Risk-based stock decisions for projects

Willem van Jaarsveld and Rommert Dekker*

Econometric institute, Erasmus University Rotterdam,
P.O. Box 1738, 3000 DR Rotterdam, The Netherlands

Report Econometric Institute EI 2009-02

December 2008

Abstract

In this report we discuss a model that can be used to determine stocking levels
using the data that comes forward from a Shell RCM analysis and the data available in
E-SPIR. The model is appropriate to determine stock quantities for parts that are used
in redundancy situations, and for parts that are used in different pieces of equipment
with different downtime costs. Estimating the annual production loss using the model
consists of a number of steps. First, we need to determine which spares are used for the
repairs of which failure modes. In the second step, we estimate the average waiting time
for spares as a function of the number of spares stocked. In the third step, the annual
downtime costs are determined. We combine the downtime costs with the holding costs
to determine the optimal number of parts to stock.
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1 Introduction

In this report we will discuss how the information from E-SPIR 2000 can be combined
with the information from a Shell Reliability Centered Maintenance (S-RCM) study to give
recommendations for minimum stock level provisioning for spare parts of equipment.

E-SPIR 2000 (Electronic Spare Parts and Interchangeability Record) is a software package
for obtaining spare parts information from equipment suppliers in a standard format. In-
formation about the price, the leadtime, and the equipment for which the part is needed
is contained in the E-SPIR database. This information streamlines the initial spare parts
provisioning for newly built facilities.

Initial spare parts provisioning is important, because spares are needed for efficient operation
of the plant. When equipment breaks down, the downtime can be significantly reduced if
all spares needed for repair are available. If on the other hand spares are not available, the
waiting time for the spares can cause costly production losses. Because the costs of keeping
spare parts can be high!, it is not obvious whether we should keep stock - either how many -
to avoid downtime, or whether we should refrain from keeping stock to avoid holding costs.
There is a formula available in E-SPIR that helps to answer this question (Trimp, Sinnema,
Dekker and Teunter 2004). The main ingredients of this formula are price, leadtime, usage
and downtime costs. While price and leadtime are available in the E-SPIR, the usage and in
particular the downtime costs are not always available to a spare parts reviewer. Moreover,
the spare part may be used in multiple equipment in the plant, and the downtime often
depends on the precise piece of equipment that breaks down. We conclude that we need a
way to determine downtime costs sufficiently accurate.

Shell RCM is a structured approach to ensure that all available data and knowledge is
used to arrive at an optimum maintenance regime (Vago, Macki, Festen, Lorenz, Vonk,
Slangen, Wiegerinck, Woltman and Wisman 2004). While Shell RCM is mainly focused on
optimizing the frequency of maintenance activities, the information that is gathered during
the study can be very useful for determining stock quantities as well. In particular, a Shell
RCM study gives production loss equations for the different failure modes of equipment in
the plant. These production loss equations are closely related to the downtime costs of the
equipment.

Shell RCM enables us to use downtime costs that are based on a thorough analysis of people
that are actually working with the equipment. We however also find that the downtime
costs in Shell RCM consist of more than a single number. Every equipment in which the
spare part is used is a potential source of downtime costs. There is another complication,
which is redundancy. When there are two pieces of equipment, of which only one is needed
to keep the plant running, there is redundancy in the system. The current model used in
E-SPIR is unappropriate when multiple equipment have different downtime costs or when
there is redundancy in the system.

In this report we will describe a model that can be used to give recommendations for stock
quantities using the information from E-SPIR and Shell RCM. In section 2 we discuss the
collection of the data that is needed to apply the model to determine minimum spare parts
stock levels. In section 3 the model will be described, and we give formulas that can be
used to calculate estimated downtime costs and holding costs for different stock levels. In

L At Shell, a holding cost fraction of 25% is often used.



section 4 we show how to calculate optimal spare parts stock levels. In section 5 we will
give a recommendation for order quantities. We conclude in section 6.

2 Data collection

2.1 Spare parts packages

Spare parts are used when repairing equipment. A specific piece of equipment in the plant
is called a tag in this document. When optimizing the number of spare parts that is to be
kept on stock, it is relevant to look at the tags in which the particular spare part is used.
This is possible, because in E-SPIR, this information is given. Then we need to determine
in what failure mode that particular spare part is used. A failure mode is a particular
way in which a piece of equipment can break down. It is possible that the part is used for
the repair of multiple failure modes, but we will focus first on situation where the part is
only used for just one failure mode. Later on in this section, we will discuss the situation
where the part is used for multiple failure modes.

