
Report EUR-CS-93-16
December 1993

The Hamlet

Application Design Language
Introductory Definition Report

Maarten R. van Steen
Erasmus University, Faculty of Economics

Department of Computer Science
P.O. Box 1738, 3000 DR Rotterdam

e-mail: steen@cs.few.eur.nl

Abstract

This report provides an introduction to the definition of the Hamlet Application Design
Language (ADL). ADL is a graphical-based language and notation supporting the design
of parallel real-time applications. Designs expressed in ADL are based on a model
of processes that communicate by message-passing. Communication can either be
synchronous or asynchronous, and orthogonally, may be subject to blocking, delaying,
or nonblocking timing constraints. The language has been devised in such a way that
automated (skeletal) code generation can be supported. To this aim, structural aspects
are expressed in a notationsomewhat similar to data-flow diagrams, whereas behavioral
aspects are expressed as state-transition machines following a syntax similar to that
of SDL. Exploitation of parallelism is obtained by annotating a design with process
replication specifications.

keywords: design language, parallelism, replication, real-time systems.

Contents

1 Introduction 2
1.1 A brief overview of ADL . 2
1.2 Rationale for ADL . 3
1.3 Overview of this report . 3

2 The structure model 5
2.1 Activities and communication media 5

2.1.1 Activities . 5
2.1.2 Communication media . 5
2.1.3 Some general remarks . 9

2.2 Structural organization . 9
2.2.1 Designs . 9
2.2.2 Gates . 10

2.3 Advanced communication issues . 12
2.3.1 Timed communication . 12
2.3.2 Timed communication and hierarchical organization 15
2.3.3 Multicasting . 16

2.4 Summary . 20

3 Behavioral model 21
3.1 Introduction . 21
3.2 State-transition machines . 22

3.2.1 Basic states . 22
3.2.2 Transitions . 23
3.2.3 Select states . 24

3.3 Tailoring the execution mechanism 26
3.4 Summary . 26

4 Process replication 28
4.1 The process model . 28
4.2 Process replication . 29

4.2.1 Replicators . 29
4.2.2 Connection statements . 33

4.3 Examples . 34
4.4 Summary . 36

1

1

Introduction

This report introduces the graphical Hamlet Application Design Language, a technique
to assist the development of real-time parallel applications. The Hamlet Application
Design Language, or ADL for short, has been developed as part of the Esprit project
Hamlet [6] which focuses on the development of, and support for construction of
industrial real-time embedded applications, executing on transputer-based systems.

ADL is a graphical language based on a model of Communicating Sequential
Processes [9] and Data Flow Diagrams [21], aiming at providing the necessary support
for the design phase during application development. The language is still under
development, and as such, this report should be seen as a preliminary guide to introduce
the concepts we anticipate to be part of the language.

1.1 A brief overview of ADL

An ADL design roughly consists of two types of components: activities essentially
communicating with each other through communication media. Constructing an ADL

design of a system requires that the developer decomposes the system into functional
components, the activities, and explicitly describe by which means these activities
exchange information. An activity can be further decomposed, if necessary, leading to
an hierarchical organization.

Data between activities can be communicated either in a synchronized fashion
by means synchronous channels, or in an asynchronous fashion through message
queues. In addition, mere synchronization of activities, i.e., without exchange of data,
is achieved through semaphores.

A salient feature of ADL is its support for timed communication. Timed communi-
cation enables the specification of the instant when communication should have taken
place. This is particularly important in real-time application development where it is
unacceptable that processes would be waiting indefinitely in the case of some failure
in the communication system.

An ADL a distinction is made between a structure model and a process model.
The former deals with organizing a system using functional decomposition; the latter
deals with modeling the system in terms of instances of communicating processes. The
distinction between the two is somewhat artificial, except for the fact that processes can
be replicated into regular geometrical structures. In this way, ADL also supports data

2

parallelism, although emphasis remains on exploiting parallelism through functional
decomposition (also referred to as task parallelism [4, 11]).

Behavior of activities is modeled by means of state-transition machines (STMs).
However, where STMs normally consist of a single notion of a state, and where tran-
sitions between states can only occur as the result of an event, ADL uses an approach
which more or less combines STMs and flow charts. In this way, we have also inte-
grated data flow and control flow in a single concept, essentially making our approach
object-based. The main emphasis in modeling the behavior of an activity lies in the
specification of when and how communication takes place in the course of time. STMs
in ADL are strongly biased to model exactly such communication details, and less
towards modeling behavioral aspects which are not related to communication.

1.2 Rationale for ADL

In order to support the design phase of parallel real-time application development there
are roughly two extremes which can be followed: one can choose to devise a complete
new method with accompanying techniques, or otherwise simply use existing methods.
The first approach not only requires a great deal of research, it can also be expected
that at best many years will pass before a new method is accepted in an industrial
environment. The second approach has so far been followed by many application
developers. In particular, methods based on data flow diagrams such as introduced
by Yourdon [21] and specifically extensions thereof to support real-time developments
(e.g., Ward [17]) are now often used as common development methods in industry.
But none of these traditional methods is actually suitable for dealing with parallelism,
although their inventors often claim otherwise. As we see it, this is caused by failing
to make a distinction between parallelism as a means for, on the one hand, modeling a
solution, and on the other hand, as a means for implementing it.

The problem that needs to be addressed then is the development of a design method
and supporting tools which:

• are familiar to developers of industrial real-time applications,
• are based on methods that have proved to be applicable in an industrial context,
• deal parallelism as a means for modeling and implementation.

Based on these requirements, we have chosen to support parallel real-time application
development based on data flow diagrams (DFDs). However, where DFDs are generally
used in the analysis phase of a development project,we have adapted them in such a way
that they are more suitable for technical design. In particular, emphasis has been put on
the support for design of different communication structures, replication of processes
for exploitation of parallelism, and integration of data and control transformations.

1.3 Overview of this report

The language constructs of ADL are discussed in the next three chapters. Chapter 2
deals with designing applications in terms of functional units, whereas Chapter 4
concentrates on nonfunctional aspects. In particular, parallelism by process replication

3

is discussed extensively there. Chapter 3 discusses how behavioral aspects can be
modeled in ADL.

In this report we have made an attempt to provide accurate, but often still informal
definitions of the various constructs supported by ADL. The reason for doing so is that
in this stage of the project we felt that definitions should be provided that are precise
enough for users and implementors. The report does not discuss any implementation
aspects; these are presented in an accompanying report [16].

4

2

The structure model

An ADL model consists of a collection of one or more activities that communicate
through communication media. Activities are logically organized into so-called de-
signs which reflect the hierarchical relationships between activities based on their
functionality. This organization is referred to as the structure model. In this chapter
we discuss the concepts and notations in ADL that allow a developer to structure an
application.

2.1 Activities and communication media

An ADL structure model reflects the structure of an application expressed in terms of a
collection of activities that communicate by means of communication media based
on a message-passing paradigm. In this section we take a closer look at both concepts.

2.1.1 Activities

A key concept in ADL is formed by activities. Similar to data flow diagrams, an activity
is used to model a logical entity capable of transforming incoming data or tokens which
can then be passed to other activities. An activity is graphically represented by a large
circle, annotated with its name. For example,

Message
Encoder

represents an activity named MessageEncoder. An important observation is that
activities in ADL are treated as self-contained objects. This means that each activity
exhibits its own functional behavior, quite similar to the notion of objects in concurrent
object-oriented languages [20].

