Skip to main content
Log in

In vivo nonlinear spectral imagingmicroscopy of visible and ultraviolet irradiated hairless mouse skin tissues

  • Technical Note
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

We demonstrate the capability of nonlinear spectral imagingmicroscopy (NSIM) in investigating ultraviolet and visible light induced effects on albino Skh:HR-1 hairless mouse skin non-invasively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes and references

  1. D. W. Edstrom, A. Porwit and A. M. Ros, Effects on human skin of repetitive ultraviolet-A1 (UVA1) irradiation and visible light, Photodermatol. Photoimmunol. Photomed., 2001, 17, 66–70.

    Article  CAS  Google Scholar 

  2. B. H. Mahmoud, C. L. Hexsel, I. H. Hamzavi and H. W. Lim, Effects of visible light on the skin, Photochem. Photobiol., 2008, 84, 450–462.

    Article  CAS  Google Scholar 

  3. P. E. Hockberger, T. A. Skimina, V. E. Centonze, C. Lavin, S. Chu, S. Dadras, J. K. Reddy and J. G. White, Activation of flavin-containing oxidases underlies light-induced production of H2O2 in mammalian cells, Proc. Natl. Acad. Sci. USA, 1999, 96, 6255–6260.

    Article  CAS  Google Scholar 

  4. A. M. Edwards and E. Silva, Effect of visible light on selected enzymes, vitamins and amino acids, J. Photochem. Photobiol., B, 2001, 63, 126–131.

    Article  CAS  Google Scholar 

  5. M. Eichler, R. Lavi, A. Shainberg and R. Lubart, Flavins are source of visible-light-induced free radical formation in cells, Lasers Surg. Med., 2005, 37, 314–319.

    Article  Google Scholar 

  6. M. L. Cunningham, N. I. Krinsky, S. M. Giovanazzi and M. J. Peak, Superoxide anion is generated from cellular metabolites by solar radiation and its components, J. Free Radical Biol. Med., 1985, 1, 381–385.

    Article  CAS  Google Scholar 

  7. T. Karu, Primary and secondary mechanisms of action of visible to near-IR radiation on cells, J. Photochem. Photobiol., B, 1999, 49, 1–17.

    Article  CAS  Google Scholar 

  8. B. F. Godley, F. A. Shamsi, F. Q. Liang, S. G. Jarrett, S. Davies and M. Boulton, Blue light induces mitochondrial DNA damage and free radical production in epithelial cells, J. Biol. Chem., 2005, 280, 21061–21066.

    Article  CAS  Google Scholar 

  9. J. A. Palero, G. Latouche, H. S. de Bruijn, A. v. d. P. van den Heuvel, H. J. C. M. Sterenborg and H. C. Gerritsen, Design and implementation of a sensitive high-resolution nonlinear spectral imaging microscope, J. Biomed. Opt., 2008, 13, 044019–044011.

    Article  Google Scholar 

  10. J. A. Palero, H. S. de Bruijn, A. van der Ploeg-van den Heuvel, H. J. C. M. Sterenborg and H. C. Gerritsen, In vivo nonlinear spectral imaging in mouse skin, Opt. Express, 2006, 14, 4395–4402.

    Article  Google Scholar 

  11. J. A. Palero, H. S. de Bruijn, A. van der Ploeg van den Heuvel, H. J. Sterenborg and H. C. Gerritsen, Spectrally resolved multiphoton imaging of in vivo and excised mouse skin tissues, Biophys. J., 2007, 93, 992–1007.

    Article  CAS  Google Scholar 

  12. J. Chen, S. Zhuo, R. Chen, X. Jiang, S. Xie and Q. Zou, Depth-resolved spectral imaging of rabbit oesophageal tissue based on two-photon excited fluorescence and second-harmonic generation, New J. Phys., 2007, 9, 212.