Because it is reasonable to assume that repair of equipment can only be completed if all
parts needed for the repair are available, we need to determine which other parts are needed
for repair of the failure mode. Together with the original part, these parts form a group
of spare parts, that we will call a spare parts package in this document. A spare parts
package is thus a group of spare parts that can be used to repair a piece of equipment when
it fails according to a particular failure mode. For the spare parts in the package, price and
leadtime (based on procurement data) are known in E-SPIR. From these, we can calculate
the price and the leadtime of the package as a whole. The price of the package is the sum
of the prices of the individual parts, while the leadtime of the package is the maximum of
the individual leadtimes.

Example: We consider the failure mode seal leakage of sample pump 522.101. The parts
needed for repair of this failure mode are

Description 1D price  procurement time
seal 38.10.33.20  8k$ 22 weeks
sleave 522.364.2 1k$ 10 weeks
soft parts set  522.364.9  0.30k$ 1 week

The spare parts package “seal repair of sample pump 522.1017 thus has a leadtime based on
procurement of 22 weeks and a price of 9.3k$.

Some parts can be refurbished. This means that instead of ordering them new at the
supplier, the defect parts are repaired themselves. To avoid notational ambiguities related
to the repair of equipment, we will refer to the repair of the spare parts as refurbishment. If
refurbishment is an option, it can often be done in a shorter time interval than the leadtime,
based on procurement, of the part. We can thus also define the leadtime of the spare parts
package based on refurbishing. The leadtime based on procurement is given in E-SPIR.
The leadtime based on refurbishment was added to the model to enable practitioners to
assess the effect of refurbishment on the optimal stock level, in case the optimal level based
on procurement is unsatisfactory. Refurbishment costs are not applied in the model, just
“new” costs are used.



Example: In the above example the seal has a refurbishment time of 2 weeks, the sleave
a refurbishment time of 1 week, and the soft parts set has a refurbishment time of 1 week.
This means that the leadtime of the package based on refurbishing is 2 weeks.

Refurbishment assessment related to the minimum stock level determination is relevant to
get proper contracts for refurbishment in place with suitable contractors.

Practical considerations

By giving recommendations for entire packages of spare parts, we are able to reduce the
workload when determining initial provisioning. We do need a leadtime for the package,
however. We have chosen to use the maximum of the leadtimes within a spare parts package
as the leadtime of the package. In some cases, this might have an undesirable side effect. In
particular if a spare parts package consists of a part with a long leadtime and a low price,
and a part with a short leadtime and a high price. These situations need to be verified and
it is recommended to provide a report that shows the groups of spares where the longest
lead time is not within the group of most costly spare parts.

In some cases a part is used in the repair of multiple failure modes. This means that the
part will belong to multiple spare parts packages. In this case, we will use the model to give
a recommendation for all these packages. The number of parts stocked can then be chosen
to be equal to the sum of the number of packages stocked for the two failure modes, but for
generic items this might lead to overstocking.

Example: If at each impeller failure also the bearings are renewed, the spare bearings
need to be linked to both the failure mode “bearing failure” and the failure mode “impeller
failure”.

The method of applying spare parts packages focuses on the most expensive parts in in-
ventory. When determining stock levels for generic parts and parts with a short leadtime,
secondary logic might be used by the user to improve on the outcomes of the model. In
E-SPIR, the user is automatically warned when giving a recommendation for a part that is
also installed in other equipment.

No part - failure mode combinations

If a part is not used in any known failure mode that was assessed in the Shell RCM studys, it is
unclear how many parts we should stock. In principle, it is rational to refrain from stocking
the part, as in most RCM studies all critical equipment is assessed with its dominant failure
modes. If a part is not in a spare parts package, it is thus not considered to be installed in
critical equipment. Especially for expensive spare parts this needs to be verified and it is
recommended to provide a report showing all expensive spare parts that are not part of a
spare parts package.

2.2 Failure mode information

In the Shell RCM study, for each of the tags involved, for each failure mode that can occur,
an estimate is made how often the failure occurs, and how large the production loss is in
case of downtime. In the RCM study, redundancy situations are also identified. The tags



involved in redundancy of a process function are assessed as a functional group. In this
section, we will describe how the data obtained during the RCM study will be interpreted.

Downtime costs

When a tag in a functional group goes down, downtime costs are incurred. These downtime
costs of course depend on the length of the interval in which the functional group is down.
Because we will calculate the average production loss based on the average waiting time,
we apply a linearized production loss equation because using a nonlinear production loss
equation will increase the errors when using the average waiting time.