2.1.2 Communication media

In data flow diagrams, the means of communication is often left open. Instead,
flows between activities merely represent data that is to be communicated, not the
communication itself. In ADL we have chosen to follow a different approach by

5

distinguishing two types of communication media: data (communication) media
and token (communication) media. Data media serve as the primary means for
transporting messages between activities. Token media, on the other hand, are used
to pass tokens. Tokens differ from data by their absence of contents – as such they
can be considered as “null messages” [1]. ADL currently supports two data media:
message queues and synchronous channels. In addition, there is a single token
medium available: semaphores. These communication media are discussed next.

Synchronous channels

A synchronous channel is used to model synchronous message-passing between sev-
eral activities. In particular, if an activity wants to send a message m via a synchronous
channel c, the communication will only take place if there is an activity that can re-
ceive m via c. If there is no receiving activity, a sending activity will normally block
until communication can take place. A synchronous channel syncChan is graphically
represented as follows:

syncChan

A distinction with many other languages that support synchronous message-passing,
is that ADL permits multiple senders and receivers to communicate via the same syn-
chronous channel. For example, in languages based on Hoare’s CSP [8, 9], such as
OCCAM [12], synchronous channels are strictly modeled as 1:1 relations. Informally,
the semantics of synchronous channels are such that when M sending and N receiving
activities want to communicate via a synchronous channel, jM � Nj (sender,receiver)-
pairs are selected nondeterministically and the message is transferred from sender to
receiver. This process continues until there are either no more senders or no more
receivers. To explain these semantics more accurately, assume that at a specific instant
there is a set S of activities that want to send a message via the synchronous channel
c. Furthermore, let R be a collection of activities that want to receive a message via
c. Denote by µ(S) the message that is to be sent by activity S. Message transfer via
synchronous channel c then proceeds according to the following algorithm:

let K = min(jRj, jSj)
while K > 0 do

let S ∈ S, R ∈ R;
S ← S � fSg;
R ← R � fRg;
transfer message µ(S) from S to R;
K ← K � 1;

endwhile

When message transfer has taken place, both sending and receiving activity continue. It
is thus seen that a total of min(jRj, jSj) (sender,receiver)-pairs are nondeterministically
constructed and the message belonging to the sender is transferred to the receiver.
Note that this means that if jSj > jRj that a total of jSj � jRj nondeterministically

6

selected senders will remain blocked, and likewise, if jSj < jRj, that a total of jRj� jSj
nondeterministically selected receivers will remain waiting for a message via c.

Message queues

ADL also provides support for modeling asynchronous communication by means of
message queues. As their name suggests, message queues provide a buffering capa-
bility for messages that preserves the order in which messages are sent. In other words,
an activity will receive messages in the same order as they were sent by a sending
activity. Message queues may either have an infinite or finite capacity. The graphical
representation of a message queue named messQueue with capacity capacity is as
follows:

messQueue

capacity

As with synchronous channels, message queues can be used to model an M : N
relationship between activities. When several activities attempt to receive a message
from a message queue, one of the receivers is selected nondeterministically and the
message at the front of the queue is removed and passed to that activity. This process
continues until there are either no more receiving activities, or the queue has become
empty. If there are no messages pending in the queue, a receiving activity will be
delayed. Similarly, if a number of activities want to send a message via a message
queue, one of the senders is selected nondeterministically and its message is appended
to the queue. This process continues until there are no more sending activities, or
because the queue becomes full. When no messages can be appended to the queue, a
sending activity will be delayed.

We can express these semantics more accurately as follows. Again, assume that
at a specific instant there is a set S of activities that want to send a message via the
message queue q. Furthermore, let R be a collection of activities that want to receive a
message via q. Denote by len(q) the length of q, by cap(q) its capacity, and by first(q)
the message at the front of the queue, if any. Communication via message queue q
then proceeds according to the following algorithm:

7

let K = min(jSj, jRj � len(q) + cap(q));
let Cq = cap(q);
let cap(q) = ∞;
while K > 0 do

let S ∈ S;
S ← S � S;
q ← q + µ(S);
K ← K � 1;

endwhile;

let K = min(jRj, len(q));
while K > 0 do

let R ∈ R;
R ← R � R;
transfer first(q) to R
q ← q � first(q);
K ← K � 1;

endwhile;
let cap(q) = Cq;

Only when a message µ(S) has been appended to the queue, will the sending activity
S continue. Likewise, only after transferring a message from the queue to a receiving
activity, will the latter continue. A few remarks concerning these semantics are in order.
In the first place, note that the capacity of the queue is temporarily set to infinity. This
has merely been done to express our algorithm,by letting a maximum number of senders
start with appending their message to the queue. Secondly, note that at any instant, a
maximum of jRj � len(q) + cap(q) messages from sending activities can be processed.
If S exceeds this number then jSj�(jRj� len(q)+cap(q)) nondeterministically selected
senders will remain blocked. Likewise, if there are not enough messages in the queue,
a total of jRj� len(q) nondeterministically selected receiving activities will block until
new messages are appended to the queue. Note further that the semantics of message
queues are defined in such a way that also queues with a capacity cap(q) = 0 are
well-defined. In that case, the algorithm above is seen to reduce to that of synchronous
channels.

Semaphores

Where data media are used for actual communication of data, token media are primar-
ily used to model synchronization of activities. Only a single type of token media is
currently supported in ADL: semaphores. The semantics of semaphores are conven-
tionally defined as ([7]):

wait(s) while s � 0 do od
s ← s � 1; return

signal(s) s ← s + 1; return

In ADL semaphores semantically correspond with message queues with infinite capacity
with the exception that tokens instead of data are queued. In particular, the length of the
message queue now corresponds with the traditionalvalue of a semaphore. This means

8

that sending a token to a semaphore is equivalent to performing a signal-operation,
whereas retrieving a token from a semaphore is the same as a wait-operation. As usual,
a semaphore in ADL may have an initial value, or, likewise, an initial number of tokens.
This leads to the following graphical representation for a semaphore named sema with
initial value initValue:

sema

initValue

Semaphores are generally used to protect critical regions in shared-variable environ-
ments. Shared variables are not supported in ADL, implying that semaphores will
generally be used for mutual exclusive access to other resources.

2.1.3 Some general remarks

So far, we have only mentioned in a rather abstract manner that data and tokens can
be communicated between activities. We have said nothing about the type of the
communication. For example, at the level of programming languages it is generally
required that messages are typed. The minimalist approach is followed by communi-
cation libraries that demand that at least the size of the message is provided. In the
current version of ADL, there is no means to specify data or token types. Instead, we
merely assume that data is represented by a sequence of bytes with a specified length,
and that tokens are nothing more than byte sequences of length 0. This implies that a
developer using ADL is fully responsible for conversion of typed data and token objects
to byte sequences and vice versa. The lack of strong typing facilities in ADL is to be
considered as an immature feature of the language that will be corrected in the future.

2.2 Structural organization

So far, we have discussed the basic components of an ADL structure model: activ-
ities and communication media. In this section we present a means for organizing
communicating activities as modular designs.

2.2.1 Designs

Activities and communication media are organized in ADL into so-called designs, re-
flecting their logical grouping based on functionality. Each design consists of at least
one activity, and, similarly, each activity is contained in precisely one design. Graphi-
cally representing the fact that an activity communicates via a specific communication
medium is done by means of arcs. In particular, if an activity sender sends information
to a communication medium cm, that is subsequently to be read by an activity reader,
this is graphically represented as shown in Figure 2.1.

