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Abstract

Recently, Bayesian methods have been proposed for neural networks to solve
regression and classification problems. These methods claim to overcome some
difficulties encountered in the standard approach such as overfitting. However,
an implementation of the full Bayesian approach to neural networks as suggested
in the literature applied to classification problems is not easy. In fact we are not
aware of applications of the full approach to real world classification problems.
In this paper we discuss how the Bayesian framework can improve the predictive
performance of neural networks. We demonstrate the effects of this approach
by an implementation of the full Bayesian framework applied to three real world
classification problems. We also discuss the idea of calibration to measure the
predictive performance.

1 Introduction

Due to the fact that neural networks are universal approximators, they are able to
model non-linear regularities in the the data. On the other hand this often leads
to the problem that a too-flexible network ’discovers’ non-existent structures in the
data. This is known as overfitting: a good fit on the training data and a poor gen-
eralization on the the test data. One of the advantages of the Bayesian approach
is avoiding the problem of overfitting. It is also (theoretically) not necessary to
split the data set in one or more training sets and test sets as is common in cross-
validation used in the the standard approach. The Bayesian approach to neural
network learning has recently been proposed by MacKay [Mac92a, Mac92b] and Neal
[Nea92, Nea93a, Nea93b, Nea95]. The Bayesian approach to prediction has two as-
pects that can be used to reduce the risk of overfitting. Firstly, we need to specify a
prior distribution for the network parameters, which expresses our beliefs about which
values of the parameters would be likely. This belief is updated through the data,
using a likelihood function, to give a posterior distribution for the network parame-
ters. Secondly, predictions are based on all possible values of the network parameters,



weighted by this posterior distribution. This method deals explicitly with our un-
certainty about the model parameters. Application of the Bayesian method should
therefore lead to better balanced judgments about future observations. In general
network parameters include the weights, number of hidden units, control parameters
etc. However, in this paper we only consider the weights as the parameters of our
model. Therefore a model in this paper corresponds to a point (weight-vector) in the
weight space, and the set of all models to the weight space. A characteristic feature of
(ideal) Bayesian predictions is that they are based on all models rather than on one
model such as in the standard approach. Each model (set of weights) is weighted by
its posterior probability. Therefore the output of a Bayesian network is obtained by
averaging the outputs of the networks corresponding to all the points of the weight
space. This is called integrating the posterior distribution over the weight space. This
is clearly a demanding and non-trivial computation. The Bayesian approach to neu-
ral networks has been successfully applied by (e.g.) MacKay to regression problems.
Since the computation of the posterior is difficult, MacKay uses Gaussian distribu-
tions to approximate the posterior. Another approach to calculate the posterior uses
Monte Carlo methods and Markov chains. This sophisticated approach is proposed
by Neal who demonstrates this method for a classification problem using a synthetic
data set. For an account of all these matters we refer to the work of MacKay and
Neal mentioned earlier. For background reading on Bayesian methods we can recom-
mend [GCSRY95, Ber85, BS94, BT73] or [Bre90].

In this paper we investigate the Bayesian approach to neural networks by imple-
menting the full Bayesian approach for classification networks. This implementation
is applied to three world data sets. The paper is organized as follows : Section 2 sum-
marizes the standard approach to classification using feedforward neural networks.
Section 3 gives a brief overview of the Bayesian framework for inference and predic-
tion, and makes the comparison to the standard approach. Section 4 deals with the
problem of implementing the calculations required by the Bayesian framework. Sec-
tion 5 applies the Bayesian methodology to three data sets and discusses measuring
predictive performance; we need to check that the estimated probabilities are well cal-
ibrated. Finally, section 6 concludes that the Bayesian framework can lead to better
calibration and classification.

