To analyze the effects of remanufacturing on system performance we would
like to select a combination of system characteristics and control strategies
such that (7) mathematical analysis is possible, and (i¢) all important effects
that occur in practice could be represented. Unfortunately, conditions (z)
and (it) are impossible to satisfy simultaneously: constraint (z) limits the
selection to relatively simple systems, operating under relatively simple
strategies, whereas (i:) forces to investigate complex real-life systems. As
a compromise we have chosen to analyze a single-product hybrid system
by means of which the influence of a number of typical process variables
and process characteristics discussed in Chapter 1 could be evaluated. The
specific characteristics regarding the system are outlined in Section 3.1.

To control the system, we investigate two different continuous review oper-
ating strategies, one being a PUSH strategy, the other one being a PULL
strategy. Our motivation for choosing continuous review rather than pe-
riodic review is that the time-independent steady-state system behaviour
ol continuous review models is easier to describe and understand than the
time-dependent system behaviour of periodic review models. Also, these
strategies are closely related to the control policies that are nowadays widely
accepted and used in practice to control inventory systems in situations

without remanufacturing.

This chapter is further outlined as follows. The PUSH and PULL strategy
are analyzed in Section 3.2. The enumerative procedure that has been im-
plemented to search for optimal strategy parameters is discussed in Section
3.3. Finally, to further investigate the effects of specific assumptions re-

29
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garding process variables and system characteristics, we discuss in Section
3.4 how we can relax these assumptions.

3.1 System characteristics

The system that will be considered in this chapter is shown in Figure 3.1. It
1s basically a simplification of the system that has been implemented at the
copier manufacturer mentioned in Chapter 1. The first main simplification
consists herein that our system applies to a single module remanufacturable
product, rather than to a multi-component product like a photocopier.
Consequently, we do not consider disassembly operations to disassemble
returned products into modules, and we have only two stocking points:
one for remanufacturable products and one for serviceable products, i.e.,
products used to fulfill customer demand. The second main simplification
consists herein that we assume that all returned products satisfy the quality
requirements for remanufacturing.

Remanufacturable
inventory

——» | Remanufacturing Manufacturing
products . \

l—'——> Demanded

new products
Figure 3.1. A hybrid system with manufacturing and remanufacturing operations,

and stocking of remanufacturable and serviceable products.

PSS -
Remanufacturable

Serviceable
inventory

In detail the system characteristics are:

- Demand and return process. To evaluate the influence of the uncer-

taln demand and return process on system performance we assume
that unit sized demands and unit sized remanufacturable returns have

ezponentially distributed inter-occurrence times. The average time

between two subsequent remanufacturable returns is <. and the

)\R’
1

average time between two subsequent product demands equals 5o
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Furthermore, the intensity of remanufacturable returns Ar is smaller
than the demand intensity Ap, and demands and remanufacturable

returns are uncorrelated.

- Testing process. It is assumed that every returned item is already
tested and satisfies the quality requirements for remanufacturing.

- Remanufacturing process. The remanufacturing process has unlim-
ited capacity; the remanufacturing lead-time L,, which is the time
that passes between the time at which a remanufacturing order 1s
placed and the time of actual delivery, is a random variable with
mean uy_ and variance O’%r; the fixed remanufacturing costs are ¢/,
and the variable remanufacturing costs are ¢ per product. A reman-
ufacturing operation moves a certain number of remanufacturables
from the remanufacturable inventory to ‘Work In Process’ (WIP).
After remanufacturing all products enter the serviceable inventory.

- Qutside procurement process. New products are manufactured in an
outside procurement facility. The manufacturing costs consist of a
fixed component ¢/, and a variable component of ¢, per product.

The manufacturing capacity is unlimited, and the manutfacturing
lead-time L,,, which is the time that passes between the time at which
a manufacturing order is placed and the time of actual delivery, i1s a
random variable with mean py . and variance of . Manufactured
products enter the serviceable inventory.

- Inventory process. There exist two stocking points in the system,
one to keep remanufacturable inventory and one to keep serviceable
inventory. The holding costs in remanufacturable inventory are ¢ per
product per time-unit, and the holding costs in serviceable inventory
are ¢! per product per time-unit. Both stocking points have unlimited
capacity.

- Disposal process. All returned products enter the remanufacturing
process, i.e, disposal of remanufacturables does not occur. Strategies
for planned disposal will be considered in Chapter 6.

