Report EUR-CS-93-16
December 1993

The Hamlet
Application Design Language
Introductory Definition Report

Maarten R. van Steen
Erasmus University, Faculty of Economics
Department of Computer Science
PO. Box 1738, 3000 DR Rotterdam
e-mail: steen@cs.few.eur.nl

Abstract

Thisreport providesan introductionto the definition of the Hamlet Application Design
Language(ADL). ADL isagraphical-based languageand notation supportingthedesign
of parallel real-time applications. Designs expressed in ADL are based on a model
of processes that communicate by message-passing. Communication can either be
synchronousor asynchronous, and orthogonally, may be subject to blocking, delaying,
or nonblocking timing constraints. The language has been devised in such away that
automated (skeletal) code generation can be supported. To thisaim, structural aspects
areexpressed in anotation somewhat similar to data-flow diagrams, whereasbehaviora
aspects are expressed as state-transition machines following a syntax similar to that
of SDL. Exploitation of parallelism is obtained by annotating a design with process
replication specifications.

keywords. design language, parallelism, replication, real-time systems.

1

Introduction

11 Abriefoverviewof ADL
1.2 Rationadefor ADL
1.3 Oveviewofthisreport

The structure mode

2.1 Adctivitiesand communicationmedia
211 Activities.
2.1.2 Communicationmedia
213 Somegeneralremarks. L.

2.2 Structural organization
221 Designs
222 GaAES. . . .

2.3 Advanced communicationissues
2.3.1 Timed communication
2.3.2 Timed communication and hierarchical organization
233 Multicasting

24 SUMMAY . . .o oo

Behavioral modéel

3.1 Introduction

3.2 Statetransitionmachines
321 Basicstates
322 Transitions.
323 Sdectstates

3.3 Taloringtheexecutionmechanism

34 SUMMAY

Processreplication

41 Theprocessmodel

4.2 Processreplication
421 Replicators.
422 Connectionstatements L.

43 Examples

44 SUMMAY . . .

WwWwNN

© © © o1 01 010l

10
12
12
15
16
20

21
21
22
22
23
24
26
26

1

| ntroduction

Thisreport introducesthe graphica Hamlet Application Design L anguage, atechnique
to assist the development of real-time parallel applications. The Hamlet Application
Design Language, or ADL for short, has been developed as part of the Esprit project
Hamlet [6] which focuses on the development of, and support for construction of
industrial real-time embedded applications, executing on transputer-based systems.

ADL is a graphical language based on a model of Communicating Sequential
Processes[9] and DataFlow Diagrams[21], aiming at providing the necessary support
for the design phase during application development. The language is still under
devel opment, and as such, thisreport should be seen asapreliminary guidetointroduce
the concepts we anticipate to be part of the language.

1.1 A brief overview of ADL

An ADL design roughly consists of two types of components: activities essentially
communi cating with each other through communication media. Constructing an AbL
design of a system requires that the devel oper decomposes the system into functional
components, the activities, and explicitly describe by which means these activities
exchange information. An activity can be further decomposed, if necessary, leading to
an hierarchical organization.

Data between activities can be communicated either in a synchronized fashion
by means synchronous channels, or in an asynchronous fashion through message
gueues. In addition, mere synchronization of activities, i.e., without exchange of data,
is achieved through semaphores.

A sdlient feature of ADL isits support for timed communication. Timed communi-
cation enables the specification of the instant when communication should have taken
place. Thisis particularly important in real-time application development where it is
unacceptable that processes would be waiting indefinitely in the case of some failure
in the communication system.

An ADL adistinction is made between a structure model and a process model.
The former deals with organizing a system using functional decomposition; the latter
deal swith modeling the system interms of instancesof communicating processes. The
distinctionbetween thetwo is somewhat artificial, except for thefact that processes can
be replicated into regular geometrical structures. In thisway, ADL aso supports data

parallelism, although emphasis remains on exploiting parallelism through functional
decomposition (also referred to as task parallelism[4, 11]).

Behavior of activitiesis modeled by means of state-transition machines (STMS).
However, where sTms hormally consist of a single notion of a state, and where tran-
sitions between states can only occur as the result of an event, ADL uses an approach
which more or less combines sTms and flow charts. In this way, we have aso inte-
grated dataflow and control flow in asingle concept, essentially making our approach
object-based. The main emphasis in modeling the behavior of an activity liesin the
specification of when and how communication takes place in the course of time. STMs
in ADL are strongly biased to model exactly such communication details, and less
towards modeling behaviora aspectswhich are not related to communication.

1.2 Rationalefor ADL

In order to support the design phaseof parallel real-time application development there
are roughly two extremes which can befollowed: one can choose to devise acomplete
new method with accompanying techniques, or otherwise simply use existing methods.
The first approach not only requires a great deal of research, it can also be expected
that at best many years will pass before a new method is accepted in an industrial
environment. The second approach has so far been followed by many application
developers. In particular, methods based on data flow diagrams such as introduced
by Yourdon [21] and specifically extensionsthereof to support real-time developments
(e.g., Ward [17]) are now often used as common development methods in industry.
But none of these traditional methods is actually suitable for dealing with parallelism,
athough their inventors often claim otherwise. Aswe seeit, thisis caused by failing
to make a distinction between parallelism as a means for, on the one hand, modeling a
solution, and on the other hand, as a means for implementing it.

Theproblem that needsto be addressed then is the devel opment of adesign method
and supporting tools which:

- arefamiliar to developers of industrial real-time applications,
» are based on methods that have proved to be applicablein an industrial context,
» deal parallelism as a means for modeling and implementation.

Based on these requirements, we have chosen to support parallel real-time application
devel opment based on dataflow diagrams (DFDs). However, where DFDs are generally
usedintheanaysisphaseof adevel opment project, we have adapted themin such away
that they are more suitablefor technical design. In particular, emphasis has been put on
the support for design of different communication structures, replication of processes
for exploitation of parallelism, and integration of data and control transformations.

1.3 Overview of thisreport

The language constructs of ADL are discussed in the next three chapters. Chapter 2
deals with designing applications in terms of functional units, whereas Chapter 4
concentrates on nonfunctional aspects. In particular, parallelism by processreplication

is discussed extensively there. Chapter 3 discusses how behavioral aspects can be
modeled in ADL.

In thisreport we have made an attempt to provide accurate, but often still informal
definitions of the various constructs supported by ADL. Thereason for doing sois that
in this stage of the project we felt that definitions should be provided that are precise
enough for users and implementors. The report does not discuss any implementation
aspects; these are presented in an accompanying report [16].

2

The structure model

An ADL model consists of a collection of one or more activities that communicate
through communication media. Activities are logically organized into so-called de-
signs which reflect the hierarchical relationships between activities based on their
functionality. This organizationis referred to as the structure model. In this chapter
we discuss the concepts and notationsin ADL that alow a developer to structure an
application.

2.1 Activitiesand communication media

An ADL structure model reflects the structure of an application expressed in terms of a
collection of activities that communicate by means of communication media based
on amessage-passing paradigm. In this section we take a closer ook at both concepts.

211 Activities

A key concept in ADL isformed by activities. Similar to dataflow diagrams, an activity
isused tomodel alogical entity capabl e of transforming incoming dataor tokenswhich
can then be passed to other activities. An activity is graphically represented by alarge
circle, annotated with its name. For example,

Message

Encoder

represents an activity named MessageEncoder. An important observation is that
activitiesin ADL are treated as self-contained objects. This means that each activity
exhibitsits own functional behavior, quitesimilar to the notion of objectsin concurrent
object-oriented languages [20].

