c¢* as the
machine class for which such an increase is most profitable.
Here, the obtained profit is defined as the total (Lagrang-
ian) value of the additional jobs that can be carried out. It
is easy to see that ¢* can be obtained by solving C shortest
path problems on the graphs G.(v). Here the graph G (v)
is obtained from the graph G.(v) (as defined in the La-
grangian relaxation procedure) by deleting all job arcs cor-
responding to jobs j & $. The resulting solution for the
graph G (v) is called Z_(v). Now, the locally best machine
class is defined by ¢* := argmin {Z (v)lc = 1,..., C}.

The single-pass upper bound Zgr(v) equals 2, Y,. Note
that the computational effort required to compute Zgr(v)
is 0(J Z V.. The single-pass upper bound Zgg(v) is
computed for different values of the Lagrangian multipli-
ers v after every five iterations of the Lagrangian lower
bounding procedure. The resulting multipass, greedy up-
per bound Zgy equals the minimum over all single-pass
upper bounds; i.e., Zgg = min, Zgg(v), where the mini-
mum is taken over all Lagrangian multipliers that are con-
sidered upon execution of the algorithm.

6. COMPUTATIONAL EXPERIMENTS

To test the quality of the lower and upper bounding pro-
cedures, we have implemented the procedures on an IBM
RS/6000 model 370 with 128 Mb internal memory and a
clock frequency of 62.5 MHz under the AIX operating
system.

6.1. Implementation of the Procedures

The details on implementation of the aforementioned pro-
cedures are as follows.

¢ The procedures used to compute the lower bounds of
class relaxation (Z.g), Lagrangian relaxation (Z;g),
and the greedy upper bound (Zgg) have been imple-
mented in the PASCAL programming language.

e The procedures to determine the value of the nonpre-
emptive relaxation (Zyg), the value of the LP relaxation
(Zyp), and the value of the optimal solution to TFISP
(Zp) have been implemented in the FORTRAN pro-
gramming language using the optimization library OSL
(IBM 1991).

® The class-covering upper bounding procedure has been
implemented partly in PASCAL (to generate the sub-
sets a) and partly in FORTRAN (using Erlenkotter’s
DUALOC code to solve the location problem).

6.2. Design of Test Problems

We have generated four sets of problem instances. For all
instances, the planning horizon 7 has been set to 1,000.
Within each set, the following parameters have been
varied:

KROON, SALOMON, AND VAN WASSENHOVE /[631

e the number of job classes A; we consider instances with
A=4A4A =5 0rA = 6

e the number of jobs J; we consider instances with J =
100, J = 200, or J = 300;

e the maximum job duration D; we consider instances
with D = 100, D = 200, or D = 300.

Besides this, the sets differ in two characteristics; i.e., (i)
the job overlap over time and (ii) the available machine
classes. The details for (i) and (ii) are as follows.

Job Overlap over Time

® Uniformly distributed. For each job j the job class a, is
chosen randomly from the set {1, ..., A}, and the pro-
cessing time d, is chosen randomly from the uniform
U(0, D) distribution. The start time s, is chosen ran-
domly from the uniform U(0, T — d;) distribution, and
the finishing time f, is set equal to s; + d,.

® Peak distribution. With each job class a we associate a
probability p,, a normal distribution function with mean
M. and standard deviation o,. Here, u, is the expected
peak time of jobs in job class 4, and o, is a measure for
the spread of the peak. For each job j the job class a, is
randomly chosen from the set {1,..., A}, where p,
is the probability that the job class is a. The job’s pro-
cessing time d, is generated randomly from the U(0, D)
distribution, and its midpoint »z, is drawn from the nor-
mal N(u,, o,) distribution. The start time of the job
5, =m, ~'D/2 and the finish time f,=m, + D/2. The
specific parameter settings for p,, u,, and o, are found
in Appendix II.

Available Machine Classes

e All combinations. In this case, each machine can handle
jobs from mwo job classes, and the number of machine
classes is chosen such that each possible combination of
two job classes is included. This results in the relation
C = (%). In this case, we have restricted ourselves to
A =4 and A = 5. Note that 4 = 6 implies C = 15. This
large number of machine classes could not be handled
by our software.

® Limited number of combinations. Here, each machine
can also handle jobs from two job classes, but not all
combinations of two job classes occur. For4 = 4, 4 =
5,and A = 6, we have set C = 3, C = 4, and C = 5,
respectively. In all cases, the sets &, have been con-
structed such that 4. = {c,c + 1} forc =1,...,4 —
1. For example, if A = 4, then C = 3, and &, = {1, 2},
A, = {2, 3}, and o, = {3, 4}.

Remark. We also experimented with problem instances
where each machine could handle jobs from three different
job classes. However, since there was not much difference
in quality and CPU times between the results obtained for
instances with two job classes per machine and the results
obtained for instances with three job classes per machine,
we have not included (a discussion on) the latter instances.