- Customer service. Demands that can not be fulfilled immediately are
backordered against backorder costs ¢, per product per unit of time.

['he notation with respect to the system characteristics is summarized in
[able 3.1.
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A\p = The intensity of product demands, 1.e. the average number of de-
mands per unit of time.

A\r = The intensity of product returns, i.e. the average number of returns
per unit ot time.

L. = The manufacturing lead-time, which is a random variable with mean
ur,. and variance oj .

L, = The remanufacturing lead-time, which 1s a random variable with
mean gy, and variance oy .

¢/ = The fixed manufacturing costs per manufacturing order.

¢/ = The fixed remanufacturing costs per remanufacturing order.

¢ = The variable manufacturing costs per manufactured product.

¢c® = The vanable remanufacturing costs per remanufactured product.

¢c® = The holding costs in serviceable inventory per product per unit of
time.

¢c® = The holding costs in remanufacturable inventory per product per
unit of time.

co = The backorder costs per backordered product per unit of time.

Table 3.1. Notation with respect to system characteristics.

The long-run average system costs per unit of time under PUSH control and
under PULL control are denoted by the functions C'pysy(.) and Cpyrr(.)

respectively. These functions both are the summation of the following com-
ponents:

average serviceable inventory per time unit

average remanufacturable inventory per time unit

average number of remanufactured products per time unit
average number of remanufacturing batches per time unit
average number of manufactured products per time unit

average number of manufacturing batches per time unit

™
S,
X X X X X X X

average backordering position per time unit

T'he definition and analysis of the PUSH and PULL control strategies will
be considered in the next section.
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3.2

Strategy definitions and analysis

The PUSH and PULL strategies that we consider here rely on the strategies

that were observed at the copier manufacturer of Chapter 1. More formally

1
L

the strategies are defined as follows.

o the (s, Qm,Qr) PUSH strategy (Figure 3.2a). In this strategy re-

manufacturing starts as soon as the on-hand inventory of remanufac-
turables contains exactly (), used products. At that time, a remanu-
facturing order is placed for (), products. This amount is then trans-
ferred from the remanufacturable inventory to the remanufacturing
Work In Process, the remanufacturable inventory drops to zero and
the serviceable inventory position (serviceable inventory minus back-
log plus all products in (re)manufacturing Work In Process) increases
with @,. The remanufacturing batch will arrive at the on-hand ser-
viceable inventory after a (stochastic) lead-time. Manufacturing takes
place in batches of size (J,,, and starts whenever the serviceable in-
ventory position drops to the level s,,. At that time, a manufacturing
order 1s transterred to the manufacturing Work In Process and the
inventory position is increased with (J,,. The manufacturing order
will arrive at the on-hand serviceable inventory after a (stochastic)
lead-time. The strategy is named PUSH strategy since used products
are pushed into the remanufacturing process as soon as possible, inde-
pendently from the actual demands and from the on-hand serviceable

Inventory.

the (sm,@m,sr, Sr) PULL strategy (Figure 3.2b). In this strategy
remanufacturing starts whenever the serviceable inventory position is
at or below s,, and sufficient remanufacturable inventory exists to in-
crease the serviceable inventory position to S,.. The remanufacturing
batch is exactly the amount that is necessary to increase the inventory
position to S,. If we denote this amount by () then a remanufacturing
order decreases the remanufacturable inventory with ¢) products, and
increases the remanufacturing Work In Process and the inventory po-
sition with ) products. The remanufacturing order will arrive at the
on-hand serviceable inventory after a (stochastic) lead-time. Manu-
facturing starts whenever the serviceable inventory position drops to
the level s,,(< s,). At that time, a manufacturing order of size ¢}, is
transferred to the manufacturing Work In Process and the inventory
position is increased with (),,. The manufacturing order will arrive at
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Remanufacturable inventory time —

------------------------------------------

remanufacturing

. batch
!  manufacturing
N RGN

Inventory poition ' time —>

(a)

O
S L
r
Sm+ Qm
Sy .
S oo N __manufacturng
m batch

Inventory position time —>

(6)

Figure 3.2 A schematic representation of the PUSH strategy (a), and the PULL
strategy (b).
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the on-hand serviceable inventory after a (stochastic) lead-time. The
strategy is named PULL strategy since remanufacturable inventory
is pulled into the remanufacturing process only when needed to fulfll
customer demands for serviceables.

As can be concluded from the above, the most important difference between
PUSH and PULL control is the timing of the remanufacturing operations.

