
Routing Trains Through Railway Stations
Model Formulation and Algorithms^

PETER J. ZWANEVELD, LEO G. KROON, H. EDWIN ROMEIJN, and MARC SALOMON

Rotterdam School of Management, Erasmus University Rotterdam, Rotterdam, The Netherlands

STEPHANE DAUZERE-PERES

Department of Automatic Control and Production Engineering, Ecole des Mines de Nantes, Nantes, France

STAN P. M. VAN HOESEL

Department of Quantitative Economics, University of Limburg, Maastricht, The Netherlands

HARRIE W. AMBERGEN

Railned, Utrecht, The Netherlands

In this paper we consider the problem of routing trains through railway stations. This problem
occurs as a subproblem in a project which the authors are carrying out in cooperation with the
Dutch railways. The project involves the analysis of future infrastructural capacity require-
ments in the Dutch railway network. Part of this project is the automatic generation and
evaluation of timetables. To generate a timetable a hierarchical approach is followed: at the
upper level in the hierarchy a tentative timetable is generated, taking into account the specific
scheduling problems of the trains at the railway stations at an aggregate level. At the lower level
in the hierarchy it is checked whether the tentative timetable is feasible with respect to the safety
rules and the connection requirements at the stations. To carry out this consistency check,
detailed schedules for the trains at the railway yards have to be generated. In this paper we
present a mathematical model formulation for this detailed scheduling problem, based on the
Node Packing Problem (NPP). Furthermore, we describe a solution procedure for the problem,
based on a branch-and-cut approach. The approach is tested in an empirical study with data
from the station ofZwolle in The Netherlands.

In this paper we consider the problem of routing
trains through railway stations. This problem usu-
ally occurs at three levels in the planning hierarchy
of a railway company. At the strategic planning
level, the problem occurs in the analysis of future
infrastructural capacity requirements, such as the
number of platforms in the station and the number
of tracks at the station yard. At the tactical planning
level, the problem occurs in the actual generation of

^This research is sponsored by Railned and Nederlandse Spoor-
wegen (Netherlands Railways).

Transportation Science
Vol. 30, No. 3, August 1996

timetables. Finally, at the operational level the
problem occurs when timetables have to be adjusted
for day-to-day disturbances, such as delays of trains.

Here, we consider the problem at the strategic
level in the planning hierarchy. The authors are
carrying out the research on this problem as mem-
bers of a project-team for Railned and the Dutch
railway company 'Nederlandse Spoorwegen' (NS).
The former organization is responsible for determin-
ing the required future capacity of the Dutch rail-
way infrastructure. Final objective of the project is
to develop a decision support system, called DONS,

181

0041-1655/96/3003-0181 $01.25
© 1996 Institute for Operations Research and the Management Sciences

182 / p. J. ZWANEVELD ET AL.

M«pp«l

Kjimpan

Fig. 1. Dutch railway network of ZwoUe and surroundings.

that enables the strategic planners at the railway
company to evaluate the infrastructural capacity
requirements related to different scenarios with re-
spect to the expected future demand for railway
transportation. In order to carry out this evaluation
at an appropriate level of detail, complete timetables
have to he generated within DONS. However, the
analysis hy CAREY (1994) indicates that the genera-
tion of complete timetahles is computationally fea-
sible for small instances only. Therefore it was de-
cided to follow a two-level hierarchical approach for
the Dutch railway network. At the upper level in the
hierarchy, tentative timetables are generated by a
sub-system called CADANS (see SCHRIJVER and
STEENBEEK, 1994; SERAFINI and UKOVICH, 1989).

The input of CADANS is the railway network
(part of which is shown in Fig. 1), with estimated
travel times between the stations, the lines and cor-
responding frequencies, and the connections be-
tween lines which have to he offered at the stations.
Output of CADANS is a timetable (for one hour),
which includes the arrival and departure times of
the trains at the stations. However, since the tenta-
tive timetable does not take into account the de-
tailed layout of the railway stations, but simply
treats stations as nodes in the network, it is impor-
tant to check whether a detailed schedule for the
trains through the stations with the arrival and
departure times generated by CADANS actually ex-

ists. In order to carry out this consistency check, a
second subsystem called STATIONS (see KROON
and ZWANEVELD, 1995) is currently under develop-
ment. Output of STATIONS is a detailed schedule
for the trains at the station yards, including an
assignment of trains to routes and platforms at the
stations. In generating the detailed schedule, safety
rules, as well as connection requirements hetween
trains and customer service considerations are
taken into account. Furthermore, if not all trains
can be scheduled according to the arrival and depar-
ture times suggested by CADANS, then STATIONS
should try to find a schedule which is feasible within
small deviations from the given arrival and depar-
ture times.

In this paper we discuss the procedures that are
currently used within STATIONS to automatically
generate the detailed schedules for the trains at the
station yards. In Section 2 we describe the schedul-
ing problem in more detail: we introduce the termi-
nology, the notation, and the computational com-
plexity of the problem. In Section 3 we show that the
scheduling prohlem can be formulated as a Node
Packing Problem (NPP), and we discuss the proce-
dure to generate valid inequalities that are used
within a hranch-and-cut procedure. The branch-
and-cut procedure itself is further outlined in Sec-
tion 4. To show the effectiveness of the branch-and-
cut procedure, the paper is concluded in Section 5

ROUTING TRAINS THROUGH RAILWAY STATIONS / 1 8 3

with an empirical study based on the station of
Zwolle, one of the largest stations in The Nether-
lands.

1. PROBLEM DESCRIPTION, NOTATION AND
COMPLEXITY

1.1. Problem Description
THE PROBLEM OF ROUTING trains through railway
stations can be stated as follows: given the layout of
a railway station and the global timetable for a set of
trains, is it possible to route these trains through the
station such that no pair of trains is conflicting, and
such that a number of service considerations is sat-
isfied? We will call this the feasibility problem. The
reason that we are primarily interested in the fea-
sibility issue is that, as stated before, we consider
the problem at the strategic, as opposed to the tac-
tical or the operational, level.

The characteristics of the problem that we de-
scribe in this paper pertain to the railway system in
The Netherlands, which is very similar to most Eu-
ropean systems.