Copyright © 2001 All Rights Reserved

632 / KROON, SALOMON, AND VAN WASSENHOVE

Table II
Summary of Set Characteristics

Machine Classes

Job Overlap All Limited

Uniform Set I Set III
(180 Instances) (270 Instances)

Peaks Set I1 Set IV

(180 Instances) (270 Instances)

Within each set we have generated 10 problem instances
for each considered (A4, J, D) combination. In Table I we
summarize the characteristics of each set.

Tables A1-A8 in Appendix III give a detailed presenta-
tion of the computational results for Sets I through IV.
Here, we summarize the results. Table IlI(a) summarizes
the average quality of the solutions aggregated over all
instances in each set. Table III(b) summarizes the CPU
times over all instances in each set. In Tables ITI(a) and
III(b), the following notation is used:

Symbol Definition

Number of instances per set.
Aqgy, Average quality of Lower Bound (LB). It is
computed by taking the average of (Z;p — Zawy)!
Zp over all instances in a set. The lower bounds
that are considered are the CR bound, the NR
bound, the LP bound, and the LR bound.
Eyp The number of times that Z; , equals Z;p over all
instances in a set.
Ity The number of times that the LP relaxation yields
an integer solution over all instances in a set.
[&(UB) The average quality of the Upper Bound (UB). It
is computed by taking the average of (Zyp — Zp/
Zp) over all instances in a set. The upper bounds
that are considered are the CC bound and the GR
bound.
CW]() The average CPU time (in seconds) of procedure
(.) over all instances in a set.

Remark. One should be careful when comparing the re-
sults listed in Table III(b). The figures shown in the table
are averages over instances of different dimensions. So, a
comparison of the results between different sets is not ap-
propriate, and may lead to wrong conclusions. The table is
used to compare the CPU times of different bounding
procedures within a single set only.

From Tables IlI(a) and III(b), and from the Tables
A1-AS8 the following conclusions can be drawn.

Lower Bounding Procedures

® The value of the LP-bound turns out to be surprisingly
good. In many cases the bound equals the value of the
optimal solution. The LP-bound outperforms all other
bounds, except for the instances of Set II, where the
NR-bound is somewhat better. However, although
the LP-bound is very tight for all sets, the corresponding
solution is often fractional, especially for Sets I and II.
Furthermore, note that solving the linear program can
be done relatively fast (on average within nine seconds
for the largest instances listed in Tables A2 and A4).

® The NR-bound behaves fairly well. Gaps are small
(within 3% on average), and CPU times are acceptable
(on average within 13 seconds for the largest instances
listed in Tables A2 and A4). Comparing the NR-bound
with the LP-bound we conclude that the quality of the
LP-bound is very often better than the quality of
the NR-bound, whereas CPU times of the LP-bound
are less. As for the LP-bound, the quality of the NR-
bound is not very sensitive to the characteristics of the
instances in each set.

® The quality of the LR-bound varies among the sets. For
Sets III and IV, the results are better than for Sets I and
I1. For the latter sets, gaps may go up to 10%. Further-
more, CPU times are large compared to the CPU times
for all other bounds. Summarizing, we conclude that in
comparison with the other bounding procedures, La-
grangian relaxation is not very successful for solving
TFISP. A similar conclusion was drawn by Kroon et al.
(1992) in the context of OFISP.

® The quality of the CR-bound varies significantly among
the sets, but the CPU times required to calculate the
CR-bound are always very small. In Set I there is almost
no gap between the CR-bound and the optimal solution,
whereas in Set IV the gap goes up to 27% on average.

¢ As we have shown (Lemma 5), no dominance relations
exist between the NR-bound and the LP-bound, nor
between the NR-bound and the LR-bound. However,
we conclude from Table III(a) that, with respect to the
quality of the solutions, the LR-bound is frequently bet-
ter than the NR-bound, and the NR-bound is frequently
better than the LR-bound.

* With respect to the influence of the available machine
classes, we conclude that the quality of the CR-bound

Table ITI
(a) Summary of Computational Results with Respect to Quality

Lower Bounds

Upper Bounds

E Anr Ap Ep Iip Ak ZC_(; Asr
Set I 180 0.000 0.000 0.000 9.889 2.389 0.059 0.158 0.001
Set 11 180 0.057 0.001 0.007 6.389 2.500 0.038 0.299 0.006
Set IIT 270 0.064 0.029 0.000 9.852 9.556 0.005 0.105 0.017
Set IV 270 0.266 0.006 0.000 9.741 9.519 0.004 0.158 0.014