The symbols “•” and “ ” represent so-called gates. They are discussed below.
Because activities can only communicate by means of communication media, it is
clear that it would syntactically be an error to draw an arc between two activities. In a

9

sender receiver

cm

Figure 2.1: The basic graphical representation of an ADL design.

Sender
Receiver

syncChan

Figure 2.2: A syntactically correct ADL design in which a communication medium has
at least one identifiable sender, and one identifiable receiver.

similar fashion, we consider a design to be erroneous when, for a given communication
medium, there are no identifiable (potentially) sending or receiving activities. Syntac-
tically, this implies that there should always be at least one arc from a communication
medium to an activity, and vice versa. We do not forbid that the sending and receiving
activity are the same. For example, the design shown in Figure 2.2 is syntactically
perfectly in order.

Activities can be decomposed into smaller units. In particular, these so-called
complex activities are activities that have been decomposed into a design, thus allowing
for a hierarchical organization. Activities which have not been decomposed are called
simple activities. Given this, it should now be clear that Figure 2.2 may even represent
a semantically sensible design. Instead that an apparent deadlock occurs, the activity
SenderReceiver may be decomposed into a number of parallel acting subactivities.

This organization of activities into designs leads to a structure model, which,
by definition, is a tree as shown in Figure 2.3. Only the activities contained in the
leaves of this tree are simple ones; the other activities are complex. An alternative
approach would be to construct the hierarchy as a directed acyclic graph (DAG). (In
fact, this is done during the development itself.) However, the structure model reflects
the organization of an application at a certain point of completion. Then, each activity
can be only have been refined to a unique subdesign, if any, which obviously leads to
a tree structure.

There is no separate syntactical representation for a design, other than the grouping
of activities and communication media according to their syntax. On the other hand,
we do assume that an implementation of ADL supports the notion of a design.

2.2.2 Gates

In data flow diagrams, the interface of an activity is not made explicit – a situation
which we feel is inappropriate when technical design issues are to be dealt with. In
particular, if a technique is to support the design of parallel applications, support
for communication structure design becomes apparent. In our view, an essential

10

level 1

level 2

level 3

d1

d1.1 d1.2

d1.2.1 d1.2.2

Figure 2.3: A structure model represented as a tree of designs.

input gates: output gates:

Internal InternalExternal External

Figure 2.4: Notations for internal and external gates.

aspect of designing communication structures for parallel applications is localization.
This means that a developer can concentrate on a relatively small part of of the
communication independent of other parts that constitute the overall communication
structure. In ADL, we have made the interface of an activity explicit through so-
called (input and output) gates. Gates in ADL provide a means to specify where
communication with an activity takes place, i.e. they serve as explicit access points to
communicate data or tokens with an activity. This is similar to the approach followed
in Mascot [3, 14]. A further distinction is made between gates that are either internal
or external to a design, leading to the graphical notations as shown in Figure 2.4.

Gates that are internal to a design (also called internal gates), represent where
activities and communication media are connected. Each internal gate is always
connected to exactly one communication medium by means of an arc. Gates that are
external to a design (called external gates) represent the interface of a single design.

An external gate always belongs to precisely one design. At the same time, it
should also be related to at least one internal gate of an activity contained in the same
design as the external gate. This relationship between an external gate and one or more
internal gates is referred to as a horizontal gate association. It reflects the relationship
between external and internal gates in a single design. Likewise, each internal gate
of a complex activity, i.e., an activity which has been decomposed into a number of
designs, should be associated by means of a so-called vertical gate association with
precisely one external gate of its child design. A vertical gate association thus reflects
the relationship between an internal and an external gate in different designs. These
notions of horizontal and vertical gate associations are illustrated in Figure 2.5.

To explain and illustrate the semantics of these associations, suppose that a complex

11

parent
activity

child
activity

child
activity

design

child design

vertical
association

horizontal association

horizontal
association

Figure 2.5: The hierarchical organization of activities as designs.

activity A has a an internal gate gin which is connected to a communication medium c.
Furthermore, let A be decomposed into a design D̃ consisting of subactivities Ã1, … Ãn.
Firstly, the internal gate gin attached to A should be vertically associated with exactly
one external gate g̃ext of D̃. This external gate should be horizontally associated with
at least one internal gate of D̃. Gates that are internal to D̃ can, in turn, be horizontally
associated with either zero or one external gate of D̃. Assume that gate g̃in is an internal
gate of D̃, and is horizontally associated with the external gate g̃ext. Then, semantically,
this association implies that all communication through gate g̃in also passes through
gate gin of the parent activity A. Consequently, the internal gate g̃in is thus indirectly
connected to the communication medium c. This is also illustrated in Figure 2.6.

2.3 Advanced communication issues

The concepts introduced so far are based on what could be referred to as traditional
communication features. In this section we introduce two more advanced features:
timed communication and multicasting operators.

2.3.1 Timed communication

Besides their use as a means to specify where communication is to take place, gates
are also used to show when communication should take place from the moment an
activity is willing to communicate. To this aim, gates are subject to so-called timed
communication. Three types of timed communication are available in ADL:

• In the case of blocked communication at a gate g, an activity which is waiting
for communication via g, will not proceed until data or token transfer through g
has actually taken place.

12

parent
activity

child
activity

child
activity

syncChan

messQ

(a)

child
activity

child
activity

syncChan

messQ

(b)

Figure 2.6: The relationship between internal and external gates with respect to com-
munication media. Figure (b) is semantically equivalent to (a).

• In the case of non-blocked communication at gate g, an activity will never wait
until communication through g takes place, unless it can take place immediately.

• Finally, delayed communication indicates that an activity is willing to wait for
communication until a specified amount of time has elapsed.

The graphical notations for the various gates in ADL is shown in Figure 2.7. Blocked and
non-blocked communication are in fact special cases of delayed communication. If ∆t
denotes the specified time an activity is willing to wait before communication can take
place, then clearly the case ∆t = 0 corresponds to non-blocked communication whereas
the case ∆t = ∞ is the same as blocked communication. For practical reasons, we have
chosen to incorporate all three communication types. Also note that these forms
of communication relate to the moment when communication should take place as
required by the communicator, and if this requirement could not be met communication
is cancelled all together. This is different from (a)synchronous communication which
involves all communicating parties, and which is, in principle, never cancelled.

Anticipatingour discussionon timed communication and hierarchical organization,
we note here that the timing shown at a gate is generally variable. Depending on the
refinement of an activity into constituents (and as we shall see later, also into state-
transition machines), the timing may vary with the actual communication that an
activity wants to perform at a certain instant in time. We shall return to this issue
further below and in the following chapter.

Timed communication affects the semantics of communication via data or token
media in a number of ways. In the first place, note that the semantics for synchronous
channels, message queues, and semaphores have been formulated in terms of blocked
communication. In other words, whenever communication could not take place (for
whatever reason), a communicating party will be delayed. Using non-blocked com-

13

input gates: output gates:

Internal InternalExternal External

blocked

delayed

nonblocked

Figure 2.7: Notations for ADL gates.

wait
activity

signal
activity

cond
wait

activity

sema

0

Figure 2.8: An example of a design using conditional semaphores.

munication, however, we can model other situations as well.

Example 2.3.1. Conditional semaphores are like general semaphores but support a
so-called conditional wait-operation [2] having the following semantics:

condwait(s) if s � 0 return false
else s ← s � 1; return true

In other words, rather than delaying a caller until the semaphore’s value can be decre-
mented, control is passed back with notification of the failure. A conditional wait
operation can easily be modeled in ADL using timed communication by means of a
non-blocked input gate connected to a semaphore. Such a design is for example shown
in Figure 2.8.

