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1 Introduction 

 

Revenue management originates from the airline industry and is traditionally aimed at 

selecting those passengers for a flight that maximize the revenue. Different passengers 

pay different prices because of their time of booking, place of booking, cancellation 

options, etc. Because the capacity is fixed and has to be sold before the plane takes 

off, there is a trade off between accepting a booking request with a certain revenue 

and waiting for a more profitable booking request that may or may not come. 

Throughout the years, revenue management has seen many other applications beyond 

the airline industry, in for example the hotel, car-rental and railway industries. 

 It is well known that the principles of revenue management can also be 

applied to cargo transportation. Although a large part of the cargo capacity is usually 

consumed by shipments that are determined by long-term contracts, also a certain part 

of the capacity is generally kept available for on-the-spot sales that tend to be more 

profitable per kg. Booking requests for these spot sales come in during the booking 

period and have to be accepted or rejected as they come in. It is for these booking 

requests that we consider constructing a booking control policy. The allocation of the 

cargo capacity over the long-term contracts and the spot sales is an interesting 

research topic on itself, but we will not go into this problem in this paper. 

 The problem that we consider in this paper is that of accepting or rejecting the 

spot sales as they come in during the booking period. Unlike other revenue 

management papers, we do not consider a limited number of booking classes for 

which the number of requests can be estimated. Instead, we let each booking request 

have its own unique profit, weight and volume as is the case in practice. We formulate 

the problem as a multi-dimensional on- line knapsack problem. The solution technique 

that we use is a bid-price acceptance policy that is easy to use in practice. We provide 

a polynomial time algorithm to obtain values for the bid-prices for which 

computational results show that they perform better than the LP-based bid-prices 

often used in passenger revenue management. We also compare the bid-price policy 

to a dynamic approximation scheme. 
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1.1 Cargo vs. passenger revenue management 

 

Cargo revenue management differs from passenger revenue management in a number 

of ways. The most important difference is that two passengers who book in the same 

price class for a flight can be seen as two identical customers, whereas each cargo 

shipment is unique. The two passengers both take up one seat, have the same ticket 

options, generate the same revenue, etc. This generally results in revenue management 

policies, that determine how many passengers to accept in each price class, or whether 

or not a specific price class is open for booking at a certain time. Also for cargo 

transportation there are usually a number of different product types, e.g. mail, fresh 

products, live animals, secured products and door-to-door service. However, the profit 

generated by a shipment doesn’t just depend on the price, but also on the additional 

costs associated to the shipment, e.g. special packaging, additional trucking and fuel. 

This means that the weight, volume and profit per kg of a cargo shipment are random 

variables. They take on continuous values and differ for all shipments. The 

uncertainty in passenger revenue management lies in the number of passengers that 

will arrive for each product type, whereas for cargo revenue management each 

shipment is a unique product type on itself with properties that are not known before 

the time of booking. 

Further, unlike passenger capacity, the cargo capacity available for the spot 

sales is also uncertain. This is, because this capacity isn’t only dependent on the long-

term contracts, but also on the weather conditions, the amount of fuel and more. For a 

combi-plane, also the number of passengers and the weight and volume of their 

luggage have to be considered. Further, the actual amount of cargo usually deviates 

from the initial booking request, especially for the long-term contracts. This means 

that overbooking is an important aspect of cargo revenue management. In this paper, 

however, we assume that the cargo capacity available for the spot sales is known. This 

is in line with other revenue management papers, where uncertainties about the 

capacity and overbooking are usually left out in order to focus on the booking control 

policy. We notice, however, that common overbooking techniques can be used in 

combination with the policies that we discuss in this paper. 

Passenger revenue management is usually looked at from a network 

perspective. That is, a passenger that uses multiple connected flights, should be 
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evaluated according to its overall profit to the flight network and not for each flight 

individually. This is also the case for cargo shipments and the model that we provide 

in this paper takes this into account. 

 

 

1.2 Literature 

 

Although cargo transportation is generally recognized as a natural application for 

revenue management, it hasn’t received a lot off attention in the literature. In fact, 

Kasilingam (1996) is the only paper that we know that concentrates on cargo revenue 

management. Kasilingam concentrates on air cargo and discusses the differences 

between passenger and cargo revenue management for an airline company. Besides 

the differences discussed in the previous section, he points out that cargo has the 

possibility to be shipped among different routes as long as it gets to its destination in 

time. He also indicates that the number of positions when working with containers is 

limited. This can be another capacity restriction. Our experience with KLM Royal 

Dutch Airlines, however, tells us that positioning is hardly a problem for air cargo, 

since the airline company generally builds pallets itself instead of using containers. 

