
On the use of simple classifiers for the initialisation
of one-hidden-layer neural nets

Jan C. Bioch, Robert Carsouw, Rob Potharst
Department of Computer Science

Erasmus University Rotterdam

P.O. Box 1738, 3000 DR Rotterdam

The Netherlands

fbioch, robpg@cs.few.eur.nl

Technical Report eur-cs-95-08

Abstract

In this report we discuss the use of two simple classifiers to initialise the input-to-
hidden layer of a one-hidden-layer neural network. These classifiers divide the input
space in convex regions that can be represented by membership functions. These func-
tions are then used to determine the weights of the first layer of a feedforward network.

Keywords and phrases: mapping decision trees onto neural networks, simple per-
ceptrons, LVQ-networks, initialisation of feedforward networks.

1 Introduction

In this report we discuss how two well-known classifiers can be used to initialise the first
layer of a neural network. These classifiers divide the input space in convex regions. These
regions are represented by so-called membership functions generated during training. Sub-
sequently, the coefficients of these membership functions are used to initialise (the weights
of) a neural network. This is called a mapping of the classifiers onto the neural net. The
neural net is then further trained to improve the performance of the classifier. According to
Park [Par94] such a mapping results in a faster convergence of the neural net and in avoid-
ing local minima in network training. In general these mappings are also interesting because
they determine an appropriate architecture of the neural net.

In this report we mainly discuss a mapping of a linear tree classifier (LTC) onto a feedfor-
ward neural net classifier (NNC) with one hidden layer. The LTC used here is a hierarchical
classifier that employs linear functions at each node in the tree. For the construction of deci-
sion trees we refer to [PaS90, FaI92, Qui93]. It is known that both the LTC and NNC classi-
fier share the property of universal approximation, i.e both classsifiers are able to solve arbi-
trary classification problems by forming complex decision boundaries in the feature space.
Several authors [Set90, IKP94, Par94] discuss the mapping of an LTC onto a feedforward
net with one or two hidden layers, see also [Car95]. A discusion of a mapping onto a net

with two hidden layers can be found in Sethi [Set90] and Ivanova&Kubat [IKP94]. A map-
ping onto a net with one hidden layer is discussed in Park [Par94]. However, the question of
how to map an LTC directly on a neural net with one hidden layer is still open. Park [Par94]
has suggested an interesting approach of such a mapping based on representing the convex
regions induced by an LTC by linear membership functions. However, in Park [Par94] no
explicit expression for the coefficients of the membership functions is given. These coeffi-
cients depend on a parameter ρ that has to be supplied by the user. In section 3 we show that
in general it is not possible to find linear membership functions that represent the convex re-
gions induced by an LTC. It is however possible to find subregions that can be represented
by linear membership functions. We derive explicit expressions for the aforementioned pa-
rameter ρ, in section 4. This makes it possible to control the approximation of the convex
regions by membership functions and therefore of the initialisation of the neural net. In sec-
tion 5 we discuss the use of LVQ-networks to initialise a feedforward network. It appears
that unlike an LTC, an LVQ-network divides the input space in convex regions that can be
represented by linear membership functions.

2 Mapping decision trees to neural nets

Suppose we are given a multivariate decision tree (N;L;D). In this notation, N is the set
of nodes of the tree, L is the set of leaves of the tree and D is the set of linear 1 functions
dk :Rn!R;k2N. In any node k of the tree, the linear function dk is used to decide which
branch to take. Specifically, we go left if dk(x) > 0, right if dk(x) � 0, see figure 1.

A decision tree induces a partitioning of Rn: each leaf ` corresponds with a convex re-
gion R`, which consists of all points x 2Rn, that get assigned to leaf ` by the decision tree.
For example, region R5 consists of all x 2 Rn with d1(x) � 0 and d3(x) � 0.

d1(x) > 0

d2(x) > 0 d3(x) > 0

d4(x) > 0R1

R3

R5

R2

R4

d1

d2

d3

d4

R3

R1 R5

R2
R4

Figure 1: The convex regions induced by a classification tree

In [Set90] Sethi shows a straightforward mapping of an LTC onto an NNC with two hid-
den layers, see figure 2. In this approach the coefficients of the linear decision functions are
used to define the weights in the input to partition layer. Each node in the partition layer

