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Abstract

In this report we discuss the use of two simple classifiers to initialise the input-to-
hidden layer of a one-hidden-layer neural network. These classifiers divide the input
spacein convex regionsthat can be represented by membership functions. Thesefunc-
tionsare then used to determine the weights of thefirst layer of afeedforward network.

Keywords and phrases: mapping decision trees onto neura networks, simple per-
ceptrons, LV Q-networks, initialisation of feedforward networks.

1 Introduction

In this report we discuss how two well-known classifiers can be used to initialise the first
layer of aneural network. These classifiers divide the input space in convex regions. These
regions are represented by so-called membership functions generated during training. Sub-
sequently, the coefficients of these membership functions are used to initialise (the weights
of) a neural network. Thisis caled a mapping of the classifiers onto the neural net. The
neural net isthen further trained to improve the performance of the classifier. Accordingto
Park [Par94] such a mapping resultsin afaster convergence of the neural net and in avoid-
ing local minimain network training. In genera these mappings are a so interesting because
they determine an appropriate architecture of the neural net.

Inthisreport we mainly discussamapping of alinear treeclassifier (LTC) onto afeedfor-
ward neural net classifier (NNC) with one hidden layer. The LTC used hereisahierarchical
classifier that employslinear functions at each nodeinthetree. For the construction of deci-
siontreeswerefer to [PaS90, Fal 92, Qui93]. It isknown that both the LTC and NNC classi-
fier share the property of universal approximation, i.e both classsifiers are ableto solve arbi-
trary classification problems by forming complex decision boundaries in the feature space.
Several authors [Set90, IKP94, Par94] discuss the mapping of an LTC onto a feedforward
net with one or two hidden layers, see also [Car95]. A discusion of a mapping onto a net



with two hidden layers can be found in Sethi [ Set90] and Ivanova& Kubat [IKP94]. A map-
ping onto anet with one hidden layer is discussed in Park [ Par94]. However, the question of
how to map an LTC directly on aneural net with one hidden layer is till open. Park [Par94]
has suggested an interesting approach of such a mapping based on representing the convex
regionsinduced by an LTC by linear membership functions. However, in Park [Par94] no
explicit expression for the coefficients of the membership functionsis given. These coeffi-
cientsdepend on a parameter p that hasto be supplied by the user. In section 3 we show that
ingeneral itisnot possibleto find linear membership functionsthat represent the convex re-
gionsinduced by an LTC. It is however possible to find subregions that can be represented
by linear membership functions. We derive explicit expressions for the af orementioned pa-
rameter p, in section 4. This makes it possible to control the approximation of the convex
regions by membership functions and therefore of theinitialisation of the neural net. In sec-
tion 5 we discuss the use of LV Q-networks to initialise a feedforward network. It appears
that unlike an LTC, an LV Q-network divides the input space in convex regions that can be
represented by linear membership functions.

2 Mappingdecision treesto neural nets

Suppose we are given a multivariate decision tree (N, £, D). In this notation, N is the set
of nodes of the tree, £ isthe set of leaves of the tree and D is the set of linear 1 functions
d¢: R"— R,k N. Inany nodek of the tree, the linear function dy is used to decide which
branch to take. Specifically, we go left if di(x) > O, right if di(x) <0, seefigure 1.

A decision tree induces a partitioning of R"™ each leaf ¢ corresponds with a convex re-
gion R,, which consists of all pointsx € R", that get assigned to leaf ¢ by the decision tree.
For example, region Rs consists of all x € R" with dy(x) < 0 and ds(x) < O.

Figure 1: The convex regionsinduced by a classification tree

In[Set90] Sethi shows a straightforward mapping of an LTC onto an NNC with two hid-
den layers, seefigure 2. In this approach the coefficients of the linear decision functionsare
used to define the weights in the input to partition layer. Each node in the partition layer

LA linear function is understood to be a function with the following form : dy(x) = > =1 WkjXj + Wio, for
X=(X1,...,%) € RV keN.