This means that we will disregard any nonlinearities in the downtime costs as function of
the length of the downtime, and we always work with linear downtime costs. This is a
simplification of the S-RCM functionality. The simplification reduces the error that results
from ignoring the variations in the waiting time. Furthermore, the simplification adds value
because of the increased usability of the model as the data needed to apply the model is
significantly decreased. In most cases, the simplification will have a negligible impact: in
case of downtime as a result of spares shortages this downtime will in general be much larger
than the time interval in which the production loss is nonlinear in the downtime.

To linearize the model, we use the downtime costs when the equipment is down for one
week (PLEyeek). We will then use PLE ek /7 as the linearized daily downtime costs.

Example: When the tag P-205 goes down, the first 24 hours there is no production loss
because of pipeline storage capacity. After these 24 hours, the production loss is 4.333k$
per day. To linearize the model, we use the downtime costs when the system is down for 7
days. These downtime costs are 6 x 4.333 = 28k$. We will thus calculate with a production
loss of 28/7 = 4k$ per day starting from the moment the equipment goes down. When the
pump is down for 4 days, we calculate with a production loss of 4 - 4k$ = 16k$, while in
reality we have a production loss which is 3 - 4.333 = 13k$.

Health, Safety & Environment effects

In S-RCM the consequences of a equipment failure are translated into Economical, Health
and Safety, and Environmental effects. The HSE effects are calculated back into monetary
values and added to the Economical consequences. In the minimum stock calculations
the HSE aspects are not taken into account, because often the HSE effects occur at the
equipment failure and not during the waiting time for repair. In case the HSE effects occur
during the waiting time for repair - like flaring caused by an equipment not being available
- this shall be taken into account.

Redundancy

Among the tags in which the failure mode can occur, some tags perform a backup function
for other tags. These tags can all perform the desired process function, and the production
loss depends on the number of tags that are down among the tags in the group. We will refer
to a number of tags performing the same function involving redundancy as a functional
group. In the previous example, tag P-205 did not have a redundancy relation with any



other tags. We will assign tag P-205 to functional group 2; this group then only contains
this particular tag. We now give an example a functional group that consists of multiple
tags.

Example: Functional group 1 is formed by the tags P-201A an P-201B. If one of these
tags is in repair, the other can take over, and the downtime costs are 0. If however the
other pump fails while the first is still in repair, then both pumps are down and downtime
costs of 30k$ per day are incurred. In RCM, this is denoted by giving P-201A downtime
costs of 0, and by giving P-201B downtime costs of 30k$ per day. Note that this can give
rise to confusion, as the downtime costs for P-201B are only incurred if P-201A is down
as well.

MRTBF

For each tag a mean time between failure (MTBF) is given. This is an estimate of the
total number of years between failures of the tag, irrespective if the equipment is running or
not. In general, the MTBF can be different for different tags within one functional group.
Apparently, some tags make more running hours on average than other tags. To be able
to calculate downtime probabilities later on, we need the mean running time between
failure (MRTBF). Because the two tags are equal except for their running fraction, it is
reasonable to assume that the mean running time between failure is the same for the two
pumps. This MRTBF can then be viewed as a property of the functional group: namely
the mean time in which the system is running until a failure occurs.

Example: In our example the MTBF of the P-201A is MTBF, = 3 years, while the MTBF
of the P-201B is MTBFy, = 5 years. The MTBF differs between these two tags, but it is
reasonable to assume that the MRTBF for the two pumps is equal. If we denote the fraction
of time that pump P-201A is running by «, then we have 2

aMTBF, = MRTBF,
(1 - a)MTBF, = MRTBF.

From these, we can determine:

MTBF, 5
= = - =0.625 =62.5
MTBF,+ MTBF, 8 %,

1 1 15
MRTBF = - -2 .
R [/MTBF, + 1/MTBF, _ 1/3 yrs+ 1[5 grs & 100U

a

So pump P-201A is running 62.5% of the time and pump P-201B is running 37.5% of the
time and the process function experiences a tag failure once every 1.875 years on average.

Using a similar argument as given in the above example, we can show that when a functional
group consists of 3 tags A, B and C, then the MRTBF of the functional group is given by

1

MRTBF = .
1/MTBF, + 1/MTBF},, + 1/MTBF,

?In addition, we assume that either pump P-201A or pump P-201B is running. In reality, the system will
be down for a small fraction of time. We can safely ignore this because the system will be down for only a
small fraction of time.



The number of active equipment

In a looN system, we always have one piece of equipment working, unless the system is
down. The other pieces of equipment are not working. It therefore is reasonable to assume
that when one piece of equipment is still working, the expected time until the next failure
is equal to the MRTBF of the functional group, as calculated with the appropriate formula
derived above.