e O PYTIONT © 200 T Al Rights Reserved

KROON, SALOMON, AND VAN WASSENHOVE / 633

Table II1
(b) Summary of Computational Results with Respect to CPU Times

Lower Bounds Upper Bounds Optimal

CPUcr CPUng CPU,» CPU, x CPUcc CPUGr CPUp

Set I 180 0.012 4.122 1.965 18.098 0.012 2.667 80.103
Set II 180 0.012 4.588 2.618 18.408 0.012 5.090 58.318
Set III 270 0.012 1.779 0.599 14.284 0.011 1.890 1.081
Set IV 270 0.012 1.209 0.654 13.765 0.011 1.467 0.965

and the NR-bound is better for instances of Sets I and
II than for instances of Sets IIT and IV. This may be
caused by the fact that for determining the CR-bound
and the NR-bound less of the problem structure is re-
laxed if the number of machine classes is large. The
quality of the LP-bound and the LR-bound becomes
better when the number of machine classes decreases.
This is caused by the fact that the dimension of the
corresponding model formulations depends heavily on
the number of machine classes: the larger the number
of machine classes, the larger the number of decision
variables x,. and Y, in the LP formulation, and the
larger the number of decision variables in the LR for-
mulation that become dependent of the Lagrangian
multipliers in the Lagrangian objective (1”).

e It is somewhat counterintuitive that there is no clear
direction in the influence of peaks in the job overlap on
the quality of the lower bounds. With peaks, the quality
of the CR-bound decreases, the quality of the LR-
bound increases, and for the NR and LP-bounds no
clear conclusion can be drawn on the (direction of)
quality changes.

Upper Bounding Procedures

e The GR-bound clearly outperforms the CC-bound with
respect to the quality of the solutions. However, the
CPU time required to compute the GR-bound is larger
than the CPU time required to compute the CC-bound.

e From a comparison of the results for the instances in
Sets I and II, and Sets III and IV, it is concluded rather
unexpectedly that, when the number of machine classes
decreases, the quality of the GR-bound also decreases.
Furthermore, the occurrence of peaks in the job overlap
has only a marginal effect on the quality of the
GR-bound.

e The quality of the CC-bound becomes better with fewer
machine classes, and becomes worse with the occurrence
of peaks.

Optimal Solutions

e Obtaining optimal integer solutions using the standard
branch-and-bound procedure implemented in OSL
works relatively well for medium-sized problem

instances. This is due to the fact that the LP-bound is
very tight. However, if the LP solution is fractional, it
may be a very time-consuming task for larger sized in-
stances to find an optimal integer solution using a
branch-and-bound technique (CPU times may go up to
10 minutes on average). The latter is also true when the
LP solution is fractional and Zy, = Z;p.

7. SUMMARY AND CONCLUSIONS

In this paper we consider the Tactical Fixed Interval
Scheduling Problem. We formulate the problem as an in-
teger program and as a network flow problem with side
constraints. We show that some special cases of TFISP can
be solved in polynomial time, and we settle the status of
the computational complexity of the preemptive variant
of TFISP: the problem is solvable in polynomial time if the
number of machine classes is fixed; otherwise, the problem
is NP-hard. Furthermore, we develop a number of lower
bounding procedures for TFISP, and we derive all domi-
nance relations between these bounds. We describe two
upper bounding procedures. Finally, in a computational
study we analyse all upper and lower bounding procedures,
both with respect to quality of the solutions and required
CPU times.

We conclude that, although TFISP is categorized as NP-
hard, the instances of the problems that we have consid-
ered in this study (which had dimensions and
characteristics that closely resemble those of the problems
that we met in the practical settings previously reported)
could be solved relatively fast by some of the procedures
described in this paper. Linear programming, in combina-
tion with a branch-and-bound procedure, turned out to be
effective for medium-sized problems.

APPENDIX I. DEFINITION OF 3DM
Instance of 3DM:

e Three disjoint sets &, %, and %, each one containing A
elements.
e A set W which is a subset of ¥ X Y X %.

Question:

e Does there exist a subset W' of W with A elements such
that no two elements of W’ agree in any coordinate?

Copyright © 2001 All Rights Reserved

634 / KROON, SALOMON, AND VAN WASSENHOVE

APPENDIX Il. PARAMETER SETTINGS FOR SETS Il APPENDIX lil. COMPUTATIONAL RESULTS

AND IV Tables A1-A8 give a detailed presentation of the compu-
Case 4 = 4 Case A = 5 Case A = 6 tational results for Sets I-IV. In the tables we use the
following notation:

a pa ‘La oa pa l"’a Cra Pa ""a Ua
1 020 250 100 0.5 200 100 0.15 200 100 Symbol Definition
2 020 500 100 0.15 350 100 020 350 200 :
3 040 500 300 040 500 400 015 500 100 A The number of job classes.
4 020 750 100 0.15 650 100 0.5 500 100 J The number of jobs.
5 0.15 800 100 020 650 200 P The maximum job duration.
6 0.15 800 100 # Number of instances.
Table A1
Quality of Lower and Upper Bounding Procedures (Set I)
Lower Bounds Upper Bounds
A J D # ACR ANR ALP ELP ILP ALR ACC AGR
4 100 100 10 0.000 0.000 0.000 10 5 0.078 0.169 0.000
4 100 200 10 0.000 0.000 0.000 10 6 0.032 0.123 0.000
4 100 300 10 0.000 0.000 0.000 10 6 0.042 0.082 0.000
4 200 100 10 0.000 0.000 0.000 10 5 0.073 0.120 0.000
4 200 200 10 0.003 0.003 0.002 9 3 0.053 0.064 0.000
4 200 300 10 0.000 0.000 0.000 10 2 0.033 0.047 0.000
4 300 100 10 0.000 0.000 0.000 10 4 0.087 0.102 0.000
4 300 200 10 0.000 0.000 0.000 10 2 0.044 0.081 0.000
4 300 300 10 0.000 0.000 0.000 10 3 0.027 0.051 0.000
5 100 100 10 0.000 0.000 0.000 10 1 0.093 0.255 0.000
5 100 200 10 0.000 0.000 0.000 10 0 0.053 0.220 0.006
5 100 300 10 0.000 0.000 0.000 10 3 0.054 0.133 0.004
5 200 100 10 0.000 0.000 0.000 10 2 0.090 0.445 0.000
5 200 200 10 0.003 0.003 0.001 9 0 0.049 0.138 0.000
5 200 300 10 0.000 0.000 0.000 10 0 0.041 0.225 0.000
5 300 100 10 0.000 0.000 0.000 10 0 0.098 0.336 0.000
5 300 200 10 0.000 0.000 0.000 10 0 0.063 0.162 0.000
5 300 300 10 0.000 0.000 0.000 10 1 0.045 0.093 0.000
Table A2
CPU Times (in seconds) for Lower and Upper Bounding Procedures (Set D)

Lower Bounds Upper Bounds Optimal
A J D # CPUcg CPUpg CPU,, CPU, CPU(c CPUgx CPU,,
4 100 100 10 0.010 0.521 0.293 1.553 0.013 0.296 0.575
4 100 200 10 0.010 0.567 0.331 1.650 0.012 0.744 1.241
4 100 300 10 0.011 0.585 0.314 1.990 0.011 0.424 0.816
4 200 100 10 0.013 2.158 0.884 8.689 0.013 0.671 4.216
4 200 200 10 0.011 2.088 1.078 11.244 0.012 1.186 12.693
4 200 300 10 0.013 1.968 1.398 14.351 0.012 2382 16.171
4 300 100 10 0.011 4.161 1.969 28.259 0.011 2.276 20.722
4 300 200 10 0.012 4.246 2.705 38.566 0.012 4.156 59.050
4 300 300 10 0.012 4.262 3.522 50.284 0.012 5.719 52.158
5 100 100 10 0.012 1.012 0.513 2.046 0.012 0.683 1.499
5 100 200 10 0.010 1.218 0.700 2.283 0.012 1.129 5.579
5 100 300 10 0.011 1.436 0.629 2.534 0.013 1.011 5.103
5 200 100 10 0.012 5.727 2.126 10.358 0.013 2957 41.019
5 200 200 10 0.012 5.108 2.240 13.019 0.012 2.597 74.585
5 200 300 10 0.013 4.803 2.420 15.560 0.013 2.793 79.543
5 300 100 10 0.011 10.945 4.325 30.405 0.011 5.921 200.648
5 300 200 10 0.013 11.540 4.363 42.398 0.014 3.687 300.193
5 300 300 10 0.014 11.856 5.567 50.576 0.014 9.382 566.045

o r————C oyttt €-2001 All Rights Resetved

Table A3
Quality of Lower and Upper Bounding Procedures (Set 1II)