correspondsto adecision nodein thetree. The nodesin the AND-layer correspond with the
decision regions induced by the LTC. Each node in the AND-layer represents a path from
the root to aleaf. Subsequently, this decision regions are joined in the OR-layer, to repre-
sent the classes. An exact mapping employs threshold unitsin the neural net. However, as
shown in [Set90] continuoustransfer functions such asthe sigmoid function are more appro-
priate. Therefore the mapping isonly used as an initiaisation of atwo-hidden-layer neural
net. An important feature of Sethi’s mapping isthat it solvesthe credit assignment problem
for the hidden layers. Thereforeit ispossibleto train the two layers separately. For another
interesting approach of an LTC to NNC mapping we refer to [IKP94]. Although a direct
mapping onto a one-hidden-layer is not yet known, Park [Par94] describes an approach to
initialise the weights in the input to hidden layer. In this approach, discussed in sections
3 and 4 the coefficients of the linear membership functions are obtained by combining the
decision functions employed by the tree to define the af orementioned weights, see figure 3.

Figure 2: Sethi’s mapping Figure 3: Park’s mapping

3 Non-existence of linear member ship functionsfor LTCs

In this section we discuss the idea of linear membership functions to represent the convex
regionsinduced by an LTC, and we show that these functions arein general not possible.

In[Par94] thefollowing’theorem’ isgiven without proof, though supplied with heuristic
reasoning for its plausibility, see also equation 5 in the next section:

Conjecture(Park[Par94]) For every decisiontree (N, £, D) thereexistsa set of linear mem-
bership functionsM = {m,, ¢ € £}, such that for any ¢, ¢’ € £, with ¢ = ¢

my(X) > My (X), YX € Ry. (1)

Wefirst will refutethisconjecture by giving a(smallest) counterexample. Thenwe show
that in genera linear membership functions cannot exist, and finally we discuss the possi-
bility of polynomial membership functions.

Set n = 2; we then have points (x,y) € R? as our decision vectors. Now, consider the
following decision tree (N, L,D): N = {1,2},L = {1,2,3} and di(X,y) = X, da(X,y) =Y.
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Thisdecision treeand its corresponding partitioning of the sample space are shown infigure
4.

y
R,
y=0 o R R, - X
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Figure 4: The simplest counterexample to Park’s conjecture

Suppose now, that linear functions my, m, and my exist, for which theinequality (1) istrue.
We then have

M = PIX+ gy +ra
My = PaX+ Y+ T2
Mg = P3X+Qzy+r3

with
m >mpand my > mg foral (x,y) € Ry
mp >my and my > mg foral (x,y) € Ry
mg > my and mg > my, for al (x,y) € Rs.

For the linear function u(x,y) = my — my = (p1— P2)X+ (01 — dp)y+ (r1 — r2) wethen see
that it ispositive on R; and negative on R,. Consequently, u = 0 on the borderline between
R; and Ry, whichisthe vertical axis. It isthen easy to see that

P1> P2, r=0pandry =ry (2

must hold.

If next we consider the linear function v(X,y) = my — mg = (p1 — P3)X+ (01 — az)y+ (r1 —
r3), it will be seen that v is positive on R; and negative on R;. Analogoudy, we then find
that

P1>P3, Q1 =0gandry =rs. ©)
By combining (2) and (3) we find that u— v =mz — mp = (p3 — p2)X and, consequently,

(p3— p2)x>00n Rz, and < 0 on Ry. (4)
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For points(x,y) € RoURg, wehave x < 0. Thus, it follows from (4) that both p3 < p, and
ps > p, must be true, which is a contradiction. We must conclude that the hypothesised
functions my, mp and mg cannot exist. Thus, the conjecture is refuted.

Remark. If thedecisionfunctionsdy, do. ... arechosenin such away that the hyperplanes
di(x) = 0 are parallel, then in genera it will be possible to construct the above mentioned
m-functions. For example, in R2 it can be done as follows:

di(x,y) =0

dox,y) =0

Figure 5: A decision tree with parallel decision boundaries

The graphs of the functions m;, m, and mg, intersected with a plane through ¢ ( = a per-
pendicular to d; and d,) then look as shown in figure 6:

my. > max(mp, mg) on Ry
‘ my > max(my, mg) on R,
TR R & R~ mz > max(m, mMy) on Rs.

Figure 6: A solution in the case of parallel decision boundaries

In the next theorem we show that linear membership functionsthat represent the convex
regionsinduced by an LTC cannot exist.

Theorem 1Let (N, L, D) beadecisontree, with at least two non-parallel decision bound-
aries. Then the convex regions induced by this tree cannot be represented by a set of linear
member ship functions.