A railway station can be entered by a train from a
number of entering points, and it can be left through
a number ot leaving points. In general, each entering
point can also serve as a leaving point, and vice
versa. Furthermore, each of these points corre-
sponds to a direction of travel. For example, the
directions of travel of the Dutch railway station of
Zwolle are Almelo, Amersfoort, Deventer, Kampen,
and Meppel (see Fig. 1). The railway network out-
side the entering and leaving points is not taken into
account in the problem addressed in this paper.

A railway station consists of platforms and of a
large number of track sections. An inbound route is
a sequence of sections linking an entering point to a
platform. Similarly, an outbound route is a sequence
of sections linking a platform to a leaving point. A
complete route is either a combination of an inbound
and an outbound route using the same platform, or
a sequence of sections connecting an entering point
to a leaving point, bypassing the platforms. There
will often be many different routes between a given
pair of entering and leaving points, and even several
different routes that use the same platform.

The arrival time of a train is the time at which the
train stops at a platform, after traveling along an
inbound route. Similarly, the departure time of a
train is the time at which the train leaves the plat-
form along an outbound route. The arrival and de-
parture times of the trains are generated by
CADANS, and can thus be assumed given.

Clearly, the routing of each train will depend on
the routings of other trains. Most importantly.

safety rules of the Dutch railways dictate the follow-
ing procedure. As soon as a train arrives at its en-
tering point of the station, it claims an inbound
route to a platform. Since any track section can only
be claimed by one train at a time, an inbound route
is not feasible for a particular train if any section of
the route is already claimed by another train. As a
train traverses its chosen route, it sequentially re-
leases each of the track sections comprising the
route. In particular, each section will be released
after a certain minimum time interval (called the
buffer time) has elapsed since a train lefl that sec-
tion. This buffer time is included to improve the
robustness of the timetable and corresponding rout-
ings with respect to disruptions in the daily opera-
tion of the railway system. A similar procedure is
followed for the outbound route, and for the com-
plete route if a train does not stop at a platform.
Important for the modeling of the safety system is
the exact calculation of the time at which a route is
reserved and the time at which a section is released.
Therefore the (inbound, outbound or complete) route
has to be known for the calculation of all relevant
time instants. These time instants are calculated
using well-known formulas from the theory of dy-
namics, taking into account (i) the lengths of the
routes, and Hi) the assumption that trains have
either a constant velocity, or a constant acceleration
or deceleration.

Although these are the current safety rules of the
Dutch railway company, the model and solution
method we will propose do not depend on this par-
ticular safety system. In fact, as we will see later, a
very broad class of safety systems can be handled by
our algorithm. Other constraints that have to be
taken into account concern the coupling or uncou-
pling of trains at a platform, the requirement that
certain trains use the same platform, and service
considerations, like the possibility for passengers to
transfer between certain pairs of trains.

1.2. Notation
To formulate our model for the feasibility problem,

we denote the set of trains by T, the set of routes
(complete, inbound, and outbound) by R, and the set
of all platforms by P. The routes are made up of
track sections, the set of which will be denoted by S.
Furthermore, let Rf C R denote the set of routes
that can be used by train t G T. The arrival and
departure times of train t are denoted by a^ and d^,
usually in minutes. The latter is required by the
Dutch railway company for reasons of convenience
towards passengers, train drivers, and planners. We
can deal with both sequential and cyclical timeta-
bles. A sequential timetable is simply a timetable

184 / P, J. ZWANEVELD ET AL,

over some fixed planning horizon. A cyclical timeta-
ble is a timetable for, say, 1 hour, which is then
repeated. The only adjustment that needs to be
made for cyclical timetables is that we need to use
arithmetic modulo 1 hour for all time computations.

If it is impossible to schedule all trains with the
original arrival and departure times, we can allow
for small deviations from these times. A deviation is
a combination of a deviation from the arrival time
and a deviation from the departure time. A deviation
is denoted by 6 = {8", 6''), where 5" is the deviation
from the arrival time, and S*̂ is the deviation from
the departure time. To reflect these deviations, let
a, 5 = a I + 5" be the arrival time of the train
adjusted for the deviation. Similarly, letdtg = d^ +
8^ denote the adjusted departure time. Since the
arrival and departure times are required to be inte-
gers, the deviations should also be integers. There-
fore, the set of deviations, which we will denote by ̂ ,
is finite for cyclical timetables. For sequential time-
tables we will make the additional assumption that
only a finite number of deviations will be allowed.
Note that the original arrival and departure times
correspond to a zero deviation vector S - (0, 0) for all
trains. In principle, the set of allowable deviations
can even be train-dependent (due to circumstances
outside the station).

For every train t we will introduce a set Fj of
allowable route-deviation combinations. In this way
we can, for instance, exclude certain routes or plat-
forms for a particular train, and ensure that the
time at the platform (i.e., d^^ - a^g) will exceed some
prespecified (and possibly train-dependent) value.

The safety rules described in the previous section
can be represented by defining, for each pair of
trains t, t' G T, a set F^,.. These sets contain pairs
of allowable route-deviation combinations (r, 5; r ' ,
8'). That is. (r, S; r ' , S') E F,,. implies that the
routing of train t on route r with deviation 8 is
compatible with the routing of train t' on route r'
with deviation S'. It is clear that this is a very
flexible way of modeling the safety rules. Therefore,
as was noted above, this modeling can accommodate
a large variety of safety rules (including the current
Dutch ones). In fact, the necessity of being able to
handle such safety rules implies that routes should
be taken into account explicitly, as opposed to, for
instance, dealing directly with the sections of the
railway station. It has already been noted that deal-
ing with complete routes is necessary for the exact
calculation of the reservation times of routes and the
release times of sections.

Actually, many other constraints can be modelled
in the same way. For instance, consider the situa-
tion where two trains have to be coupled at a railway

station. One of the trains is called the leading train,
while the other train, called the following train, has
to be coupled onto the leading train. In this case, the
leading train has to be assigned to a complete route,
while the following train has to be assigned to an
inbound route only (that is compatible with the
route of the leading train). A similar situation occurs
if a train has to be uncoupled into two parts. It is
clear that these (un-)coupling constraints can be
modelled using the sets F^,- introduced above. In
this case, (r, 6; r', S') is an element ofF^- only if a
necessary coupling or uncoupling procedure involv-
ing trains (and t' can be performed when using
these route-deviation combinations.