    Article  Google Scholar 

  13. C. Buehler, K. H. Kim, U. Greuter, N. Schlumpf and P. T. C. So, Single-Photon Counting Multicolor Multiphoton Fluorescence Microscope, J. Fluoresc., 2005, 15, 41–51.

    Article  CAS  Google Scholar 

  14. B. R. Masters, P. T. C. So and E. Gratton, Multiphoton excitation fluorescence microscopy and spectroscopy of in vivo human skin, Biophys. J., 1997, 72, 2405–2412.

    Article  CAS  Google Scholar 

  15. M. Yaar and B. A. Gilchrest, Photoageing: mechanism, prevention and therapy, Br. J. Dermatol., 2007, 157, 874–887.

    Article  CAS  Google Scholar 

  16. M. R. Pittelkow, R. J. Coffey, Jr. and H. J. Moses, Keratinocytes produce and are regulated by transforming growth factors, Ann N. Y. Acad. Sci., 1988, 548, 211–224.

    Article  CAS  Google Scholar 

  17. H. Hayashi, S. Abdollah, Y. Qiu, J. Cai, Y. Y. Xu, B. W. Grinnell, M. A. Richardson, J. N. Topper, M. A. Gimbrone, Jr., J. L. Wrana and D. Falb, The MAD-related protein Smad7 associates with the TGFbeta receptor and functions as an antagonist of TGFbeta signaling, Cell, 1997, 89, 1165–1173.

    Article  CAS  Google Scholar 

  18. R. Gillies, G. Zonios, R. R. Anderson and N. Kollias, Fluorescence excitation spectroscopy provides information about human skin in vivo, J. Invest. Dermatol., 2000, 115, 704–707.

    Article  CAS  Google Scholar 

  19. N. Kollias, R. Gillies, M. Moran, I. E. Kochevar and R. R. Anderson, Endogenous skin fluorescence includes bands that may serve as quantitative markers of aging and photoaging, J. Invest. Dermatol, 1998, 111, 776–780.

    Article  CAS  Google Scholar 

  20. R. Na, I. M. Stender, M. Henriksen and H. C. Wulf, Autofluorescence of human skin is age-related after correction for skin pigmentation and redness, J. Invest. Dermatol., 2001, 116, 536–540.

    Article  CAS  Google Scholar 

  21. P. R. Odetti, A. Borgoglio and R. Rolandi, Age-related increase of collagen fluorescence in human subcutaneous tissue, Metabolism, 1992, 41, 655–658.

    Article  CAS  Google Scholar 

  22. T. Gildenast and J. Lasch, Isolation of ceramide fractions from human stratum corneum lipid extracts by high-performance liquid chromatography, Biochim. Biophys. Acta, 1997, 1346, 69–74.

    Article  CAS  Google Scholar 

  23. N. Ramanujam, Fluorescence spectroscopy in vivo, in Encyclopedia of Analytical Chemistry, ed. R. A. Meyers, J. Wiley, & Sons, Chichester, 2000, pp. 20–56.

    Google Scholar 

  24. A. M. Pena, M. Strupler, T. Boulesteix, M. C. Schanne-Klein, Spectroscopic analysis of keratin endogenous signal for skin multiphoton microscopy, Opt. Express, 2005, 13, 6268–6274.

    Article  CAS  Google Scholar 

  25. J. V. Rocheleau, W. S. Head and D. W. Piston, Quantitative NAD(P)H/Flavoprotein Autofluorescence Imaging Reveals Metabolic Mechanisms of Pancreatic Islet Pyruvate Response, J. Biol. Chem., 2004, 279, 31780–31787.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan A. Palero.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palero, J.A., de Bruijn, H.S., van der Ploeg van den Heuvel, A. et al. In vivo nonlinear spectral imagingmicroscopy of visible and ultraviolet irradiated hairless mouse skin tissues. Photochem Photobiol Sci 7, 1422–1425 (2008). https://doi.org/10.1039/b808776h

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b808776h

Navigation