2.1.2 Communication media

In data flow diagrams, the means of communication is often left open. Instead,
flows between activities merely represent data that is to be communicated, not the
communication itself. In ADL we have chosen to follow a different approach by

distinguishing two types of communication media: data (communication) media
and token (communication) media. Data media serve as the primary means for
transporting messages between activities. Token media, on the other hand, are used
to pass tokens. Tokens differ from data by their absence of contents — as such they
can be considered as “null messages’ [1]. ADL currently supports two data media:
message queues and synchronous channds. In addition, there is a single token
medium available: semaphores. These communication media are discussed next.

Synchronous channels

A synchronous channel isused to model synchronous message-passing between sev-
eral activities. In particular, if an activity wantsto send amessage mviaa synchronous
channel ¢, the communication will only take place if there is an activity that can re-
ceive mviac. If thereisno receiving activity, a sending activity will normally block
until communication can take place. A synchronous channel syncChan is graphically
represented as follows:

syncChan

S

A distinction with many other languages that support synchronous message-passing,
isthat ADL permits multiple senders and receivers to communicate via the same syn-
chronous channel. For example, in languages based on Hoare's csp [8, 9], such as
OCCAM [12], synchronous channels are strictly modeled as 1:1 relations. Informally,
the semantics of synchronous channels are such that when M sending and N receiving
activitieswant to communicate viaa synchronouschannel, [M — N| (sender,receiver)-
pairs are selected nondeterministically and the message is transferred from sender to
receiver. This process continues until there are either no more senders or no more
receivers. To explain these semantics more accurately, assumethat at a specific instant
thereisaset S of activities that want to send a message via the synchronous channel
c. Furthermore, let R be a collection of activities that want to receive a message via
c. Denote by u(S) the message that is to be sent by activity S Message transfer via
synchronous channel ¢ then proceeds according to the following agorithm:

let K =min(|R|,|S])

while K> 0do
letSOS,ROR;
S - S—{Sh
R - R-{R};
transfer message u(S) from Sto R;
K« K-1;
endwhile

When messagetransfer hastaken place, both sending and receiving activity continue. It
isthus seen that atotal of min(|R|, |S|) (sender,receiver)-pairs are nondeterministically
constructed and the message belonging to the sender is transferred to the receiver.
Note that this means that if |S| > |R| that a total of |S| — |R| nondeterministically

selected senderswill remain blocked, and likewise, if |S| < |R|, that atotal of |R| — |
nondeterministically selected receivers will remain waiting for amessage viac.

M essage queues

ADL aso provides support for modeling asynchronous communication by means of
message queues. Astheir name suggests, message queues provide a buffering capa-
bility for messagesthat preservesthe order in which messages are sent. In other words,
an activity will receive messages in the same order as they were sent by a sending
activity. Message queues may either have an infinite or finite capacity. The graphical
representation of a message queue named messQueue with capacity capacity is as
follows:

messQueue

capacity

As with synchronous channels, message queues can be used to mode an M : N
relationship between activities. When severa activities attempt to receive a message
from a message queue, one of the receivers is selected nondeterministically and the
message at the front of the queue is removed and passed to that activity. This process
continues until there are either no more receiving activities, or the gueue has become
empty. If there are no messages pending in the queue, a receiving activity will be
delayed. Similarly, if a number of activities want to send a message via a message
gueue, one of the sendersis selected nondeterministically and its message is appended
to the queue. This process continues until there are no more sending activities, or
because the queue becomes full. When no messages can be appended to the queue, a
sending activity will be delayed.

We can express these semantics more accurately as follows. Again, assume that
at a specific instant there is a set S of activities that want to send a message via the
message queue g. Furthermore, let R be acollection of activitiesthat want to receive a
message viag. Denote by len(q) the length of g, by cap(q) its capacity, and by first(q)
the message at the front of the queue, if any. Communication via message queue q
then proceeds according to the following a gorithm:

let K = min(|S], [R| — len(q) + cap(a));
let Cq = cap(q);
let cap(q) = o;
while K> 0do
letSOS;
S-S-5
q-g+uS);
KeK-1;
endwhile;

let K = min(|R|,len(q));

while K> 0 do
letROR;
R-R-R
transfer first(g) to R
q — q— first(a);
K«K-1;

endwhile;

let cap(q) = Cq;

Only when a message u(S) has been appended to the queue, will the sending activity
Scontinue. Likewise, only after transferring a message from the queue to areceiving
activity, will thelatter continue. A few remarks concerning these semanticsareinorder.
In thefirst place, note that the capacity of the queue istemporarily set to infinity. This
hasmerely been doneto expressour algorithm, by letting amaximum number of senders
start with appending their message to the queue. Secondly, note that at any instant, a
maximum of |R| — len(q) + cap(q) messages from sending activities can be processed.
If Sexceedsthisnumber then |§ — (|R| — len(q) +cap(q)) nondeterministically selected
senderswill remain blocked. Likewise, if there are not enough messagesin the queue,
atota of |R| — len(g) nondeterministically selected receiving activitieswill block until
new messages are appended to the queue. Note further that the semantics of message
gueues are defined in such a way that aso queues with a capacity cap(q) = 0 are
well-defined. Inthat case, the algorithm aboveis seen to reduce to that of synchronous
channels.

Semaphores

Where datamediaare used for actual communication of data, token media are primar-
ily used to model synchronization of activities. Only a single type of token mediais
currently supported in ADL: semaphores. The semantics of semaphores are conven-
tionally defined as ([7]):

wait(s) | whiles< 0do od
S « S— 1;return
signal(s) | S « S+ 1; return

In ADL semaphores semantically correspond with message queueswith infinite capacity
with the exception that tokensinstead of dataare queued. In particular, the/engthof the
message queue now correspondswith the traditional valueof asemaphore. Thismeans

8

that sending a token to a semaphore is equivaent to performing a signal-operation,
whereas retrieving atoken from a semaphoreisthe same as await-operation. Asusual,
asemaphorein ADL may have aninitial value, or, likewise, an initial number of tokens.
Thisleadsto thefollowing graphical representation for a semaphore named sema with
initial value initvalue:

sema

@,

initValue

Semaphores are generally used to protect critical regions in shared-variable environ-
ments. Shared variables are not supported in ADL, implying that semaphores will
generally be used for mutual exclusive access to other resources.

213 Somegeneral remarks

So far, we have only mentioned in a rather abstract manner that data and tokens can
be communicated between activities. We have said nothing about the type of the
communication. For example, at the level of programming languages it is generally
required that messages are typed. The minimalist approach is followed by communi-
cation libraries that demand that at least the size of the message is provided. In the
current version of ADL, there is no means to specify data or token types. Instead, we
merely assume that datais represented by a sequence of bytes with a specified length,
and that tokens are nothing more than byte sequences of length 0. Thisimpliesthat a
developer using ADL isfully responsiblefor conversion of typed dataand token objects
to byte sequences and vice versa. The lack of strong typing facilitiesin ADL isto be
considered as an immature feature of the language that will be corrected in the future.

2.2 Structural organization

So far, we have discussed the basic components of an ADL structure model: activ-
ities and communication media. In this section we present a means for organizing
communicating activities as modular designs.

221 Designs

Activities and communication media are organized in ADL into so-called designs, re-
flecting their logical grouping based on functionality. Each design consists of at least
one activity, and, similarly, each activity is contained in precisely one design. Graphi-
cally representing the fact that an activity communicates viaa specific communication
medium isdone by means of arcs. In particular, if an activity sender sendsinformation
to a communication medium cm, that is subsequently to be read by an activity reader,
thisis graphically represented as shown in Figure 2.1.