With PUSH control the start of a remanufacturing operation is solely based
on the number of products in remanufacturable inventory, whereas under

PULL control the start depends both on the inventory position and on the
number of products in remanufacturable inventory.

Although it has been shown in [59] that neither the PUSH strategy, nor
the PULL strategy is optimal within the class of all control strategies, our

motivation to investigate these strategies is that they are not too complex
to be analyzed numerically, and more importantly, they are actually used

In practice.

In [26] Inderfurth proves for a much simpler system than ours, that a sim-
ple PULL strategy is optimal. The characteristics of this system include
periodic review, zero fixed ordering costs, and equal non-stochastic lead-
times for manufacturing and remanufacturing. Additionally, he argues that
under stochastic lead-times and/or fixed ordering costs the structure of the
optimal control strategy will be very complex. Even if the optimal structure
could be identified, it is highly questionable whether the optimal strategy
could ever be implemented in practice, because of its complexity.

In Section 3.2.1 and Section 3.2.2 we outline a procedure to calculate the
long run average costs Cpysy(Sm, @m,Qr) and Cpyrr(Sm,@m, Sr, Sy) re-
spectively. The notation that we use in this outline is specified in Table

3.2. In accordance with the system assumptions made in Section 3.1 we
have restricted the scope of the outline to the situation with uncorrelated

and exponentially distributed demand and return inter-occurrence times,
and non-stochastic lead-times. However, we will relax these assumptions

at a later stage.

3.2.1 Analysis of the PUSH strategy

[t should be noted that the (s,,,Qm,Q,) PUSH strategy generalizes the
(sp,@p) strategy of Muckstadt and Isaac [37] in that fixed remanufacturing
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P
“ 3
®
—
H_
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The net serviceable inventory at time t, defined as the

number of products in on-hand serviceable inventory mi-
nus the number of products in backorder at time ¢

o
ta
N
b
S

The serviceable inventory position at time ¢, defined as
the net serviceable inventory plus the number of prod-

ucts in manufacturing work-in-process plus the number
of products in remanufacturing work-in-process

g
O
Ss

=

1

The number of products in remanufacturable on-hand
imventory at time ¢

5
I

The number of products in manufacturing Work In Pro-
cess at time ¢

=
!

The number of products in remanufacturing Work In
Process at time ¢

D e
e
-
L
ik
g SR

The demands in the time-interval (2o, ;]

The number of products ordered to be (re)manufactured

in the time-interval (¢ —tg,t — ¢1] that enter serviceable

inventory at or before time t minus the demands 1n the
interval (¢ — tp,t — 1]

N
P
S
i
T

-
g, 8

l
e

-
|

1

o
1

The average backordering position

e
1

. The average on-hand serviceable inventory

b
1

) The average on-hand remanufacturable inventory

L
]

The average number of remanufacturing orders

The minimum of all possible realisations of the manufac-
turing and remanufacturing lead time

The maximum of all possible realisations of the manu-
facturing and remanufacturing lead time

}

Table 3.2. Notation used for the analysis.

costs can be taken Into account by allowing to batch remanufacturing or-
ders. On the other hand we assume that remanufacturing capacity is unlim-

ited. Furthermore, our analysis to calculate the costs Cpysg(sm, Qm, @r)
Is exact rather than approximative. ‘

The state transitions of the manufacturing/remanufacturing system defined

in Section 3.1 under the PUSH strategy can be formulated as a continuous
time Markov chain. This Markov chain, M; say! has a two-dimensional

'The subscript ‘1’ denotes that we are considering the PUSH strategy. Later we will
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state variable

By definition, X, (t) = (i5,19H) whenever I,(t) = i; and I?P(t) = 1904

r
As a result, all realizations (i5,i9¥) of X;(t) are elements of the two-

dimensional state space

S1={sm+1,8m+2,...,00} x{0,1,...,Q, — 1}. (3.1)

To explain (3.1) we make the following observations:

- I'he inventory position I,(t) can never be smaller than s,, +1 since in
this state a demand would trigger a manufacturing operation and the

Inventory position is immediately raised to s,, + @,,. Also, reman-
ufacturing operations may eventually raise the inventory position to
an arbitrary level. So, all possible realizations of Is(¢) are elements
of the set {s;, + 1,8, +2,...,00}.