The revenue management model that Kasilingam describes, is ve ry similar to the 

booking limit (bucket allocation) models known from passenger revenue 

management. We don’t think this kind of model suits the cargo problem since cargo 

shipments can’t be classified into groups with identical properties as passengers can.  

We model each booking request to be unique, which leads us to a multi-dimensional 

on- line knapsack problem. 

 In a series of articles, Kleywegt and Papastavrou investigate what they call the 

dynamic stochastic knapsack problem (see: Papastavrou et al. (1996), Kleywegt and 

Papastavrou (1998) and Kleywegt and Papastavrou (2001)). They mention its 

application to cargo revenue management. However, their models include only one 

capacity restriction. They choose a dynamic programming approach to the problem 

which, although theoretically very interesting, is computationally very demanding. 

Especially when a second capacity restriction is added to this approach, the state 

space will become intractable for practical use. Our approach is a static but more 

efficient and practical one. 
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 The bid-price solution technique that we use in this paper, has been discussed 

extensively by Talluri and van Ryzin (1998) for the passenger problem. They show 

that bid-prices are not optimal in general, but are asymptotically optimal when 

capacity and demand increase proportionally. Their model differs from ours in the 

sense that they divide the booking requests into classes in such a way that two 

requests in the same class always have the same capacity requirement. This is not the 

case in our problem where every shipment has a random weight and volume. 

Nevertheless, we show that the asymptotic optimality holds in our case as well. 

 

 

2 Problem formulation 

 

The cargo revenue management problem as we define it in this paper, is such that a 

number of booking requests come in during the booking period. Each booking request 

is uniquely defined by its weight, volume, profit and the flights it uses. The number of 

shipments that the airline company can accept on a flight is determined by the weight 

and volume capacities of the plane. We assume that the capacities are given and that 

the actual weight and volume of the shipments do not differ from the booked 

quantities. The decision to accept or reject a booking request has to be made at the 

moment the request comes in. This decision depends on the remaining capacities, the 

expected future demand and the properties of the booking request. 

 We model the booking requests as a sequence of arrivals over time and 

measure time in discrete intervals counting backwards, i.e. at time 0 the process ends. 

Because a shipment can use more than one flight to reach its destination, we include 

multiple flights in our model. Assume there are m flights that have weight and volume 

capacities given by the vectors cw = (cw,1, cw,2, ..., cw,m)T  and cv = (cv,1, cv,2, ..., cv,m)T . 

The capacities can not be negative and are adjusted every time a booking request is 

accepted. Define Jt(cw, cv) as the optimal expected revenue that can be generated with 

t time units to go and capacities cw and cv available. We know that Jt(cw, cv) must 

satisfy: 
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Jt(cw, cv) ≥ 0   ∀ cw, cv, t 

J0(cw, cv) = 0   ∀ cw, cv 

Jt(0, cv) = Jt(cw, 0) = 0  ∀ cw, cv, t. 

 

Further, we know that Jt(cw, cv) is nondecreasing in t, cw and cv, since it is never a 

disadvantage to have more time or capacity available. For a more exhaustive analysis 

of the expected reward function, we refer to Papastavrou et al. (1996), who discuss 

various special cases of the problem. 

 For each booking request, let r denote the profit of the request. Further define 

the vector w = (w1, w2, ..., wm)T such that wj is equal to the weight of the shipment if 

the shipment uses flight j (j = 1, 2, ..., m) and 0 for all other flights. Likewise define 

the vector v = (v1, v2, ..., vm)T  to reflect the volume requirements of the shipment. 

Then, when a booking request comes in with t time units left to go, it should be 

accepted if and only if: 

 

),(),( 11 vcwcJccJr vwtvwt −−−≥ −− .      (1) 

 

The left hand side of equation (1) denotes the direct revenue associated with accepting 

the cargo shipment, whereas the right hand side gives the estimated opportunity costs 

of the capacities taken up by the shipment. 