2 Standard Classification Networks

We will confine our discussion to feedforward networks with one hidden layer:

flz,w) = l(w2+;wh9(w2+zwiﬂi))- (1)

Here z is the input vector and the parameters w include the bias terms(w’), input to
hidden weights and hidden to output weights. The function ¢() used in the hidden
layer can be the logistic function or, for instance, the hyperbolic tangent function. For
classification problems with two classes, it is convenient to use the logistic function
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We assume we have a data set consisting of N input vectors zy,...,xx and cor-
responding targets y. The targets denote class—membership (0/1 for class 1 and 2).
Training the neural network consists of finding weights that minimize the distance be-
tween outputs and targets. It is known that under some conditions the output f(x,w)
can be interpreted as the probability P(y = 1|z, w). An appropriate error—function
for a two—class problem is

D(w) =3 yilog f(xi,w) + (1 = yi) log(1 — f(wi, w)) (2)

For problems with more than two classes the targets are represented by binary
vectors in which a single component is set to one to denote the correct class, and all
the other components are set to zero. Also in this case the outputs of the trained
network are interpreted as class probabilities, where it is common to use softmax
units [Rip94] exp(z,)/ >, exp(x;), to ensure the outputs sum to one. A popular way
to estimate the errors of the outputs of the network is cross-validation. In this paper,
however, we will only consider two-class problems.

3 Bayesian Predictive Inference

According to the Bayesian point of view, see for instance [Ber85], a researcher who
wishes to gain knowledge about one or more parameters through some observations,
starts with putting a prior distribution on the parameters. This prior distribution
expresses a priori beliefs about the possible values the parameters can have. If there
is no real prior information available about the parameter, this can be accommodated
using a non-informative prior. For instance, if a parameter p can take on values
between 0 and 1 a uniform prior can be used to express ignorance as to which values
are more likely than others (See figure 1(a)). On the other hand, if it is believed that
values near 0.8 are more probable a priori, a beta prior like (b) can be used. The
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(a) Uniform prior (b) Beta prior

Figure 1: Examples of prior distributions
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Figure 2: The posterior distributions corresponding to the priors in figure 1

next step in Bayesian inference is to specify a probabilistic model to express knowledge
about the way the distribution depends on the parameters. For instance, if we perform
n independent experiments, each with probability p of success, the probability of x

successes 1S
n!

Pr(z|p) = " (L —=p)""

zl(n —x)
Using Bayes’ theorem, we can now calculate the posterior distribution of the pa-
rameter p, given the observations x

ol — _Pr(alp) Pr(p)
Pr(plz) Jo Pr(z|p) Pr(p)dp

The denominator is a normalizing constant and is usually ignored to give: posterior
o likelihood - prior. This probability distribution expresses the updated belief of the
researcher after the experiment. For instance, if he had a uniform prior like in figure 1
and in ten experiments he observed three successes , the posterior distribution would
look like depicted in figure two.

3.1 Likelihood functions

For classification with neural networks, the following model can be used. The output
of a neural network (using the logistic function as discussed above) given an attribute
vector x can be interpreted as the probability that the corresponding example belongs
to class 1. A single example (z,y), where y denotes the correct class membership
(either 0 or 1), has likelihood given the weights w :

f(l‘, w)y(l - f(l‘, w))l_y



If we have n examples (x1,y1),...,(2s,y,), which we assume to be independent and
identically distributed, we have the following likelihood function for the training data:

Pr(y|w) = ﬂf(:z;i,w)y"(l — flzg,w))' v (3)

For neural network training it is convenient to use the logarithm of the posterior.
The log-likelihood is in this case equal to the error—function D(w) defined earlier, so
the log posterior E(w), is equal to D(w) + log Pr(w), where Pr(w) is the prior over
the weights.