1A linear function is understood to be a function with the following form : dk(x) = ∑n
j=1 wk jx j +wk0, for

x = (x1; : : :;xn) 2R
n
;k 2N:

2

corresponds to a decision node in the tree. The nodes in the AND-layer correspond with the
decision regions induced by the LTC. Each node in the AND-layer represents a path from
the root to a leaf. Subsequently, this decision regions are joined in the OR-layer, to repre-
sent the classes. An exact mapping employs threshold units in the neural net. However, as
shown in [Set90] continuous transfer functions such as the sigmoid function are more appro-
priate. Therefore the mapping is only used as an initialisation of a two-hidden-layer neural
net. An important feature of Sethi’s mapping is that it solves the credit assignment problem
for the hidden layers. Therefore it is possible to train the two layers separately. For another
interesting approach of an LTC to NNC mapping we refer to [IKP94]. Although a direct
mapping onto a one-hidden-layer is not yet known, Park [Par94] describes an approach to
initialise the weights in the input to hidden layer. In this approach, discussed in sections
3 and 4 the coefficients of the linear membership functions are obtained by combining the
decision functions employed by the tree to define the aforementioned weights, see figure 3.

R3R1 R5

d1 d2 d3 d4

1 x1 x2

R2 R4

Figure 2: Sethi’s mapping

m1 m3 m5

1 x1 x2

m2 m4

Figure 3: Park’s mapping

3 Non-existence of linear membership functions for LTCs

In this section we discuss the idea of linear membership functions to represent the convex
regions induced by an LTC, and we show that these functions are in general not possible.

In [Par94] the following ’theorem’ is given without proof, though supplied with heuristic
reasoning for its plausibility, see also equation 5 in the next section:

Conjecture (Park[Par94]) For every decision tree (N;L;D) there exists a set of linear mem-
bership functions M = fm`; ` 2 Lg, such that for any `; `0 2 L, with ` 6= `0:

m`(x) > m`0(x);8x 2 R`: (1)

We first will refute this conjecture by giving a (smallest) counterexample. Then we show
that in general linear membership functions cannot exist, and finally we discuss the possi-
bility of polynomial membership functions.

Set n = 2; we then have points (x;y) 2 R2 as our decision vectors. Now, consider the
following decision tree (N;L;D): N = f1;2g;L= f1;2;3g and d1(x;y) = x, d2(x;y) = y.

3

This decision tree and its corresponding partitioning of the sample space are shown in figure
4:

x > 0

y > 0R1

R3R2

y n

y n

y = 0 x

y

x = 0

R2

R3

R1

Figure 4: The simplest counterexample to Park’s conjecture

Suppose now, that linear functions m1, m2 and m3 exist, for which the inequality (1) is true.
We then have

m1 = p1x+q1y+ r1

m2 = p2x+q2y+ r2

m3 = p3x+q3y+ r3

with

m1 > m2 and m1 > m3 for all (x;y) 2 R1

m2 > m1 and m2 > m3 for all (x;y) 2 R2

m3 > m1 and m3 > m2 for all (x;y) 2 R3.

For the linear function u(x;y) = m1�m2 = (p1� p2)x+(q1�q2)y+(r1� r2) we then see
that it is positive on R1 and negative on R2. Consequently, u= 0 on the borderline between
R1 and R2, which is the vertical axis. It is then easy to see that

p1 > p2, q1 = q2 and r1 = r2 (2)

must hold.
If next we consider the linear function v(x;y) = m1�m3 = (p1� p3)x+(q1�q3)y+(r1�
r3), it will be seen that v is positive on R1 and negative on R3. Analogously, we then find
that

p1 > p3, q1 = q3 and r1 = r3: (3)

By combining (2) and (3) we find that u� v =m3�m2 = (p3� p2)x and, consequently,

(p3� p2)x > 0 on R3, and < 0 on R2. (4)

4

For points (x;y) 2 R2[R3, we have x < 0. Thus, it follows from (4) that both p3 < p2 and
p3 > p2 must be true, which is a contradiction. We must conclude that the hypothesised
functions m1, m2 and m3 cannot exist. Thus, the conjecture is refuted.