The symbols “e” and “W’ represent so-called gates. They are discussed below.
Because activities can only communicate by means of communication media, it is
clear that it would syntactically be an error to draw an arc between two activities. In a

cm

(-

Figure 2.1: The basic graphical representation of an ADL design.

syncChan

Sender
Receiver

Figure2.2: A syntacticaly correct ADL designin which acommunication medium has
at least one identifiable sender, and one identifiable receiver.

similar fashion, we consider adesign to be erroneous when, for agiven communication
medium, there are no identifiable (potentially) sending or receiving activities. Syntac-
tically, thisimpliesthat there should always be at least one arc from a communication
medium to an activity, and vice versa. We do not forbid that the sending and receiving
activity are the same. For example, the design shown in Figure 2.2 is syntactically
perfectly in order.

Activities can be decomposed into smaller units. In particular, these so-called
complex activitiesareactivitiesthat have been decomposed into adesign, thusallowing
for ahierarchical organization. Activitieswhich have not been decomposed are called
simpleactivities. Giventhis, it should now beclear that Figure 2.2 may even represent
a semantically sensible design. Instead that an apparent deadlock occurs, the activity
SenderReceiver may be decomposed into a number of parallel acting subactivities.

This organization of activities into designs leads to a structure model, which,
by definition, is a tree as shown in Figure 2.3. Only the activities contained in the
leaves of this tree are simple ones; the other activities are complex. An aternative
approach would be to construct the hierarchy as a directed acyclic graph (DAG). (In
fact, thisis done duringthe devel opment itself.) However, the structure model reflects
the organization of an application at a certain point of completion. Then, each activity
can be only have been refined to a unique subdesign, if any, which obviously leads to
atree structure.

Thereisno separate syntactical representation for adesign, other than the grouping
of activities and communication media according to their syntax. On the other hand,
we do assume that an implementation of ADL supports the notion of a design.

2.2.2 Gates

In data flow diagrams, the interface of an activity is not made explicit — a situation
which we fed is inappropriate when technical design issues are to be dealt with. In
particular, if a technique is to support the design of parallel applications, support
for communication structure design becomes apparent. In our view, an essentia

10

dl

level 1 - -
d11 d1.2
- = -t =
level 2 — /
a ?’/
level 3 - = > ..
di.2.1 d1.2.2

Figure 2.3: A structure model represented as atree of designs.

input gates: output gates:
Internal External Internal External

o ©® g ©

Figure 2.4: Notationsfor internal and external gates.

aspect of designing communication structures for parallel applicationsis localization.
This means that a developer can concentrate on a relatively small part of of the
communication independent of other parts that constitute the overall communication
structure. In ADL, we have made the interface of an activity explicit through so-
caled (input and output) gates. Gates in ADL provide a means to specify where
communication with an activity takes place, i.e. they serve as explicit access pointsto
communicate data or tokenswith an activity. Thisis similar to the approach followed
in Mascot [3, 14]. A further distinction is made between gates that are either inter nal
or external to adesign, leading to the graphical notationsas shown in Figure 2.4.
Gates that are internal to a design (also called interna gates), represent where
activities and communication media are connected. Each interna gate is aways
connected to exactly one communication medium by means of an arc. Gates that are
external to adesign (called external gates) represent the interface of a single design.
An externa gate aways belongs to precisely one design. At the same time, it
should aso be related to at least one internal gate of an activity contained in the same
design astheexterna gate. Thisrelationship between an external gate and oneor more
internal gatesisreferred to asahorizontal gateassociation. It reflects therelationship
between external and internal gates in a single design. Likewise, each internal gate
of a complex activity, i.e., an activity which has been decomposed into a number of
designs, should be associated by means of a so-called vertical gate association with
precisely one external gate of its child design. A vertical gate association thus reflects
the relationship between an internal and an external gate in different designs. These
notions of horizontal and vertical gate associationsare illustrated in Figure 2.5.
Toexplainandillustratethe semantics of these associ ations, supposethat acomplex

11

design

parent

activity vertical

'\ «— | association

¥ horizontal

- association

child design

A

horizontal association
Figure 2.5: The hierarchical organization of activities as designs.

activity A hasaan internal gate gi, which is connected to a communication medium c.
Furthermore, let A be decomposed into adesign D consisting of subactivitiesAy, ... A,.
Firstly, theinternal gate gj, attached to A should be vertically associated with exactly
one external gate geyx of D. Thisexternal gate should be horizontally associated with
at least oneinternal gate of D. Gatesthat are internal to D can, in turn, be horizontally
associated with either zero or one external gate of D. Assumethat gate§i, isan internal
gateof D, and ishorizontally associated with theexternal gategey;. Then, semantically,
this association implies that all communication through gate §;,, also passes through
gate gi, of the parent activity A. Consequently, the internal gate i, is thus indirectly
connected to the communication medium c. Thisisasoillustrated in Figure 2.6.

2.3 Advanced communication issues

The concepts introduced so far are based on what could be referred to as traditional
communication features. In this section we introduce two more advanced features:
timed communication and multicasting operators.

2.3.1 Timed communication

Besides their use as a means to specify where communication is to take place, gates
are also used to show when communication should take place from the moment an
activity is willing to communicate. To this aim, gates are subject to so-called timed
communication. Three types of timed communication are availablein ADL:

« Inthe case of blocked communication at agate g, an activity which is waiting

for communication viag, will not proceed until data or token transfer through g
has actually taken place.

12

syncChan syncChan

parent
activity

@) (b)

Figure 2.6: The relationship between interna and external gates with respect to com-
munication media. Figure (b) is semantically equivalent to (a).

« Inthe case of non-blocked communication at gate g, an activity will never wait
until communication through g takes place, unlessit can take placeimmediately.

« Finaly, delayed communication indicatesthat an activity iswilling to wait for
communication until a specified amount of time has el apsed.

Thegraphical notationsfor thevariousgatesinADL isshowninFigure2.7. Blocked and
non-blocked communication are in fact specia cases of delayed communication. If At
denotesthe specified time an activity iswilling to wait before communication can take
place, then clearly the case At = 0 correspondsto hon-blocked communi cation whereas
the case At = « isthe same as blocked communication. For practical reasons, we have
chosen to incorporate all three communication types. Also note that these forms
of communication relate to the moment when communication should take place as
required by the communicator, and if thisrequirement could not be met communication
is cancelled al together. Thisisdifferent from (a)synchronous communication which
involves all communicating parties, and which is, in principle, never cancelled.

Anticipating our discussionon timed communi cation and hierarchical organization,
we note here that the timing shown at a gate is generally variable. Depending on the
refinement of an activity into constituents (and as we shall see later, also into state-
transition machines), the timing may vary with the actua communication that an
activity wants to perform at a certain instant in time. We shall return to this issue
further below and in the following chapter.

Timed communication affects the semantics of communication via data or token
mediain a number of ways. In thefirst place, note that the semantics for synchronous
channels, message queues, and semaphores have been formulated in terms of blocked
communication. In other words, whenever communication could not take place (for
whatever reason), a communicating party will be delayed. Using non-blocked com-

13

input gates: output gates:

Internal External Internal External
blocked o j [| 3
delayed P D H
nonblocked O o [] -

Figure 2.7: Notationsfor ADL gates.

signal
activity

cond
¢ wait
activity

Figure 2.8: An example of adesign using conditional semaphores.

munication, however, we can model other situationsas well.