3.2 Predictive Distribution

For classification problems we are interested in the predictive distribution of a new
example given its attribute vector and the training data:

Pr(yns1lTntt, (@1, y1)s ooy (TnyYn)) = /Pr(yn_H |2 p g1, w0)d Pr(w|(x1,y1), -« oy (20, Yn))

This predictive distribution is the full result of Bayesian inference. However, in
many circumstances it is necessary to make a single-valued guess at the value of
Yn+1. How this guess depends on the predictive distribution is determined by a loss—
function, which expresses our judgment of the adverse effect of guessing y when the
real value is y[Ber85]. The most widely used is squared—error loss, for which the best
prediction for a test case is given by

Qn+1 — /f(:z;n+1,w)dPr(w|(:1:1,y1),...,(:I:n,yn))

This corresponds to the mean output of the network, averaged ! over the posterior
distribution of the weights. Because of the complexity of neural network models the
calculation of the required integrals can only be feasibly carried out using Markov
Chain Monte Carlo numerical methods, as discussed in section 4.

If we compare this approach with the standard method of finding a minimum
of the error function(= maximum likelihood estimate) and using this to make the
predictions, we see that the standard approach ignores the uncertainty with respect
to the weights and assumes all possible weights to be equally likely.

3.3 Priors for Neural Networks

A simple method that is often used to reduce the risk of overfitting, is adding a term
to the cost function that penalizes (too) large weights [HKP91, KH91]:

1, &

E(w) = D(w) + 5)\2102»2. (4)
where n,, 1s the number of weights. This leads to the following update rule for gradient
descent: oD

I L (5
w;

!Note this results in a procedure quite similar to the combination of networks [LT93, TG95],
where several networks are trained and the outputs of the networks are combined for the prediction.



which gives a weights the tendency to decay to zero, unless a larger value contributes
to the reduction of the error. The tradeoff between keeping the weights small and
minimizing the error is determined by the parameter A, which is usually set to a fixed
value, e.g. 0.001.

The weight decay term has a Bayesian interpretation[Mac92a, Mac92b] as a Gaus-
sian prior distribution with zero mean and variance 1/2A. This means we consider
small values for the weights to be a priori more likely than large weight. The region
of values that receive a priori probability is determined by the variance of the dis-
tribution. Instead of fixing its value the Bayesian approach allows that we specify a
hyperprior distribution for A. This distribution is used to integrate out A, removing
it from the prior distribution. This means that the flexibility of the model will be
automatically determined from the data.

Although there are several ways to implement the required hyperprior, we will
focus here on a distribution that is conjugate to the prior for the weights and use a
inverse-gamma hyperprior for the unknown variance [Ber85]:

)\oz—l
A3 (a)

Pr(w) = /OOO )\”w/zexp(—)\wa) exp(—A/Ao)dA (6)

x (14 X Zw?)(_a_”w)

where o and Ag are parameters of the hyperprior. The resultant prior distribution is
a multivariate student ¢ distribution, so,for instance, we should set a > 1 to avoid a
having prior with infinite variance?.

Following the discussion in [BW91], we can examine the contribution of the prior

during gradient descent:

—dlog Pr(w)  Aony + 2a
ow; X > w?

This shows that integrating out A implies that instead of having a fixed value, the
variance can be determined from the data [Bre90]. In the above discussion the prior
was assumed to apply to all weights in the network. It is clear from the form of the
network that the weights can be divided into separate groups based on their function.
For instance, MacKay used three groups : bias terms, input to hidden weights and
hidden to output weights. This means that the prior has three separate terms, with
n, and other parameters set for each group.

3.4 Automatic Relevance Determination

This scheme can be extended further to what MacKay and Neal call the Automatic
Relevance Determination prior [Nea95], where the input units belong to individual
groups (this assumes the inputs are independent). For instance, for a network with
five inputs and seven hidden units, the ARD prior would consist of the product of five
terms based on equation 6 with n,, = 7 (see figure 3; although every input is connected
to every hidden unit, this figure shows one of the five separate groups of the ARD
prior, constisting of the seven input—to-hidden weights for input unit 3). Using this

2Setting o = 0 and Ag = 1 mimics the effect of using Pr(A) = 1/, as suggested by [BW91] and
others.



prior, we would expect irrelevant inputs to have relative small values for the input—
to—hidden weights, compared to the relevant inputs, and not to be detrimental to
the predictive performance. See [KM95, Chi95] for similar Bayesian variable selection
methods applied to general regression models.