2

Note, as a matter of fact, that using delayed or non-blocked communication on an
output gate connected to a semaphore (corresponding to a signal-operation) has the
same effect as blocked communication because communication will always succeed.
A similar case holds for output gates connected to message queues having an infinite
capacity.

14

block
append
activity

read
activity

nonblock
append
activity

messQ

100

Figure 2.9: An example of a design using blocked and non-blocked appending of
messages to a queue with finite capacity.

Example 2.3.2. Message queues are generally implemented with a finite capacity. A
question that needs to be addressed then is what the semantics should be in case the
capacity is exceeded. Depending on the underlying runtime system, senders will either
be blocked, or notified that communication failed. In ADL, it is the designer who
specifies the semantics, rather than this being implementation dependent. Using non-
blocked communication on an output gate connected to a message queue, the developer
specifies that failure of message transfer should be notified. Otherwise, in the case of
blocked communication, the developer specifies that the sending activity should block
until message transfer can take place. Syntactically, these situations are represented as
shown in Figure 2.9.

2

2.3.2 Timed communication and hierarchical organization

Now, what can we say about the timing at an internal gate gin of a complex activity A?
According to what has been said above, gate gin should be vertically associated with
an external gate g̃ext of its child design (which we refer to as D̃). Gate g̃ext, in turn,
should be horizontally associated with one or more gates that are internal to D̃. Denote
these internal gates as g̃1

in, …, g̃m
in, and let ∆ti denote the specified timing at gate g̃i

in,
i.e., ∆ti ∈ [0, ∞) ∪ f∞g. Now, first of all, note that the specified timing behavior at an
internal gate expresses how long an activity is willing to wait before communication
should take place. When a number of gates are horizontally associated with an external
gate then clearly the ensemble of activities connected to that gate is willing to wait at
least ∆tmin and at most ∆tmax time units where

∆tmin = min
i=1…m

f∆tig and ∆tmax = max
i=1…m

f∆tig.

Consequently, the time that the parent activity A is willing to wait is equal to the
maximum waiting time of its children, i.e. ∆tmax. This puts an upperbound on the
timing shown at gate gin. Likewise, ∆tmin is a lowerbound for the timing at this gate.
To reflect the situation that timing may vary, we introduce a separate notation for those
cases that ∆tmin < ∆tmax as shown in Figure 2.10.

15

input gates: output gates:

Internal InternalExternal External

? ? ? ?

Figure 2.10: The graphical notations for gates with variable timing.

2.3.3 Multicasting

The communication media in ADL can all be used to model M : N relationships
between communicating activities. However, sending a message always implies that
precisely one activity will receive that message (assuming that there are activities
actually prepared to communicate with the sender). An alternative communication
scheme is multicasting which is also supported in ADL. Informally, multicasting a
message yields that a message is sent to a preselected group of activities.

In ADL, any communication media (i.e. synchronous channel, message queue, or
semaphore) can be used as the basis for multicasting. In particular, multicasting a
message m via a communication medium c yields that m is replicated and sent to all
activities that have been modeled as receivers. A further distinction is made between
post-medium and pre-medium multicasting.

• In the case of post-medium multicasting, a message can only be transferred to
the receiving activities if this can be done simultaneously to all of them.

• In the case of pre-medium multicasting, the message is sent to each receiving
activity individually. This implies that the message may be received at different
times by the receivers.

In essence, post-medium multicasting yields that a message is replicated after the se-
mantics of the communication medium have been taken into account. In the case of
pre-medium multicasting, messages are first replicated after which the semantics of the
communication are followed per receiving activity. Multicasting in practice generally
follows the semantics of our notion of pre-medium multicasting. Post-medium multi-
casting resembles atomic multicasting [15]. Figure 2.11 shows the graphical notation
for distinguishing respectively post-medium and pre-medium multicasting. We shall
consider both forms of multicasting for each available communication medium.

Synchronous channel

Post-medium multicasting via a synchronous channel implies that communication
can only take place if all receivers are willing to accept a message from a sender.
In particular, all communicating parties, i.e. sender and receivers, synchronize on
communication. To illustrate, consider the two situations shown in Figure 2.12.

If we assume in Figure 2.12(a) that sender and receiver1 are ready for communica-
tion, they will both have to wait until receiver2 is also ready to accept the message. At

16

(a) (b)

Figure 2.11: The notations for post-medium multicasting (a) and pre-medium multi-
casting (b).

receiver
1

sender

receiver
2

syncChan

receiver
1

sender

receiver
2

syncChan

(a)

(b)

Figure 2.12: An example of a postmedium multicasting via a synchronous channel
which is in order (a), and one which is rather hazardous (b).

17

receiver
1

sender

receiver
2

syncChan

Figure 2.13: An example of a premedium multicasting via a synchronous channel
using delayed communication.

that instant, message transfer takes place. Clearly, then, the situation in Figure 2.12(b)
is reflects a rather poor design as it can be expected that once receiver1 is ready to
accept a message via syncChan, the possibility that this will ever happen is indeed
very small. Communication can, namely, take only place at the very instant that both
sender and receiver are willing to communicate.

In the case of pre-medium multicasting, the receiving entities will synchronize
with the sender, but not with each other. In particular, this means that a receiver may
continue the instant it has received the message. Pre-medium multicasting does lead
to the situation that partial failure of communication may occur. This differs from
post-medium multicasting in which communication succeeds entirely, or otherwise
fails completely. To illustrate, consider the situation shown in Figure 2.13.

Now suppose that at the instant sender wants to send a message to both receiver1
and receiver2, that only receiver1 is waiting for such a message. Denote by ∆t the
specified timing at the output gate ofsender. By definition of pre-medium multicasting,
the message is replicated and sent to receiver1, regardless if receiver2 is willing to
accept the message as well. However, if receiver2 is not prepared to receive any
message from sender before ∆t time units have elapsed, sender will withdraw from
further communication via syncChan. Consequently, the multicast will only have
succeeded partially. As we shall see in the next chapter, this partial failure cannot be
directly reported to sender, who instead, will receive an event indicating a complete
failure.

Message queue

When considering message queues, post-medium multicasting yields that a message is
removed from the front of the queue the instant that all receiving activities are prepared
for communication. The message is then transferred to all receivers simultaneously.
A few observations are important to note. In the first place, just as with post-medium
multicasting via synchronous channels, all receiving activities synchronize. Secondly,
observe that if, respectively, two messages m1 and m2 are sent in that order, that no
receiver will ever read message m2 before all receivers have read message m1. In other
words, message receipt within the group of receiving activities is never skewed.

Pre-medium multicasting via message queues is commonly applied in practice.
In this case, one can imagine that instead of a single message queue each receiving

18

server

Figure 2.14: Combining post- and pre-medium multicasting.

activity as its own message queue. Multicasting a message yields that the message is
replicated, and appended to each individual queue. Consequently, receiving activities
do not synchronize as was the case with post-medium multicasting. Also, although the
order of message transfer is still preserved between a sender and a receiver, it is now
possible that message receipt within the group of receiving activities is completely
skewed. In other words, if messages m1 and m2 are sent after each other, it is possible
that a receiver R1 will have already read message m2 before receiver R2 has read
message m1.