Example2.3.1. Conditiona semaphores are like general semaphores but support a
so-called conditiona wait-operation [2] having the following semantics:

condwait(s) | if s < Oreturn false
elses « s— 1;return true

In other words, rather than delaying a caller until the semaphore’s value can be decre-
mented, control is passed back with notification of the failure. A conditional wait
operation can easily be modeled in ADL using timed communication by means of a
non-blocked input gate connected to asemaphore. Such adesignisfor example shown

in Figure 2.8.
O

Note, as a matter of fact, that using delayed or non-blocked communication on an
output gate connected to a semaphore (corresponding to a signal-operation) has the
same effect as blocked communication because communication will always succeed.
A similar case holds for output gates connected to message queues having an infinite

capacity.

14

block
append
activity
messQ

read
activity

100

nonblock
L append
activity

Figure 2.9: An example of a design using blocked and non-blocked appending of
messages to a queue with finite capacity.

Example 2.3.2. Message queues are generally implemented with afinite capacity. A
guestion that needs to be addressed then is what the semantics should be in case the
capacity isexceeded. Depending on the underlying runtime system, senderswill either
be blocked, or notified that communication failed. In ADL, it is the designer who
specifies the semantics, rather than this being implementation dependent. Using non-
bl ocked communi cation on an output gate connected to a message queue, the devel oper
specifies that failure of message transfer should be notified. Otherwise, in the case of
blocked communication, the devel oper specifiesthat the sending activity should block
until message transfer can take place. Syntactically, these situationsare represented as
shown in Figure 2.9.

O

2.3.2 Timed communication and hierarchical organization

Now, what can we say about the timing at an internal gate gin, of acomplex activity A?
According to what has been said above, gate gi, should be vertically associated with
an externa gate Je Of its child design (which we refer to as D). Gate e, in turn,
should be horizontally associated with one or more gatesthat are internal to D. Denote
these internal gates as @, ..., dM, and let At; denote the specified timing at gate §,,,
i.e, Aty 0[0,0) O {o}. Now, first of all, note that the specified timing behavior at an
internal gate expresses how long an activity is willing to wait before communication
shouldtake place. When anumber of gatesare horizontally associated with an external
gate then clearly the ensemble of activities connected to that gate is willing to wait at
|east Atpin and at most Atpyay time units where

Atmin = Min{At;} and Atpax = max{At; }.
i=1..m i=1..m

Conseguently, the time that the parent activity A is willing to wait is equal to the
maximum waiting time of its children, i.e. Atma. This puts an upperbound on the
timing shown at gate gin. Likewise, Atmin isalowerbound for the timing at this gate.
To reflect the situation that timing may vary, we introduce a separate notation for those
cases that Atmin < Atmax as shownin Figure 2.10.

15

input gates: output gates:
Internal External Internal External

@ @ d

Figure 2.10: The graphical notationsfor gates with variable timing.

2.3.3 Multicasting

The communication media in ADL can al be used to model M : N réationships
between communicating activities. However, sending a message aways implies that
precisely one activity will receive that message (assuming that there are activities
actually prepared to communicate with the sender). An aternative communication
scheme is multicasting which is also supported in ADL. Informally, multicasting a
message yields that amessage is sent to a preselected group of activities.

In ADL, any communication media (i.e. synchronous channel, message queue, or
semaphore) can be used as the basis for multicasting. In particular, multicasting a
message m via a communication medium c yields that mis replicated and sent to all
activitiesthat have been modeled as receivers. A further distinction is made between
post-medium and pre-medium multicasting.

» Inthe case of post-medium multicasting, a message can only be transferred to
the receiving activitiesif this can be done simultaneously to al of them.

« In the case of pre-medium multicasting, the message is sent to each receiving
activity individually. Thisimpliesthat the message may be received at different
times by the receivers.

In essence, post-medium multicasting yields that a message is replicated after the se-
mantics of the communication medium have been taken into account. In the case of
pre-medium multicasting, messages are first replicated after which the semanticsof the
communication are followed per receiving activity. Multicasting in practice generally
follows the semantics of our notion of pre-medium multicasting. Post-medium multi-
casting resembles atomic multicasting [15]. Figure 2.11 shows the graphical notation
for distinguishing respectively post-medium and pre-medium multicasting. We shall
consider both forms of multicasting for each available communication medium.

Synchronous channel

Post-medium multicasting via a synchronous channel implies that communication
can only take place if al receivers are willing to accept a message from a sender.
In particular, al communicating parties, i.e. sender and receivers, synchronize on
communication. Toillustrate, consider the two situations shown in Figure 2.12.

If weassumein Figure 2.12(a) that sender and receiverl are ready for communica
tion, they will both have to wait until receiver2 is also ready to accept the message. At

16

(@) (b)

Figure 2.11: The notations for post-medium multicasting (a) and pre-medium multi-
casting (b).

syncChV

(b)

syncChV‘
|

Figure 2.12: An example of a postmedium multicasting via a synchronous channel
whichisin order (a), and onewhich israther hazardous (b).

17

syncChan

Figure 2.13: An example of a premedium multicasting via a synchronous channel
using delayed communication.

that instant, message transfer takes place. Clearly, then, the situation in Figure 2.12(b)
is reflects a rather poor design as it can be expected that once receiverl is ready to
accept a message via syncChan, the possibility that this will ever happen is indeed
very small. Communication can, namely, take only place at the very instant that both
sender and receiver are willing to communicate.

In the case of pre-medium multicasting, the receiving entities will synchronize
with the sender, but not with each other. In particular, this means that a receiver may
continue the instant it has received the message. Pre-medium multicasting does lead
to the situation that partial failure of communication may occur. This differs from
post-medium multicasting in which communication succeeds entirely, or otherwise
fails completely. Toillustrate, consider the situation shown in Figure 2.13.

Now supposethat at the instant sender wants to send a message to both receiverl
and receiver2, that only receiverl is waiting for such a message. Denote by At the
specified timing at the output gate of sender. By definition of pre-medium multicasting,
the message is replicated and sent to receiverl, regardless if receiver2 is willing to
accept the message as well. However, if receiver2 is not prepared to receive any
message from sender before At time units have elapsed, sender will withdraw from
further communication via syncChan. Consequently, the multicast will only have
succeeded partialy. Aswe shall see in the next chapter, this partia failure cannot be
directly reported to sender, who instead, will receive an event indicating a complete
failure.

M essage queue

When consi dering message queues, post-medium multicasting yieldsthat a messageis
removed from thefront of the queue theinstant that all receiving activitiesare prepared
for communication. The message is then transferred to al receivers simultaneously.
A few observations are important to note. In thefirst place, just as with post-medium
multicasting via synchronous channels, all receiving activities synchronize. Secondly,
observe that if, respectively, two messages m; and m, are sent in that order, that no
receiver will ever read message m, before all receivers have read message m. In other
words, message receipt within the group of receiving activitiesis never skewed.
Pre-medium multicasting via message queues is commonly applied in practice.
In this case, one can imagine that instead of a single message queue each receiving

18

@
@

Figure 2.14: Combining post- and pre-medium multicasting.

R

activity asits own message queue. Multicasting a message yields that the message is
replicated, and appended to each individua queue. Consequently, receiving activities
do not synchronize as was the case with post-medium multicasting. Also, athoughthe
order of message transfer is still preserved between a sender and areceiver, it is now
possible that message receipt within the group of receiving activities is completely
skewed. In other words, if messagesm, and m, are sent after each other, it is possible
that a receiver R; will have already read message m, before receiver R, has read
message my.