Output Unit

Hidden Units

ARD Prior

N |
@ @ @ @ Input Units

Figure 3: Automatic Relevance Determination prior

3.5 Infinite Networks

In the predictive approach [Rip96] a model is introduced solely to facilitate a prob-
ability assignment for unknown observables. Furthermore, as has been mentioned
earlier, instead of using one model, we ideally average over all models. This would
suggest using a model as flexible as is permissable by our computational resources.
Neal [Nea95] shows that if a suitable prior is used, the number of hidden units,H can
tend to infinity without causing the problems non—Bayesian methods would have with
models this size. In fact, Neal shows that if H — co the complexity of the functions
generated by the prior is independent of H. Neal establishes these result by using a
Gaussian prior with fixed variance scaled by 1/y/H. For instance, in a network with
seven hidden units we could use a prior with A = 0.01y/7(see figure 3).

4 Markov Chain Monte Carlo Methods

We have seen that the Bayesian approach requires an integration over the posterior
distribution. Given the structure of neural networks and the size of the parameter
space, this integration is clearly analytically intractable. At present the only feasible
solution to this problem is the use of Markov Chain Monte Carlo (MCMC) methods.
For a review of these methods see, for instance [Nea93b].

If we assume the square-error loss function, we need to calculate the average output
of the neural network over the posterior distribution of the weights:

< fw) = [ flw,w) Pr(wl(e,y))duw. (8)



MCMC methods approximate this integral by generating I + M vectors wy,w,, ...
that form an ergodic Markov chain with stationary distribution Pr(w|(z,y)). This
sequence is then used to calculate

I+M

< fir) >= 57 X fam) (9

where [ is the number of initial values we discard because the chain has not yet
reached its stationary distribution.

Several different methods exist for producing the required Markov chain. Most
of these methods operate by generating a random parameter vector using a proposal
distribution, for instance a Gaussian or Cauchy distribution. For neural networks,
randomly generating candidate states is likely to be a slow process, because the high—
probability states of the posterior distribution occupy only a small amount of the total
state space. In the context of neural networks it is much more convenient to use the
readily available gradient information in generating new states. One implementation
of this idea is the Langevin equation [Kro92] which takes the following form:

OB(w)
8wi '

Aw; o< — (10)
where F(w) denotes the distribution we are interested in and 7 is Gaussian noise with
mean zero. A disadvantage of this approach is that it results in a random walk.

A method that is well-suited for Bayesian calculations for neural networks and sim-
ilar statistical applications is the Hybrid Monte Carlo (HMC) algorithm [DKPRS7],
which was introduced into the neural networks literature by Neal [Nea92, Nea93a).
This method uses stochastic and deterministic moves to generate a new state, and
largely suppresses random walk behaviour. The HMC algorithm operates in an ex-
tended state space, where a momentum vector p is associated with the parameter
vector w, and uses a “Hamiltonian” function:

H(p,w) = E(w) + 5lpl (1)

where the second term stems from the analogy with physical kinetic energy.
One iteration of the HMC algorithm as used here (for a more general discussion
see [DKPR&T7]) moves from a to state at time ¢,, to a new state at time ¢,,1; as follows :

1. Stochastic move: Draw a new momentum vector p(t,) from its stationary dis-
tribution

Pr(p) = (2m) 2 exp(—[p|*/2),

where N is the dimension of the parameter space.

2. Deterministic move: Generate a candidate state by following Hamilton’s dy-
namics from time ¢, to time ¢,y :

Jw oH

a T oy 7

dp  OH  9B(w)
ot dw  ow



3. Accept the new state with probability min(1,exp(—AH)) where
AH = H{w(tn ) pltasn)) — Hw(t),plt,).

This acceptance step compensates for any inaccuracies that are introduced in
the discretization.