Proof Let d; and d, be two n-dimensional linear decision functions such that the hyper-
planes d; = 0 and d, = 0 are non-parallel. Then for our discussion it is no restriction to
consider only the convex regions Ry, R, and R; induced by these hyperplanes, see figure 7
(Ieft side). The corresponding membership functions of these regionsare denoted by my, np
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and mg, and the differences my — mp, M — mg and m, — My are respectively denoted by u,
v and w. By definition we have: u > 0on R; andu < 0on R,. Since linear functions are
continuous, it is easy to see that the inequalitiesimply that the linear function u is zero on
the hyperplane d; = 0. Similarly it follows that the function v is zero on d; = 0 and that w
iszeroond, = 0. Sincew = u—V, wisaso zeroon d; = 0. Using the fact that wisalinear
function which is zero on two non-parallel hyperplanes we conclude that w is identical to
the zero-function. This contradictsthefactthat w > 00onR,. 0O.

Having shown that, in general, linear membership functions cannot represent the convex
regionsinduced by an LTC, the question now arises whether membership functionsof LTCs
can be represented by multivariate polynomials. The following theorem shows that these
polynomials cannot be quadratic.

Theorem 2 Let (N, L, D) beadecisiontree, with at |east two non-parallel decision bound-
aries. Thenthe convex regionsinduced by thistree cannot be represented by a set of quadratic
polynomials.

Proof Let R;, R, and R; bethe regionsinduced by a decision tree, seefigure 7 (Ieft side).

d;

Figure 7: Decision regionsin space

Note that such regionswill always be induced by a subtree of adecision tree, unless all
decision boundaries are parallel. We assume that the regions R; and Ry, U R are separated
by the hyperplane d;(x) = 0,x € R" such that di(x) > 0 on R; and d;(x) < 0 on R, U Rs.
Similarly, R, and R are separated by dy(X) = 0, such that dy(x) > 0 on Ry and dyx(x) < O
on Rsz. Let my, my and mg respectively denote the membership functions of Ry, R, and Ry.
By definition my = 0 on the hyperplane d;(x) = 0. Similarly, m, = 0 on dy(x) = 0. (Note,
that we actually know only that m, is zero on half of the hyperplane dy(x) = 0. However,
using asimple result from algebraic geometry it follows that my, must be zero on the whole
hyperplane da(x) = 0.)

Now, let D12 = my —mp. Then D15 is zero on di(X) = O, because D1, > 0 on R; and
D1» < 0 on R, URs. As aconsequence of Hilbert’s Nullstellensatz d; is a factor of D1».
Therefore, there exists a polynomial function e such that

Dy =die

Since Dy, is at most quadratic by assumption, we conclude that e is a constant or alinear
function. However, since both d;e and d; are positive on R; and negative on R,, the func-
tion eis positive on Ry U R,. Since the degree of e is < 1, e must be a positive constant.
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Similarly, we have D13 = d; f, where f isa positive constant. Therefore Doz = di(f —€).
This contradicts the fact that D,3 iszeroon dy(x) = 0. O.

Finally we discuss asmall example, to show that multivariate polynomial s can represent
membership functions, although the degree of these polynomialsisat least 5.

Example Let Ry, R, and Rz be the planeregions as given in figure 7 (right side). Then
using the same notation as in the above theorem, we can prove that the polynomial D3 has
the form D3 = xyg, where g isapolynomial of even degree. The reader can verify that the
regions R; can be separated by the following polynomials of degree at most 5:

m= 0
mp= x(y'+1)
my= xy'+y>+1).

4 An approximated mapping of a decision tree onto a one
layer neural network

L et H, bethehyperplanegivenby dg(x) = 3 _; WijX; +Wko, for X = (X, ..., Xn) € R", KEN.
Then the distance of apoint x to Hy isgiven by

W X+ Wil / | |Wi||, where Wl = (Wi, . . ., Win)-

Without restriction we may assume that ||wy|| = 1. Therefore, |dy(X)| is the distance of a
point x to the hyperplane H,. We will show in this section that the difficulties encountered
in the preceding section may be circumvented by requiring that the points we consider are
not too close to the hyperplanes associated with the decision tree.