In a 200N (2002 or 2003) system, the discussion is somewhat more complex. In principle
we could let the expected time until the next failure depend on the number of equipment
that are running (1 or 2). If only 1 piece of equipment is running, this expected time might
increase with respect to the situation where two pieces of equipment are running as there is
only one pump that can break down. On the other hand, as the amount of work that has to
be performed by the remaining equipment might increase, the MRTBF can also decrease.

For simplicity, we therefore assume that the MRTBF does not depend on the number of
active pieces of equipment. This simplifies the model, as the above considerations do not
have to be taken into account. Furthermore, assuming that the expected time until the
next failure does not depend on the number of running equipment enables us to use the
same calculations for the 1ooN and the 200N systems.

Multiple pumps failing in a single incident

In 2002 and 2003 situations, sometimes both of the running equipments can break down as
a result of a single event. The statistics used in the model do not take this possibility into
account. The model is therefore not suitable for use in situations where the probability of
simultaneous breakdown caused by a single event is significant. Simultaneous breakdown is
considered to be rare, and therefore it is left out of consideration.

Example: When the common seal oil system in a 2003 redundant pump system breaks
down, both seals run dry. This results in the breakdown of both running pumps. This is
considered a rare event.

Multiple failure modes in a single piece of equipment

If some equipment type can fail according to multiple failure modes, the model can give a
biased estimate of the total downtime in situations when the equipment is used in redundant
combinations. In general, one failure mode will occur much more often than other failure
modes. In this case, the overestimation will often be small. When multiple failure modes
all occur regularly, this overestimation can be significant. It is important to be aware of
this.

Example: Consider pump P-201A and P-201B, which are 1002 redundant. In previous
examples, we considered the failure mode “seal leakage”. Suppose that these pump can also
fail as a result of the failure mode “bearing failure”. Then, it is possible that pump P-201A
will fail as a result of seal leakage. Before we are able to repair P-201A, P-201B can fail as
a result of bearing failure, resulting in loss of production capacity.

We see from this example that there can be interaction between different failure modes. In
the model, we ignore this interaction, which may result in underestimation of the downtime.



2.3 Exclusions

We already discussed a number of aspects that can be relevant for stocking decisions, but
that are excluded from the model to increase usability. In this section we will make a few
remarks on some other things that are excluded.

Scheduled repairs

Some spare parts are used in scheduled repairs, and ordered in a scheduled sequence. As
these parts can be ordered separately so that they arrive just before they are needed, this
usage can be left out of the stock level assessment.

Cannibalism

When a pump with high downtime costs goes down, parts can be cannibalized from a low
priority pump to repair the high criticality pump as fast as possible. Solving problems
in this way can not be considered standard operation, and we feel that the model should
be based on standard operation. The model thus excludes this. Furthermore, including
cannibalization would increase the complexity of the model and decrease its useability.

Prioritizing

As we have seen above, the same spare part may be used in equipment of different criticality.
Hence, if only one part is left over, one may choose to keep it in stock for high critical
equipment. This is not included in the present model. Models with demand priority are for
instance discussed in Dekker, Hill and Kleijn (2002).

Speeding up replenishment

When a particular spare parts is needed fast, replenishment can often be speeded up by
paying extra. Again, this will not be considered normal operation, and including this in
the model would mean that this way of solving problems would become part of normal
operation. Also, obtaining the data needed to include this in the model would decrease the
useability of the model significantly. We therefore do not include the speeding up of orders
in the model.

3 The model

In this section, we will describe a model that can be used to determine the total expected
downtime costs per year and the total stocking costs per year for a given number of spare
parts packages to stock. We will use this data to determine the optimal number of spare
parts packages to be stocked. Note that in this assessment the optimum re-order quantity
is not taken into account.



3.1 Notation
Leadtime, Cost, Packages Stocked

We assume that a spare part package with a cost C' (k$) and a leadtime L (wks) is given.
The leadtime can either be based on procurement of a new part, or it can be based on
refurbishment. The spare parts package is used for repair of a failure mode of a particular
equipment type. We will denote the number of spare parts packages we keep stocked by S
(packages). If we would for instance keep S packages stocked, we make sure that we have
S packages to start with. Immediately after a package is used, a new package is ordered
(in case of new parts procurement) / we start refurbishing the old package (in case of
refurbishing).

Example: In the example we have that L = 22 weeks (based on procurement), and C' =
9.3k$. The package we consider is used for repair of the failure mode seal leakage of the
sample pump 522.101.

Downtime costs

We assume that the tags in which the considered failure mode can occur are known, as well
as the functional groups. We will denote each functional group by f € {1,..., N}. For each
of these functional groups f it is known of how many tags the group consists (denoted by
Ry). We also assume that the downtime costs are known: the daily downtime costs when
i € {1,..., Ry} pumps are down in functional group f are denoted by cy; (k$/day). We
assume the MRTBF is the same for all tags within a functional group, we will denote the
MRTBF of functional group f by MRTBFf(yrs).