Remark. If the decision functions d1;d2; : : : are chosen in such a way that the hyperplanes
di(x) = 0 are parallel, then in general it will be possible to construct the above mentioned
m-functions. For example, in R2 it can be done as follows:

R2

R3

R1

+
-

+
-

d2(x,y) = 0

d1(x,y) = 0

l

d1 > 0

d2 > 0R1

R3R2

y n

y n

Figure 5: A decision tree with parallel decision boundaries

The graphs of the functions m1;m2 and m3, intersected with a plane through ` (= a per-
pendicular to d1 and d2) then look as shown in figure 6:

m1

m2

m3

l
R1 R2 R3d1 d2

m1 > max(m2;m3) on R1

m2 > max(m1;m3) on R2

m3 > max(m1;m2) on R3.

Figure 6: A solution in the case of parallel decision boundaries

In the next theorem we show that linear membership functions that represent the convex
regions induced by an LTC cannot exist.

Theorem 1 Let (N;L;D) be a decision tree, with at least two non-parallel decision bound-
aries. Then the convex regions induced by this tree cannot be represented by a set of linear
membership functions.
Proof Let d1 and d2 be two n-dimensional linear decision functions such that the hyper-
planes d1 = 0 and d2 = 0 are non-parallel. Then for our discussion it is no restriction to
consider only the convex regions R1, R2 and R3 induced by these hyperplanes, see figure 7
(left side). The corresponding membership functions of these regions are denoted by m1, m2

5

and m3, and the differences m1�m2, m1�m3 and m2�m3 are respectively denoted by u,
v and w. By definition we have: u > 0 on R1 and u < 0 on R2. Since linear functions are
continuous, it is easy to see that the inequalities imply that the linear function u is zero on
the hyperplane d1 = 0. Similarly it follows that the function v is zero on d1 = 0 and that w
is zero on d2 = 0. Since w = u�v, w is also zero on d1 = 0. Using the fact that w is a linear
function which is zero on two non-parallel hyperplanes we conclude that w is identical to
the zero-function. This contradicts the fact that w > 0 on R2. 2:

Having shown that, in general, linear membership functions cannot represent the convex
regions induced by an LTC, the question now arises whether membership functions of LTCs
can be represented by multivariate polynomials. The following theorem shows that these
polynomials cannot be quadratic.

Theorem 2 Let (N;L;D) be a decision tree, with at least two non-parallel decision bound-
aries. Then the convex regions induced by this tree cannot be represented by a set of quadratic
polynomials.
Proof Let R1;R2 and R3 be the regions induced by a decision tree, see figure 7 (left side).

�
�
�
�
�
�
�
�
�
�

HHHHHHHH

R1

R2

R3

d1

d2

R1

R2

R3

x = 0

y = 0

Figure 7: Decision regions in space

Note that such regions will always be induced by a subtree of a decision tree, unless all
decision boundaries are parallel. We assume that the regions R1 and R2 [R3 are separated
by the hyperplane d1(x) = 0;x 2 Rn such that d1(x) > 0 on R1 and d1(x) < 0 on R2 [R3.
Similarly, R2 and R3 are separated by d2(x) = 0, such that d2(x) > 0 on R2 and d2(x) < 0
on R3. Let m1;m2 and m3 respectively denote the membership functions of R1;R2 and R3.
By definition m1 = 0 on the hyperplane d1(x) = 0. Similarly, m2 = 0 on d2(x) = 0. (Note,
that we actually know only that m2 is zero on half of the hyperplane d2(x) = 0. However,
using a simple result from algebraic geometry it follows that m2 must be zero on the whole
hyperplane d2(x) = 0.)

Now, let D12 = m1�m2. Then D12 is zero on d1(x) = 0, because D12 > 0 on R1 and
D12 < 0 on R2 [R3. As a consequence of Hilbert’s Nullstellensatz d1 is a factor of D12.
Therefore, there exists a polynomial function e such that

D12 = d1e:

Since D12 is at most quadratic by assumption, we conclude that e is a constant or a linear
function. However, since both d1e and d1 are positive on R1 and negative on R2, the func-
tion e is positive on R1 [R2. Since the degree of e is � 1, e must be a positive constant.

6

Similarly, we have D13 = d1 f , where f is a positive constant. Therefore D23 = d1(f � e).
This contradicts the fact that D23 is zero on d2(x) = 0. 2:

Finally we discuss a small example, to show that multivariate polynomials can represent
membership functions, although the degree of these polynomials is at least 5.