Notethat by nature of message queues, pre-medium and post-medium multicasting
are two extremes. An alternative form would be to allow multicasting in asuch away
that no skewing of message receipt between receivers occurs (afeature of post-medium
multicasting), but that, on the other hand, receivers need not synchronize (a feature
of pre-medium multicasting). This form of multicasting is not supported in ADL, but
instead should be modeled as a combination of norma communication via a message
gueue, and pre-medium multicasting via a synchronous channel. This is shown in
Figure 2.14. In this case, the activity server simply removes each message from the
front of the queue and transfers it to the synchronous channel where it is multicasted
to thereceivers. Clearly, the receivers no longer synchronize on message receipt, but
never is a message read before al other receivers have read its predecessor.

Semaphore

By viewing semaphores as token-bearing message queues, the semantics of post-
and pre-medium multicasting via a semaphore should now be clear. In the case
of post-medium multicasting, a number of receiving activities will synchronize on
their individual wait-operation. In other words, signaling a post-medium multicasted
semaphore is to be interpreted that a collection of receivers should synchronize on
a single event. On the other hand, a pre-medium multicasted semaphore is to be
interpreted as amedium that allowsasender to indicate that each activity from agroup
of receivers is to react on a repeated event, as often as the event as occurred. No
synchronization between the receiving activitieswill take place.

19

24 Summary

A structure model is a hierarchical organization of activities that communicate with
each other by explicitly passing data or tokens through communication media. The
interface of an activity, or a group of activities (referred to as a design) is modeled
explicitly in the form of respectively internal and external gates.

There is no notion of shared data, and the semantics of communication between
activitiesstrongly followsthat of general message-passing programming models. How-
ever, an explicit distinctionis made between how and when communication or synchro-
nization takes place. The former isexpressed through synchronous channels, message
gueues, and semaphores. When communication should have started is modeled by
means timed communication at gates, which can either be blocked, non-blocked, or
delayed.

In addition, multicasting is supported for each communication medium. Two
formsareavailable. Post-medium multicasting synchronizesthe collection of receiving
activitiesin the sense that a message is only transferred to the receivers if al of them
are prepared for receipt. Pre-medium multicasting replicates a message, after which
communication follows the semantics of the medium via which communication is to
take place.

20

3

Behavioral model

Activities form the units of behavior in ADL and obviously there should be a means
for supporting the description of behavioral aspects. In ADL thisis done by means of
state-transition machines (stms) which collectively form the behavioral model of an
activity. They are the subject of this chapter.

3.1 Introduction

In most methods based on data flow diagrams, there isa strict distinction between data
activities and control activities. Data activities are used for modeling data transfor-
mations, whereas control activities describe the system’s flow of control. In order to
describe data transformations, pseudo-code, or sometimes even a high-level procedu-
ral languageisused. Control flow is described by means of state-transition machines.
When separating control and data transformations, the process of integrating them
(whichisrequired for an implementation) may turn out to be less straightforward than
one wouldinitially expect.

An aternative approach that has been adopted by object-oriented development
techniques, is to encapsulate control and data functionality into a single entity. And
indeed, practiceindicatesthat thisapproach is quite elegant when it comesto designing
applications. In ADL, there is aso no explicit distinction between control and data
functionality: both areencapsulatedinto activities. Inthissense, ADL can beconsidered
as an object-based design language (see dso [10, 19]). Continuing our line of thought,
it seems natural to devise a technique for designing the behavior of an application on
a per activity basis. In other words, given a structural model, a devel oper should be
able to design the behavior of each individual activity. To thisam, ADL supports a
notion of state-transition machines, of which there will be precisely one for each
simple activity. The behavior of complex activitiesis assumed to be captured by the
compoasite behavior of its sub-activities.

The ADL state-transition machines have been partly inspired by those used in Ja-
cobson’s approach [10], whichin turn are based on similar concept defined inCCITT’s
Specification and Description Language [5, 13].

21

Communication states Processing states

output states input states
blocked > $ initial Q
non-blocked > < computation
delayed > 4 final @

Figure 3.1: The notationsfor statesin state-transition machinesin ADL.

3.2 State-transition machines

In ADL each simpleactivity hasprecisely oneassoci ated state-transitionmachine (STm).
The behavior of complex activitiesis always assumed to be specified by the collective
behavior of their constituents. An STm consists of a finite number of states and an
execution mechanism by which state-transitions are made. At each time instant, the
activity to which the stm is associated will aways reside in exactly one of the states
specified by the sTM. Thisstateis aso denoted as the current state. In the following
sections we shall mainly concentrate on the explanation of the execution mechanism
as this describes the (operational) semantics of our state-transition machines, and thus
the behavior of activities.

3.2.1 Basc states

Theset of statesinan sT™ isessentially partitionedinto two subsets: theset of so-called
processing states, and the set of communication states. Communication states come
in two kinds: input states and output states, and are further divided according to the
three types of timed communication. The syntactical notations for statesis shownin
Figure 3.1.

Processing states

Processing states are used to model those behavioral aspects which are not related to
communication. Three different types of processing states are distinguished: asingle
initial state, computational states, and final states.

Theinitia state indicates where an activity starts for the first time. It istypically
used to model the initialization section of an activity’s behavior. Processing states
serve to model a series of pure sequential statements in which no communication with
other activities takes place. Final states, of which there may be severa in a single

22

ST™, are typically used for modeling a finalization section of an activity’s behavior.
Contrary to aninitial state, an activity need not have afinal state as part of its ST™.

Communication states

A communication state reflects the situation that an activity is currently involved in
communicating data or tokens with some other activity. Two types of communication
states are distinguished: input states representing the situation that data or tokens are
received, and output statesrepresenting thetransfer of dataor tokensto other activities.
Each input or output stateis always associ ated with exactly oneinternal input or output
gate, respectively, of thesimpleactivity associated withthe sTM. Theconverseneed not
be true: an internal gate can have several associated communication states, reflecting
the situation that communication through that gate may occur at different momentsin
time. The communication state determines the actual timing at the gate it is associated
with.

3.2.2 Transtions

A transition between statesisformally provided by means of atransition specification
and consists of precisely one source state and onetarget state. Thetransitionisalways
made from the source to the target state. With respect to the structural aspects of a
state-transition machine, we demand that each state is reachable from the initia state.
This can be expressed more accurately as follows. Denote by S the set of states, and
by T O S x Sthe collection of transition specifications. For any state s 0 S define the
set R (s) of reachable states from srecursively as follows:

1. sOR(s)
2. U0R(S),(uvOTOVOR(9

We then demand that if st istheinitial state, that R (Snit) = S. We nhow take a closer
look at transitions with respect to processing and communication states.

Processing states

In the case of processing states, the following rules with respect to transitions apply.
The initia state can never be specified as the target state in a transition specification.
In addition, precisely one transition specification should include the initia state as
source state. Likewise, a final state can never be the source state of a transition
specification, but, on theother hand, may be specified astarget state of several transition
specifications.

Processing states may occur as the source state of at least one, but possibly aso
moretransition specifications. Selection of atransition originatingin aprocessing state
is nondeterministic from the point of view of the execution mechanism underlying
state-transition machines. However, as we shall discuss further below, the execution
mechanism itself can be refined in such away that nondeterministic selections can be
avoided.

Transition specifications originating in a processing state are graphically repre-
sented by a solid arc from the processing state to a target state.

23

Communication states

Transitions originating in communication states are related to so-called events. An
event isalways raised by agate. Two types of eventsare distinguishedin ADL:

- atransfer event israised by an input or output gate whenever a data or token
passesthroughit,

- atimeout event israised by either an input gate or an output gate whenever the
timing constrai nts cannot be met.