KROON, SALOMON, AND VAN WASSENHOVE / 635

Lower Bounds

Upper Bounds

A J D # ACR ANR ALP ELP ILP ALR ACC A‘GR
4 100 100 10 0.077 0.000 0.023 4 3 0.051 0.198 0.008
4 100 200 10 0.038 0.000 0.005 8 4 0.028 0.236 0.010
4 100 300 10 0.023 0.000 0.004 8 5 0.018 0.238 0.008
4 200 100 10 0.056 0.000 0.009 5 3 0.051 0.220 0.004
4 200 200 10 0.039 0.000 0.003 8 2 0.034 0.263 0.008
4 200 300 10 0.004 0.000 0.002 9 4 0.020 0.272 0.008
4 300 100 10 0.053 0.000 0.006 7 3 0.052 0.300 0.022
4 300 200 10 0.031 0.000 0.001 9 4 0.026 0.256 0.009
4 300 300 10 0.015 0.000 0.001 8 2 0.019 0.250 0.008
5 100 100 10 0.133 0.006 0.014 6 2 0.041 0.368 0.000
5 100 200 10 0.055 0.000 0.010 5 2 0.046 0.379 0.000
5 100 300 10 0.046 0.011 0.012 5 2 0.033 0.418 0.000
5 200 100 10 0.149 0.000 0.017 2 1 0.063 0.388 0.000
5 200 200 10 0.061 0.000 0.005 6 3 0.035 0.409 0.005
5 200 300 10 0.011 0.000 0.001 9 2 0.031 0.310 0.009
5 300 100 10 0.136 0.000 0.008 4 2 0.063 0.371 0.003
5 300 200 10 0.074 0.002 0.005 6 0 0.042 0.303 0.002
5 300 300 10 0.023 0.003 0.004 6 1 0.025 0.201 0.003
Arp, Average quality of lower bound (LB). It is I;p The number of times that the LP-relaxation
computed by taking the average of (Zip — yields an integer solution over 10 instances.
Zasy)/Zip over 10 instances. The lower Awey The average quality of the upper bound (UB). It is
bounds that are considered are the CR-bound, computed by taking the average of (Zws) — Zwp)
the NR-bound, the LP-bound, and the Z,p over 10 instances. The upper bounds that are
LR-bound. considered are the CC-bound, and the GR-bound.
E;p The number of times that Z; p equals Z;p Over 10 CPU(, The average CPU time (in seconds) of
instances. procedure (.) over 10 instances.
Table A4
CPU Times (in second) for Lower and Upper Bounding Procedures (Set II)
Lower Bounds Upper Bounds Optimal
A J D # CPUcr CPUng CPU,» CPU, x CPUcc CPUgr CPUjp
4 100 100 10 0.012 0.583 0.341 1.455 0.013 0.357 1.010
4 100 200 10 0.014 0.613 0.375 1.687 0.012 0.841 1.063
4 100 300 10 0.011 0.671 0.401 1.988 0.013 1.223 1.216
4 200 100 10 0.010 2.115 1.147 9.172 0.013 1.330 5.212
4 200 200 10 0.013 2.087 1.422 12.092 0.010 3.050 10.245
4 200 300 10 0.012 2.413 1.703 14.197 0.010 3.655 23.417
4 300 100 10 0.012 4.803 2.730 29.323 0.011 5.816 14.512
4 300 200 10 0.013 5.037 3.735 42.721 0.013 8.890 31.273
4 300 300 10 0.014 5.470 4331 52.829 0.015 14.803 69.193
5 100 100 10 0.012 1.282 0.625 1.871 0.013 0.719 1.843
5 100 200 10 0.011 1.607 0.702 2.183 0.011 0.993 5.068
5 100 300 10 0.011 1.528 0.743 2.322 0.014 1.527 4.570
5 200 100 10 0.012 5.899 2.301 10.431 0.012 2.371 25.063
5 200 200 10 0.012 5.690 2511 12.552 0.016 2.197 49.218
5 200 300 10 0.014 5.133 2914 14.227 0.013 6.406 58.288
5 300 100 10 0.011 12.601 5.225 32.379 0.014 4817 106.940
5 300 200 10 0.012 12.396 7.301 40.896 0.011 12.136 235.694
5 300 300 10 0.011 12.661 8.618 49.011 0.010 20.494 405.905

Copyright © 2001 All Rights Reserved

636 / KROON, SALOMON, AND VAN WASSENHOVE

Table A5

Quality of the Lower and Upper Bounding Procedures (Set III)