Example Let R1;R2 and R3 be the plane regions as given in figure 7 (right side). Then
using the same notation as in the above theorem, we can prove that the polynomial D23 has
the form D23 = xyg, where g is a polynomial of even degree. The reader can verify that the
regions Ri can be separated by the following polynomials of degree at most 5:

m1 = 0

m2 = x(y4+1)

m3 = x(y4+ y3+1):

4 An approximated mapping of a decision tree onto a one
layer neural network

Let Hk be the hyperplane given by dk(x) =∑n
j=1 wk jx j+wk0, for x=(x1; : : :;xn)2Rn;k2N:

Then the distance of a point x to Hk is given by

jwT
k x+wk0j=jjwkjj, where wT

k = (wk1; : : :;wkn).

Without restriction we may assume that jjwkjj = 1. Therefore, jdk(x)j is the distance of a
point x to the hyperplane Hk. We will show in this section that the difficulties encountered
in the preceding section may be circumvented by requiring that the points we consider are
not too close to the hyperplanes associated with the decision tree.

Let (N;L;D) be a decision tree. We will restrict the regions R` by assuming that 8k2N :
0 < e� jdk(x)j � E, where e and E are positive constants. The set of points in R` satisfying
this condition will be denoted by S`. Hence, S` is a convex subregion of R`. Note also that
R` can be approximated by S` with arbitrary precision, by varying the constants e and E.

In [Par94] Park considers the following set of linear membership functions:

m`(x) = ∑
k2P̀

s`kckdk(x); (5)

where P̀ is the set of nodes on the path from the root to the leaf `. The constants s`k are
defined as:

s`k =

�
+1 if dk(x) > 0;8x2 R`

�1 if dk(x) < 0;8x2 R`.
(6)

In this way it is secured that 8x2 R`;8k2 P̀ :

s`kdk(x) > 0: (7)

The constants ck are determined experimentally in [Par94]. Here we will derive an ex-
plicit expression for these constants. Since as we have shown above that in general these
constants cannot exist if x 2 R`; ` 2 L, we will now assume that x 2 S`.

7

Theorem 1 Let (N;L;D) be a decision tree. Then there exists a set of linear functions
M = fm`; ` 2 Lg, such that for any `; `0 2 L, with ` 6= `0:

8x 2 S` : m`(x) > m`0(x): (8)

Proof Let T be the set of terminal nodes of the tree. An internal node t is called terminal if
both children of t are leaves. Further, if n1 and n2 are two nodes, then we write n1 < n2 if
n1 is an ancestor of n2. Suppose that na 62 T, and `; `0 are two leaves such that na is the last
common ancestor of ` and `0, see figure 8:

l l'

root

n i

n a

Figure 8: The last common ancestor of ` and `0

We decompose the function m`0 as follows:

m`0(x) = ∑
ni<na

s`icidi(x)+ ∑
n j�na

s`0 jcid j(x);

where ni 2 P̀ and n j 2 P̀ 0 . The following crucial observation

s`a =�s`0a

can be seen by applying (6) and (7) to the node na. From this we conclude:

m`(x)�m`0(x) = 2s`acada(x)+Σ1�Σ2;

where
Σ1 = ∑

ni>na

s`icidi(x); with ni 2 P̀

and
Σ2 = ∑

n j>na

s`0 jc jd j(x); with n j 2 P̀ 0:

To assure that (8) holds, we require that

Σ2�Σ1

2s`ada(x)
< ca: (9)

8

Since Σ1 is a positive number we can satisfy condition (9) by taking

Σ2

2s`ada(x)
< ca;

or
E
2e ∑

n j>na

c j � ca:

This yields the following sufficient condition for the constants c j:

E
2e

max
`2La

(
∑

n j>na

c j

)
� ca; (10)

where n j 2 P̀ andLa is the set of leaves of the subtree with root na. Condition (10) implies:
ca �

E
2e ∑n j>na

c j, where n j 2 P and P is the longest possible path from node na to some
leaf. From condition (10) it also follows that the constants ca are determined up to a constant
factor. It is easy to see that the constants can be recursively determined by choosing positive
values ct for the set of terminal nodes t 2 T. As an example we show in figure 9 the values
of all the constants c j for a tree, when we take ct = 1 for all t 2 T and E

2e = 1. 2

8

4 2

2 1 1

1
1

1

1
1

Figure 9: Determination of constants c j in an example tree.

