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Summary.  In this study the length of smooth muscle cells 
in muscle bundles of  pig urinary bladder wall was 
determined after dissection in Tyrode buffers with differ- 
ent calcium concentrations ([Ca2+]). Previous studies have 
shown that the length of isolated smooth muscle cells 
decreases with an increase in [Ca 2+] in the buffer. Unlike 
the results in isolated cells, no significant differences in 
length were found between cells in strips subjected to 
different [Ca2+]. Cells in bundles dissected from filled 
bladders were significantly larger than those dissected 
from emptied bladders. Cells in strips f rom emptied 
bladders dissected in 1 .8mM Ca2+-Tyrode buffer were 
shorter than those obtained in Ca2+-free buffer. F rom the 
measurements it was concluded that: (1) Cell length in 
intact tissue is directly related to tissue length; series 
elastic structures external to the cells do not allow 
significant shortening of the cells. (2) Passive parallel 
elasticity outside the cells accounts for passive shortening 
when bladders are emptied manually. (3) Cell length is not 
related to empty bladder weight. (4) A positive relation 
exists between empty bladder weight and bladder ca- 
pacity. 
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smooth muscle cells are mutually attached and are lined 
up in series and in parallel. In our laboratory we have 
concentrated on the measurement of the mechanical 
properties of muscle bundles and on the isolation of 
smooth muscle cells from the urinary bladder of the pig 
[7]. In muscle bundles or strips the relationships of  
neighboring cells can be studied, whereas in single cells 
attention is focused on the contractile properties of  one 
cell [9, 16]. 

Previously we found that the size of isolated cells 
depended on the calcium concentration, [Ca2=], of the 
buffer in which the isolation procedure was carried out: 
the higher the [Ca2+], the shorter (smaller) the cells [15]. In 
this paper,  results from experiments on isolated cells are 
discussed in the light of  similar measurements on cells in 
muscle bundles where cells are in a more physiological 
environment. Strips of muscle tissue were dissected from 
filled and emptied bladders and immersed in buffers with 
different [Ca2+]. Cells were measured in longitudinal 
cryostat sections cut from the frozen muscle strips. By 
comparing measurements from single cells and from cells 
in strips, the effects of the [Ca 2+] and of the isolation 
procedure were evaluated. The results are discussed in 
terms of a model that comprises properties of  contractile 
smooth muscle cells and their elasticity in series and in 
parallel. 

To understand the contractile properties of the urinary 
bladder, the organization and function of the elements 
composing the bladder wall have to be investigated. This 
knowledge is indispensable for the interpretation of 
urodynamic measurements in patients. 

The wall of  the urinary bladder is composed of 
numerous muscle bundles which do not seem to be 
organized in a specific pattern. Within the bundles, single 
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Materials and methods 

Pig bladders were obtained from the local slaughterhouse. The 
urethras of the filled bladders were tied to prevent urine from leaking 
out, and the bladders transported to the laboratory on ice. In order 
to obtain material from the anterior wall of the bladder in the 
stretched (filled) state, a piece of 3 • 3 cm polyvinyl chloride with 
eight needles along the sides was placed on top of the bladder, the 
needles sticking through the anterior wall. The selected piece of 
stretched tissue was cut from the bladder wall and pinned to the 
silicone-covered bottom of a glass vial. The volume of urine 
contained in the bladder and the weight of the emptied bladder were 
determined. 

The tissue was immersed in a Ca2+-Tyrode buffer (137 mM NaC1, 
2.7 mM KC1, 1.0 mM MgC12, 12.5 mM HEPES and 5.6 mM glucose, 
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Fig. 1. Histogram showing cell lengths of smooth muscle cells (mean 
_+ SD, pro) in stretched strips from the urinary bladder of the pig. The 
strips were dissected in buffers with different Ca 2+ concentrations 
(see Table 1) 

pH 7.4, 22~ The [Ca 2+] varied in each experiment: 0.0raM + 
2raM EGTA, 0.0 mM, 0.18mM, 1.0raM or 1.8 raM. Muscle strips 
were dissected from the exposed sclerosal side of the bladder wall. 
Two silk threads (0.7 metric 6-0 Ethicon) were tied around either end 
of a strip about 6 mm apart. The dissected strips were mounted at 
their original length on a piece of dental wax and were subsequently 
frozen in isopentane cooled in liquid nitrogen ( -  160 ~ C). Thereafter 
the tissue was transferred to a cryostat kept at -25~ and 5-gm 
longitudinal sections were cut. The sections were mounted on 
chrome-aluin-coated glass slides, which were subjected to a periodic 
acid Schiff (PAS) reaction. This (muco)polysaccharide stain results 
in blue-stained cell nuclei and red-stained basal membranes. The 
dark staining of the basal membrane facilitated the measurement of 
cell lengths. Cells were measured with the aid of a Videoplan (Zeiss 
Kontron). The image (magnification 12.5 • 40) formed in the light 
microscope was projected on to an X-Y tablet by means of a drawing 
tube attached to the microscope. With the aid of a mouse device, 
lengths were measured of those cells that could be followed along 
their entire length, from tapering end to tapering end. Measurements 
were made without knowledge of the buffer (= [Ca2~]) in which the 
strips had been dissected. One or two strips were studied from each 
bladder; ten cells were measured in each strip. 