Note that by nature of message queues, pre-medium and post-medium multicasting
are two extremes. An alternative form would be to allow multicasting in a such a way
that no skewing of message receipt between receivers occurs (a feature of post-medium
multicasting), but that, on the other hand, receivers need not synchronize (a feature
of pre-medium multicasting). This form of multicasting is not supported in ADL, but
instead should be modeled as a combination of normal communication via a message
queue, and pre-medium multicasting via a synchronous channel. This is shown in
Figure 2.14. In this case, the activity server simply removes each message from the
front of the queue and transfers it to the synchronous channel where it is multicasted
to the receivers. Clearly, the receivers no longer synchronize on message receipt, but
never is a message read before all other receivers have read its predecessor.

Semaphore

By viewing semaphores as token-bearing message queues, the semantics of post-
and pre-medium multicasting via a semaphore should now be clear. In the case
of post-medium multicasting, a number of receiving activities will synchronize on
their individual wait-operation. In other words, signaling a post-medium multicasted
semaphore is to be interpreted that a collection of receivers should synchronize on
a single event. On the other hand, a pre-medium multicasted semaphore is to be
interpreted as a medium that allows a sender to indicate that each activity from a group
of receivers is to react on a repeated event, as often as the event as occurred. No
synchronization between the receiving activities will take place.

19

2.4 Summary

A structure model is a hierarchical organization of activities that communicate with
each other by explicitly passing data or tokens through communication media. The
interface of an activity, or a group of activities (referred to as a design) is modeled
explicitly in the form of respectively internal and external gates.

There is no notion of shared data, and the semantics of communication between
activities strongly follows that of general message-passing programming models. How-
ever, an explicit distinction is made between how and when communication or synchro-
nization takes place. The former is expressed through synchronous channels, message
queues, and semaphores. When communication should have started is modeled by
means timed communication at gates, which can either be blocked, non-blocked, or
delayed.

In addition, multicasting is supported for each communication medium. Two
forms are available. Post-medium multicastingsynchronizes the collection of receiving
activities in the sense that a message is only transferred to the receivers if all of them
are prepared for receipt. Pre-medium multicasting replicates a message, after which
communication follows the semantics of the medium via which communication is to
take place.

20

3

Behavioral model

Activities form the units of behavior in ADL and obviously there should be a means
for supporting the description of behavioral aspects. In ADL this is done by means of
state-transition machines (STMs) which collectively form the behavioral model of an
activity. They are the subject of this chapter.

3.1 Introduction

In most methods based on data flow diagrams, there is a strict distinction between data
activities and control activities. Data activities are used for modeling data transfor-
mations, whereas control activities describe the system’s flow of control. In order to
describe data transformations, pseudo-code, or sometimes even a high-level procedu-
ral language is used. Control flow is described by means of state-transition machines.
When separating control and data transformations, the process of integrating them
(which is required for an implementation) may turn out to be less straightforward than
one would initially expect.

An alternative approach that has been adopted by object-oriented development
techniques, is to encapsulate control and data functionality into a single entity. And
indeed, practice indicates that this approach is quite elegant when it comes to designing
applications. In ADL, there is also no explicit distinction between control and data
functionality: both are encapsulated into activities. In this sense, ADL can be considered
as an object-based design language (see also [10, 19]). Continuing our line of thought,
it seems natural to devise a technique for designing the behavior of an application on
a per activity basis. In other words, given a structural model, a developer should be
able to design the behavior of each individual activity. To this aim, ADL supports a
notion of state-transition machines, of which there will be precisely one for each
simple activity. The behavior of complex activities is assumed to be captured by the
composite behavior of its sub-activities.

The ADL state-transition machines have been partly inspired by those used in Ja-
cobson’s approach [10], which in turn are based on similar concept defined in CCITT’s
Specification and Description Language [5, 13].

21

output states

blocked

non-blocked

delayed

input states

Processing states

initial

computation

Communication states

final

Figure 3.1: The notations for states in state-transition machines in ADL.

3.2 State-transition machines

In ADL each simple activity has precisely one associated state-transitionmachine (STM).
The behavior of complex activities is always assumed to be specified by the collective
behavior of their constituents. An STM consists of a finite number of states and an
execution mechanism by which state-transitions are made. At each time instant, the
activity to which the STM is associated will always reside in exactly one of the states
specified by the STM. This state is also denoted as the current state. In the following
sections we shall mainly concentrate on the explanation of the execution mechanism
as this describes the (operational) semantics of our state-transition machines, and thus
the behavior of activities.

3.2.1 Basic states

The set of states in an STM is essentially partitioned into two subsets: the set of so-called
processing states, and the set of communication states. Communication states come
in two kinds: input states and output states, and are further divided according to the
three types of timed communication. The syntactical notations for states is shown in
Figure 3.1.

Processing states

Processing states are used to model those behavioral aspects which are not related to
communication. Three different types of processing states are distinguished: a single
initial state, computational states, and final states.

The initial state indicates where an activity starts for the first time. It is typically
used to model the initialization section of an activity’s behavior. Processing states
serve to model a series of pure sequential statements in which no communication with
other activities takes place. Final states, of which there may be several in a single

22

STM, are typically used for modeling a finalization section of an activity’s behavior.
Contrary to an initial state, an activity need not have a final state as part of its STM.

Communication states

A communication state reflects the situation that an activity is currently involved in
communicating data or tokens with some other activity. Two types of communication
states are distinguished: input states representing the situation that data or tokens are
received, and output states representing the transfer of data or tokens to other activities.
Each input or output state is always associated with exactly one internal input or output
gate, respectively, of the simpleactivity associated with the STM. The converse need not
be true: an internal gate can have several associated communication states, reflecting
the situation that communication through that gate may occur at different moments in
time. The communication state determines the actual timing at the gate it is associated
with.

3.2.2 Transitions

A transition between states is formally provided by means of a transition specification
and consists of precisely one source state and one target state. The transition is always
made from the source to the target state. With respect to the structural aspects of a
state-transition machine, we demand that each state is reachable from the initial state.
This can be expressed more accurately as follows. Denote by S the set of states, and
by T ⊆ S × S the collection of transition specifications. For any state s ∈ S define the
set R (s) of reachable states from s recursively as follows:

1. s ∈ R (s)
2. u ∈ R (s), (u, v) ∈ T ⇒ v ∈ R (s)

We then demand that if sinit is the initial state, that R (sinit) = S. We now take a closer
look at transitions with respect to processing and communication states.

Processing states

In the case of processing states, the following rules with respect to transitions apply.
The initial state can never be specified as the target state in a transition specification.
In addition, precisely one transition specification should include the initial state as
source state. Likewise, a final state can never be the source state of a transition
specification, but, on the other hand, may be specified as target state of several transition
specifications.

Processing states may occur as the source state of at least one, but possibly also
more transition specifications. Selection of a transition originating in a processing state
is nondeterministic from the point of view of the execution mechanism underlying
state-transition machines. However, as we shall discuss further below, the execution
mechanism itself can be refined in such a way that nondeterministic selections can be
avoided.

Transition specifications originating in a processing state are graphically repre-
sented by a solid arc from the processing state to a target state.

23

Communication states

Transitions originating in communication states are related to so-called events. An
event is always raised by a gate. Two types of events are distinguished in ADL:

• a transfer event is raised by an input or output gate whenever a data or token
passes through it,

• a timeout event is raised by either an input gate or an output gate whenever the
timing constraints cannot be met.

Whenever an activity is residing in a communication state, it can only make a transition
to a next state on the occurrence of an event. In the case of communication states
there are two types of transition specifications. A transfer transition specification
specifies the state to which a transition is made whenever a transfer event is raised. It
is graphically shown as solid arc from the communication state (the source state) to the
next state (the target state). Likewise, a timeout transition specification specifies the
state to which a transition will be made on account of a timeout event. It is graphically
notated as dashed arc from the source to the target state. For each communication
state precisely one transfer transition specification must be provided. In addition, if
a communication state is subject to either delayed or non-blocked communication, a
timeout transition specification should also be given.