To derive an an explicit expression for ca for any node na we will introduce some notation.
Let Pa = ft = n0 < n1 < n2 < :: : < nk = nag be the longest possible path from node na to
a terminal node t. The length k of Pa is denoted by δ(a). Similarly, δ(r) is the length of the
longest path starting in the root r of the tree.

Lemma Let (ai)
∞
i=0 be the sequence defined by ak = λ(a0 + a1+ : : :+ ak�1) for k � 2 and

a1 = λa0. Then ak = a0λ(λ+1)k�1;k� 1:
Proof For k � 2 we have: ak+1� ak = λak: This implies ak = (1+ λ)k�1a1 = λa0(1+
λ)k�1;k � 1: 2

Theorem 2 The constants

ca =

1

1+ E
2e

!δ(r)�δ(a)

9

satisfy condition (10).
Proof Let Aa =

E
2e max`2La

�
∑ j2P̀ A j

	
; and A` = 1. Then Aa = λ(1 + λ)δ(a)�1 (see the

above Lemma), with λ = E
2e : Since the constants ca are defined up to a constant factor, we

choose ca =
Aa
Ar

. Then ca =
�

1
1+λ

�δ(r)�δ(a)
: 2

Corollary Let ρ = 1=(1+ E
2e). Then m`(x) = ∑k sk`ρδ(r)�δ(k)dk(x) are linear functions for

which (8) holds.

Another expression for the constants ca can be obtained by using the fact that a decision
tree (N;L;D) in practical situations is derived from a finite set of examples V � Rn. It is
no restriction to assume that 8x2V : jdk(x)j > 0;k 2N:

Let M = maxi; j maxx2V

��� di(x)
d j(x)

��� ; where ni;n j 2N and ni < n j: The number M can be easily

computed from the set of examples V .

Theorem 3 Let ρ = 2=(3M). Then the constants ca = ρδ(r)�δ(a) satisfy condition (10).
Proof Suppose P̀ is the longest path from node na to a leaf `, and n j;n j+1 are two consecu-
tive nodes on P̀ with n j < n j+1. Then d j(x)�Md j+1(x); so that d j(x)�Mδ(a)�δ(j)jda(x)j.
To satisfy condition (9) we want to choose constants Aj such that

Σ = ∑
n j>na

sm jA jd j(x)

2s`ada(x)
� Aa:

Since

Σ�
1
2 ∑

j

A j

Mδ(j)
Mδ(a) � Aa;

we have
1
2 ∑

j

A j

Mδ(j)
�

Aa

Mδ(a) ;

or 1
2 ∑ j B j � Ba; where Bj = Aj=Mδ(j). Now we choose Ba such that Ba =

1
2 ∑ j B j. Then

by the Lemma preceding Theorem 2 we have Ba = λ(λ+1)δ(a)�1, with λ = 1
2. Finally, let

ca = Ba=Br; then we have

ca =

�
1

M(λ+1)

�δ(r)�δ(a)
= ρδ(r)�δ(a); with ρ =

2
3M

: 2

Discussion: We have found two possible values for ρ: ρ1 = 1=(1+E=(2e)) and ρ2 = 2=(3M).
From the definition of M it follows that M�E=e. Since E=e� 1, we have ρ1� 1=(1+ 1

2) =
2=3. On the other hand, it is easy to verify that ρ1 � ρ2 if and only if E=e � 3M�2.

Since ρ! 0 if e! 0, in practice we will choose the parameter e not too small. On the
other hand, the approximation of the regions R` by S` will be less accurate if e becomes
larger. In a tree to neural net mapping the functions m` are used to define the initial weights
between the input and hidden layer. To improve the performance of the neural net these
weights are subsequently updated. It is therefore plausible, and in accordance with some
experiments of Park [Par94], and with the data used in an experiment described in [Car95]
that the accuracy of the approximation of the regions R` must be less, the more the data set
used to generate the decision tree is non-linear.