In total 26 bladders (388 cells) were investigated, 7 in 0.0 mM 
Ca 2~ + EGTA (99 cells), 4 in 0.0 mM Ca 2+ (50 cells), 6 in 0.18 mM 
Ca 2+ (109 cells), 6 in 1,0 mM Ca 2+ (80 cells) and 3 in 1.8 mM Ca 2+ (50 
cells) (Table 1). Strips were also obtained from four bladders after 
they had been emptied: two bladders at 0.0 mM Ca 2+ (40 cells) and 2 
bladders at 1.8 mM Ca 2+ (40 cells) (Table 2). These strips were fixed 
without any attempt to keep them at their original length. The cells 
from these strips were compared with the ones obtained fi-om the 
same bladder while it was still filled (stretched). The single cells 
described by Schot et al. [15] were obtained under the same 
conditions from the same bladders. The Mann-Whitney U-test 
(MWU) was applied to compare samples and Spearman's rank 
coefficients were calculated to investigate the relations between the 
variables (significance level 0.05). 

Results  

Five groups of bladders  were defined, cor responding  to 
the five different buffers used. The mean  cell length _+ SD 
in each of the groups was determined:  group 1 (0.0 Ca 2+ + 
EGTA) ,  194_+ 34 pm; group 2 (0.0 Ca2+), 202_+ 30 gm; 
group 3 (0.18 Ca2+), 191+_27gm; group 4 (1.00 Ca2+), 

Table 1. Mean cell length • SD, bladder weight and volume of urine 
of all 26 bladders investigated 

Bladder [Ca 2+] Weight Volume Cell length 
(raM) a (g) (ml) (~tm) 

mean SD 

1 0.0+ 40 150 190 34 
2 0.0+ 60 220 202 30 
3 0.0+ 60 475 203 25 
4 0.0+ 45 305 158 24 
5 0.0+ 70 1230 175 33 
6 0.0+ 95 500 215 34 
7 0.0+ 60 310 206 26 

Average 0.0+ 63 • 18 456 • 194 34 

8 0.00 30 180 188 30 
9 0.00 110 45 207 37 

10 0.00 57 340 206 31 
11 0.00 40 122 200 9 
Average 0.00 59 • 36 172• 125 202 30 

12 0.18 60 335 182 28 
13 0.18 70 400 166 17 
14 0.18 55 320 191 26 
15 0.18 50 300 190 31 
16 0.18 50 210 208 18 
17 0.18 50 140 194 21 
Average 0.18 55 • 283 • 191 27 

18 1.00 20 55 184 31 
19 1.00 55 200 232 32 
20 1.00 50 260 152 21 
21 1.00 87 240 150 19 
22 1.00 52 200 188 28 
23 1.00 60 375 197 23 
Average 1.00 46 • 221 • 104 186 36 

24 1.80 75 400 181 24 
25 1.80 47 175 201 25 
26 1.80 50 170 195 28 
Average 1.80 57 • 15 248 • 131 192 27 

a Five groups were defined by the [Ca 2+] in the Ca2+-Tyrode buffer: 
0.0 mM Ca 2+ + 2 mM EGTA; 0.0 mM Ca 2+; 0.18 mM Ca2+; 1.0 mM 
Ca2+; 1.8 mM Ca 2+ 

186_+36gm; and  group 5 (1.8 Ca2+), 192+_27gm (Fig. 1, 
Table  1). I t  is clear that  there were no significant differen- 
ces among  the five groups with respect to cell length. This 
is in contrast  with the f indings in single cells, where a 
decrease in cell length was found  with an  increase in  [Ca 2+] 
[15]. 

W h e n  empty  bladder  weight and  volume of ur ine  of all 
bladders were tested, the Spearman  rank  correlat ion 
coefficient was 0.601 (p<0.001) ;  thus,  heavy bladders  
conta ined  more urine. W h e n  cells in the unst re tched 
strips, dissected from the emptied bladders,  were 
measured  and  compared  with cells f rom stretched strips, 
significant differences in cell lengths were found:  
160+_29gm vs 204_+26pm in 0 . 0 m M  Ca 2+, and  
146 _+ 30 gm vs 198 +_ 27 gm in 1.8 m M  Ca 2+ (Table 2). Both 
pairs were significantly different (MWU,  P <0 .001 ) .  
Moreover,  the cells f rom emptied bladders measured in 



Table 2. Mean cell length • SD, bladder weight and volume of urine 
in those bladders from which strips were dissected in the filled and 
empty condition in 0.0raM or 1.8 mM Ca 2+ 

Bladder [Ca 2§ Weight Volume Cell length 
(mM) (g) (ml) (lain) 