Example: We have N = 3 functional groups. We discussed functional group 1 and 2
in previous examples. The last functional group is functional group 3 that consists of
Rs = 3 tags (P-1108A, P-1108B and P-1108C). When one pump is down, there are
no production loss costs (cs1 = 0k$/day). When two pumps are down, the downtime
costs are cza = 20k$/day, and when all three pumps are down, the downtime costs are
c33 = 100k$/day. Pumps P-1108A, P-1108B and P-1108C have a MTBF of 2,3 and 5
years, respectively. We thus know that the MRTBFE of the third functional group can be
calculated to be MRTBF3 = 1/(1/2+1/3 +1/5) = 0.97yrs. We now present all relevant
functional group data in a table:

Functional ~Number Downtime costs (k$/day) Mean running time
group of tags 1 down 2 down 8 down between failures
f =1 R1 =2 C11 = 0 C12 = 30 - MRTBF1 = 1.875yrs
f =2 RQ =1 Co1 — 4 - - MRTBFQ = 2yrs

f =3 Rg =3 C31 = 0 C39 = 20 C33 = 100 MRTBFg = 0.97yrs

Holding costs
Keeping spare parts packages on stock gives rise to annual holding costs, which we calculate

as a fixed percentage of the procurement price of the package (regardless of whether we
decide to procure or refurbish the parts, as the parts on stock must be obtained at the
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procurement price in either case). The holding costs come forward from interest of capital
involved, warehouse and handling costs.

Example: The cost of the spare parts package in the example is 9.3k$. We use an annual
holding cost percentage of 25%/yr. So the annual holding costs are 2.325k$/yr per package.

Using a fixed percentage of the procurement cost of the part as holding cost is a simplifica-
tion. In general, for items with a higher value the holding cost fraction may be lower than
for lower value parts. We will ignore these subtleties to increase the usability of the model.

Number of repairs

Keeping spares in stock enables the repairs of defect equipment to be done faster, as stock
reduces the waiting time for spares. We will denote the total number of expected repairs
per year by A (1/yr). It can be calculated using the MRTBF of the individual functional
groups. We have

N
A= Z 1/MRTBF; per year. (1)
i=1

Example: In our example, we can easily calculate that A = 1/1.8754+1/2+1/0.97 = 2.07,
which means that we expect on average about 2 repairs every year, which is the demand rate
on the spare parts package involved.

Repair times

If equipment breaks down, we assume that we first have to wait until a spare parts package
is completely available. We denote the time that we need to wait by ¢, (wks). We will
explore the waiting time in more detail in section 3.2. When all the spare parts that are
needed for the repair are available, we assume that there is a remaining time needed to
complete the repair. We will refer to this time as the repair time when all spare parts
are available (ty). The total repair time is denoted by t. We have:

t =ty +to

Example: The waiting time depends on the specific repair. The repair time when all spare
parts are available of the failure mode “Seal leakage” of sample pump in our example is 2
weeks. We thus have that to, = 2 weeks. The total repair time is thus t = t,, + 2.

3.2 The average repair time
The waiting time varies

The waiting time depends on the specific repair that we consider. When the package is on
stock at the moment it is needed, the waiting time will be zero. If the package is neither on
stock, nor on order, the waiting time is L. But whether the package is available from stock
depends on the amount stocked, and on the time interval between the repair, and earlier
repairs demanding the package.
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Example:  Say we keep one package on stock (S = 1). At a certain moment in time,
the pump P-1108A breaks down. It is repaired using the package on stock (t,, = 0), and
a new package is ordered at the supplier. The total repair time is thus t = ty, = 2 weeks.
12 weeks later, the pump P-201A breaks down and needs the package. The package that
we ordered will only arrive in another 22 — 12 = 10 weeks, so we have a waiting time of
10 weeks until the ordered package arrived (t, = 10 weeks). We immediately do order a
new package, however, which means that we have 2 packages on order. 10 weeks later, the
package that was ordered upon the failure of pump P-1108A arrives, and in another 2 weeks
P-1108A is repaired. The total repair time of P-1108A is thus 12 weeks. 10 weeks later, the
part ordered upon the failure of P-1108A arrives. Another 19 weeks later, 41 weeks after
the breakdown of pump P-1108A, pump P — 105 breaks down. As the package is already
on stock, the waiting time is zero. A new package is ordered at the supplier. 4 weeks later,
pump P-201A breaks down (again). We have to wait for another t,, = 18 weeks for the
package to arrive, and the total repair time t for this pump is 20 weeks. The events in this
example are shown again in the following table.