To implement the deterministic move of the HMC algorithm, we need to discretize
the Hamiltonian dynamics; to maintain the validity of the method this discretization
must preserve the volume of the phase-space. This is necessary to ensure that the
Markov chain has posterior distribution as its stationary distribution. This require-
ment is met by symplectic integrators; in the following we will use such a Runge—
Kutta—Nystrom integrator. See appendix A for the details of the discretization.

5 Experiments

We applied the Bayesian methods discussed above on three realistic data sets. We
focused on the following issues: does the Bayesian approach lead an improvement over
standard methods in terms of better classification as well as better estimates of the
probabilities, and is the risk of overfitting indeed reduced? We begin with a discussion
on how to measure predictive performance. Details of the implementation and results
are given for the three datasets.

5.1 Measuring Predictive Performance

There are two aspects of predictive performance that are important in the case of clas-
sification [MGR94]: the performance in assigning a new example to the correct class
and the extent to which we can interpret the output of the network as the conditional
probability that a new example will be in class 1 given its attribute vector. The dis-
crepancies between predicted and actual outcome can be divided into two components:
predictive bias(incorrect classification) and lack of calibration (over— or underestimat-
ing posterior probability). If the outputs of the network are well-calibrated we would
expect the assigned probabilities to agree with the relative frequency of occurrence.
For instance, we would expect 80 percent of the cases assigned probability 0.8 to
occur. To measure calibration[Daw86], we group the cases in a test set according
to the predicted probability (0.0 —0.1,...,0.9 — 1.0), and compare with the relative
frequency of 1’s in each of the groups. Although it is often informative to consider
predictive bias and calibration separately, these two concept can be combined for a
two class problem in the logarithmic score S, defined as S(1,p(1|z)) = —log p(1|x)
and S(0,p(1|x)) = —log(l — p(1]z)). Notice that this corresponds to the likelihood
function defined above. If we have little data available for testing, the observed error
rate on the test set may be a poor estimate of the true error rate. If the output of the
network is interpreted as a posterior probability, the following expression provides a
more accurate estimate of the true error rate [Rip94]:

1
> = p(1fe)] (12)
test ;ctest set

This is sometimes referred to as smoothing the error rate. Again this stresses the
importance of obtaining good estimates of the posterior probabilities.




5.2 Preliminaries

It has been noted before that the parameters obtained by the standard training meth-
ods can lead to over—confident predictions. The full Bayesian predictive approach
solves this problem by integrating over the weight space. Different classifiers corre-
spond to different areas of the weight space. It is therefore important to obtain a
representative sample from the posterior distribution. Using only a single run of the
HMC algorithm will in general result in a sample from only one region of the weight
space, as the modes of the posterior distribution are isolated, making jumps from
one region to another unlikely. One solution to this problem is to run the algorithm
several times starting with different initial values, and to combine these runs. In both
experiments, we implemented the discretization of the Hamiltonian dynamics using
an eighth—order explicit symplectic Runge-Kutta—Nystrom integrator. This requires
17 evaluations of the gradient of the posterior distribution in the algorithm given in
appendix A. We used the parameters as given by Okunbor and Lu[OL94]. To suppress
the random walk tendencies, it is important to take steps as large as possible, while
maintaining a high acceptance rate. If a small / is necessary to keep the rejection rate
low, we can use the RKN a number of times in direct succession, to get the desired
time—step.

Each data set was preprocessed to have inputs with zero mean and standard
deviation one.

5.3 Pima-Indian

To gain insight into the effect of using Bayesian methods on the calibration of the
outputs of neural networks, we use a relatively large data set that was previously
investigated by Wahbda et al [WCW(C93] in the context of smoothing spline models.