Whenever an activity isresidingin acommunication state, it can only make atransition
to a next state on the occurrence of an event. In the case of communication states
there are two types of transition specifications. A transfer transition specification
specifies the state to which atransition is made whenever atransfer event israised. It
isgraphically shown as solid arc from the communication state (the source state) to the
next state (thetarget state). Likewise, atimeout transition specification specifiesthe
state to which atransition will be made on account of atimeout event. Itisgraphically
notated as dashed arc from the source to the target state. For each communication
state precisely one transfer transition specification must be provided. In addition, if
a communication state is subject to either delayed or non-blocked communication, a
timeout transition specification should & so be given.

3.2.3 Sdect states

ADL supportstwo forms of composite states: single select select states and total select
states. They are collectively referred to as select states. A select state always consists
of two or more communication states. Input and output states may be jointly used
to compose a select state. No two communication states within a select state can be
associated with the same gate. The collection of gates associated with a select stateis
simply the union of gates to which its constituents are associated.

None of the communication states in a select state can ever occur as the target
state of a transition specification. The select state itself, however should be reachable
from the initia state. The definition of reachability is extended in such away that all
constituents of a select state are reachable from the initial state if the select state itself
isreachablefromtheinitia state. Specifying select states and its constituentsas source
of transition specificationsis dependent on the type of select states. Thisis discussed
below.

Single select state

A collection of communication states can be aggregated into a so-called single select
state. A single select state is used to model those situations in which one of sev-
era possible communications may occur. The graphical notation for a single select
statement is shown in Figure 3.2(a).

Theconstituents of asingle select state adhereto therulesof normal communication
stateswith respect to their specification as source states of transition specifications. This
means that for each communication state precisely one transfer transition specification
should be provided, and in addition, for each communication state that is subject to

24

.
5

(a) (b)
Figure 3.2: The notation for asingle select state (a) and atotal select state (b) in ADL.

delayed or non-blocked communication, there should also be one timeout transition
specification. Thefirst event that israised after entering the select state determinesthe
selection of the transition to the next state.

Total select state

Besides the notion of a single select state, ADL state-transition machines also support
so-called total select states. Again, total select states consist of a collection of com-
munication states. Contrary to a single select state, however, total select states are
used to model those situationsin which several communications need to be performed
(or perhaps timed out) before continuation. The order in which communication takes
place is considered irrelevant. Figure 3.2(b) shows the graphica notation for a total
select state.

The constituents of a total select state can never be specified as the source of
a transition specification. Instead, there should be precisely one transfer transition
specification in which the select state is specified as the source. In addition, if any
of the communication states in the select state is subject to delayed or non-blocked
communication, there should aso be precisely one timeout transition specification
originating in the select state.

The transfer transition is selected as soon as all communication has taken place,
where each constituent state has been visited precisely once. The timeout transitionis
selected on thefirst timeout event raised by any of the gates associated with the select
state. It isimportant to note that such an event indicates that communication did not
fully succeed and that it can never fully succeed. However, it cannot be determined
if any communication took place while residing in the select state before the timeout
event was rai sed.

These semantics can be expressed more accurately as follows. Denote by S =
{SL, ...,S} the collection of communication states in the total select state, and let g;
denote the gate to which state § is associated. A transfer event raised by gate g; is
denoted as 1, whereas atimeout event is denoted as ¢;. The eventsthat can be handled

25

at a specific time by a collection of states R is denoted as E(R). Finally, denote by
u(S) the message that is to be transferred via gate g; on account of the semantics of
state S. The execution mechanismin atotal select state then proceeds according to the
following operational semantics.

letR=S;
while R 7§ do
waituntil
O O E(R) O transfer u(S); R « R—S;
or
O O E(R) O select timeout transition;
endwait
endwhile
select transfer transition;

As soon as a transition is selected the execution mechanism immediately continues
according to the semantics of the selected next state.

3.3 Tailoring the execution mechanism

As we have mentioned, it is possible to further refine the execution mechanism un-
derlying an stTM. To this aim, we anticipate that processing states are further refined
by attaching a series of sequentially executable statements from a guest language. At
present, ADL is targeted to support “C” as its only guest language. To thisam, we
demand that an implementation of ADL supportseither the i dentification of each transi-
tion originating in aprocessing state, or otherwisetheidentification of anext selectable
state. Specifying atransition is then to be supported by asimple library routine, such
aseg.,transit(transition) or sel ect (next _state) of which the execution
yields an immediate state-transition.

34 Summary

Where the structural model of an application reflects the static aspects of an applica-
tion design, the behavioral model describes the behavior of activities. The behaviora
model is constructed through state-transition machines (stTms) for which there is one
per simple activity. An STM is constructed as a collection of states for which tran-
sition specifications are provided. Two types of states are essentially distinguished:
processing and communication states.

A processing states represents a part of the behavior of an activity whichischarac-
terized by absence of communication. A communication state models the sending or
receipt of messages, and as such is always associated with exactly oneinterna gate of
the simple activity associated with the sTM. State transitions originating from a pro-
cessing state are chosen nondeterministically. Those originating in a communication
state are selected on the basis of the occurrence of either a transfer or timeout event
which are raised by the gate to which the communication state is associated.

Communication states can be grouped into either a single select state or a total
select state. A single select state reflects the situation that alternative communications

26

are possible at a specific time. The first communication that takes place, or fails due a
timeout, determines the behavior of the single select state. Total select states are used
to model those situationsinwhich anumber of communications should take place, but
inwhich the order of communicationisirrelevant. Thefirst timeout event that israised
by a gate to which one of the constituent states in a total select state is associated,
causes a transition from the select state.

27

4

Processreplication

Activitiesreflect |ogical communicating entities. Assuchthey form the meansto model
the functionality of asystem. ADL has been devel oped to capture part of theintricacies
related to parallel application development. To that aim, it also supports the notion of
processes. A processis quite similar to an activity, but distinguishes itself from the
latter by thefact that it isexplicitly used for modeling sequential executions. As such,
processes deal with modeling nonfunctional aspects. In this chapter we discuss how
processes can be used to exploit paralelismin an application.

4.1 The process model

Astheunit of sequential behavior in ADL isformed by asimpleactivity, such an activity
also forms the basic means to construct processes. By default, each simple activity is
considered to be a process. A process, then, is an active entity that can be executed
on a processor and as such will behave according to the specifications given by the
state-transition machine of the associated simple activity. In order to hierarchically
organize a collection of processes and communication media, the structure model of
an applicationisfirst “flattened” by considering only the simple activitiesand all com-
munication media. The hierarchical organization of the structure model is discarded
by removing the complex activities, and recursively replacing vertical and horizontal
associations by direct connections between communication media and activities, as
explained in Section 2.2.2 (see aso Figure 2.6). Thisflattened structure model results
in a directed bipartite graph where the nodes are now formed by the set of processes
and communication media, and the links as the connections between them. The model
itself is denoted as the root task.

The root task can be decomposed by repeatedly grouping a number of processes
and communication into subtasks. If P denotes an arbitrary set of processes, and C a
set of communication media such that if process P is connected to a communication
medium ¢ O C, then also P O P, then a subtask T can be constructed by the graph
induced by the set P O C, i.e, it consists of al elements from P O C, including
the connections between them. Such a subtask is denoted as a complex process if
|P| > 1. Thisgrouping of processes and communication media isto be repeated until
each processis associated to precisely one subtask, and each communication medium
is associated to a most one subtask. The result is that the root task will have been

28

decomposed into a number (complex) processes that communicate by means of the
communication media that have not been associated to any subtask. Decomposition
may then proceed by repeating this procedure of grouping for any complex process.
This, eventualy, leadsto a so-called process model.