Lower Bounds

Upper Bounds

A J D # ACR ANR ALP ELP ILP ALR ACC AGR
4 100 100 10 0.057 0.016 0.000 10 10 0.000 0.131 0.016
4 100 200 10 0.074 0.049 0.003 9 9 0.000 0.082 0.010
4 100 300 10 0.041 0.041 0.000 10 10 0.000 0.068 0.012
4 200 100 10 0.063 0.034 0.003 9 9 0.000 0.084 0.015
4 200 200 10 0.009 0.009 0.000 10 10 0.000 0.089 0.027
4 200 300 10 0.022 0.022 0.000 10 10 0.000 0.054 0.016
4 300 100 10 0.035 0.025 0.000 10 10 0.017 0.082 0.018
4 300 200 10 0.030 0.019 0.000 10 10 0.002 0.077 0.015
4 300 300 10 0.023 0.023 0.000 10 10 0.000 0.052 0.019
5 100 100 10 0.127 0.027 0.000 10 10 0.000 0.103 0.007
5 100 200 10 0.084 0.033 0.000 10 10 0.000 0.107 0.015
5 100 300 10 0.043 0.025 0.000 10 10 0.000 0.091 0.027
5 200 100 10 0.123 0.014 0.000 10 10 0.000 0.159 0.014
5 200 200 10 0.045 0.036 0.000 10 8 0.006 0.107 0.008
5 200 300 10 0.030 0.016 0.000 10 10 0.000 0.098 0.019
5 300 100 10 0.073 0.021 0.000 10 10 0.020 0.139 0.018
5 300 200 10 0.028 0.024 0.000 10 10 0.008 0.081 0.020
5 300 300 10 0.016 0.016 0.000 10 9 0.006 0.075 0.024
6 100 100 10 0.156 0.030 0.000 10 10 0.000 0.148 0.016
6 100 200 10 0.095 0.028 0.000 10 10 0.000 0.121 0.014
6 100 300 10 0.086 0.050 0.000 10 10 0.000 0.104 0.022
6 200 100 10 0.142 0.034 0.000 10 10 0.013 0.154 0.020
6 200 200 10 0.085 0.040 0.001 9 8 0.009 0.132 0.009
6 200 300 10 0.058 0.046 0.000 10 10 0.000 0.112 0.022
6 300 100 10 0.092 0.037 0.002 9 9 0.031 0.175 0.014
6 300 200 10 0.059 0.033 0.000 10 8 0.014 0.102 0.015
6 300 300 10 0.035 0.035 0.000 10 8 0.004 0.107 0.027
Table A6
CPU Times (in seconds) for Lower and Upper Bounding Procedures (Set I1I)

Lower Bounds Upper Bounds Optimal
A J D # CPUcx CPUpg CPU,, CPU, CPU,(CPUgg CPU,,
4 100 100 10 0.012 0.259 0.111 0.347 0.012 0.128 0.145
4 100 200 10 0.013 0.275 0.137 0.619 0.010 0.326 0.196
4 100 300 10 0.012 0.273 0.144 0.845 0.012 0.290 0.189
4 200 100 10 0.012 0.906 0.317 3.290 0.010 0.336 0.507
4 200 200 10 0.011 0.964 0.416 8.762 0.010 0.686 0.707
4 200 300 10 0.013 0.892 0.562 9.428 0.010 1.065 0.835
4 300 100 10 0.011 2.070 0.722 21.964 0.010 1.133 1.237
4 300 200 10 0.011 2.000 1.220 27.650 0.012 2332 1.723
4 300 300 10 0.013 1.812 1.524 45.644 0.012 3.185 2.206
5 100 100 10 0.013 0.327 0.123 0.329 0.010 0.158 0.174
5 100 200 10 0.012 0.407 0.137 0.747 0.011 0.302 0.212
5 100 300 10 0.014 0.424 0.150 1.365 0.011 0.392 0.220
5 200 100 10 0.012 1.456 0.344 4.352 0.010 0.634 0.656
5 200 200 10 0.012 1.612 0.480 7.649 0.011 0.964 0.790
5 200 300 10 0.011 1.402 0.628 9.913 0.011 2.398 0.937
5 300 100 10 0.012 3.093 0.757 20.601 0.011 1.191 1.433
5 300 200 10 0.013 3.342 1.210 34.666 0.012 2.569 2.455
5 300 300 10 0.014 3.102 1.493 50.976 0.010 7.961 2.438
6 100 100 10 0.015 0.471 0.131 0.633 0.012 0.291 0.201
6 100 200 10 0.011 0.566 0.148 0.750 0.010 0.400 0.219
6 100 300 10 0.011 0.655 0.168 1.463 0.010 0.433 0.260
6 200 100 10 0.011 2.079 0.402 5.206 0.010 0.759 0.697
6 200 200 10 0.010 2.227 0.558 7.369 0.011 1.961 1.111
6 200 300 10 0.013 2.376 0.630 11.234 0.012 2421 1.202
6 300 100 10 0.012 5.246 0.859 23.762 0.012 1.881 1.843
6 300 200 10 0.015 4.995 1.222 37.239 0.011 4.764 3.023
6 300 300 10 0.014 4.798 1.577 48.853 0.012 12.060 3.560