The data set was retrieved from the UCI Repository [MA92]. The data contains
medical records from Pima-Indian women at least 21 years of age. This data set
contains 8 predictor variables and the class label: Number of times pregnant, Plasma
glucose concentration after 2 hours in an oral glucose tolerance test, Diastolic blood
pressure (mm Hg), Triceps skin fold thickness (mm), 2-Hour serum insulin (mu U/ml),
Body mass index (weight in kg/(height in m)? ), Diabetes pedigree function, Age
(years). The class label is an indicator of a positive(1) test for diabetes between 1
and 5 years from the examination, or a negative(0) test for diabetes 5 or more years
later.

The data was shown by Wahba et al to contain 16 instances with impossible
attribute values, all of which were deleted, leaving 752 instances. Following Wahba
et al, the dataset was split in a training set of 500 and a test set of 252 instances.

We used a network with 8 inputs, 16 hidden units and one output. The number
of hidden units chosen was larger than necessary as indicated by initial experiments.
This was done to test the effects on overfitting of the Bayesian approach. We used the
Gaussian prior as described above, with three separate weight—groups. The parame-
ters of the hyperprior were set to different values for the individual groups, based on
the characteristics of each group. The following table summarizes the settings for the
groups.

10
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Figure 4: Calibration of neural network outputs

group N, | « Ao
input to hidden weights 128 1 2.0 | 0.03
hidden—biases 16 | 2.5 | 0.0001
hidden to output weights and biases | 17 | 2.5 | 0.025

We used four separate runs of the HMC algorithm. For each run, the initial weights
were randomly drawn from the Gaussian prior distributions. Each run started with
an initial phase of 50 iterations with stepsize 0.5 to speed up reaching equilibrium.
This was followed by 300 iterations of 10 successive RKN-steps with stepsize 0.01 to
obtain a good approximation of the equilibrium state. Of the last 20 iterations of
each run every other iteration was used as a basis for the predictions. A “standard”
neural network with 8 hidden was trained using a variable metric algorithm and a
weight—decay penalty (with A set to 0.001).

Figure three gives the calibration curve of the Bayesian and standard neural net-
work. Despite the relatively large training set the estimates of the standard network
are quite poorly calibrated. The Bayesian network shows a marked improvement.

Wahba et al report a misclassification rate on the test set using a smoothing spline
approach of 24 percent. The standard neural network had an error rate of 24.6 percent;
the error rate for the Bayesian approach was 20.5 percent.

5.4 Low birth—weight

Hosmer and Lemeshow[HL89] give a dataset of 189 births at a US hospital, with
an interest to predicting pregnancies that result in low birth weight. The following
variables are available: age of mother in years, weight of mother, white/black /other,
smoking during pregnancy(0/1), number of previous premature labors, history of
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hypertension(0/1), has uterine irritability(0/1), number of physician visits in the first
trimester, class label (0=normal / 1=low birth weight).

This dataset was studied by Ripley[Rip94], who detected 5 pairs of identical rows,
one of each was subsequently removed. The remaining data was split in a training
sample of 134 cases and a test set of 50 cases. The test set consists of 37 “normal”
and 13 “low” cases.

The main objective in this case is to correctly identify the risk group. As the risk
group is noticeable smaller than the normal group, the predictive approach would be
expected to have a distinct effect for this data set. Ripley experimented with a crude
form of the predictive approach, by training 20 standard networks and averaging over
the outputs of these networks using Gaussian approximation.This did not result in
better classification.

Ripley used networks with 2 and 6 hidden units, which give identical classification
performance. As with the pima-indian data, we used a relatively large number of
hidden units, 12 in this case. We used a similar grouping of the weights for the prior
distribution as before. We used slightly different values for the hyperparameters for
this data set.

group N, | o Ao

input to hidden weights 9 | 2.5 0.08
hidden—biases 12 1 2.0 | 0.001
hidden to output weights and biases | 13 | 2.5 | 0.028