3.2.3 Select states

ADL supports two forms of composite states: single select select states and total select
states. They are collectively referred to as select states. A select state always consists
of two or more communication states. Input and output states may be jointly used
to compose a select state. No two communication states within a select state can be
associated with the same gate. The collection of gates associated with a select state is
simply the union of gates to which its constituents are associated.

None of the communication states in a select state can ever occur as the target
state of a transition specification. The select state itself, however should be reachable
from the initial state. The definition of reachability is extended in such a way that all
constituents of a select state are reachable from the initial state if the select state itself
is reachable from the initial state. Specifying select states and its constituents as source
of transition specifications is dependent on the type of select states. This is discussed
below.

Single select state

A collection of communication states can be aggregated into a so-called single select
state. A single select state is used to model those situations in which one of sev-
eral possible communications may occur. The graphical notation for a single select
statement is shown in Figure 3.2(a).

The constituents of a single select state adhere to the rules of normal communication
states with respect to their specification as source states of transition specifications. This
means that for each communication state precisely one transfer transition specification
should be provided, and in addition, for each communication state that is subject to

24

(a) (b)

Figure 3.2: The notation for a single select state (a) and a total select state (b) in ADL.

delayed or non-blocked communication, there should also be one timeout transition
specification. The first event that is raised after entering the select state determines the
selection of the transition to the next state.

Total select state

Besides the notion of a single select state, ADL state-transition machines also support
so-called total select states. Again, total select states consist of a collection of com-
munication states. Contrary to a single select state, however, total select states are
used to model those situations in which several communications need to be performed
(or perhaps timed out) before continuation. The order in which communication takes
place is considered irrelevant. Figure 3.2(b) shows the graphical notation for a total
select state.

The constituents of a total select state can never be specified as the source of
a transition specification. Instead, there should be precisely one transfer transition
specification in which the select state is specified as the source. In addition, if any
of the communication states in the select state is subject to delayed or non-blocked
communication, there should also be precisely one timeout transition specification
originating in the select state.

The transfer transition is selected as soon as all communication has taken place,
where each constituent state has been visited precisely once. The timeout transition is
selected on the first timeout event raised by any of the gates associated with the select
state. It is important to note that such an event indicates that communication did not
fully succeed and that it can never fully succeed. However, it cannot be determined
if any communication took place while residing in the select state before the timeout
event was raised.

These semantics can be expressed more accurately as follows. Denote by S =
fS1, …, Sng the collection of communication states in the total select state, and let gi

denote the gate to which state Si is associated. A transfer event raised by gate gi is
denoted as τi, whereas a timeout event is denoted as �i. The events that can be handled

25

at a specific time by a collection of states R is denoted as E(R). Finally, denote by
µ(Si) the message that is to be transferred via gate gi on account of the semantics of
state Si. The execution mechanism in a total select state then proceeds according to the
following operational semantics.

let R = S;
while R 6= ; do

waituntil
∃τi ∈ E(R) ⇒ transfer µ(Si); R ← R � Si;

or
∃�j ∈ E(R) ⇒ select timeout transition;

endwait
endwhile
select transfer transition;

As soon as a transition is selected the execution mechanism immediately continues
according to the semantics of the selected next state.

3.3 Tailoring the execution mechanism

As we have mentioned, it is possible to further refine the execution mechanism un-
derlying an STM. To this aim, we anticipate that processing states are further refined
by attaching a series of sequentially executable statements from a guest language. At
present, ADL is targeted to support “C” as its only guest language. To this aim, we
demand that an implementation of ADL supports either the identification of each transi-
tion originating in a processing state, or otherwise the identification of a next selectable
state. Specifying a transition is then to be supported by a simple library routine, such
as e.g., transit(transition) or select(next state) of which the execution
yields an immediate state-transition.

3.4 Summary

Where the structural model of an application reflects the static aspects of an applica-
tion design, the behavioral model describes the behavior of activities. The behavioral
model is constructed through state-transition machines (STMs) for which there is one
per simple activity. An STM is constructed as a collection of states for which tran-
sition specifications are provided. Two types of states are essentially distinguished:
processing and communication states.

A processing states represents a part of the behavior of an activity which is charac-
terized by absence of communication. A communication state models the sending or
receipt of messages, and as such is always associated with exactly one internal gate of
the simple activity associated with the STM. State transitions originating from a pro-
cessing state are chosen nondeterministically. Those originating in a communication
state are selected on the basis of the occurrence of either a transfer or timeout event
which are raised by the gate to which the communication state is associated.

Communication states can be grouped into either a single select state or a total
select state. A single select state reflects the situation that alternative communications

26

are possible at a specific time. The first communication that takes place, or fails due a
timeout, determines the behavior of the single select state. Total select states are used
to model those situations in which a number of communications should take place, but
in which the order of communication is irrelevant. The first timeout event that is raised
by a gate to which one of the constituent states in a total select state is associated,
causes a transition from the select state.

27

4

Process replication

Activities reflect logical communicating entities. As such they form the means to model
the functionality of a system. ADL has been developed to capture part of the intricacies
related to parallel application development. To that aim, it also supports the notion of
processes. A process is quite similar to an activity, but distinguishes itself from the
latter by the fact that it is explicitly used for modeling sequential executions. As such,
processes deal with modeling nonfunctional aspects. In this chapter we discuss how
processes can be used to exploit parallelism in an application.

4.1 The process model

As the unit of sequential behavior in ADL is formed by a simple activity, such an activity
also forms the basic means to construct processes. By default, each simple activity is
considered to be a process. A process, then, is an active entity that can be executed
on a processor and as such will behave according to the specifications given by the
state-transition machine of the associated simple activity. In order to hierarchically
organize a collection of processes and communication media, the structure model of
an application is first “flattened” by considering only the simple activities and all com-
munication media. The hierarchical organization of the structure model is discarded
by removing the complex activities, and recursively replacing vertical and horizontal
associations by direct connections between communication media and activities, as
explained in Section 2.2.2 (see also Figure 2.6). This flattened structure model results
in a directed bipartite graph where the nodes are now formed by the set of processes
and communication media, and the links as the connections between them. The model
itself is denoted as the root task.

The root task can be decomposed by repeatedly grouping a number of processes
and communication into subtasks. If P denotes an arbitrary set of processes, and C a
set of communication media such that if process P is connected to a communication
medium c ∈ C, then also P ∈ P, then a subtask T can be constructed by the graph
induced by the set P ∪ C, i.e., it consists of all elements from P ∪ C, including
the connections between them. Such a subtask is denoted as a complex process if
jPj > 1. This grouping of processes and communication media is to be repeated until
each process is associated to precisely one subtask, and each communication medium
is associated to at most one subtask. The result is that the root task will have been

28

decomposed into a number (complex) processes that communicate by means of the
communication media that have not been associated to any subtask. Decomposition
may then proceed by repeating this procedure of grouping for any complex process.
This, eventually, leads to a so-called process model.

Introducing two very similar, but distinct entities (designs and tasks, activities
and processes), in principle allows us to develop two possibly radically different
hierarchies: one for capturing functional aspects (the structure model), and one for
capturing nonfunctional aspects (the process model). However, the distinction between
a design and a task is, to a certain extent, artificial: in ADL a design and a task are
treated as a single entity. Our assumption is that at a certain stage in the design process
of an application, the complete organization of an application into logical units is the
same as the organization into executable units. In terms of Ward and Mellor [18] we
are thus assuming that essential modeling and processor modeling lead to the same
application model.