Let (N, L, D) beadecisiontree. Wewill restrict theregions R, by assuming that vk € N :
0 < e<|dk(x)| < E, whereeand E are positive constants. The set of pointsin R, satisfying
this condition will be denoted by S,. Hence, S, is a convex subregion of R,. Note also that
R, can be approximated by S, with arbitrary precision, by varying the constants e and E.

In [Par94] Park considersthe following set of linear membership functions:

m(x) = 3 sucdk(x), 5
keP,

where P, is the set of nodes on the path from the root to the leaf ¢. The constants sy, are
defined as:

| 41 ifdk(x) >0,¥xe Ry
Stk = { 1 if d(x) < 0,¥x€ R ©)
Inthisway it issecured that Vx € R,,Vke P, :
Skdk(X) > 0. @)

The constants ¢ are determined experimentally in [Par94]. Here we will derive an ex-
plicit expression for these constants. Since as we have shown above that in general these
constants cannot exist if x € R, ¢ € L, wewill now assumethat x € S,.



Theorem 1 Let (N, L,D) be a decision tree. Then there exists a set of linear functions

M= {m,¢ € L}, suchthatfor any ¢,/ € £, with ¢ #£ ("

VX ES 1 my(X) > mu(X).

(8)

Proof Let T be the set of terminal nodes of thetree. Aninternal nodet is caled terminal if
both children of t are leaves. Further, if n; and n, are two nodes, then we write n; < n, if
ny isan ancestor of n,. Supposethat ny ¢ T, and ¢, ¢ are two leaves such that n, isthe last

common ancestor of ¢ and ¢, see figure 8:

root

Figure 8: The last common ancestor of ¢ and ¢’

We decompose the function my, as follows:

My(X) = 3 SiGidi(x)+ Z SyjGidj(X

wheren; € P, and nj € P,,. The following crucial observation

Sta= —Sa

can be seen by applying (6) and (7) to the node n5. From this we conclude:

My (X) — My (X) = 2§aCada(X) + 21 — 2o,

where
> = z siGidi(x), withnj € P,

and
>, = Z spjcjdj(x), withnj € Py.

n] >na
To assure that (8) holds, we require that
S,— 3,

— < Ca.
25,0a(x) ~ °

(9)



Since Z; isapositive number we can satisfy condition (9) by taking

25

P EE——— C.
25ata(x) ~ ¥

or

— EC‘<C.
2 ] >%a
j>Na

Thisyieldsthe following sufficient condition for the constants c;:

E
— max ci»<cC 10
ZGZeLa{anna l} = Ca, (10)

wheren; € P, and L, isthe set of |eaves of the subtree with root na. Condition (10) implies:
Ca > ZEeannaCj’ where n; € P and P is the longest possible path from node n, to some
leaf. From condition (10) it also followsthat the constants ¢, are determined up to aconstant
factor. It iseasy to seethat the constants can be recursively determined by choosing positive
values ¢; for the set of terminal nodest € J. As an example we show in figure 9 the values

of al the constants c; for atree, when wetakec; = 1foralt e J and 256 =1 0O

Figure 9: Determination of constants c; in an example tree.

To derive an an explicit expression for ¢, for any node ng we will introduce some notation.
Let Pa={t=np < ng<ny<...<ng=na} bethelongest possible path from node n, to
aterminal nodet. Thelength k of P, isdenoted by 6(a). Similarly, 8(r) isthelength of the
longest path starting in the root r of the tree.

Lemma Let (&);2 , be the sequence defined by ay = A(ag+ a1 + ...+ a_1) for k> 2 and
a; = Aag. Thena, = agA(A + 1)k 1 k> 1.

Proof For k > 2 we have: ay, 1 — ax = Aay. Thisimplies ay = (1—|—)\)"—1a1 = Aag(1+
MN<elk>1 o

Theorem 2 The constants




satisfy condition (10).

Proof Let Aq = £maXsep, {Tjep,Aj}. and A, = 1. Then Aq = A(1+ A)%@~1 (see the
above Lemma), with A = 256 Since the constants ¢, are defined up to a constant factor, we
1 >5(r)—5(a)

choose ¢, = %. Then ¢, = <1+_A

Corollary Let p = 1/(14 £). Thenmy(x) = Yk Sp®" K dy(x) are linear functions for
which (8) holds.

Another expression for the constants c; can be obtained by using the fact that a decision
tree (N, L, D) in practical situations is derived from a finite set of examplesV C R". Itis
no restriction to assume that Vx € V @ |dg(X)| > 0,ke N.