We used 10 independent runs of the HMC algorithm. As the posterior distribution
seems too have a complex form for this problem we used a smaller stepsize than in the
pima—indian experiment. Again we used an initial phase to approximate equilibrium,
using 75 iterations with stepsize 0.4. This was followed by 400 iterations, using 5
successive applications of the RKN algorithm with stepsize 0.002. Every other itera-
tion of the last 50 runs of each chain was used in making the predictions. Figure 5
shows the results for the Bayesian and standard networks. We repeated Ripley’s ex-
periments and included a standard network with 12 hidden units for comparison. The
standard networks show a decrease in performance with increased size, especially if we
use the smoothed error rate. The Bayesian network performs very well in comparison.
This shows a quite significant improvement, especially in the risk group, where only
two errors are made out of 13 cases (the neural networks reported by Ripley made
four errors). The smoothed results are also much better, largely due to the improved
estimates of the posterior probabilities.

We can also look at the logarithmic score for this problem to see the effect of
combining the runs. The ten individual runs had the following logarithmic scores
evaluated using the last iterations of the runs: 27.5, 28.3 31.1, 27.1, 29.1,27.6, 29.8,
28.1, 30.3, 29.6. The logarithmic score for the combined runs was 22.9. Following
Madigan et al [MGR94], we can interpret this score as follows: the improvement of
the combined runs over the best run is 4.2. Given that the test set contains 50 cases
the improvement is exp(4.2/50) = 1.0876 or roughly 9 percent.

12



Raw Smoothed

method normal | low | normal | low
neural net (2 hidden) 22 31 28 35
combined nets (2 hid) 24 31 33 38
neural net (6 hidden) 22 31 24 28
neural net (12 hidden) 30 36 34 38
Bayesian (12 hidden) 18 15 20 16

Figure 5: Error rate in percentages for the normal and low birthweight groups

5.5 The Sellers Data

This dataset is described in [BDV94] and consists of the scores of 69 salespeople on 6
scales, representing various psychological concepts such as ’adaption’, 'rigidity’, "inter-
personal control’, etc. Independently, the salespeople were ranked by their managers
as effective or less effective. The interest was focused on how well the sellers could
be classified using only the psychological characteristics. The main problems encoun-
tered in the original analysis [BDV94] of these data using neural networks were the
selection of the architecture and the optimal stopping of the gradient descent. As we
have argued before both these problems stem from the use of maximum likelihood
estimation. In the following we will demonstrate that these problems are automat-
ically dealt with in the Bayesian framework. To demonstrate the effect of the prior
distribution on the learning problem we will focus on Maximum a Posteriori (MAP)
estimation, i.e. we find the mode of the posterior distribution and use this to make
predictions. Although the proper approach would to use at least multiple modes and
preferably a sample form one or more Markov Chain Monte Carlo chains, using MAP
estimates allows us to focus on the role of the prior (compare for instance the state-
ment of Zhu and Rohwer [ZR95] that priors for neural networks are often very weak,
implying that the main benefits would stem from averaging over the posterior).

To allow comparisons with the original studies, we use the same 3-fold cross—
validation as detailed in [BDV94]. For each partition (46 training/23 test) of the data
we used the following architecture and parameters of the hyperpriors. Note that the
values of the prior controlling the input to hidden weights so as to allow reasonably
large values if necessary.

The network used had 6 inputs, 12 hidden units and 1 output unit. We used
the likelihood function of eq 3. The prior used was as follows : the bias terms had
a Gaussian prior with fixed variance, for the hidden to output weights we used the
Neal’s prior for infinite networks, and the input to hidden weights had a Automatic
Relevance Determination prior based on the formula of eq 6. The following table gives
the values for the parameters of the prior:

Input Ag 0.003
Input « 2.5
Bias terms A 0.001
Output units A | 0.01v/12
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The MAP estimate was found by training the network using a variable metric
optimization method until convergence.

Result on the test set : 6 Errors, 7 Errors, 6 Errors. This gives an averaged error
rate of 19/69 = 0.275. This is in agreement with the best results found using other
methods.

Next, we examine the weights corresponding to the MAP estimate to see the
effect of the prior. The following table shows how the Bayesian framework adapts the
network to the data.