The decision rule in equation (1) is similar to the one known for passenger 

revenue management. Except that in the passenger case, there is only one capacity 

dimension and the size of a demand is restricted to a limited number of integer values 

(and in most cases even considered to be equal to one). Lautenbacher and Stidham 

(1999), Lee and Hersh (1993), Liang (1999) and Subramanian et al. (1999), use a 

dynamic programming approach to the passenger problem for a single flight. Van 

Slyke and Young (2000) also consider multiple flights, but acknowledge that the 

complexity introduced by the increased number of dimensions is tremendous. For the 

cargo problem, that has two capacity dimensions and continuous demand sizes, a 

dynamic programming approach becomes computationally intractable. In the next 

section we discuss a dynamic approximation scheme for the problem and in Section 

2.2 we construct a static bid-price policy that is well suited for use in practice. 
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2.1 Dynamic approximation scheme 

 

In this section we construct a dynamic approximation scheme that can be used for the 

on- line accept/deny decision. We propose a method to approximate the optimal 

expected revenue that can be generated for a given set of capacities at a given time, 

i.e. Jt(cw, cv). This way, approximations can be computed for Jt(cw, cv) and Jt(cw - w, cv 

- v), whenever a booking request comes in. 

 If the future demand is known, we can easily compute the optimal future 

revenue by formulating the problem as an IP problem. Assume that we have a given 

set of n booking requests that define the problem instance Ω. Let the profits of the 

booking requests be given by the vector r = (r1, r2, ..., rn)T . Further, define the matrix 

W = [wji], such that wji is equal to the weight of shipment i if that shipment uses flight 

j and 0 otherwise. Likewise, define the matrix V for the volume requirements of the 

shipments. Let ),( vwt ccJ Ω  be the optimal future revenue that can be generated for 

problem instance Ω with t time units to go and capacities cw and cv available, then 

),( vwt ccJ Ω  can be obtained from the following IP problem: 

 

),( vwt ccJ Ω  = xr T

x
max         (2) 

wcWx ≤  

vcVx ≤  

}1,0{∈ix  for i = 1, 2, ..., n, 

 

where x = (x1, x2, ..., xn)T  determines whether a booking request is accepted (xi = 1) or 

not (xi = 0). This model is known to be NP-hard (see Garey and Johnson (1979)). 

Standard integer programming solution methods, such as branch-and-bound, can be 

used to solve small problem instances of the model. For bigger problem instances 

Rinnooy Kan et al. (1993) provide a polynomial time greedy algorithm that provides 

an asymptotically optimal solution when demand and capacity increase 

proportionally. We will discuss this algorithm in detail in the Section 2.3. 

 If the optimal future revenue is computed for a series of simulated demand 

instances, i.e. ),(1
vwt ccJ Ω , ),(2

vwt ccJ Ω , ..., ),( vwt ccJ kΩ , we can obtain an 
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approximation for Jt(cw, cv) by taking the average value over the simulated instances. 

Although not as intractable as dynamic programming, doing this every time a booking 

request comes in, is computationally still very demanding. In the next section, we 

construct a static bid-price policy that is easy to use in practice. We will compare the 

results of the dynamic approximation scheme and the bid-price policy in Section 3. 

 

 

2.2 Bid-price policy 

 

Bid-price acceptance policies are widely used in passenger revenue management. The 

idea of a bid-price policy is to determine a value for which a unit of capacity can be 

sold at a certain point in time. This way, the opportunity costs of a booking request 

can be approximated by the sum of the bid-prices of the capacities it uses. The 

booking request is only accepted if its profit exceeds the opportunity costs. A bid-

price is determined for every dimension of the capacity, which in our case would 

mean one weight and one volume bid-price for each flight. Optimally, the bid-price is 

a function of the remaining time and capacity. In practice, however, the function is 

usually approximated by a fixed value tha t is re-evaluated at fixed points in time. 

When the bid-prices for the different capacity dimensions are held constant for 

a longer period of time, the approximation of the opportunity costs of a booking 

request reduces to a linear combination of the capacity requirements of the request. In 

order to see this, let µw = (µw,1, µw,2, ..., µw,m)T  and µv = (µv,1, µv,2, ..., µv,m)T  be the bid-

prices for the weight and volume capacities of the flights. Then, if a booking request 

comes in with profit r, and capacity requirements w and v, it is accepted under the bid-

price policy if and only if: 

 

vwr T
v

T
w µµ +≥ ,         (3) 

 

which is the sum of the bid-prices of the capacities it uses multiplied by the size of the 

booking request. Bid-prices are studied extensively for passenger revenue 

management by Talluri and van Ryzin (1998). They show that, when the bid-prices 

are set correctly, a static bid-price policy is asymptotically optimal when the 
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capacities and the demand increase proportionally. We show that this also holds for 

the cargo problem. 