Introducing two very similar, but distinct entities (designs and tasks, activities
and processes), in principle alows us to develop two possibly radically different
hierarchies. one for capturing functiona aspects (the structure model), and one for
capturing nonfunctional aspects(the processmodel). However, the distinction between
adesign and a task is, to a certain extent, artificial: in ADL a design and a task are
treated asa singleentity. Our assumptionisthat at acertain stagein the design process
of an application, the complete organization of an gpplication into logical unitsis the
same as the organization into executable units. In terms of Ward and Mellor [18] we
are thus assuming that essential modeling and processor modeling lead to the same
application model.

The relationship between a process model and a structure model is similar to the
relationship between a variable and its type in imperative programming languages, or
between an instance and itsclassin theworld of object-orientation. The processmodel
thus reflects the structure of a specific implementation. As such, it can be annotated,
meaning that additional information issupplied which does not affect the functionality,
but is purely directed towards deriving a“better” implementation. In the case of ADL,
one sort of annotationthat is currently supported, isthat of processreplication. These
annotations are targeted towards performance enhancements by replicating processes,
and thus enhancing parallelism in an implementation. A second form of annotation
which is anticipated, but not yet supported, is that of mapping objects in a process
model to the hardware resources of atarget machine.

4.2 Processreplication

Process replication in ADL is entirely constructed by means of model annotations.
These annotations are not considered as part of the language core, but instead, are
merely abbreviations to concisely express repetitive structures. These structures are
expressed by using so-called replicators and connection statements.

421 Replicators

Substructures in an ADL task can be replicated by applying a so-called replicator.
A replicator consists of areplication factor which is a positiveinteger, say N, and a
replication index whichisan integer variabletaking valuesfromtheset {0, ..., N— 1}.
A replicator with replication factor N and replication index j is graphically denoted as

,

A replicator can be appliedto asubstructureof atask by selecting anumber of processes
and communication media. These sets are denoted as the replication process set
and replication media set respectively and are graphically identified by drawing a
dashed arc from the replicator to each element that takes part in the replication. A
communication media can only be selected if all processesthat are connected to it are

29

selected for replication aswell. The effect of applying areplicator can be formulated
more accurately as follows. Denote by (N, j) a replicator, applied to a substructure
consisting of a set of processes P and a set of communication mediaC. Let T denote
the task before replication, and T~ the task after applying replication.

1. For each communication medium ¢ O C we havethat if aprocessP isconnected
toc, thenit should also hold that P O P.

2. For each process P of T, with P [P, then P will aso be part of T*. Similarly,
for each communication medium c of T withc [4 C, c will also be part of T*.

3. For each processP 0 P, P isreplicated N timesyielding the processes Py, ..., Py
in T*. Similarly, each communication medium ¢ O C is replicated N times
resulting in the communication mediac,, ... ¢y in T*.

4. Let P denoteaprocessin T, and ¢ acommunication medium. Assumethat P is
connectedto cin T. Then, theresulting connectionsin T* are as follows:

(@ P P,ciZC: Pisconnectedto clikeitwasinT.

(b) POP,c [/ C: cisconnected to each process Py in T*, asit was connected
toPinT.

(c) P P,cOC: thissituation cannot occur.

(d) POP,cOC: thenforeachj O {0,...,N— 1} wehavethat P; is connected
tog inT* just as P was connectedtocinT.

The first condition may seem as a rather restrictive one. What it effectively estab-
lishes is that no additional connections will ever be made to an activity on account
of replication. Consequently, the interface of an activity is left intact. When dealing
with an implementati on environment based on CsP, thisrestriction may lead to serious
problems. In these environments, communication between processesisaways strictly
1: 1, i.e point-to-point, and special measures have to be taken to relax this constraint.
However, from a design point of view, these restrictions are viewed as sources of
overspecification, and should be dealt with solely during the implementation phase.
Let usillustrate the notion of areplicator by an example.

Example 4.2.1. Consider Figure 4.1(a) which shows a simpletask consisting of three
processes S, R, and A. Also, there are three communi cation media SM, RM, and M. For
the sake of clarity, we have omitted further specification of the type of the respective
communication media, and have also not specified any gates. The replicator (N, j) is
applied to A and M, which resultsin the atered task shownin Figure 4.1(b) in the case
that N = 4.

0

If a complex process is replicated, then the complete task into which it has been
decomposed is replicated as well. Also, a process or communication medium may be
subject to several replications, referred to asreplication composition. Assumethat an
object O is subject to two replicators R, and R,. Denote by Py the replication process
set of R,k = 1,2. Furthermore, let P O P; n P,, and assume that R, is applied first

30

M[0] M[1] M[2] M[3]

(@) (b)
Figure4.1: Theresult of applying areplicator with replication factor 4.

resulting in the replication of P into N copiesPi, ..., P}. Inthat case, the set P, isto be
replaced by the set

P, « P,— P+{P1,...,P,{l}.

In other words, all replicated processes P} are to be subject to application of replicator
R,. Animportant observationisthat it can be readily shown that repetitive application
of replicatorsiscommutative. In other words, if R, o R; denotesthefact that replication
R, isapplied after application of replicator R;, we have that

DR]_, R2 . RZ ¢) R]_ = R]_ ¢) RZ-

Example4.2.2. To illustrate, consider the replication specification shown in Fig-
ure 4.2(a), and consider the casethat N = 3 and M = 2. If we first apply replicator
R; = (N,j) andthen R, = (M, i) we obtain the situation shown in Figure 4.2(b). Note
how after application of R;, we need to replace the set of processestowhich replication
of R, should be applied, by removing A, and adding its replicated counterparts. Anal-
ogously, Figure 4.2(c) shows the application composition R; o R,. It isnot difficult to
seeweindeed havethaa R, o Ry = R o Ry.

O

If P, and C, denotethereplication process set and replication media set, respectively, of

areplicator Ry, we use the following abbreviated notation for a replication composition
R o R inthecasethat P, = P; and C; = C;:

31

(a)
M2[0]
(o)
M1[0] Oﬁ] : M1[1]
M2[2]

(b)

@ M1[0]
M2
o 7
M @ vy
@,v
j

M2[2]

e M\ Ml[O]A/vQA/’.ﬂ
Ml[l]/,

@)

M2[1]

(©)

Figure 4.2: An example of replication composition where a process is subject to two

replicators.

32

4.2.2 Connection statements

Replication introduced so far is not sufficient to be used as a means for specifying
regular communication structures. Examples of such structures are pipelines, arrays,
meshes, hypercubes, etc. To that aim, we need a means of specifying how the actual
connections between processes and communication mediashould be provided. In ADL,
this can be done by annotating connections with so-called connection statements.
Connection statements come in two forms: redirection statements and attachment
constraints. We shall first discuss both concepts and then illustrate their applicability.

Redirection statements

Redirection statements are annotations to connections between objects to which the
same replicator isto be applied. They take the form:

source index expression - target index expression

A source index identifies the source object of the connection after replication has
taken place. Similarly, the target index expression indicates a singletarget object after
replication. Note that, by definition the source and target object are always distinct: a
connection can only be made between a process and a communication medium. Now
suppose there was a connection before replication from an object source to an object
target. A redirection statement

i — expr(i)

will then connect sourceli] to target[expr(i)], instead of the default connection from
source[i] to target[i]. The target index expression expr(i) corresponds to an integer
function E(i) oni wherei O {0,...,N — 1}, and N is the replication factor. In those
casesthat E(i) [/ {0, ...,N — 1}, the expression is said to be out of range, yielding that
the connection is discarded al together. If thisalso impliesthat if sourceli] no longer
satisfies the syntax rules of ADL, then source[i] and its connections are discarded as
well. It isimportant to note that due to this rule, less objects may be replicated than
specified by the replication factor.