time (wks) event parts on stock remarks
0 Breakdown of P-1108A 1
0 Withdrawal for repair P-1108A 0 tw =0
0 Ordering of new stock 0 1 package on order
2 Completion of repair P-1108A 0 t =ty +tg =2 wks
12 Breakdown of P-201A 0 no spare parts available
12 Ordering of new stock 0 2 packages on order
22 Arrival of new stock 1 Ordered upon failure of P-1108A
22 Withdrawal for repair P-201A 0 ty, =10
24 Completion of repair P-201A 0 t=ty +tg =12 wks
34 Arrival of new stock 1 Ordered upon failure of P-201A
53 Breakdown of P-105 1
53 Withdrawal for repair P-105 0 ty =0
53 Ordering of new stock 0 1 package on order
55 Completion of repair P-105 0 t=ty +tg =2 wks
57 Breakdown of P-201A 0 no spare parts available
57 Ordering of new stock 0 2 package on order
75 Arrival of new stock 1 Ordered upon failure of P-105
75 Withdrawal for repair P-201A 0 ty, =18
77 Completion of repair P-201A 0 t =ty +ty =20 wks

In the 4 repairs considered in this example the waiting times were 0,10,0 and 18 weeks. The
average waiting time over these 4 repairs is thus 7 weeks.

Note that we expect on average 1 repair every 0.48 yrs. In the above example, the break-
downs do not occur in equally spaced time intervals, even though the average inter-arrival
time is about 0.48 yrs. In practice, repair times are not equally spaced in time, and the
above scenario is quite realistic. Also, from the above discussion we see that long waiting
times occur when breakdowns occur shortly after each other. We thus need to assess the
risk of breakdowns occurring shortly after each other.

12



The average waiting time

From the above example, it is clear that the waiting time for spare parts is different for
various repairs. To be able to do a risk based assessment and simplify the discussion we
will use a METRIC like approach (Sherbrooke 1968): we work with the average waiting
time for spares (t,,) when determining downtime costs. This waiting time depends on
the leadtime L of the spare parts package, the total expected demand per year A, and the
number of packages kept on stock S. In the above example we saw how the average waiting
time should be interpreted. In practice, the moment of arrival of the different repairs is not
known. It is quite reasonable however to assume that the time interval between successive
repairs is exponentially distributed in each functional group. We then know that the number
of defects in a time interval is Poisson distributed. We can then use queueing theory to
determine the average waiting time. However, the results from queuing theory do not give
much insight or understanding. We therefore first derive some approximate results for our
example.

Example: Assume we stock S = 1 part. When a tag breaks down, the spare is on stock
if no tag broke down in the last 22 weeks. If a tag did break down in this period, we have
to wait. We expect on average A = 2.07 repairs per year. The probability that a tag has
broken down in this period is approzimately 22-7/365.5-2.07 = 87%. If we have to wait, the
waiting time until the spare arrives is on average about 11 weeks. So we expect the average
waiting time when we stock 1 spare to be about 0.87 - 11 = 9.5 weeks. Now, suppose we
stock S = 2 parts. The probability that we have to wait is now equal to the probability that
we have 2 demands in the 22 preceding weeks. This probability can be approrimated to be
(22 - 7/365.5 - 2.07)2/2 = 38%. If we have to wait, we can expect that we have to wait on
average 22/3 = 7.33 weeks. We thus have to wait on average 0.38 - 7.33 = 2.77 weeks. Note
that the formulas above to estimate the probability of no demand / less than 2 demand in
the 22 week period are only approrimate.

We now give the exact results, which are less insightful. We use a result from queueing
theory to calculate the expected waiting time for spares as a function of the yearly demand
A, the leadtime L, and the number of packages kept on stock S. In particular, we use
Little’s formula to calculate the average waiting time t,, ( see Sherbrooke (1968) )

7,

tw(S) =L — +i§_j e M (2)
1=0

Example: We have A = 2.07 demand per year. Furthermore, we have L = 22 -7/365.5
years. We can thus easily tabulate t,,(S) for different values of S using equation 2.

S WSt

0 0.421 yrs 22.00 weeks
1 0.140 yrs  7.31 weeks
2 0.035 yrs  1.83 weeks
3 0.007 yrs  0.36 weeks
4 0.001 yrs 0.06 weeks
5 0.000 yrs 0.01 weeks

The value for the average waiting time when we have no stock (S=0) corresponds to the lead-
time of the package as expected. When we keep one part on stock, the average waiting time
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decreases significantly, to 7 weeks. Note that our approximation gave 9.5 weeks. Stocking
2 parts gives an average waiting time of 1.83 weeks, deviating from the approximate result
2.8 weeks. As the amount stocked increases, the average waiting time steadily decreases to
zero.