The relationship between a process model and a structure model is similar to the
relationship between a variable and its type in imperative programming languages, or
between an instance and its class in the world of object-orientation. The process model
thus reflects the structure of a specific implementation. As such, it can be annotated,
meaning that additional information is supplied which does not affect the functionality,
but is purely directed towards deriving a “better” implementation. In the case of ADL,
one sort of annotation that is currently supported, is that of process replication. These
annotations are targeted towards performance enhancements by replicating processes,
and thus enhancing parallelism in an implementation. A second form of annotation
which is anticipated, but not yet supported, is that of mapping objects in a process
model to the hardware resources of a target machine.

4.2 Process replication

Process replication in ADL is entirely constructed by means of model annotations.
These annotations are not considered as part of the language core, but instead, are
merely abbreviations to concisely express repetitive structures. These structures are
expressed by using so-called replicators and connection statements.

4.2.1 Replicators

Substructures in an ADL task can be replicated by applying a so-called replicator.
A replicator consists of a replication factor which is a positive integer, say N, and a
replication index which is an integer variable taking values from the set f0, …, N�1g.
A replicator with replication factor N and replication index j is graphically denoted as

N
j

A replicator can be applied to a substructure of a task by selecting a number of processes
and communication media. These sets are denoted as the replication process set
and replication media set respectively and are graphically identified by drawing a
dashed arc from the replicator to each element that takes part in the replication. A
communication media can only be selected if all processes that are connected to it are

29

selected for replication as well. The effect of applying a replicator can be formulated
more accurately as follows. Denote by (N, j) a replicator, applied to a substructure
consisting of a set of processes P and a set of communication media C. Let T denote
the task before replication, and T� the task after applying replication.

1. For each communication medium c ∈ C we have that if a process P is connected
to c, then it should also hold that P ∈ P.

2. For each process P of T, with P 6∈ P, then P will also be part of T�. Similarly,
for each communication medium c of T with c 6∈ C, c will also be part of T�.

3. For each process P ∈ P, P is replicated N times yielding the processes P1, …, PN

in T�. Similarly, each communication medium c ∈ C is replicated N times
resulting in the communication media c1, … cN in T�.

4. Let P denote a process in T, and c a communication medium. Assume that P is
connected to c in T. Then, the resulting connections in T� are as follows:

(a) P 6∈ P, c 6∈ C: P is connected to c like it was in T.
(b) P ∈ P, c 6∈ C: c is connected to each process Pk in T�, as it was connected

to P in T.
(c) P 6∈ P, c ∈ C: this situation cannot occur.
(d) P ∈ P, c ∈ C: then for each j ∈ f0, …, N� 1g we have that Pj is connected

to cj in T� just as P was connected to c in T.

The first condition may seem as a rather restrictive one. What it effectively estab-
lishes is that no additional connections will ever be made to an activity on account
of replication. Consequently, the interface of an activity is left intact. When dealing
with an implementation environment based on CSP, this restriction may lead to serious
problems. In these environments, communication between processes is always strictly
1 : 1, i.e. point-to-point, and special measures have to be taken to relax this constraint.
However, from a design point of view, these restrictions are viewed as sources of
overspecification, and should be dealt with solely during the implementation phase.

Let us illustrate the notion of a replicator by an example.

Example 4.2.1. Consider Figure 4.1(a) which shows a simple task consisting of three
processes S, R, and A. Also, there are three communication media SM, RM, and M. For
the sake of clarity, we have omitted further specification of the type of the respective
communication media, and have also not specified any gates. The replicator (N, j) is
applied to A and M, which results in the altered task shown in Figure 4.1(b) in the case
that N = 4.

2

If a complex process is replicated, then the complete task into which it has been
decomposed is replicated as well. Also, a process or communication medium may be
subject to several replications, referred to as replication composition. Assume that an
object O is subject to two replicators R1 and R2. Denote by Pk the replication process
set of Rk, k = 1, 2. Furthermore, let P ∈ P1 ∩ P2, and assume that R1 is applied first

30

(a) (b)

M[0]

SM

M[1] M[2] M[3]

A

M

RS
SM RM

N
j

A[0] A[1] A[2] A[3]

RM

RS

Figure 4.1: The result of applying a replicator with replication factor 4.

resulting in the replication of P into N copies P1
1, …, P1

N. In that case, the set P2 is to be
replaced by the set

P2 ← P2 � P + fP1
1, …, P1

Ng.

In other words, all replicated processes P1
i are to be subject to application of replicator

R2. An important observation is that it can be readily shown that repetitive application
of replicators is commutative. In other words, if R2�R1 denotes the fact that replication
R2 is applied after application of replicator R1, we have that

∀R1, R2 :: R2 � R1 = R1 � R2.

Example 4.2.2. To illustrate, consider the replication specification shown in Fig-
ure 4.2(a), and consider the case that N = 3 and M = 2. If we first apply replicator
R1 = (N, j) and then R2 = (M, i) we obtain the situation shown in Figure 4.2(b). Note
how after application of R1, we need to replace the set of processes to which replication
of R2 should be applied, by removing A, and adding its replicated counterparts. Anal-
ogously, Figure 4.2(c) shows the application composition R1 � R2. It is not difficult to
see we indeed have that R2 � R1 = R1 � R2.

2

If Pk and Ck denote the replication process set and replication media set, respectively, of
a replicator Rk, we use the following abbreviated notation for a replication composition
Rj � Ri in the case that Pi = Pj and Ci = Cj:

N
j

M
i

31

(b)

M
i

M2[0]

M2[1]

M2[2]

M2[0]

M2[1]

M2[2]

M1[1]M1[0]

(c)

N
j

M1[0]

M1[1]

M1[0]

M1[1]

M2[0]

M2[1]

M2[2]

(a)

A M1M2

M
i

N
j

M1

M2

Figure 4.2: An example of replication composition where a process is subject to two
replicators.

32

4.2.2 Connection statements

Replication introduced so far is not sufficient to be used as a means for specifying
regular communication structures. Examples of such structures are pipelines, arrays,
meshes, hypercubes, etc. To that aim, we need a means of specifying how the actual
connections between processes and communication media should be provided. In ADL,
this can be done by annotating connections with so-called connection statements.
Connection statements come in two forms: redirection statements and attachment
constraints. We shall first discuss both concepts and then illustrate their applicability.

Redirection statements

Redirection statements are annotations to connections between objects to which the
same replicator is to be applied. They take the form:

source index expression ← target index expression

A source index identifies the source object of the connection after replication has
taken place. Similarly, the target index expression indicates a single target object after
replication. Note that, by definition the source and target object are always distinct: a
connection can only be made between a process and a communication medium. Now
suppose there was a connection before replication from an object source to an object
target. A redirection statement

i ← expr(i)

will then connect source[i] to target[expr(i)], instead of the default connection from
source[i] to target[i]. The target index expression expr(i) corresponds to an integer
function E(i) on i where i ∈ f0, …, N � 1g, and N is the replication factor. In those
cases that E(i) 6∈ f0, …, N � 1g, the expression is said to be out of range, yielding that
the connection is discarded all together. If this also implies that if source[i] no longer
satisfies the syntax rules of ADL, then source[i] and its connections are discarded as
well. It is important to note that due to this rule, less objects may be replicated than
specified by the replication factor.