Attachment constraints

Attachment constraints are annotations to connections between two objects of which
only one was subject to replication. An attachment constraint takesthe form

index relop index expression

where relop is a usua mathematical relationship operator. The variable index refers
to the object that is subject to replication, and after replication has taken place. After
replication, connections for which the attachment constraint does not hold are dis-
carded. If the attachment constraint failsto hold for any connection, it isconsidered to
be at fault.

33

4.3 Examples

To illustrate the applicability of connection statements, we consider two examples.
Both examples are based on the process model shown in Figure 4.1(a).

Example4.3.1. In order to specify a pipeline of processes, we attach connection
statementsasshownin Figure4.3(a). Now assumein thiscasethat thereplication factor
N = 5. Then, because no redirection statement has been attached to the connection
from A to M, there will be a connection from each replicated process A[j] to MIj],
where 0 < j < 4. Thisisin accordance to the default replication rules described in
Section 4.2.1. Theredirection statement

j-j+1

attached to the connection from M to A, specifies that, after replication, for each j,
with 0 < j < 4, M[j] should be connected to A[j+1]. However, because M[4] cannot
be connected to A[5] for the simple reason that A[5] will not exist, this connection is
discarded. Thiswould imply that only the connection A[4] to M[4] would exist which
violates the syntax rules of ADL. Consequently, M[4] is discarded all together. This
single redirection statement then |eads to the pipeline of processes A[0] ... A[4] shown
in Figure 4.3(b).
Now consider the two connection constraints. In thefirst place, the constraint

i=0

attached to the connection from SM to A, specifies that the only connection that is to
be made after replication, is the one from SM to A[0]. Similarly,

j=N-1

impliesthat there will only be a connection from A[4] to RM.
O

Example 4.3.2. A moreintricate exampleisthe specification of an array of processes.
Consider the specification shownin Figure4.4(a). Inthefirst place, we now distinguish
two communication media M1 and M2 which are to be replicated. Moreover, these
communication media, together with A are subject to two replications: R; = (N, j) and
R, = (M,). Initidly, thiswill lead to a collection of N x M objects A[i][j], M1[i][j], and
M2[i][j], respectively. The default connections are as follows:

ML —- A0
Al — M0
M2[i] —- A0
Aol — M2(i][]
SM —- A[i][j] for eachi,j
Afillll — RMforeachi,j

By adding redirection statements and connection constrai ntsthese defaults can now be
overruled as follows. Assumethat N =4 and M = 3. First, completely analogous to

34

M[0] M[1] M[2] M[3]

(b)

Figure 4.3: The specification of a pipeline of processes using replication.

35

the previous example, we construct a series of pipelines by attaching the redirection
statement

j <+l

to the connection from M1 to A. Again, al replicated communication media M1[i][4]
are discarded for the same reason that M[4] was discarded in Example 4.3.1. The
redirection statement

i< i+l

attached to the connection from A to M2 establishes the connection between the
pipelines as shown in Figure 4.3(b). Again, the communication media M2[3][j] are
discarded as this would lead to a violation of the ADL syntax rules. The connection
statements should now be obvious.

m|

44 Summary

In order to facilitate the exploitation of paralelism in a design, an ADL structure
model can be converted into a process model that can subsequently be annotated.
A process model describes the application as a collection of parallel processes. By
using annotations, compl ete substructures can be replicated into a series of isomorphic
substructures yielding a new process model. By attaching redirection statements
and connection constraints, the replicated substructures can be reformed to regular
structures such as pipeinesand arrays.

36

jg@
-

M2[0][0] M1[0](3]

.- -

3 M2[0][4] 3
M2[2][4] i
M1[2][3]

Figure 4.4: The specification of agrid of processes using replication.

v

M2[0][0]

v

M2[2][0]

v

e
e
Lo
Lo

M1{2][1]
(b)

Bibliography

[1]

[2]

(3]

[4]

(3]

6]

[7]

8]

[9]
[10]

[11]

[12]

[13]

[14]

G.R. Andrews. Concurrent Programming: Principles and Practice. Ben-
jamin/Cummings, 1991.

M.J. Bach and S.J. Buroff. “Multiprocessor UNIX Operating Systems'. AT&T
Technical Journal, 63(8, part 2):1733—-1749, October 1984.

D.G. Bate. “Mascot 3: An Informa Introductory Tutorid". |EE Software
Engineering Journal, 1(3):95-102, 1986.

N. Carriero and D. Gelernter. “How to Write Parallel Programs: A Guideto the
Perplexed". Computing Surveys, 21(3):323-358, 1989.

CCITT. “Functiona Specification and Description Language (SDL)". In The
CCITT Red Book, volume V1, chapter 10. CCITT, Geneva, 1985.

Hamlet Consortitium. “Application Requirements'. Hamlet Technical Report,
AEG Electrocom, Konstanz, Germany, September 1992.

E.W. Dijkstra. “Cooperating Sequential Processes'. In F. Genuys, (ed.), Pro-
gramming L anguages. Academic Press, 1968.

C.A.R. Hoare. “Communicating Sequential Processes’. Communications of the
ACM, 21(8):666-677, August 1978.

C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

I. Jacobson. Object-Oriented Software Engineering, A Use Case Driven Ap-
proach. Addison-Wesley, 1992.

L.H. Jamieson. Characterizing Parallel Algorithms, In L.H. Jamieson and D.B.
Gannon and R.J. Douglass, (ed.), The Characteristics of Parallel Algorithms,
chapter 3, pp. 65-100. MIT Press, Cambridge, Mass., 1987.

G. Jonesand M. Goldsmith. Programming in Occam. Prentice-Hall, 1988.

R. Saracco, JR.W. Smith, and R. Reed. Telecommunications Systems Engineer-
ing using SDL. North-Holland, Amsterdam, 1989.

H.R. Simpson. “The Mascot Method". |EE Software Engineering Journal,
1(3):103-120, May 1986.

38

[15]

[16]

[17]

[18]

[19]

A.S. Tanenbaum. Modern Operating Systems. Prentice Hall, Englewood Cliffs,
N.J,, 1992.

M.R. van Steen. “The Hamlet Application Design Language (Version 1.0), On
Automated Code Generation”. Technical Report, Department of Computer Sci-
ence, Erasmus University Rotterdam, 1994. In preparation.

PT.Ward. “TheTransformation Schema: An Extension of the DataFlow Diagram
to Represent Control and Timing". |EEE Transactions on Software Engineering,
SE-12(2):198-210, 1986.

PT. Ward and S.J. Mélor. Structured Development for Real-Time Systems,
volume I, Il & Il of Yourdon Computing Series. Yourdon Press, Englewood
Cliffs, N.J., 1985.

P. Wegner. “Concepts and Paradigms of Object-Oriented Programming”. OOPS
Messenger, 1(1):7-87, 1990.

[20] A. Yonezawa and M. Tokoro. Object-Oriented Concurrent Programming. MIT

[21]

Press, Cambridge, Mass., 1987.

E. Yourdonand L.L. Constatine. Structured Design: Fundamental s of aDiscipline
of Computer Program and System Design. Prentice-Hall, Englewood Cliffs, N.J.,
1979.

39