Average repair time

Previously, we saw how to calculate the average waiting time for spares t,, as a function of
S, A and L. We can use this average waiting time to compute the average repair time
t_ == t_S + tv.

Example: We assume that we choose to stock one part (S =1). We then have an average
waiting time t,, = 7.31 weeks. The average repair time is then t = 9.31 weeks or 0.178 year.

3.3 Downtime costs

Given the repair time ¢ calculated in the last section we want to calculate the downtime
costs. Let us consider an arbitrary functional group f. Recall from section 3.1 that we
denote MRTBF of this group by MRTBF ;. The group consists of Ny tags. When i tags
are down, costs equal to cy; per day are incurred.

Under the assumption of exponential time intervals between successive defects in the func-
tional group, it is clear that the long term fraction of time in which there are n defective
tags in the group is given by
F,, = P(Defect tags =n) ne€{0,...,Ny}
_ (t/MRTBF;)"/n!
31 (E/MRTBE ;)i /il
B t"/n!
- (f+MRTBF;) - MRTBF}
N t"/n!
" (f+MRTBF) - MRTBF} !

(1+ O(f/MRTBF )

where the approximation is valid under the assumption that the expected number of failures
during the repair time is sufficiently small ({/MRTBF y < 1). If we specialize this expression
for the fraction of time in which there are 1, 2, and 3 defects, we get:

Fy = Fraction of time with 1 defect = f—i—l\/Iftm (3)
F» = Fraction of time with 2 defects = — r/2 (4)
(t+ MRTBFy) - MRTBF
3/6

F3 = Fraction of time with 3 defects = — 5
(t + MRTBFy) - MRTBFf

The annual downtime costs for functional group f can thus be calculated to be
Ny
costsy = ZFZ - cfi - 365.5. (6)
i=1
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We will now calculate the downtime costs for the different functional groups in the example.
Although we will use equations 3,4 and 5, we will try to illustrate the formulas with a
graphical representation.

Example: We assume that we stock 1 spare parts package. Then, we know that the average
repair time is t = 0.178 yr. Consider first functional group 2, for which the discussion is
simplest because it consists of only one tag. The MRTBE for this group is MRTBFy = 2
years. The situation for this tag can be illustrated as follows:

2yr 0.178 yr 2yr 0.178 yr
- _— e e
pump working pump down pump working pump down

From this figure (or from equation 3) it is clear that the fraction of time that the pump is
down s given by

i 0178

= — —
Y ¥ X MRTBF ~ 2178

= 0.089

and the downtime costs for the pump are thus:
costs; = 0.089 - 4 - 365.5 = 119.69k$/yr

We now take a look at functional group 1. We know that MRTBF; = 1.875. Because there
are mo costs when only one pump is down, we are mainly interested in the fraction of time

in which two pumps are down. The situation for this functional group can be illustrated as
follows:

1.875 yr 0.178 yr 1.875 yr 0.178 yr
- - —af— - —
1 pump back-up no back-up 1 pump back-up no back-up
|
| ||
=
I
- 1.875 yr -

Failure of pump without
backup to take over

We have thus every
t
(t + MRTBF,) MRTBF,

years a failure of a pump without a backup to take over. When a pump fails without a
backup to take over, the expected length of the downtime is on average t/2. We thus have
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that the long term fraction of time with two pumps down is given by

2/2

Fy=—
>~ (t+ MRTBF,)MRTBF,

= 0.0041

We could of course also have used equation 4 to calculate this fraction. The downtime costs
of functional group 1 are thus given by

costs) = F - c12 - 365.5 = 45.28k$ /yr

Finally, we consider functional group 3. We will use formulas 4 and 5 to calculate the
fraction of time in which there are 2 and 3 pumps down, respectively.

£2/2
Fy=— - =0,014
(t + MRTBF3) - MRTBF}
3
£'/6 = 0,0009

F3=—
°~ (t+ MRTBF3) - MRTBF?
The annual downtime costs for functional group 3 can thus be calculated to be

costss = Fy - 39 - 365.5 + F3 - ¢33 - 365.5 = 137k$ /yr

The total downtime costs can be easily calculated as the sum of the downtime costs of the
individual packages

N
downtime costs = Z costsf (7)
f=1

Example: From this, we conclude that the expected total annual downtime costs when we
stock one package is given by

downtimecosts(S = 1) = costs; + costsy + costsg = 302k$/year

4 The optimal stock level

We are able to calculate the annual downtime costs for a given number of packages to be
stocked (.9). In short, such a calculation consists of the following steps:

1. Calculate the MRTBF for each functional group. Calculate the total repair rate .

2. Calculate the expected waiting time for spares t,, using equation 2. Calculate the
expected repair time using t = t,, + t.