 In a probabilistic error analysis, Rinnooy Kan et al. (1993) show that a static 

bid-price policy is also asymptotically optimal for the 0-1 multi-dimensional knapsack 

problem. They consider a probabilistic version of the problem as given in model (2) 

by letting ri, wij and vij (i = 1, 2, ..., n and j = 1, 2, ..., m) be independent identically 

distributed random variables. Assume that the capacities grow proportionally with the 

number of items, i.e. cw = nβw and cv = nβv, where βw and βv are fixed values. Finally, 

define zn as the random variable that denotes the optimum solution value of the 

problem with n items and zn(µw, µv) as the random variable that denotes the solution 

value when the items are accepted by the bid-price policy that uses µw and µv as the 

bid-prices. Then under certain conditions concerning the probability distributions, 

they show that the sequence {zn(µw, µv) / zn} converges to 1 with probability one, if µw 

and µv are chosen correctly. For an intuitive clarification, note that it is the 

combinatorial aspect of the problem that creates a gap between the optimal and the 

greedy solutions. In fact, if all items were of the same size, the greedy algorithm 

would provide the optimal solution. Now, by increasing the number of items and the 

capacity along with it, the size of each individual item becomes less influential and so 

does the combinatorial aspect of the problem. Eventually, as the number of items goes 

to infinity, the combinatorial effect dies out. 

We argue that the on- line decision problem that we study in this paper, can be 

formulated in exactly the way as discussed above, which means that the asymptotic 

result holds for our problem as well. Without loss of generality we can assume that 

there is a booking request for every decision period, since we can always consider a 

booking request to have a profit, weight and volume of value 0. We can now interpret 

the on-line problem as a 0-1 decision problem for every decision period. When we 

formulate this as a knapsack problem we let the decision variables in the knapsack 

correspond to the decision periods in the booking process. This way, all random 

elements of the problem are modeled in the profit and capacity requirement 

coefficients, which gives us the model studied by Rinnooy Kan et al. (1993). Thus, 

also for the cargo revenue management problem, a bid-price policy is asymptotically 

optimal as demand and capacity increase proportionally and the bid-prices are chosen 

correctly. 
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2.3 Obtaining bid-price values 

 

In passenger revenue management, bid-prices are often approximated by the shadow 

prices of the LP-relaxation of the underlying model that determines the number of 

passengers to accept in each price class. The cargo problem, however, is a 0-1 

decision problem for which the LP-relaxation is a very crude approximation. In order 

to obtain bid-prices, we make use of a greedy algorithm that Rinnooy Kan et al. 

(1993) present for the multi-dimensional knapsack problem. The idea of the greedy 

algorithm is to weigh each capacity dimension, and select those items in the knapsack 

that have the highest profit per weighted capacity requirement. Assume that αw = 

(αw,1, αw,2, ..., αw,m)T and αv = (αv,1, αv,2, ..., αv,m)T  are the non-negative weights for the 

weight and volume capacities on the flights. As before, let r, w and v be the profit and 

the weight and volume requirements of a booking request. Then the booking requests 

that are accepted, are those that have the highest ratio: 

 

vw
r

T
v

T
w αα

δ
+

=          (4) 

 

 In order to understand how the greedy algorithm works, notice that from (4) 

we know that we want to select those booking requests for which the values w/r and 

v/r are small. That is, those requests that do not use a lot of capacity for the profit they 

provide. For a graphical representation, let each booking request correspond to a point 

in m2
+ℜ , given by the coordinates (w1/r, w2/r, ..., wm/r, v1/r, v2/r, ..., vm/r). Then, the 

greedy algorithm can be regarded as a hyperplane with normal vector (αw,1, αw,2, ..., 

αw,m, αv,1, αv,2, ..., αv,m) that moves upward from the origin and accepts booking 

request in the order that it encounters them. This is depicted for a single flight in 

Figure 1. For this 2-dimensional case, the hyperplane is reduced to line with the slope 

αw/αv. 
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Figure 1. Accepting booking requests for a single flight with the greedy algorithm. 