Finally, consider the following service consider-
ations. Firstly, convenience considerations towards
the passengers may dictate that certain groups of
trains all leave from the same platform. For in-
stance, such a group of trains may consist of all
trains leaving into the same direction. Secondly, one
may wish to incorporate certain transfer possibili-
ties between trains into the schedule. That is, pairs
of trains need to use platforms that are close to each
other. Moreover, there needs to be a certain mini-
mum overlap in the time intervals spent at their
respective platforms, in order to ensure that passen-
gers can indeed transfer. Once again, these con-
straints can be modelled by appropriately adjusting
the sets Fn- introduced above.

In the remainder of this paper we will only con-
sider constraints that can be modelled using the sets

1.3. Complexity
The size of the feasibility problem can be mea-

sured in terms of the number of trains | r | , tbe layout
of the railway station as measured by the number of
track sections |S|, and the number of possible route-
deviation combinations available for each train. The
layout of the railway station will be characterized by
the set of track sections S that make up the routes.

The feasibility problem

Given a railway station, with a corresponding set
of track sections S, a set of trains T with corre-
sponding default arrival and departure times a,
and di (for t G T), a set of route-deviation combi-
nations Ft C R X A, and sets i^^. C F, x F,.
containing all pairs of compatible route-deviation
combinations for all pairs of trains t, t' E T,
determine whether all trains can be routed
through the station.

In this section we will show that this problem is
NP-complete.

ROUTING TRAINS THROUGH RAILWAY STATIONS / 1 8 5

THEOREM l. The feasibility problem is NP-complete.

Proof. It is easy to see that the problem is in the
class NP (see GAREY and JOHNSON (1979) for the
definition). Now consider the problem of scheduling
jobs with fixed start and end times on non-identical
parallel machines, where each job can only be pro-
cessed on a specified subset of the machines. ARKIN

and SiLVERBERG (1987) prove that this scheduhng
problem is NP-complete by a reduction from 3SAT.
We will reduce this problem (which is described in
more detail below) to the feasibility problem, thus
proving that the latter is NP-complete as well.

The scheduling problem of Arkin and Silverberg
can be described as follows:

Given a set J = {J^, . . . , JJ of n jobs, the start
and end times (a,, d,) of each job J,, and a job-
machine mapping between J and a set of k non-
identical machines, determine whether all jobs
can be processed.

For each job J^, introduce a train i with arrival time
a, and departure time d^. Let every machine Mj
correspond to a route. If M^ denotes the set of ma-
chines on which job J, can be processed, then let
F, = M,, where F^ is the set of allowable routes for
train i. Now a route combination (Mj, Mj-) is in the
setF,,- a + i') if(a)j ^j'\ (b) d,. ^ a^; or (c) d^ <
a, . This instance of the feasibility problem (without
deviations!) can be constructed in polynomial time.
It is easy to see that a feasible schedule for the
scheduling problem is equivalent to a feasible rout-
ing of all trains. D

The complexity of the feasibility problem is stud-
ied in more detail in KROON, ROMEUN and ZWAN-
EVELD (1995). In particular, it turns out that the
feasibility problem is solvable in polynomial time if
each train has at most two available route-deviation
combinations, and it is NP-complete if each train
can have three available route-deviation combina-
tions. On the other hand, if the layout of the station
is considered fixed and only minor deviations are
allowed, then the problem is solvable in an amount
of time that is polynomial in the number of trains to
be routed. The involved algorithm is based on dy-
namic programming.

2. MODEL FORMULATION

2.1. Node Packing Formulation
IN THE PREVIOUS SECTION, the feasibility problem

was stated in its decision form. That is, the question
was: "is it possible to route all trains through the
railway station?". In this section, we will switch to

the optimization form of the feasibility problem:
"what is the maximum number of trains that can be
scheduled?". Obviously, solving the optimization
form of the problem also solves the decision form of
the problem, by simply checking whether the num-
ber of trains that are scheduled in the optimal solu-
tion is equal to the total number of trains. In fact, in
the remainder of this paper we will address both the
decision problem and the optimization problem as
the feasibility problem, where the correct interpre-
tation should be clear from the context.

We will show that the feasibility problem can be
formulated as a Node Packing Problem (NPP). For-
mally, the Node Packing Problem (NPP) reads as
follows:

Let G = (V, E) be an undirected graph, where V
is the set of nodes, and E is the set of edges. Then,
a node packing {or stable set) is a set S C V such
that no edge joins two members of S. Then the
NPP is the problem of finding a node packing of
maximum cardinality.

The general NPP is thus characterized by an undi-
rected graph. For the feasibility problem, we define
a vertex of the graph for each allowable train-route-
deviation combination (t, r, 8). The identification of
each individual combination is necessary because of
the calculation of the traveling times of the trains.
The exact calculation of the traveling times is of
crucial importance in practice. The following edges
are added to the graph;

(i) Connect a vertex (t, r, 5) to all other vertices
associated with the same train t.

Hi) Connect a pair of vertices {t, r, 8) and(^', r', 8')
if{r, a ; r ' , 8') ^ F,,..

Here (i) ensures that each train is assigned to at
most one route-deviation combination, and {ii) ex-
cludes conflicting train-route-deviation combina-
tions for pairs of trains.

Obviously, a node packing represents a feasible
routing of a number of trains through the railway
station. A node packing of maximum cardinality
represents a feasible routing of as many trains as
possible through the railway station. Note that a
reasonable upper-bound on the maximum cardinal-
ity node packing is known, namely the total number
of trains.

2.2. Valid Inequalities
The feasibility problem, when regarded as a Node

Packing Problem, can be formulated as an integer

186 / p. J. ZWANEVELD ET AL.

linear program as follows.

max 2
tsT (r,

subject to

,,, + X,,.,. < 1 for all t e T; (r, S), (r ' , S') E F ,
(1)

,ra + X,r-s' ^ 1 for all t =^ t' e T; (r, 5) G F,;

(2)

{0, 1} for all t G T; (r, S)

This formulation is, in general, not very tight. That
is, the optimal solution to the LP-relaxation is not
close to the optimal IP-solution (see NEMHAUSER
and WOLSEY, 1988). However, it is possible to
tighten tbe formulation as follows.