Attachment constraints

Attachment constraints are annotations to connections between two objects of which
only one was subject to replication. An attachment constraint takes the form

index relop index expression

where relop is a usual mathematical relationship operator. The variable index refers
to the object that is subject to replication, and after replication has taken place. After
replication, connections for which the attachment constraint does not hold are dis-
carded. If the attachment constraint fails to hold for any connection, it is considered to
be at fault.

33

4.3 Examples

To illustrate the applicability of connection statements, we consider two examples.
Both examples are based on the process model shown in Figure 4.1(a).

Example 4.3.1. In order to specify a pipeline of processes, we attach connection
statements as shown in Figure 4.3(a). Now assume in this case that the replication factor
N = 5. Then, because no redirection statement has been attached to the connection
from A to M, there will be a connection from each replicated process A[j] to M[j],
where 0 � j � 4. This is in accordance to the default replication rules described in
Section 4.2.1. The redirection statement

j ← j + 1

attached to the connection from M to A, specifies that, after replication, for each j,
with 0 � j � 4, M[j] should be connected to A[j+1]. However, because M[4] cannot
be connected to A[5] for the simple reason that A[5] will not exist, this connection is
discarded. This would imply that only the connection A[4] to M[4] would exist which
violates the syntax rules of ADL. Consequently, M[4] is discarded all together. This
single redirection statement then leads to the pipeline of processes A[0] … A[4] shown
in Figure 4.3(b).

Now consider the two connection constraints. In the first place, the constraint

j = 0

attached to the connection from SM to A, specifies that the only connection that is to
be made after replication, is the one from SM to A[0]. Similarly,

j = N-1

implies that there will only be a connection from A[4] to RM.
2

Example 4.3.2. A more intricate example is the specification of an array of processes.
Consider the specification shown in Figure 4.4(a). In the first place, we now distinguish
two communication media M1 and M2 which are to be replicated. Moreover, these
communication media, together with A are subject to two replications: R1 = (N, j) and
R2 = (M, i). Initially, this will lead to a collection of N × M objects A[i][j], M1[i][j], and
M2[i][j], respectively. The default connections are as follows:

M1[i][j] �→ A[i][j]
A[i][j] �→ M1[i][j]

M2[i][j] �→ A[i][j]
A[i][j] �→ M2[i][j]

SM �→ A[i][j] for each i, j
A[i][j] �→ RM for each i, j

By adding redirection statements and connection constraints these defaults can now be
overruled as follows. Assume that N = 4 and M = 3. First, completely analogous to

34

N
jj -> j+1

A

M

R

j = 0 j = N-1

S

SM RM

A[0]

M[0]

S

SM

R

RM

A[1] A[2] A[3] A[4]

M[1] M[2] M[3]

(a)

(b)

Figure 4.3: The specification of a pipeline of processes using replication.

35

the previous example, we construct a series of pipelines by attaching the redirection
statement

j ← j+1

to the connection from M1 to A. Again, all replicated communication media M1[i][4]
are discarded for the same reason that M[4] was discarded in Example 4.3.1. The
redirection statement

i ← i+1

attached to the connection from A to M2 establishes the connection between the
pipelines as shown in Figure 4.3(b). Again, the communication media M2[3][j] are
discarded as this would lead to a violation of the ADL syntax rules. The connection
statements should now be obvious.

2

4.4 Summary

In order to facilitate the exploitation of parallelism in a design, an ADL structure
model can be converted into a process model that can subsequently be annotated.
A process model describes the application as a collection of parallel processes. By
using annotations, complete substructures can be replicated into a series of isomorphic
substructures yielding a new process model. By attaching redirection statements
and connection constraints, the replicated substructures can be reformed to regular
structures such as pipelines and arrays.

36

N
j

j -> j+1

A

M1

R

i = 0 & j = 0

S

SM RM

M
i

M2

i = M-1 & j = N - 1i -> i+1

(a)

(b)

A[4][2]

M1[2][1] M1[2][3]

M2[2][0]

S

SM

R

RM

A[0][0]

M1[0][0] M1[0][3]

M2[0][0]

A[4][2]

M2[2][4]

M2[0][4]

A[0][4]

A[3][4]A[3][0]

Figure 4.4: The specification of a grid of processes using replication.

37

Bibliography

[1] G.R. Andrews. Concurrent Programming: Principles and Practice. Ben-
jamin/Cummings, 1991.

[2] M.J. Bach and S.J. Buroff. “Multiprocessor UNIX Operating Systems". AT&T
Technical Journal, 63(8, part 2):1733–1749, October 1984.

[3] D.G. Bate. “Mascot 3: An Informal Introductory Tutorial". IEE Software
Engineering Journal, 1(3):95–102, 1986.

[4] N. Carriero and D. Gelernter. “How to Write Parallel Programs: A Guide to the
Perplexed". Computing Surveys, 21(3):323–358, 1989.

[5] CCITT. “Functional Specification and Description Language (SDL)". In The
CCITT Red Book, volume VI, chapter 10. CCITT, Geneva, 1985.

[6] Hamlet Consortitium. “Application Requirements". Hamlet Technical Report,
AEG Electrocom, Konstanz, Germany, September 1992.

[7] E.W. Dijkstra. “Cooperating Sequential Processes". In F. Genuys, (ed.), Pro-
gramming Languages. Academic Press, 1968.

[8] C.A.R. Hoare. “Communicating Sequential Processes". Communications of the
ACM, 21(8):666–677, August 1978.

[9] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

[10] I. Jacobson. Object-Oriented Software Engineering, A Use Case Driven Ap-
proach. Addison-Wesley, 1992.

[11] L.H. Jamieson. Characterizing Parallel Algorithms, In L.H. Jamieson and D.B.
Gannon and R.J. Douglass, (ed.), The Characteristics of Parallel Algorithms,
chapter 3, pp. 65–100. MIT Press, Cambridge, Mass., 1987.

[12] G. Jones and M. Goldsmith. Programming in Occam. Prentice-Hall, 1988.

[13] R. Saracco, J.R.W. Smith, and R. Reed. Telecommunications Systems Engineer-
ing using SDL. North-Holland, Amsterdam, 1989.

[14] H.R. Simpson. “The Mascot Method". IEE Software Engineering Journal,
1(3):103–120, May 1986.

38

[15] A.S. Tanenbaum. Modern Operating Systems. Prentice Hall, Englewood Cliffs,
N.J., 1992.

[16] M.R. van Steen. “The Hamlet Application Design Language (Version 1.0), On
Automated Code Generation". Technical Report, Department of Computer Sci-
ence, Erasmus University Rotterdam, 1994. In preparation.

[17] P.T. Ward. “The Transformation Schema: An Extension of the Data Flow Diagram
to Represent Control and Timing". IEEE Transactions on Software Engineering,
SE-12(2):198–210, 1986.

[18] P.T. Ward and S.J. Mellor. Structured Development for Real-Time Systems,
volume I, II & III of Yourdon Computing Series. Yourdon Press, Englewood
Cliffs, N.J., 1985.

[19] P. Wegner. “Concepts and Paradigms of Object-Oriented Programming". OOPS
Messenger, 1(1):7–87, 1990.

[20] A. Yonezawa and M. Tokoro. Object-Oriented Concurrent Programming. MIT
Press, Cambridge, Mass., 1987.

[21] E. Yourdon and L.L. Constatine. Structured Design: Fundamentals of a Discipline
of Computer Program and System Design. Prentice-Hall, Englewood Cliffs, N.J.,
1979.

39