 

 For a given set of booking requests, one can simply select the requests that 

have the highest δ. For the on- line problem, however, where the future booking 

requests are not known, a threshold value for δ has to be specified in advance. If δ̂  is 

the threshold value, then a booking request is accepted if: 

 

δ
αα

ˆ≥
+ vw
r

T
v

T
w

,         (5) 

 

which is the same as: 

 

)(ˆ vwr T
v

T
w ααδ +≥ .         (6) 

 

This means that the greedy algorithm can be seen as a bid-price policy, where the bid-

prices are set equal to wαδ̂  and vαδ̂ . In terms of Figure 1, αw and αv define the slope 

of the line and the threshold value δ̂  determines the height of the line. 

For a given set of booking requests, Rinnooy Kan et al. (1993) provide a 

polynomial time algorithm to determine optimal values for the weights and the 

threshold value when the number of capacity dimensions is not more than the number 

of booking requests. They show that the problem becomes NP-hard if the number of 

capacity dimensions exceeds the number of requests. Since there are only two 

capacity dimensions in the cargo revenue management problem, this is already ruled 

w/r 

v/r 
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out as soon as there are two booking requests per flight. Notice that for a given set of 

booking requests, each set of weights brings forth an ordering in which the requests 

are considered for acceptance. However, we need only consider those sets of weights 

that actually induce a different ordering. That is, we only need to consider those sets 

of weights that construct a sufficiently different hyperplane such that it encounters the  

booking requests in a different order as it moves up from the origin. In the case of one 

flight, and thus 2-dimensions, with n booking requests, there are at most 







2
n

 of such 

changes in the ordering. 

Lenstra et al. (1982) provide an algorithm that can be used to determine all 

possible orderings. Looking at Figure 1, the algorithm makes use of the fact that the 

line that passes through two booking requests, provides exactly that slope for which 

the requests are swapping places in the ordering. Thus, in order to obtain all 

orderings, we only have to determine those lines that connect two booking requests. 

Note that we only have to consider negative slopes, since a positive slope does not 

provide an ordering of the requests. In fact, whenever a line with a positive slope 

passes through two booking requests, the request furthest from the origin is always 

preferred over the other request and no ordering can be based on them changing 

places in the ordering. Let xi = (w/r)i and yi = (v/r)i denote the weight and volume per 

profit for booking request i (i = 1, 2, ..., n). Lenstra et al. (1982) suggest to first order 

the requests by the sequence n
iix 1}{ =  and then to determine for each i (i = 1, 2, ..., n) 

and j (j = 1, 2, ..., n) for which i < j (i.e. xi = xj) and yi ≥ yj, the line that passes through 

the requests i and j. For each ordering that can be obtained, one can simply compute 

the solution of the greedy algorithm by accepting the requests until the capacity is 

full. 

Determining the orderings by the algorithm provided by Lenstra et al. (1982) 

can be done in O(n2 log n) time. Filling the capacity for a specific ordering costs at 

most O(n) time. Finally, selecting the ordering that produces the highest profit costs 

O(log n) time. This means that the total computation time is O(n3 log n). When we 

consider m flights, the total number of exchanges is O(n2m). They can be determined 

in O(n2m  log n) time, such that the total computation time is O(n2m+1 log n). This is 

polynomial in n for a given number of flights m. For the case of one flight, a 
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schematic overview of the algorithm is given in Figure 2. This can be easily extended 

to the case of m flights. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2. Schematic overview of the algorithm for obtaining bid-prices. 

 

The algorithm discussed above, provides a way to obtain the optimal bid-

prices for a given set of booking requests. In practice, however, the bid-prices have to 

be set before the demand is known. An easy way to obtain bid-prices is to simulate a 

series of demand sequences, compute the optimal bid-prices for each sequence and set 

the bid-prices to the average values over all sequences. In the next section, we present 

some computational results when we apply the bid-price policy and the dynamic 

approximation scheme to a cargo revenue management test case. 

 

 

 

 

 

Given: A number of n booking requests defined by n
iii yx 1)},{( = , where xi and yi are the 

weight and volume per profit for booking request i. 

 

Step 1: Order the requests by increasing value of xi. 