First, note that the subgraph in the Node Packing
graph of all nodes corresponding to a single train is
a complete graph, i.e. a clique. Since every pair of
nodes corresponding to a single train is connected,
and only one of each pair of variables corresponding
to a pair of connected nodes can be set to one, we
know that only one out of all variables correspond-
ing to one train may be set to one—which yields the
following valid inequalities:

^ 1 for all t G T. (3)
(r.5)GF,

These inequalities can then replace equations (1) in
the above integer linear programming problem,
thereby hoth tightening the formulation, and
strongly reducing the number of constraints.

It is clear that this line of reasoning can be ex-
tended to arbitrary cliques in the graph (see e.g.
PADBERG, 1973). These valid inequahties are called
clique inequalities. However, the number of clique
inequalities is exponential in the problem size. An
efficient choice must therefore be made, based upon
the characteristics of the problem. In this section we
present the general idea behind our selection proce-
dure. The implementation is discussed in detail in
section 3.2.

The valid inequalities (3) represent cliques con-
taining nodes corresponding to a single train. A
straightforward extension of this is to consider all
nodes corresponding to two trains, and to find a
clique in that subgraph.

Indeed, consider two trains t ^^ t\ and route-
deviation combinations satisfying(r, 5; r', S'), (r, S;
r", 6") ^ F,,. (where (r, S) E F, and (r', S'), (r", 5")

G Ff). Then the model will contain the following
constraints:

+

+ ^ 1.

However, since only one route-deviation combina-
tion can be chosen for train f', we also haveX,,. s- +
X('̂ ..g" :̂ 1. We can now replace the first two con-
straints by the single constraint

"•" X,'r'6' + 1.

Continuing this line of reasoning to all feasible
route-deviation combinations for train t' tbat are
incompatible with (r, 5) for train t, we obtain

where F^'^^ denotes the set of route-deviation combi-
nations for train t' that are compatible with route-
deviation comhination (r, S) for train t, i.e.

F[^'={{r', 8 ')EF , : { r , S; r ' , 6 ') G F , , } .

Repeating this process for each pair of trains, the set
of constraints (2) can be replaced by

X,r, + 1 X,.,-s' ^ 1 for all t, f E T; (r, 5) G F,.

Adding these new constraints does not only improve
the upper bound obtained by LP-relaxation, but also
strongly reduces the number of constraints in the
problem since the corresponding constraints (2) are
removed.

Taking this process one step further, let (r^, 5j)
and (r2, 82) be two feasible route-deviation combi-
nations for train t, tbat is, (r^, S^), (r^, Sg) G F,.
Suppose that the set of route-deviation combina-
tions of train t' that are not compatible with train t
and (rj, Sj) (given by the setF^. \ Fj^'*') intersects
the set of route-deviation combinations of train t'
that are not compatible witb train t and (rg, 62)
(given by the set F,- \ Fp^'), i.e., (F,- \ F'p^') f\
{Fr \ F'p^^) = F,, \ (F'p^^ U F'p^^) i= 0. Then it
is clear that we can add the following valid inequal-
ity

+ 2J ^ 1.

Generalizing this to a set A C F^ of route-deviation
combinations for train t, we can add:

(4)

ROUTING TRAINS THROUGH RAILWAY STATIONS / 1 8 7

The same idea could obviously be extended to com-
binations of three or more trains.

all other trains, i.e. if there exists some (r, S) such
that

3. THE ALGORITHM

IN THIS SECTION we propose an algorithm for solving
the feasibility problem, based on the integer pro-
gramming formulation of the problem, and the pos-
sibility to add valid inequalities. The algorithm is
designed to be effective, i.e., its computation time is
small for problem instances occurring in practice.
For more remarks on this point, see HOFFMAN and
PADBERG (1993) and PADBERG and RiNALDI (1990).
Very generally, the algorithm reads as follows:

Routing algorithm

Step 0. Initialization: generate all routing alterna-
tives it, r, 5), and determine, for all pairs
t i" t' & T, the sets F^. of pairs of routing
alternatives that can be chosen simulta-
neously.

Step 1. Preprocessing: simplify the problem by re-
moving dominated routing alternatives.

Step 2. Formulate the problem as an integer pro-
gramming problem, and tighten the prob-
lem by adding valid inequalities. The inte-
ger programming problem is the first
subproblem to be investigated by the
branch-and-cut procedure (Step 4).

Step 3. Use heuristics to obtain a good initial solu-
tion.

Step 4. Apply a branch-and-cut procedure to obtain
the optimal solution to the problem.

In the remainder of this section we will make the
steps in the algorithm more concrete.

3.1. Initialization and Preprocessing
In Steps 0 and 1 of the algorithm the (useful)

routing possibilities for all trains have to be deter-
mined, and the admissible combinations of routing
possibilities for combinations of trains. We will as-
sume that, for every train t, the set of allowable
routing possibilities Ff is given, together with the
other train specific data. Using this information,
plus the safety, (un-)coupling, and connection re-
quirements and (other) service considerations, we
can determine the sets F^^. in O(|rp|i^|^|A|^) time.

However, it may happen that certain routing pos-
sibilities are dominated by others. In that case we
can eliminate such routing possibilities, thereby re-
ducing the size of the problem. In particular, a rout-
ing possibility (r, 6) for train i does not need to be
considered if there is another routing possibility
(f, 8) which leaves at least the same options open for

{{r, 8): (r, 6; r, 8) G F, J C {{r, 8): (r, 6; r, 8) G F^}

for all trains t ^ t. The variable X;>^ can then be
eliminated from the prohlem.

We check dominance only for variables corre-
sponding to routes using the same platform. As we
will see later, adding this preprocessing step has a
significant effect on the size of the problem, and thus
on the time necessary to solve it.

3.2. Adding Valid Inequalities
To tighten the formulation of the LP-relaxation of

the problem, we use a procedure to generate a subset
of the valid inequalities (4) which were discussed at
the end of Section 2.2.

In general, the valid inequalities of the form (4)
have the drawback that the time needed for con-
structing all of them grows exponentially in the size
of the problem (as does their number). Therefore we
propose to generate only the subclass of valid ine-
qualities where the set A is such that U(̂ gj^^Fjr^ is
equal to F'^^ for some (r, S) G A. In other words, we
only consider those cases where the set of feasible
route-deviation combinations for train t' that are
not compatible with train t and (r, S) is included in
the set of route-deviation combinations for train t'
that are not compatible with train t and (r, S), for all
(r, 8) e A. Thus F,. \ F\'^ C F,. \ Fjr^ (or,
equivalently, F\':^ C Fp) for all (r, 5) G A.