1 2 3 4 5 6 7 8 9 10 11 12

B | 002 | 0.02 | 0.02 | 6.49 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02
It | 0.04 | 0.04 | 0.04 |-5.14 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03
I2 | -0.01 | -0.01 | -0.01 | 0.57 | -0.01 | -0.01 | -0.01 | -0.01 | -0.01 | -0.01 | -0.01 | -0.01
I3 | -0.00 | -0.00 | -0.00 | -3.28 | -0.03 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00
I4 | 0.00 | 0.00 | 0.00 |-0.12 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
I5 | 0.00 | 0.00 | 0.00 |-252 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
I6]-0.02]-0.01]-0.01)|-086|-0.01|-0.01|-0.011]-0.011]-0.01]-0.011-0.01]-0.01
O | 0.05 | 0.05 | 0.05|-5.18 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05

Of the 12 hidden units, apparently only one is actually used and the remaining
11 are kept from hurting the predictive performance by setting their corresponding
weights to zero. The input—to—hidden weight for hidden unit 4 suggest that inputs
1,3 and 5 make the largest contribution to explaining the data, which is very similar

to the result of [BDV94].

6 Conclusions

We have discussed how classification with neural network can benefit from Bayesian
methods. For classification problems, better estimates of the posterior probabilities
and lower misclassification rates may result. It is important that the predictions are
based on multiple modes of the posterior. The technique of combining several runs
gave good results.
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Appendix A Discretization for Hybrid Monte Carlo

A widely used method to method to implement the discretization is the leapfrog
algorithm. To move from the state at time ¢ to the new state at a new time ¢ + 7 for
a small 1 the leapfrog algorithm update w and p as follows :

plt+n/2) = p(t) = SVEQ(1)) (13)
w(t+n) = wt)+np(t+n/2) (14)
plt+n) = plt+n/2) = TVE(w(t+) (15)

To make a substantial move in a HMC—iteration, one typically applies the leapfrog
step a large number (e.g. 1000) times with 1 set to as large a value as possible
without causing a excessive number of rejected iterations. Since each leapfrog requires
calculating the derivative of the log—posterior with respect to the weights, it would
be interesting to reduce the number of steps needed to keep the acceptance rate high.
One approach this problem is to use high—order symplectic integrators, such as the
Runge-Kutta—Nystrom method.

By = By7 | 0.33742256114297547454 | ¢4 = 1 — 37 | 0.193820001820970477802
By = Big | 0.53305963988632443229 | c; =1 —c16 | 1.09593931237138830781
B3 = Bys | -0.51659631611408440843 | c3 =1 —¢;5 | 1.10016008223569197733
By = Byy | 0.65600968737291831534 | c4 =1 — c14 | 0.103190884032448693119
Bs = Bys | 0.00406786380988635211 | c5s =1 — ¢13 | 0.623088159776038041926
Bg = By | -0.85399694134759518427 | cg = 1 — ¢392 | 0.0851165384752928799728
B7; = Byy | -0.00610812346737106375 | ¢z =1 —¢y1 | 0.757862631166271977223
Bs = Byg | 0.21297732182168671589 | cs = 1 — ¢10 | 0.0114018784755162139177
By 0.26632861379051880890 Co 0.50000000000000000000

Figure 6: The coefficients of the eighth—order RKN method

A s—stage Runge-Kutta—Nystrom integrator operates as follows :
L. Wo = w(t,), Pr = p(t,).
2. forve=1,2,...,s
o Wi=W,_1+h(c;—cim1)P
e Poy =P —hB,VE(W,)
3. w(tnyr) = W+ h(esyr — ¢5) Poyr, ptngr) = Poa

where h is the step size, W and P denote the intermediate states, and ¢; and B; are
coefficients that need to satisfy certain conditions to make the method symplectic.
The coefficients for the RKN integrator as given by [OL94] are shown in figure 6.
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