Step 2: For i = 1 to n: 

For j = i+1 to n  and yi = yj: 

Let 
ij

ij

xx

yy

−

−
=γ . 

For k = 1 to n: let ηk = yk - γxk. 

Order the requests by increasing value of ηk. 

Start accepting requests in this order until no more requests can be accepted. 

Let π be the profit obtained and let η be the order value for the last accepted 

request. 

Step 3: Find the maximum profit π* over all orderings. 

Let γ* and η* be the corresponding slope and order value. 

Return: µw = -γ*/η* and µv = 1/η*. 
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3 Test case 

 

In this section we present computational results for the solution methods described in 

the previous section when they are applied to a simulated test case. The test case that 

we consider is a realistic one that reflects the situation that we encountered in practice 

at KLM Royal Dutch Airlines. We obtain results for the bid-price policy when the 

bid-prices are determined by: (1) the algorithm discussed in Section 2.3 and (2) the 

shadow prices of the LP-relaxation of the problem. We compare these results to those 

of the dynamic approximation scheme and the ex-post optimal solution that can be 

obtained with hindsight when all demand is known. In the following section we 

describe the test case. In Section 3.2 we present the computational results. 

 

 

3.1 Description of the test case 

 

The test case that we construct consists of a single flight with a fixed weight and 

volume capacity. The booking period is made up of T discrete time intervals of length 

one. Booking requests come in according to a Poisson arrival process with an arrival 

rate λ. This means that with probability λ a booking request is made in a time period 

and with probability 1-λ there is not. The total expected number of booking requests 

is therefore λT and the maximum number of requests is T. 

Each booking request has a unique profit, weight and volume, that we denote 

by r, w and v respectively. The profit, weight and volume are related to each other 

since they all reflect the size of the shipment. To get around this problem, we define 

the profit and volume relative to the weight of the shipment and assume the variables 

w, r/w and v/w to be independent random variables. We assume all booking requests 

to be independent identically distributed and consider w, r/w and v/w to follow a log-

normal distribution. The log-normal distribution generates values that resemble the 

data that we encountered in practice. We note, however, that we do not try to model 

the large amount of very small shipments, of for example 1, 2, 10 or 20 kg, that an 

airline company usually has to deal with. These small shipments are generally highly 

profitable per kg and take up very little capacity. This means that they are almost 

always accepted and in practice are often not even subjected to the revenue 
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management decision rule. More than anything, these shipments are used to fill up the 

wholes in the capacity that are left by the bigger shipments. We choose to exclude the 

small shipments from the test case such that the algorithm that sets the bid-prices is 

not influenced by these relatively insignificant shipments. Moreover, note also that it 

does not seem worthwhile to accurately model shipments of 2 kg next to shipments of 

1000 kg. A small error in the latter can easily be greater than the first shipment as a 

whole. The parameters of the simulation are given in Table 1, whereas a graphical 

presentation of the probability density functions of w, r/w and v/w up until the 99th 

percentile are given in Figures 3-5. 

 

Parameter Value 

T 10000 

λ 0.00225 

 Mean Std. Dev. 

w 793.474 942.370 

r/w 2.55885 1.39501 

v/w 0.00581 0.00338 

 
Table 1. Parameters for the simulation of the demand. 
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Figures 3-5. Probability density functions for w, r/w and v/w. 

 

 

3.2 Computational results 
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different booking control policies. In order to obtain values for the bid-prices, we 
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bid-prices by applying the algorithm discussed in Section 2.3, and LP bid-prices by 

taking the shadow prices of the LP-relaxation. Taking the average bid-prices over the 

100 simulated demand sequences gives us the bid-prices that we will use for the on-

line decision problem. This has to be done only once, before the actual booking 

process starts. The dynamic approximation scheme, on the other hand, needs on-line 
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computation time, we generate only 10 simulated demand sequences for the dynamic 

approximation scheme to base its decision on. This has to be done every time a 

0

0.00035

0.0007

0.00105

0.0014

0 1000 2000 3000 4000

w

fr
eq

0

0.1

0.2

0.3

0.4

0 1.25 2.5 3.75 5 6.25

r/w

fr
eq

0

40

80

120

160

0 0.004 0.008 0.012 0.016

v/w

fr
eq



 16 

booking request comes in. The dynamic approximation scheme is computationally 

very demanding and should be seen as an approximation of the optimal on-line 

booking control policy rather than a practical adversary for the bid-price policies. We 

also present the ex-post optimal value that could have been obtained with hindsight. 