copyright© 2001 All Rights Reserved

KROON, SALOMON, AND VAN WASSENHOVE /[637

Table A7
Quality of Lower and Upper Bounding Procedures (Set IV)
Lower Bounds Upper Bounds
A J D # ACR ANR ALl"‘ ELP ILP ALR ACC AGR
4 100 100 10 0.238 0.000 0.000 10 10 0.000 0.055 0.000
4 100 200 10 0.248 0.004 0.002 9 9 0.000 0.077 0.015
4 100 300 10 0.182 0.006 0.002 9 9 0.003 0.086 0.009
4 200 100 10 0.209 0.000 0.000 10 10 0.000 0.111 0.022
4 200 200 10 0.217 0.000 0.000 10 10 0.000 0.087 0.015
4 200 300 10 0.171 0.000 0.000 10 9 0.000 0.091 0.010
4 300 100 10 0.255 0.000 0.000 10 10 0.019 0.074 0.015
4 300 200 10 0.183 0.000 0.000 10 9 0.005 0.096 0.011
4 300 300 10 0.192 0.000 0.000 10 10 0.001 0.080 0.014
5 100 100 10 0.353 0.010 0.000 10 10 0.005 0.114 0.004
5 100 200 10 0.269 0.014 0.000 10 10 0.000 0.176 0.014
5 100 300 10 0.270 0.014 0.000 10 10 0.000 0.145 0.003
5 200 100 10 0.331 0.006 0.002 9 9 0.013 0.190 0.026
5 200 200 10 0.287 0.004 0.000 10 9 0.000 0.169 0.009
5 200 300 10 0.265 0.006 0.000 10 10 0.000 0.183 0.013
5 300 100 10 0.322 0.009 0.000 10 9 0.021 0.191 0.020
5 300 200 10 0.290 0.007 0.000 10 10 0.009 0.222 0.019
5 300 300 10 0.284 0.005 0.000 10 8 0.006 0.169 0.008
6 100 100 10 0.399 0.016 0.003 9 9 0.000 0.121 0.017
6 100 200 10 0.371 0.004 0.000 10 10 0.000 0.196 0.011
6 100 300 10 0.207 0.021 0.003 8 8 0.000 0.225 0.005
6 200 100 10 0.318 0.000 0.000 10 10 0.000 0.231 0.026
6 200 200 10 0.297 0.004 0.000 10 10 0.000 0.252 0.015
6 200 300 10 0.246 0.019 0.000 10 10 0.000 0.214 0.011
6 300 100 10 0.320 0.000 0.000 10 10 0.014 0.213 0.018
6 300 200 10 0.243 0.006 0.001 9 9 0.004 0.244 0.026
6 300 300 10 0.217 0.008 0.000 10 10 0.000 0.247 0.011
Table A8
CPU Times (in seconds) for Lower and Upper Bounding Procedures (Set IV)
Lower Bounds Upper Bounds Optimal
A J D # CPUcx CPUyng CPU,, CPU, r CPUcc CPUgg CPU,,
4 100 100 10 0.014 0.201 0.117 0.201 0.012 0.130 0.163
4 100 200 10 0.012 0.222 0.141 0.829 0.011 0.208 0.205
4 100 300 10 0.013 0.234 0.162 0.904 0.011 0.339 0.225
4 200 100 10 0.012 0.728 0.440 4.802 0.010 0.408 0.609
4 200 200 10 0.012 0.750 0.582 7.638 0.011 0.619 0.773
4 200 300 10 0.012 0.758 0.631 9.064 0.011 1.025 0.804
4 300 100 10 0.010 1.502 0.881 26.323 0.010 0.630 1.429
4 300 200 10 0.014 1.634 1.394 33.657 0.011 1.627 1.958
4 300 300 10 0.016 1.540 1.735 46.209 0.010 1.898 2.021
S 100 100 10 0.010 0.263 0.128 0.485 0.010 0.226 0.188
5 100 200 10 0.012 0.320 0.153 0.967 0.012 0.467 0.234
5 100 300 10 0.013 0.282 0.178 0.833 0.011 0.531 0.243
5 200 100 10 0.012 1.039 0.462 7.138 0.010 0.976 0.691
5 200 200 10 0.013 1.055 0.560 6.897 0.010 1.492 0.798
5 200 300 10 0.012 1.058 0.688 11.505 0.010 2.956 1.002
5 300 100 10 0.010 2.262 1.086 26.783 0.010 3.216 1.728
5 300 200 10 0.011 2.344 1.508 39.572 0.011 2.495 2.382
5 300 300 10 0.014 2272 1.741 50.359 0.013 3.766 2.586
6 100 100 10 0.013 0.392 0.146 0.950 0.010 0.305 0.216
6 100 200 10 0.011 0.443 0.151 0.756 0.011 0.556 0.227
6 100 300 10 0.012 0.484 0.177 1.046 0.012 0.775 0.275
6 200 100 10 0.013 1.665 0.460 5.937 0.011 0.946 0.752
6 200 200 10 0.011 1.623 0.649 8.736 0.011 3.851 0.913
6 200 300 10 0.014 1.819 0.696 11.558 0.011 4.585 0.991
6 300 100 10 0.014 3.734 1.056 25.702 0.010 2.812 1.932
6 300 200 10 0.013 3.815 1.612 42.594 0.010 2.641 2.549
6 300 300 10 0.013 3.893 1.858 54.338 0.011 6.951 2.948

Copyright © 2001 All Rights Reserved

638 / KROON, SALOMON, AND VAN WASSENHOVE
ENDNOTES

1. Opposite to the situation that is common in the United
States, the airport is owner of the gates, and is responsible
for the assignment of gate capacity to the incoming
aircraft.