Let M = max; j maXyey % , wherenj,n; ¢ N and nj < nj. Thenumber M can be easily

computed from the set of examplesV.

Theorem 3 Let p = 2/(3M). Then the congtants c, = p%")—%® satisfy condition (10).
Proof Suppose P, isthelongest path from node n, to aleaf ¢, and nj, nj. 1 aretwo consecu-
tive nodes on P, with nj < nj, 1. Thend;(x) < Mdj,;1(x), so that dj(x) < M@ =30)|dy(x)|.
To satisfy condition (9) we want to choose constants A; such that

" o2 25ada0 S
Since 1 A
r<3 EMTJDME(E‘) < Aa.
we have

]
or 3 Bj < Ba, where Bj = Aj/M®1). Now we choose By, such that B, = 3 5 Bj. Then
by the Lemma preceding Theorem 2 we have Ba = A(A + 1)%@-1 with A = 1. Finaly, let
Ca = Ba/By; then we have

1 o(r)—%(a) 5 2
S — p%N=3a) i .
Ca (M(A+1)> p , withp M

Discussion: Wehavefoundtwo possiblevaluesforp: p; =1/(1+E/(2e)) and p, =2/(3M).
Fromthe definition of M it followsthat M < E/e. SinceE/e> 1, wehavep; <1/(1+ %) =
2/3. On the other hand, it is easy to verify that p; > p, if andonly if E/e < 3M — 2.

Sincep — 0if e— 0, in practice we will choose the parameter e not too small. On the
other hand, the approximation of the regions R, by S will be less accurate if e becomes
larger. In atreeto neural net mapping the functions m, are used to define theinitial weights
between the input and hidden layer. To improve the performance of the neural net these
weights are subsequently updated. It is therefore plausible, and in accordance with some
experiments of Park [Par94], and with the data used in an experiment described in [Car95]
that the accuracy of the approximation of the regions R, must be less, the more the data set
used to generate the decision tree is non-linear.
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5 Another initialisation method

In this section we consider another well-known classifier: Learning Vector Quantisation
(LVQ) networks. This method can be used to solve a classification problem with m classes
and data-vectors x € R". It is known that the LV Q-network induces a so-called Voronoi
tesselation of the input space, see [HKP91] chapter 9. Training of an LV Q-network yields
prototype vectorsw;j € R", j = 1,...,msuch that an input vector x belongsto class j iff the
distanceto w; is smallest:

Vi jofwp =X < [|wi—X]| = xeR;.
It iseasy to see that thisis equivaent with

1 1
T Twi Ty “whwi
WjX— ij Wj > W X 2WI W;.

Now define the linear membership function m; as:

Then
XER «— m(x) >mj(x),Vj #i.
Since an LVQ-network is arelatively good classifier and can be trained relatively fast, it is

a good alternative for the initialisation of a neural net using linear membership functions.
Apparently, an LV Q-network cannot induce the convex regionsinduced by an LTC.

Example Let Ry, R, and Rz be such asinfigure 10 (right side). Now let w; bethe proto-
type vector of R;. Then the situation of figure 10 (left) can only be obtained if ||wy|| — co.

Figure 10: Different types of convex regions

11



6 Conclusionsand further research

We have proven that linear (or quadratic) membership functions representing the convex re-
gions of alinear classifier in general do not exist. However, we give explicit formulae for
the approximation of such functions. This alows us to control the degree of approxima-
tion. Thisisuseful, for in practical applications the membership functions are ‘only’ used
to initialise a one-hidden-layer neural net. Subsequently this net is further trained with a
standard training algorithm. Currently we are investigating how to determine an appropri-
ate approximation in a given application. We are also investigating two other approaches,
see [Car95] to obtain a mapping from am LTC to a one-hidden-layer neura net. Inthefirst
approach we combine the first two layers of Sethi’s net into one layer. The other approach
uses appropriatetransfer functionsfor the hidden layer to represent ajoin of two half spaces,
becauseit isclear that an exact representation of the convex regionscan be obtained by using
piecewise linear functions. Finally, we have discussed LV Q-networks as an aternative that
is of interest for the initialisation of the input-to-hidden layer based on membership func-
tions of convex regions. Thisarchitecture dividesthe input space in polyhedral regions, see
[MP88, HKP91] with linear membership functions.
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