This is a natural upper bound for any booking control policy. 

 In order to compare the performances of the booking control policies, we 

simulate 100 demand sequences and apply the control policies for a flight that has 

10000 kg and 75 m3 capacity available for the spot sales. These capacities are what 

you can encounter in practice and correspond to capacity/demand factors of 0.56 and 

0.72 for the weight and volume respectively. The computations are performed on a 

Pentium III 550 MHz personal computer (256 MB RAM), using CPlex 7.1 to 

optimize the mathematical programming models. An overview of the results is given 

in Table 2. 

 

 LP Knapsack Dynamic Ex-post 
 Bid-prices Bid-prices Approximation Optimal 

Profit     

Average 26491 28725 29748 33555 

Std. Dev. 6293 6803 7232 8146 

Minimum 15955 16767 15866 19723 

Maximum 63136 64004 63810 66579 

     
% of Ex-post Optimal     

Average 80.45 86.58 89.09 100 

Std. Dev. 13.00 11.11 8.79 0 

Minimum 33.28 45.59 53.41 100 

Maximum 100 99.65 100 100 

     
Weight     

Load Factor 0.978 0.951 0.919 0.996 

Bid-price 0.190 0.878 - - 

     
Volume     

Load Factor 0.739 0.651 0.681 0.751 

Bid-price 0.868 112.882 - - 

     
Average On-line 
Comp. Time (sec.) 

0 0 21.86 - 

 
Table 2. Performances of the booking control policies for the simulated test case. 
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Table 2 shows that the algorithm in Section 2.3 indeed produces better bid-

prices than the shadow prices of the LP-relaxation. On average the knapsack bid-

prices produce € 2234 more profit than the LP bid-prices. This test case is largely 

modeled after a daily cargo flight, for which this would add up to more than € 

800,000 additional profit per year. Further we see that on average the LP bid-prices 

obtain 80.45% of the optimal profit that could have been generated with perfect 

information. The knapsack bid-prices reach up to 86.58% and have a smaller 

deviation. The dynamic approximation scheme obtains 89.09% with an even smaller 

deviation. This means that the knapsack bid-prices perform only 2.51% less than the 

dynamic approximation scheme which we can see as an indication of what an on-line 

policy without any information on the future can optimally perform. The two bid-

price policies have no on- line computation time, whereas the dynamic approximation 

scheme needs an average of 21.86 seconds to handle a demand sequence. The 

computation time will grow, however, when we consider more flights or increase the 

number of simulations that the dynamic approximation scheme uses to estimate the 

opportunity costs. 

Remarkable in Table 2, are the differences between the knapsack and LP bid-

prices. The LP bid-prices are much smaller. With hindsight, we can compute an 

optimal set of bid-prices for each of the 100 simulated demand sequences by applying 

the algorithm from Section 2.3. This gives us average values of 0.916 and 119.24 for 

the weight and volume bid-prices. These values are very different from the LP bid-

prices of 0.190 and 0.868, but close to the knapsack bid-prices that take on values of 

0.878 and 112.88. Note, that the knapsack bid-prices are itself defined as the average 

values of the optimal bid-prices for a set of 100 simulations. This learns us that the 

algorithm to obtain values for the knapsack bid-prices is reasonably robust when we 

use 100 simulations. In Figures 6 and 7 we visualize the LP and knapsack bid-prices 

next to optimal bid-price values for all simulations. The figures show that the LP bid-

prices are situated far below most optimal bid-prices. In fact, it turns out that the LP 

bid-prices are almost non-restrictive. This means that the policy reduces to nothing 

more than a first come first serve policy for this test case, which shows the 

inefficiency of traditional LP bid-prices for cargo revenue management. 
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Figure 6: Bid-price values for the weight capacity. 
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Figure 7: Bid-price values for the volume capacity. 

 

 The results discussed above describe one specific test case. It is interesting to 

see, however, to what extend the performances of the booking control policies are 

influenced by the set-up of the test case. In the following figures, we show results for 

some different values for the capacity/demand ratio. We do this by varying the 

capacity levels while keeping the demand as it is. We define the weight and volume 

capacities as a percentage of the average demand and shift them from 0.1 to 1.5. 