- T'he remanufacturable inventory I,QH (t) can never exceed (. —1 since
in this state, a product return would trigger a remanufacturing oper-

ation and the inventory is decreased to zero. So, all possible realiza-
tions of 194 (t) are elements of the set {0,1,...,Q, — 1}.

Formally, the transition rates v 1) ;) which are related to transitions from
state s(1) c 57 to s(2) € §; are defined as

" — ) -OH

Z) I/(is,'ﬂ?H),(ZS,iQH‘l"l) T AR’ ?'T' < QT' T 1)
0 — OH __

ZZ) V(ZS,Z,(?H),('ls‘I’Qr,O) T AR’ ZT‘ B Qr T 1’

(
(
(222
(

o9,

1) V(i iOH) (is=1,0H) = AD, &> Sm +1,

W) V(i i9H),(sm+Qm,i9H) = ADy s = Sm + 1.

These transition rates can be explained as follows:

use the subscript ‘2’ to denote the PULL strategy.
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(1): This rate is associated with a product return that increases
the remanufacturable inventory with one, while the inventory

position remains unchanged.

(ii): Here a product return triggers a remanutfacturing order. The
remanufacturable inventory drops to zero, while the inventory
position is increased with (), products.

(11¢):  With this rate a product demand decreases the inventory po-
sition with one product, while the remanufacturable inventory
remains unchanged.

(tv): This rate is associated with a product demand that triggers a
manufacturing order. The inventory position is increased with

(m products, while the remanutfacturable inventory remains
unchanged.

The following flow-diagram further clarifies the set of transition rates and
the mechanism of the PUSH strategy.

T'he limiting joint probability distribution (25,294 ), defined as
1 (s, z?H) = lIm Pr{(t) = 1,, I,?H(t) = z?H} (3.2)

=00
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JJJJJJ

equations are easily written down, it is quite difficult to find a closed form
expression for (3.2). For a special case, i.e Q, = 1, the two-dimensional
state space &) reduces to the one-dimensional state space of inventory posi-
tion. In this case a closed form expression is available (see e.g. Muckstadt
and Isaac, [37]), but in general we have to rely on numerical procedures.

Since the remanufacturing process is independent of the inventory position,
it is easily seen that the marginal distribution of remanufacturable inven-

(r)

tory, m; ’, i1s a uniform distribution on {0,1,...,Q, — 1}. In formula this
reads

()(;OHy = ) @7 ‘ (3.3)
0, otherwise.

Using (3.3), the cost components of C pysy(sm, @m,Qr) that are shown in
Table 3.3 are now easily obtained.

average remanufacturable inventory per time unit = Q"Q""l
average number of remanufactured products per time unit = Ag
average number of remanufacturing batches per time unit = %ff
average number of manufactured products per time unit = Ap — AR

|
>
gt}’

average number of manufacturing batches per time unit

Table 3.3. Calculation of cost components in Cpysh(5m,Qm,@r), apart from
the average serviceable inventory and the average backorder position.

More complicated is the calculation of the average on-hand serviceable in-
ventory and the average backorder position, 1.e.,

TSH — Z ’i?d lim Pr{]?‘et(t) = 17}, (3.4)

1—00

*

znet>0

— Z“n.et - (35)
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These can not be calculated directly using a Markov chain formulation,
since the transitions of I™¢* are not Markovian. However, we can derive an
expression for I7¢*(t) from which we can calculate its long run distribution.

By definition, we have
178 (t) = I(t) = W (t) — WH(2). (3.6)
Also, we have the following relation for net inventory:

[;zet (t) — ];’Let(t . Lma:z:)

every ordered product that
is delivered in (¢t — L™2%, ]

(3.7)
— every demand that arrives in (¢t — L™%%, t]

Here we mean by ‘every ordered product’ all products that were ordered
for manufacturing and remanufacturing.