2. Obviously, it may happen that part of a job falls out-
side the planning horizon. If this occurs, the part of the job
that falls outside the planning horizon is not taken into
account. If a complete job falls outside the planning hori-
zon, then a new job is generated.

ACKNOWLEDGMENTS

We want to thank professor Antoon Kolen from Limburg
University, The Netherlands, for several helpful suggestions.

REFERENCES

Anuia, R. K, T. L. MAGNANTL, AND J. B. OrLIN. 1993, Net-
work Flows: Theory, Algorithms, and Applications. Pren-
tice Hall, Englewood Cliffs, NJ.

ArxkiN, E. M. anp E. L. SILVERBERG. 1987. Scheduling Jobs
With Fixed Start and Finish Times. Discrete Appl. Math.
18, 1-8.

CARTER, M. W. 1989. A Lagrangian Relaxation Approach to
the Classroom Assignment Problem. INFOR. 27, 230-246.

CARTER, M. W. anDp C. A. Tovey. 1992. When is the Class-
room Assignment Problem Hard? Opns. Res. 40,
$28-839.

DanNTzIiG, G. L. AND D. R. FULKERSON. 1954. Minimizing the
Number of Tankers to Meet a Fixed Schedule. Naval Res.
Logist. 1, 217-222.

DuksTRA, M. C., L. G. KrOON, J. A. E. E. vaN NUNEN, AND M.
SaroMon. 1991. A DSS for Capacity Planning of Aircraft
Maintenance Personnel. International J. of Production
Res. 23, 69-78.

DuxkstrA, M. C,, L. G. KroON, M. SaLoMoN, J. A. E. E. vaN
NUNEN, AND L. N. VAN WASSENHOVE. 1994. Planning the
Size and Organization of KL.M’s Maintenance Personnel.
Interfaces 24, 47-58.

DiwortH, R. P. 1950. A Decomposition Principle for Par-
tially Ordered Sets. Ann. Math. 51, 161-166.

- e Syt ©- 200 AlFRights Reserved

DonpEerr, V. R. anp H. EmMons. 1992. Interval Scheduling
With Processors of Two Types. Opns. Res. 40, S7T6-S85.

DonpEeTl, V. R. AND H. EMMONs. 1993. Algorithms for Pre-
emptive Scheduling of Different Classes of Processors to
Do Jobs With Fixed Times. Eur. J. Opnl. Res. 70,
316-326.

ERLENKOTTER, D. 1978. A Dual-Based Procedure for Unca-
pacitated Facility Location. Opns. Res. 26, 992-1000.
FiscHETTI, M., S. MARTELLO, AND P. ToTH. 1987. The Fixed
Job Schedule Problem With Spread Time Constraints.

Opns. Res. 6, 849-858.

FiscHETTI, M., S. MARTELLO, AND P. ToTH. 1989, The Fixed
Job Schedule Problem With Working Time Constraints.
Opns. Res. 3, 395-403.

FiscHETTI, M., S. MARTELLO AND P. ToTH. 1992. Approxima-
tion Algorithms for Fixed Job Schedule Problems. Opns.
Res. 40, S96-5108.

FisHER, M. L. 1981. The Lagrangian Relaxation Method for
Solving Integer Programming Problems. Mgmt. Sci. 27,
1-18.

GEOFFRION, A. M. 1974. Lagrangian Relaxation and Its Uses
in Integer Programming. Math. Prog. Study, 2, 82-114.

GERTSBAKH, 1. AND H. 1. STERN. 1978. Minimal Resources for
Fixed and Variable Job Schedules. Opns. Res. 18, 68-85.

Gurta, U. L., D. T. LEg, anp J. Y.-T LEUNG. 1979. An Opti-
mal Solution to the Channel Assignment Problem. IEEE
Trans. Comput. C-28, 807-810.

HasHiMOTO, A. AND J. STEVENS. 1971. Wire Routing by Opti-
mizing Channel Assignments Within Large Apertures. In
Proceedings of the 8th Design Automation Workshop,
155-169.

IBM. 1991. Optimization Subroutine Library. Release 2:
Guide and References. Third Edition.

Koren, A. W. J. anp L. G. Kroon. 1991. On the Computa-
tional Complexity of (Maximum) Class Scheduling. Eur.
J. Opnl. Res. 54, 23-38.

KoLen, A. W. J. aND L. G. KrooN. 1992, License Class De-
sign: Complexity and Algorithms. Eur. J. Opnl. Res. 63,
432-444.

KrooN, L. G. 1990. Job Scheduling and Capacity Planning in
Aircraft Maintenance. Ph.D. Thesis, Rotterdam School
of Management, Erasmus University.