In this way we will obtain an initial problem de-
scription that is rather compact, does not require
much computing time to generate and, as we will see
in Section 4, is quite tight. Below we will propose a
procedure for generating these valid inequalities in
a systematic (and efficient) way.

The algorithm described below should be executed
for every pair of (different) trains (i, ^') G T X T. In
the algorithm, several sets are built up sequentially.
In particular, in iteration k of the algorithm, the sets
R' a = 1, . . . , k) are subsets of the possible rout-
ings for train t' (i.e., i?' C F^). Recall that the set
Fjr* is the set of routings that are allowable for train
t\ and are consistent with routing possibility (r, 8)
for train^. We will denote its complement in F^. by
Fjr^ so F^r* - F^- \ Fjr^ Furthermore, the sets
S= (i = 1, . . . , k) are subsets of F,, having the
following property: for all (r, S) G SL : we have (r, 5)
G F(and Fjr* = R^. Similarly, the sets S'c ii = I,
. . . , k) denote subsets of F, such that R' C FĴ ^ for
all (r, S) G 5c . Now the valid inequality procedure
can be described as follows:

188 / P. J. ZWANEVELD ET AL.

Valid inequality procedure

Step 0. Set A = 0.
Step 1. Select a routing [r, S) from F, that has not

been considered yet. If all routings have
been considered, go to Step 4. Set S = 0,
and rank the sets R' {i = 1, . . . ,k) in order
of non-decreasing cardinality.

Step 2. For i = 1, .. . , k, compare FĴ * to R'\
• UR'C Fjr«, then S'^ = S'c U {{r, 8)1.
• If R* = Flr\ then SL = SL U {(r, S)|,

and return to Step 1.
• If Fj:^ C R', then S - S U SL.

Step 3. Increment k, let R* = .FĴ ^ S l = {(r, 5)},
S j = S, and return to Step 1.

Step 4, For i ^ 1, . . . , k, create the following
constraint:

This constraint is lifted hy sequentially ex-
tending the corresponding clique to a max-
imal clique. The sequence in which the con-
nected variables are investigated is chosen
randomly, based on a uniform distribution
over the remaining variables.

In Step 1 the sets R' are ranked in order to decrease
the time required for the comparisons if/?' = Fjr^,
since in that case no set R-^, with j ' ^ i, can satisfy
if C Fjr^. In the actual implementation, this rank-
ing step is avoided by adding the new set at the right
position in the list, and renumbering the sets, in
Step 3.

3.3. Heuristics

A heuristic yielding a good initial solution is es-
sential for obtaining an efficient branch-and-cut al-
gorithm. We propose two (randomized) heuristics,
that can be used to generate several feasible solu-
tions for the optimization problem.

The first heuristic is based on the idea that, for
each train, a routing possibility should be chosen
that leaves room for as many trains as possible. In
other words, a routing is chosen such that the num-
ber of trains that will have at least one routing
possibility left is maximized. Given this, a routing
possibility is chosen that maximizes the total num-
ber of routing possibilities left. The next train to be
routed will be selected randomly from the remaining
trains.

Heuristic 1

Step 0. Select and remove a train, say t*, from the
setT.

Step 1. Choose routing possibility (r, S) G F,. that
maximizes the number of trains for which
at least one routing possibility is left, i.e.
choose (r, S) to maximize

\{t'eT: 3{r, 8; r', S')eF,,, .l | .

Out of all possibilities ir, S) attaining this
maximum, randomly choose a routing pos-
sibility (r*, 6*) that also maximizes the
total number of remaining routing possibil-
ities:

X |{{r',S'):(r, 5;r ' , S')GF,.,}|.

Step 2. If r = 0, stop. Otherwise, update the sets
Ff and F^f to reflect the route choice for t*.
Randomly select and remove a new train f *
from the set T, and return to Step 1.

The first heuristic does not take into account how
the number of routes that will be available for the
remaining trains after a certain train is routed is
balanced over the remaining trains. The second heu-
ristic tries to choose, for the train that is under
consideration, a routing that balances, as much as
possible, the number of routes available for all re-
maining trains over all remaining trains. The next
train to be routed will be the train that has the least
number of routing possibilities left. Through this
selection this heuristic aims at scheduling the "most
critical" train.

Heuristic 2

Step 0. Select and remove a train, say t*, from the
setr.

Step 1. For all routing possibilities (r, 5) E F,*,
determine how many routing possibilities
can still be selected for the remaining
trains in T, i.e. determine, for aWt E T and
all ir, 5) e F,*,

N,{r, d)

= max{€,\{{r\B'):{r,8-r',8')eF,,,}\}-

Then choose a routing possibility (r*, S*)
for train t* such that

, S)
ter

for all (r, 5) G F , . .

Step 2, If T = 0, stop. Otherwise, update the sets F^
and Fti' to reflect the route choice for t*.
Select and remove a new train t* from T

ROUTING TRAINS THROUGH RAILWAY STATIONS / 1 8 9

such that t* = arg
and return to Step 1.

The constant e with 0 < e < 1 appears in Step 1 of
this heuristic to force Ngir, S) to be positive for all
pairs (r, S) G F,*. This results in an appropriate
choice between routing possibilities (TJ, S^) and
(r2, 82) also if IIj N^ir^, Ŝ) and 11̂ N^ir^, 82) would
both have been zero otherwise. Note that, given a
sufficiently small value of e, the first optimization
criterion of Heuristic 1 is automatically included in
this heuristic. The motivation for using, in Step 1,
the product (instead of the sum) of the number of
routing possibilities for each of the trains, is that the
former tends to choose a routing possibility (r*, 8*)
for train t* for which the values of A ,̂(r*, S*) have a
smaller variance over t e T than the latter.

Both heuristics are started \T\ times, choosing
each train once as the initial train.

3,4. Branch-and-Cut

Within the branch-and-cut procedure a number of
subproblems is solved sequentially. A stack contain-
ing the so-called active subproblems is maintained
during the procedure.

Branch-and-cut procedure

Step 0. Initialize the stack by the overall problem.
Step 1. Choose the subproblem from the top of the

stack. If the stack is empty, then stop—the
best solution found so far is optimal.