10

5 Another initialisation method

In this section we consider another well-known classifier: Learning Vector Quantisation
(LVQ) networks. This method can be used to solve a classification problem with m classes
and data-vectors x 2 Rn. It is known that the LVQ-network induces a so-called Voronoi
tesselation of the input space, see [HKP91] chapter 9. Training of an LVQ-network yields
prototype vectors w j 2R

n; j = 1; : : :;m such that an input vector x belongs to class j iff the
distance to w j is smallest:

8i 6= j : jjw j� xjj � jjwi� xjj) x 2 Rj:

It is easy to see that this is equivalent with

wT
j x�

1
2

wT
j w j �wT

i x�
1
2

wT
i wi:

Now define the linear membership function mi as:

mi(x) = wT
i x�

1
2

wT
i wi:

Then
x 2 Ri () mi(x) > m j(x);8 j 6= i:

Since an LVQ-network is a relatively good classifier and can be trained relatively fast, it is
a good alternative for the initialisation of a neural net using linear membership functions.
Apparently, an LVQ-network cannot induce the convex regions induced by an LTC.

Example Let R1;R2 and R3 be such as in figure 10 (right side). Now let w1 be the proto-
type vector of R1. Then the situation of figure 10 (left) can only be obtained if jjw1jj ! ∞.

R1

R2

R3

T
T
T
T
T
T
T

�
�
�
�
�
�
�

:

:

:

R3

R2

R1

Figure 10: Different types of convex regions

11

6 Conclusions and further research

We have proven that linear (or quadratic) membership functions representing the convex re-
gions of a linear classifier in general do not exist. However, we give explicit formulae for
the approximation of such functions. This allows us to control the degree of approxima-
tion. This is useful, for in practical applications the membership functions are ‘only’ used
to initialise a one-hidden-layer neural net. Subsequently this net is further trained with a
standard training algorithm. Currently we are investigating how to determine an appropri-
ate approximation in a given application. We are also investigating two other approaches,
see [Car95] to obtain a mapping from am LTC to a one-hidden-layer neural net. In the first
approach we combine the first two layers of Sethi’s net into one layer. The other approach
uses appropriate transfer functions for the hidden layer to represent a join of two half spaces,
because it is clear that an exact representation of the convex regions can be obtained by using
piecewise linear functions. Finally, we have discussed LVQ-networks as an alternative that
is of interest for the initialisation of the input-to-hidden layer based on membership func-
tions of convex regions. This architecture divides the input space in polyhedral regions, see
[MP88, HKP91] with linear membership functions.

Acknowledgement

We are grateful to Reino de Boer for his help with the pictures and advice on LATEX.

References

[BDV94] J.C. Bioch, M. van Dijk and W. Verbeke, Neural Networks: New Tools for Data
Analysis?, In: M. Taylor and P. Lisboa (eds.) Proceedings of Neural Networks
Applications and Tools, IEEE Computer Society Press, pp. 28-38, 1994.

[Car95] R. Carsouw, Learning to Classify: Classification by neural nets based on decision
trees, Masterthesis (in Dutch), Dept. of Computer Science, Erasmus University
Rotterdam, Februari 1995.

[IKP94] I. Ivanova, M. Kubat and G. Pfurtscheller, The System TBNN for Learning of
‘Difficult’ Concepts. In: J.C. Bioch and S.H. Nienhuys-Cheng (eds), Proceed-
ings of Benelearn94, Tech. Rep. eur-09-94, Dept. of Computer Science, Erasmus
University Rotterdam, pp. 230-241, 1994.

[FaI92] U.M. Fayad and K.B. Irani, On the Handling of Continuous-Valued Attributes in
Decision Tree Generation, Machine Learning, vol. 8, pp. 88-102, 1992.

[HKP91] J. Hertz, A. Krogh, R.G. Palmer, Introduction to the theory of neural computation,
Addison-Wesley, 1991.

[MP88] M.L. Minsky, S.A. Papert, Perceptrons, 2nd ed., MIT Press, 1988.

[Par94] Y. Park, A Mapping From Linear Tree Classifiers to Neural Net Classifiers, Pro-
ceedings of IEEE ICNN, vol. I, pp. 94-100, Orlando, Florida, 1994.

12

[PaS90] Y. Park and J. Sklansky, Automated Design of Linear Tree Classifiers, Pattern
Recognition, vol. 23, no. 12, pp. 1393-1412, 1990.

[Set90] A.K. Sethi, Entropy Nets: From Decision Trees to Neural Networks, Proceedings
of the IEEE, vol. 78, no. 10, pp. 1606-1613, 1990.

[Qui93] J.R. Quinlan, C4.5 Programs for Machine Learning, Morgan Kaufmann, San Ma-
teo, California, San Mateo, 1993.

13