Figure 8 shows the profit of the two bid-price policies and the dynamic approximation 

scheme relative to the ex-post optimal profit for varying values for the weight 

capacity while keeping the volume capacity fixed at 0.7. Figure 9 shows the same for 

varying values of the volume capacity while keeping the weight capacity fixed at 0.6. 
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Each point reflects the average performance of the policy over 100 simulated demand 

sequences. 
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Figures 8. Performances of the booking control policies while varying the weight 

capacity/demand ratio. 
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Figures 9. Performances of the booking control policies while varying the volume  

capacity/demand ratio. 

 

Figures 8 and 9 show that the knapsack bid-price policy outperforms the LP 

bid-price policy for all cases. The average difference over all capacity combinations 

between the knapsack bid-price policy and the dynamic approximation scheme is 2% 

of the optimal profit with perfect information. For the LP bid-price policy this is equal 

to 11.2%. Especially when one of the capacities is scarce the LP bid-prices tend to 

perform badly. The performances of the knapsack bid-prices on the other hand follow 
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the performances of the dynamic approximation scheme consistently for all capacity 

combinations. For a full view of the performances of the booking control policies, we 

present 3-dimensional plots of the performances when we vary both capacity 

dimensions at the same time in Figures 10-12. 

 

 
 

Figures 10-12. Performances of the booking control policies while varying both 

capacity/demand ratios. 
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size and the revenue management decision becomes more important. Note also that 

the performances of the dynamic policy are more volatile than those of the bid-price 

policies. The dynamic policy adapts itself to the situation at hand which generally 

leads to higher profits but also to a more variable kind of decision making. This kind 

of nervous behavior is another practical drawback of the dynamic approximation 

scheme. The bid-price policies keep to a fixed policy that is set beforehand and that 

produces approximately the same results every time it is applied. 

 

 

4 Conclusion and prospects for future research 

 

Cargo revenue management differs from passenger revenue management in a number 

of ways. Passengers generally belong to one of a limited number of booking classes 

and all take up one seat of the total seat capacity. Cargo shipments, on the other hand, 

are unique in profit, weight and volume. This means that we cannot use traditional 

revenue management techniques originally constructed for the passenger problem. 

Instead we formulate the problem as a multi-dimensional on- line knapsack problem. 

This formulation is capable to include a network of flights. 

As for the passenger problem, a bid-price acceptance policy is asymptotically 

optimal if demand and capacity increase proportionally and the bid-prices are set 

correctly. We provide a polynomial time algorithm to obtain optimal bid-prices for a 

given demand sequence. Bid-prices for on-line use can now be constructed by taking 

the average bid-price values over a number of simulated demand sequences. 

A test case based on insights obtained from actual flight data, shows that the 

knapsack bid-prices outperform the commonly used LP bid-prices for every situation 

that we consider. Further, the performances of the knapsack bid-prices closely follow 

the performances of a dynamic approximation scheme that we formulate. Such a 

dynamic approximation scheme is not convenient in practice, but can give an 

indication of how well an on- line policy can optimally perform. Bid-prices, on the 

other hand, are very practical and are already widely used for passenger revenue 

management. 

 The cargo revenue management problem as we formulate it in this paper is 

largely how we encountered it in practice. However, some extensions to the problem 
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that would be worthwhile to examine still remain. First of all, we excluded the 

overbooking problem from this paper. Overbooking plays an important role in cargo 

transportation. For cargo, the question is not so much whether or not a booked 

shipment shows up, but how much the actual weight and volume will deviate from the 

requested quantities. Overbooking decisions are usually made alongside revenue 

management decision but it would be interesting to combine the two. Further, as 

Kasilingam (1996) points out, cargo can be shipped among different routes as long as 

it arrives at its destination on time. Extending the model to take into account the 

routing of a cargo shipment, raises a lot of opportunities for the company. Finally, the 

allocation of the cargo capacity over the long-term contracts and the spot sales would 

also make an interesting topic for further research. Until now this has largely been a 

managerial decision. Simulation studies similar to those presented in this paper can be 

used to estimate the profit that can be generated when a certain amount of capacity is 

made available for the spot sales. This way, the certainty of a long-term contract can 

be better evaluated against the additional profit that can possibly be generated by the 

spot sales. 
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