3. Calculate the downtime costs per functional group using equation 6.

4. Calculate the total downtime costs using equation 7.
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Now that we know how to calculate the annual holding costs for a given stock level .S, we
are able to find an optimal stock level S. The optimal stock level S is given as the stock
level for which the total annual costs are minimized. The total annual costs are given as
the sum of the annual downtime costs and the annual holding costs, which are given by

S.-C-h (8)

where h is the annual holding costs fraction 3.

Example: For different values of S, we can perform the calculation that is described
above. Note that if S changes we get another value for t,, which means that almost all other
values change as well. The results are:

spare parts average repair  annual downtime annual holding total annual
packages on 57 (S) timet=t, +ty costs costs costs

0 24 weeks 1589.87 k$ 0 k$ 1589.87 k$
1 9.31 weeks 301.98 k$ 2.33 k$ 304.30 k$
2 3.83 weeks 81.87 k$ 4.65 k$ 86.52 k$
3 2.36 weeks 43.73 k$ 6.98 k$ 50.71 k$
4 2.06 weeks 36.89 k$ 9.80 k$ 46.19 k$
5 2.01 weeks 35.77 k$ 11.63 k$ 47.39 k$

We find that the optimal number of packages to stock is 4. One other thing that is imme-
diately clear from the number in the fifth column is that the total costs are not so sensitive
to a small difference in the stock level.

In the example, we see that around the minimum, the total costs vary only slightly. This
will in fact often be the case. As a lot of the data in the model are approximations, and as
data is often only approximate, the optimal policy has some inaccuracy bandwidth.

5 Order quantities

When determining order quantities, we recommend to look at parts on item level, not on
spare parts package level. This means that after we have determined the minimum stock
level for the different spare parts packages, we translate these minimum stock levels to levels
for the individual parts. The order quantity for these parts can then be determined using
the EOQ. In chapter 5 of Trimp et al. (2004), this EOQ is discussed. Here, we only give a
short discussion, as the results in Trimp et al. (2004) are still applicable.

The EOQ formula is given by

9)

EOQ — 2 - Annual usage - Order costs
~\/ Annual holding cost per unit

The annual holding costs can be estimated using the price of the item and the price of the
item. If the part is used in the repair of only one failure mode, the annual usage corresponds
to the average annual number of repairs A (as given by equation 1) for that failure mode.

3 At shell, a fraction of 0.25 is often used. For more information on holding costs see section 3.1.
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The order costs must be determined for every particular plant, and depend on the way the
replenishment are organized. The EOQ has to be rounded to a positive integer, for more
information on this see Trimp et al. (2004). If the part is used in multiple failure modes,
the total usage of the part is equal to the sum of the usage of the packages that contain the
part.

In general, the EOQ is mostly interesting for cheap items with relatively high usage, most
of the time generic parts. For expensive parts with low usage the EOQ is typically 1.

Example: For non-generic parts, an average usage of once every two years is not uncom-
mon. Assuming ordering costs of $200 and fractional annual holding costs of 25%, with this
usage even parts with a price as low as $500 would receive an EOQ that will be rounded
down to 1, which would mean that a base stock policy is best for the item.

For generic items, using the EOQ to control order costs can be beneficial.

Example: Generic parts such as gaskets can easily be used 10 times a year. Assuming
again ordering costs of $200 and fractional annual holding costs of 25%, the EOQ for a
gasket with this usage and a price of $500 would be 6. The annual advantage of ordering 6
instead of 1 would be $1300 annually for this part.

6 Conclusion

In this report we have developed a model that can be used to calculate optimal stocking
levels for groups of spare parts that are used when equipment in a plant fails following a
given failure mode. The model uses data that is obtained when doing an Shell RCM study,
and data that is available from E-SPIR. The model assumes the failure modes can occur
in multiple tags in the plant, which need not have the same downtime costs. The model
also can cope with tags that are redundant. This general downtime structure increases the
usability of the model, we feel that the most relevant aspects of stock control in a plant
are incorporated in the model. At the same time, we have tried to exclude aspects from
the model for which the added value of including them does not outweigh the decreases
usability of the model when including them.

The model has been implemented as an Excel Spreadsheet. In the spreadsheet, the data
from Shell RCM and E-SPIR can be entered. Using this data, we then calculate optimal
stock levels using the methods described in this report.
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