T'he number of ordered products that arrive in (¢t — L™2% t] can be split up

Into two groups: The products that are in (re)manufacturing WIP at time
t — L™% (these will all arrive before or at time ¢, since lead-times are never

larger than L™%%), and the number of products that were ordered during
the interval (¢ — L™%% t] and also arrived before time ¢. So, (3.7) becomes

I?Et(t) — ];zet(t . Lmam)

L) every product in (re)manufacturing
WIP at time ¢t — L™%%

L] every product that is both ordered
and delivered in (¢t — L™%% ¢]

— every demand that arrives in (¢ — L™3% ¢]

— I;wt (t _ Lmax) + Wm (t _ Lmaa:) + Wr (t _ Lme:w:)

" every product that is both ordered
and delivered in (¢t — L™%% t]

— every demand that arrives in (¢t — L™2% ¢]
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-

sing (3.6) we simplify (3.8) as
I?Et (t) — IS (t . Lma:z:)

every product that is both ordered
| and delivered in (¢t — L™*%, t]

— every demand that arrives in (¢ — L™%%, ]

/Ote that all products that are ordered after time t — L™ arrive after time
- So finally we have

]?Et(t) — Is(t . Lma:r:)

every product ordered in (¢t — L™%% ¢t — [™"]
and delivered before time ¢

~ every demand that arrives in (¢ — L™ t — L™"]

— every demand that arrives in (¢ — L™", ]

= [,(t — L™a=)
+ Z(t — L™= ¢ — [min) (3.9)
— D(t — L™",t)

Ve can use relation (3.9) to derive the long run distribution of I7¢*(¢)
[ we take into account the following stochastic (in)dependencies between

s (T — Lipaz), IPH(t — Lpaz), Z(t — Lynag,t — Lmin), and D(t — L™ t):

Z(t—Lpmaz,t—Lpmin) is correlated with I;(t—L,,,.) and I?H(t--—Lmam),
 [,(t — Ly, and I,?H(t ~ Loz ) are correlated,
e D(t— L™ t) is uncorrelated with I(t — Lyaz), I9® (t — Lpee), and
Z(t T Lma:r:a L — Lmi'n)-
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Substituting © = t — L™%C and AL = L™%% — L™ the net inventory is
derived from (3.9) as

lim Pr{I7(t) = 7'}

t—00

= Z lim Pr{D(t — L™" t) = d}

1— OO

x lim Pr{l,(u) = ¢, I (u) =i2%, Z(u,u+ AL) = z}

U2 OO

=Y exp?ol™" (ApL7)”

d!

Q (3.10)
X 1 (1, 107 ) X by, somy (AL),
where
Q= {(is,1" 2, d)|is + 2 — d = i7"}, (3.11)
and
hai, 08y (AL) =

lim Pr{Z(u,u+ AL) = z2|I,(u) = is, I°" (v) =97}, (3.12)

Note that up to this point we have not used the assumption that the lead-
times are fixed constants. The further analysis for stochastic lead-times
though will be proceeded in Chapter 5. Here we will proceed with the
analysis for the case that lead-times are fixed constants.

If the manufacturing and remanufacturing lead-times are fixed constants,

then the special case ur, = py. results in Z(u,u+ AL) = 0, since then
AL = 0. Moreover, h,, ;om(AL) = 1, if z = 0 and zero otherwise.
As a first step in the procedure to calculate the conditional probability

hes oy (AL) if pr,, # pr,, we define a Markov chain Mj with state
space

Si={sm +1,8,+2,...,0} x{0,1,...,Q, — 1} x {—o00,...,00},

and state variable

X;(r) = (L(r), 1°H¥(r), Z(u, 7))
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max

L
5
.. . time
L™ order t-L” ¢ delivery
(a)
Lmin
— 1
- time
t-L" order t—me delivery
(b)

igure 3.3 Products that are ordered in the interval (t — L™t — L™"] will never
rrive before or at time t if they have lead-time L™%* (a), and will always arrive
efore or at time t if they have lead-time L™'™ (b).

)y definition, X{ (1) = (45,19, z) whenever I,(1) = 15, and I®¥ (1) = 2

nd Z(u,7) = z, with 7 € (u,u+ AL]J.

[ the manufacturing lead time is larger than the remanufacturing lead time,
e. pur . = Lmar and puy, = Ly, all of the remanufacturing batches and
wone of the manufacturing batches that were ordered during time (u,u +
smaz — Lmin], Will arrive before or at time t = v + L™%% (see Figure 3.3).

\s a consequence, Z(u,7) will only change due to a manufacturing order

[ pr . < pr., and only due to a remanufacturing order if puy < pr_. We
nodel this by defining the binary variable ¢, which is assigned the value
- if the manufacturing lead time is larger than the remanufacturing lead
ime, and 0 if it is shorter. The transition rates of M} are then as follows.