Step 2. Solve the LP-relaxation of the subproblem
in process. Use a rounding heuristic to ob-
tain a feasible solution. Compare this solu-
tion with the best solution found so far.
Determine whether the best solution found
so far dominates the subproblem in process.
If so, stop and return to Step 1.

Step 3, Decide whether it may be useful to tighten
the LP-relaxation. If this is the case, then
search (for a limited time) for new valid
inequalities. If new vahd inequalities are
found, add them to the subproblem and re-
turn to Step 2.

Step 4. Split the subproblem in process into two
disjoint subproblems according to some
branching rule, and put them onto the
stack. Return to Step 1.

We will now explain the steps of the branch-and-cut
procedure in more detail.

3.4.1, Step 1

The subproblems will be taken from the stack in
LIFO order, corresponding to a depth-first search of
the branch-and-bound tree.

3.4.2. Step 2

To determine whether we need to further investi-
gate the subproblem under consideration we com-
pare the (truncated!) objective function value of the
LP-relaxation with the objective value of the best
feasible solution to the IP-problem found so far. If
the former is not larger than the latter, we do not
need to search the subtree corresponding to the cur-
rent subproblem any further. (Note that we can use
the truncated objective function value of the LP-
solution since the optimal solution will have an in-
teger objective function value.) If the former is
larger, then we use a rounding heuristic to obtain a
(new) feasible solution, which is a candidate for the
best solution found so far. The rounding heuristic
first orders the variables in non-increasing order of
their LP-solution value. Then the variables are con-
sidered in this order, and are set to one if possible.

3.4.3. Step 3

Since we search for violated clique inequalities,
we may restrict ourselves to a search over the frac-
tional variables only. The reason for this is that
variables having the value one can never form a
clique of cardinality two (or more) with a variable
having a nonzero value. A variable having the value
zero is not interesting, since it does not contribute to
the value of the clique. Therefore such variables can
be added later to turn a clique into a maximal clique.

The fractional variables are ordered in order of
non-increasing value. Starting with the first vari-
able, we try to find a clique containing that variable,
adding the variables in the given order. If a maximal
clique containing only fractional variables is found
in this way, and if the sum of the values of the
variables in the clique is larger than one (i.e., we
have found a violated clique inequality), we are
done. If not, we start the procedure again with the
next variable in the list.

If we have found a violated clique inequality, then
it is lifted by extending the corresponding clique to a
maximal clique. Note that in this step of the algo-
rithm we search for any violated clique: not just the
ones discussed in Section 2.2. The corresponding
valid inequality is added to the problem formulation
for all problems at the current node of the branch-
and-bound tree and their offspring, even though the
vahd inequalities are valid for the original problem
(and thus for all its subproblems). We repeat the
above procedure, after removing the variables con-
tained in the maximal clique, until no more cliques
exist. Now the LP-relaxation can be solved again. If
no violated cliques are found, we split the current
subproblems into new subproblems in Step 4.

190 / P. J. ZWANEVELD ET AL.

ZwoHe (ZL)

A / — \ Meppel

/

Fig. 2. Infrastructure of the railway station of Zwolle.

Deventer

3.4.4. Step 4
We propose the following branching rule. Select

one of the cliques found by the valid inequality pro-
cedure or in Step 3, or generate a new clique if no
appropriate clique can be found among those. Create
two subproblems: one by setting the total value of
the variables in the clique to one, and the other by
setting the total value of the variables in the clique
to zero. (Note that in the latter subproblem all vari-
ables in the clique are set to zero, and can therefore
be eliminated from the subproblem.) Both problems
are put onto the stack, where we make sure that the
first subproblem is put on top of the stack, so that it
will be selected next in Step 1. A clique will be selected
based on its cardinality and on its value (i.e. the value
of the sxjm of the variables in it). Note that, if a clique
is selected with a value of one, the optimal solution to
the LP-relaxation of the first subproblem generated is
equal to the optimal solution to the LP-relaxation of
the parent problem. Therefore, we do not need to solve
the LP-relaxation in the next occurrence of Step 2.
Actually, we use this observation by choosing a
branching clique with value one several times before
choosing a clique having value less than one.

The motivation for this branching rule is the fol-
lowing. In many cases a clique represents the use of
a particular part of the railway station at a partic-
ular time instant. Setting the value of the clique to
zero will therefore have the effect of not using that
part of the railway station at that time instant.
Therefore this branching rule can be expected to be
quite powerful.

4. COMPUTATIONAL RESULTS

IN THIS SECTION we present computational results
obtained with the algorithm described in the previ-

ous section. Several variants are investigated, which
were selected after ample discussion with the plan-
ners of Dutch railways. Results of 742 different
problem instances are presented in this section. The
infrastructure that we used as a base case is de-
scribed in detail in Section 4.1. In Section 4.2 we
describe the timetables, and in Section 4.3 we dis-
cuss the computational results themselves. This sec-
tion is concluded with an investigation of the effects
of the buffer time on the capacity of a railway sta-
tion.

4.1. Infrastructure
We use the railway station of Zwolle as the basis

for our computational experiments. The railway sta-
tion Zwolle is a railway station in the north-eastern
part of The Netherlands. The railway station has 15
platforms, and roughly 100 signals and 135 sections,
about 60 of which contain a switch. The average
number of allowable routes per train is 60, while the
maximum number is 120. The layout of the railway
station of Zwolle is shown in Fig. 2.

Since our data of the station layout lacks informa-
tion on the exact locations of the sections, while we
do have information on the locations of the signals,
we make the assumption that each section is re-
leased after the buffer time has elapsed following
the passing of the first signal following that section
by a train. Therefore each section is released some-
what later than in practice, and thus our problem is
slightly more restrictive than the actual problem.
We compensated for this by choosing the model
buffer time equal to zero in most experiments, and
thus approximating the real buffer time by this dif-
ference in release times.

ROUTING TRAINS THROUGH RAILWAY STATIONS / 1 9 1

Timetable

Current
Random 18
Current
Randoml8

Deviations

no
no
yes
yes

n

1,054
1,036
3,162
3,108

TABLE I
Characteristics of the Problems

m

110,889
123,050

1,493,532
1,108,000

n*

324
304

1,331
1,085

m*

10,842
9,905

283,456
143,250

834
714

3,407
2,705

ni[,

893
485
581
565

* 0

13,870
10,563

281,088
124,450

4.2. Timetables

We use both the current timetable and a number
of randomly generated timetables, which are all cy-
clical with a period of one hour. The current timeta-
ble has been in effect (with only minor changes) for
many years, and will remain in effect in the near
future. This timetable is (almost) equal to past time-
tables since it is very hard to generate new timeta-
bles by hand. Therefore, only slight adjustments
have been made from one year to the other.