Mean SD 

10 0.00 
11 0.00 
Average 0.00 

10 emptied 0.00 
11 emptied 0.00 
Average 0.00 

25 1.80 
26 1.80 
Average 1.80 

25 emptied 1.80 
26 emptied 1.80 
Average 1.80 

57 340 206 31 
40 122 200 9 
49• 231• 204 26 

57 0 149 20 
40 0 171 33 
49 + 12 0 160 29 

47 175 201 25 
50 170 195 28 
49 +2 173 +4 198 27 

47 0 166 25 
50 0 127 20 
49 +2 0 146 30 
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Fig. 3. A simple model of the bladder wall implies series elasticity 
(SE) in series with contractile muscle cells (MC) and parallel 
elasticity (PE) in parallel with both 
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Fig. 2. Histogram showing cell lengths of smooth muscle cells (mean 
_+ SD, gm) in strips from emptied bladders and in stretched strips 
obtained in 0.0 and 1.8 mM Ca > buffer (see Table 2); I R i  empty; 
~77A filled 

0 .0mM Ca > were significantly longer than the ones 
measured in 1.8mM Ca 2+ (MWU, P<0 .024)  (Fig. 2, 
Table 2). When the Spearman correlation test was applied 
to cell length and bladder weight and to cell length and 
volume of urine, no correlation was found, except for 
0.18 mM Ca 2+. 

Discussion 

A simple model describing both passive and active 
properties of muscle bundles within the bladder wall 
implies series elasticity in series with contractile muscle 
cells, and passive elasticity in parallel with both (Fig. 3) 

[12]. Some of the elastic properties of the tissue can be 
ascribed to the smooth muscle cells themselves, but a 
significant part  resides outside the cells [12]. 

It is unclear exactly what the anatomical substrates of  
the elastic properties are. In smooth muscle the major  
component  in the extracellular space is collagen. Microfi- 
brils and ill-defined densities have been described between 
collagen fibrils and basal laminae, and it is likely that these 
constitute a mechanical link between cell membrane  and 
collagen f ramework [6]. Smooth muscle cells within the 
muscle bundles are closely packed together, attached to 
neighboring cells by junctions [8]. 

In the present study it was found that the mean length 
of cells in pig bladder strips which were fixed at the in situ 
length was 193 lam (range 186-202 ~tm) and did not depend 
on the [Ca 2+] of  the bathing solution. In the literature a 
large range of smooth muscle cell lengths has been 
described [1, 2, 4, 5, 10, 11, 14, 17], f rom 100 gm in vas 
deferens muscle cells of the rat [14] to 500 gm in cells from 
the taenia coli of the guinea pig [4, 5]. 

In isolated cells a clear relation was found between cell 
length and [Ca2+]: the higher the [Ca2+] the shorter the 
cells [15]. Assuming that [Ca2+]-dependent shortening of 
the isolated cells was an active process, we conclude that 
either the single cells were stimulated whereas the cells in 
the strips were not, or the shortening of the cells in the 
strips was prevented by a non-compliant  series elasticity. 
The resuspension of the cells during the isolation pro- 
cedure may have affected the potential of  the plasma 
membrane and by doing so caused an inflow of Ca 2+ 
which resulted in a shortening (contraction) of the cells. 
However,  the cells in strips (not stimulated by resuspen- 
sion) dissected from the emptied bladders also showed a 
[Ca2+]-dependent length as opposed to the cells in strips 
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f rom filled bladders. We therefore conclude that  the 
length of  cells in intact tissue is directly related to the tissue 
length. Series elasticity external to the cells does not  allow 
the cells to shorten when the tissue length is fixed (Fig. 3). 
Lengthening of  cells in strips is p robab ly  caused by 
extracellular changes such as filling of  the bladder. 
Parallel collagen fibrils at tached to the basal lamina may 
put  restrictions on the shortening or lengthening range of  
the muscle cells. 

Cells in strips f rom bladders that  had been emptied 
were significantly shorter  than cells in strips f rom (the 
same) filled bladders. Since the shortening also occurred 
in CaZ+-free medium and no shortening seems to have 
taken place in the isolated cells at [Ca 2+] = 0.0 m M  (these 
cells were considerably longer than the cells in strips), it is 
very likely that  the shortening resulted f rom passive 
elasticity which might be inherent in the cells or f rom 
passive external structures (Fig. 3). This elasticity outside 
the cells is p robab ly  the basis for  the passive properties 
that  dominate  the ur inary bladder  during the collection 
phase [13], 

The empty bladder  weight (range 20-110g)  and the 
volume of  urine (range 55-1230ml)  were significantly 
correlated, heavy bladders containing more  urine (see 
Table 1). We expect that  the degree of  bladder  filling at 
slaughter varied randomly,  being on average a round  half  
the bladder  capacity. The correlat ion found  between 
bladder  weight and volume of  urine therefore implies a 
relation between (empty) bladder  weight and capacity. In  
the bladders used in this study there was no overall 
correlation between cell length and empty bladder  weight. 
This implies that  larger bladders do not  have larger cells 
but  have more  cells o f  the same size. In  contrast  to this 
finding, Driska and Porter  [2] stated that  larger animals 
may have larger cells (assuming that  larger animals have 
larger bladders). 
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