We use random timetables to simulate the future
(and at this point unknown) situation where the
(initial) timetable is provided by CADANS. The
characteristics of these randomly generated timeta-
bles are as follows (all time references are in min-
utes):

• Nine different combinations of entering and
leaving directions for trains that are currently
used, are identified.

• No, one, two or three trains are generated for a
combination of an entering and a leaving direc-
tion.

• The arrival time of one train for a combination
of an entering and a leaving direction is drawn
uniformly from the set 10,. . . , 59), if at least one
train is generated for that combination. The
difference between the arrival time and the de-
parture time of the train is drawn uniformly
from the set 15, . . . , 10|. If two trains are gen-
erated for a combination of an entering and a
leaving direction, the arrival time and depar-
ture time of the second train is 30 minutes later.
If three trains are generated for a combination,
the arrival and departure times are respectively
20 and 40 minutes later (modulo 60).

We will use as a basis two trains per combination of
an entering and a leaving direction. Thus as base
case a total of 18 trains are generated, which is the
expected usage of railway station Zwolle in the fu-
ture. As an additional constraint, we require that
trains using the same combination of entering and
leaving directions use the same platform. This will
complicate the routing of trains since the routing
possibilities of trains will become more dependent

on each other (see also KROON, ROMEIJN and ZWAN-
EVELD, 1995).

We also consider the following two scenarios with
respect to the allowable deviations from the arrival
and departure times.

1. No deviations are allowed, i.e. A = {(0, 0)1.
2. Three deviations are allowed, i.e. A = {(-1, -1),

(0, 0), (1, 1)1, i.e. the arrival and departure times
can be shifted by one minute either backward or
forward in time.

If, in the remainder of this section, we refer to the
problem with deviations, we will mean the problem
with the 3 deviations from scenario 2.

4.3. Performance of the Algorithm

In this section we focus on the performance of our
algorithm. In Section 4.3.1 the detailed performance
is reported for problem instances from base case
scenarios. The results for other problem instances
are reported in Section 4.3.2.

4.3.1. Base Case Scenarios

We report the detailed results of our computa-
tional experiments for the base case instances.
These experiments are conducted both on the cur-
rent timetable and on 20 randomly generated time-
tables. This yields 21 timetables for each of the 2
scenarios with respect to the deviations, or 42 base
case problems to be solved. All results concerning
random timetables are averages over the 20 in-
stances. In Tables I-III the results concerning the
randomly generated base case timetables are indi-
cated by 'randoml8'. In Table I we can see that the
problems we obtain for Zwolle have about 1,100
variables {n) and 120,000 node packing constraints
(m; as in equations (1) and (2)) if we do not allow for
deviations from the original arrival and departure
times. If we do allow for deviations, we obtain a
problem with roughly 3,200 variables and 1,300,000
node packing constraints. The density of the node
packing graph is thus about 10%. The dominance
rule reduces the number of variables by about 65%,
and the number of constraints by 70-90%. In Table
I the number of variables and constraints after ap-

192 / P. J, ZWANEVELD ET AL.

Timetable

Current
Random 18
Random 18

BufFer

O
O

O

Deviations

no
no
yes

Resulti

HI

17,4
16,0
17.5

TABLE II
! of the Heuristics

H2

17.8
16.1
17.7

MaxCHl,
H2}

18,0
16.3
17.8

LP

18.0
16,3
17.8

LLPj

18.0
16.3
17,8

Opt

18.0
16.3
17.8

plying the dominance rule is denoted by n* and m*
respectively.

The performance of the valid inequality procedure
is satisfactory. It performs well with respect to the
reduction of the number of constraints. Without de-
viations the number of constraints is reduced from
about 10,000 (in the form of equation (1) and (2)) to
less than 1,000 (see the column labeled m,, in Table
I). With deviations, the reduction was even more
dramatic, namely from about 150,000 to about 2,700
in the case of randomly generated timetahles and
from about 280,000 to about 3,500 for the current
timetable. Because of the lifting procedure and the
fact that the valid inequahty procedure is started for
each combination of two trains twice, it may happen
that some clique inequalities are found more than
once. The number of times that this occurs is de-
noted in Table I by ml. Without deviations this
occurred in about 40% of cases, while the corre-
sponding number with deviations is about 15%. This
difference can be explained by the fact that in the
latter case the number of maximal cliques in the
^ a p h is much larger than in the first case, and
therefore the randomized lifting procedure will find
more distinct maximal cliques. The number of non-
zero coefficients (see the column labeled '^ 0' in
Table I) in the constraint matrix of the IP formula-
tion remains roughly the same.

Both heuristics are started with each train chosen
as the initial train once. No clear conclusion can be
drawn on which heuristic performs best. The aver-
age solution of both heuristics is about 3% worse
than the optimal solution. The results are summa-
rized in Table II. In all cases, the (truncated) opti-
mal solution value of the LP-relaxation of the initial
problem (after applying the valid inequality proce-
dure) is equal to the value of the best found beuristic
solution, so that the optimal solution is reached

without having to resort to the branch-and-cut pro-
cedure (illustrating the strength of the preprocess-
ing step, the valid inequality procedure, and the
heuristics). Note that for the current timetahle all
trains can be routed without allowing deviations.
Therefore the corresponding prohlem with devia-
tions does not have to be solved.

The computing times (in CPU seconds on a SUN
LX workstation, using ANSI C for programming,
and CPLEX 2.1 for solving the LP-relaxations) of the
various steps of the algorithm are summarized in
Table III. All problem instances without deviations
were solved within 85 CPU seconds, whereas all
problem instances with deviations were solved
within 400 CPU seconds. The most time consuming
part of the solution procedure is the initialization
step (the determination of the sets Fn-), as can be
observed from Table III.

4.3.2. Analysis of Other Scenarios
Apart from the computational experiments with

the base case scenarios, we also investigated a num-
ber of other problem instances, all based on ran-
domly generated timetables:

1. Different layouts of the railway station are con-
sidered. We represent the different layouts by the
number of platforms of the railway station. The
number of platforms is varied between 1 and 17.
We used the randomly generated timetables with
18 trains and without deviations.

2. Different numbers of trains are considered. The
number of trains is varied between 3 and 27. The
latter represents a frequency of three for each of
the directions of the timetables of Section 4.2
Railway station ZwoUe was used for this analysis.

The total number of problem instances generated
was 360. The aggregated results of these variants

Timetable

Current
Random 18
Random 18

BufFer

o
o

o

Computation

Deviations

no
no
yes

TABLE III
Times (in CPU Seconds) of the Steps of the Algorithm

StepO

76.6
33.0

150.6

Step 1

2.4
2.4

56.0

Step 2

a3
2.2

36.9

Step 3

1.9
1.4

14,8

Step 4

0.5
0.6
7.7

Totsl

84.'3
39.5

266.3

ROUTING TRAINS THROUGH RAILWAY STATIONS / 1 9 3

CPU seconds
0 — steps \-4

20

10

5 7 9 11 13

platforms

Fig. 3. Average CPU time for different layout designs.

are summarized in, respectively, Figures 3 and 4.
We were able to solve each of the problem instances
to optimality within 85 CPU seconds. This repre-
sents the total computation time for Steps 0-4. For
any of the instances, no more than 61 subproblems
had to be investigated and no more than 2 useful
violated clique inequalities were found during the
branch-and-cut phase.

The CPU times reported in both figures are di-
vided into the time required for formulating the

problem instances (Step 0) and the time required for
solving the problem instances (Steps 1-4). The re-
ported computing times are averages over 20 ran-
domly generated problem instances.

4.4. Buffer Times

The capacity of a railway station depends, apart
from the infrastructure and the safety system, on
the buffer time that is required. Increasing this
buffer time improves the robustness of the resulting

CPU seconds
0 sttps

trains

Fig. 4. Average CPU time for different numbers of trains.

194 / P. J. ZWANEVELD ET AL.

TABLE IV
Maximum Number of Trains that Can Be Routed

Timetable

Current
Random 18
Current
Random 18

Deviations

no
no
yes
yes

0.0

18
16.3
18
17.8

0.3

18
15.9
18
17.8

0.5

17
15.1
18
17.6

1.0

15
14.6
18
17.1

BufFer Time

1.5

15
14.2
17
16.5

2.0

14
13.9
16
15.9

2.6

12
13.4
15
14.9

3.0

11
13.0
14
14.2

3.5

11
12.6
13
13.9

5.0

10
11.5
11
12.7

timetable with respect to operational disruptions.
However, increasing the buffer time also decreases
the capacity of the railway station, since each sec-
tion on the route of a train is reserved longer by that
train. As an illustration we investigated the impact
of varying the huffer time on the number of trains
that can be routed. The result of this analysis is
summarized in Table FV. Railway station Zwolle was
used for this analysis. The decrease in capacity can
clearly be observed in the results.

As far as the performance of the algorithm is
concerned, in about 1% ofthe 420 prohlem instances
we need to resort to the branch-and-cut procedure.
In none of those cases more than 13 subproblems
(corresponding to nodes in the branch-and-cut tree)
need to be considered. The maximum number of
violated clique inequalities, which were generated
during the branch-and-cut procedure, is 5.

S. SUMMARY AND CONCLUSIONS

IN THIS PAPER we considered the problem of con-
structing feasible routings of trains through station
yards. We presented a comprehensive description of
the problem, and a formulation of the problem as a
Node Packing Problem. Next, a branch-and-cut al-
gorithm was outlined and implemented to solve the
problem to optimality. The procedure proved effec-
tive in solving the routing problem for one of the
largest stations in the Dutch railway network.

The numerical experiments showed that the ini-
tialization step (i.e., the step of actually formulating
the problem instance) forms the major computa-
tional burden. Future research should be directed
towards improving this initialization step. Another
direction for future research involves the inclusion
of shunting movements of trains, more complicated
service aspects, and other performance indicators
into the problem.

Finally, the incorporation of our solution proce-
dure into the system STATIONS, and the interac-
tion mechanism, within DONS, between CADANS

(which generates arrival and departure times for
each train at each station) and STATIONS requires
further investigation.

REFERENCES

Arkin, E. M. and E. B. Silverberg, "Scheduling Jobs with
Fixed Start and End Times," Discrete Applied Mathe-
matics, 18, 1-8 (1987).

Carey, M., "A Model for Train Pathing with Choice of
Lines, Platforms and Routes," Transportation Re-
search 28B, 333-353 (1994).

Garey, M. R. and D. S. Johnson, Computers and intracta-
bility: A guide to the theory of NP-completeness. Free-
man, San Francisco (1979).

Hoffman, K. L. and M. Padberg, "Solving Airline Crew
Scheduling Problems by Branch-and-Cut," Manage-
ment Science, 39, 657-682 (1993).

Kroon, L. G., H. E. Romeijn, and P. J. Zwaneveld, "Routing
Trains Through Railway Stations: Complexity Issues,"
Working paper 209, Erasmus University Rotterdam,
Rotterdam School of Management (1995).

Kroon, L. G. and P. J. Zwaneveld, "STATIONS: Final
Report of Phase 1," Working paper 201, Erasmus Uni-
versity Rotterdam, Rotterdam School of Management
(1995).

Nemhauser, G. L. and L. A. Wolsey, Integer and Combi-
natorial Optimization, John Wiley & Sons, New York
(1988).

Padberg, M. and G. Rinaldi, "An Efficient Algorithm for
the Minimum Capacity Cut Problem," Mathematical
Programming, 47, 19-36 (1990).

Padberg, M. W., "On the Facial Structure of Set Packing
Polyhedra," Mathematical Programming 5, 199-215
(1973).

Schrijver, A. and A. Steenheek, "Dienstregeling
Ontwikkeling voor Railned (Timetahle Development
for Railned," Report Cadans 1.0, C.W.l. Amsterdam,
The Netherlands (1994).

Serafini, P. and W. Ukovich. "Mathematical Model for
Periodic Scheduling Problems," SIAM Journal on Dis-
crete Mathematics 2, 550-581 (1989).

(Received; April 1995; revision received: August 1995; accepted:
September 1995)