(2) V(i iOH 2) (i5,i9H +1,7) = AR, 107 < Qr — 1,
(22) V(i,i9H 2),(15+Qr,0,246Q) — AR, i =Qr — 1,
(122) Vi, i0H 3) (i,~1,i9H 1) = AD; ls > Sm + 1,
(w) V(is,i9H z),(s +Qmi9H 24(1-6)Qm—1) — )\Da s = Sm + 1

I'hese transition rates can be explained as follows:
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(i):  This rate is associated with a product return that increases
the remanufacturable inventory with one, while the inventory
position and Z(u,7) remain unchanged.

(ii):  Here a product return triggers a remanufacturing order. The
remanufacturable inventory drops to zero, while the inventory
position is increased by @, products, while Z(u,7) is only in-
creased by ), products if the remanufacturing lead-time is
smaller than the manufacturing lead-time, i.e. if 0 = 1.

(121): A product demand decreases the inventory position with one.
The remanufacturable inventory remains unchanged, while
Z(u,T) is decreased by one.

(wv): A product demand triggers a manufacturing order. The inven-

tory position is increased by (),, products. The remanufac-
turable inventory remains unchanged, while Z(u, 7) is increased
with (1 — 0)¢,, products minus one demand.

Note that we are not interested here in the steady-state probability that
the system is in some state s € S7, but in the probability that the system is
in state s(1) at time u— AL given that the system was in state s(®) at time
u. To calculate this probability we evaluate the transient behaviour of the
Markov chain M3, using a uniformization technique (see Tijms [56]). The
uniformization technique transforms M} into an equivalent discrete time

Markov chain ﬂ’l T'he one-step transition probabilities 7&3) 5(0) In ﬂ’l are
calculated as

L/
3(0),5(1) 3(1) # 8(0),

S Kig.gl_ 3(0) — 8(1)

v o) y

where v o) = Y 1) eS! Vs(0) 5(1), and the constant v is chosen such that

V= Maxo) s {Vs}. The m-step transition probabilities 'c’ji?(?f)) 5(0) ATe
derived from the recursive relation

~(m) _(m-1) _(1
qs(l)ls(O) T 23(2) ES{ q5(2) IS(O) qs(l)) |5(2)a m > 1.

If we define ¢ 15(0) (AL) as the conditional probability that during time
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AL the initial system state changes from s(®) € §/ into s{!) € S!, we have

-~ _ v(AL))™ (1
0510 (AL) = > exp~ab "(““(‘"""”‘;{")“)”qg(o;,s(l) -

m =0

Finally, the conditional probability A, ;, ;om)(AL) which appears in (3.10)
1s obtained from the relation

9, Qr""l
Pof(inio®)(AL) = D D Qrez)(iaio® 0)(AL)
k=sm-+1 £=0

Substituting (3.10) in (3.4) and (3.5) enables to calculate the average ser-
viceable inventory per time unit and the average backorder position per
time unit.

3.2.2 Analysis of the PULL strategy

Our motivation to analyze the (s,,, @m, s, 5-) PULL strategy in addition
to the (sm,@m,d-) PUSH strategy is, that the PULL strategy enables
to control the timing of remanufacturing operations more accurately than
the PUSH strategy, by pulling batches from remanufacturable inventory
into the remanufacturing process only if the serviceable inventory position
becomes too low to satisfy future expected customer demands adequately.

The analysis for the PULL strategy proceeds analogously to the analysis
for the PUSH strategy if we replace the Markov chains M, and M7 with

appropriate Markov chains M4 and M7, which will be discussed next.

The Markov chain M5 i1s defined by the state variable
X(t) = (L(t), I°H (1)) .

By definition, X5(t) = (i5,:9") whenever I (t) = iy and I®¥ (t) = i9F,
Consequently, all realizations (s, 19%) are elements of the two-dimensional
state space

82:{8m+1,8m+2,...,U}X{0,1,...,00}, (313)

To explain (3.13) we make the following observations:
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The inventory position I(t) can never be smaller than s,, + 1 since
in this state a demand would trigger a manufacturing operation and
the inventory position is immediately raised to s, + (),,. Reman-
ufacturing operations may eventually raise the inventory position
to S.. So, all possible realizations of I;(¢) are elements of the set

{sm+ 1,8, +2,...,U}.

There is no limit to the level of remanufacturable inventory, so all
possible realizations of 19 (t) are elements of the set {0,1,...,00}.

The transition rates v ) ,2) related to a transition from state stV € 8, to
s(2) € S5, are defined as

L

. .OH .
(i, 9H), (i i9H+1) = AR, s > 8r or 17 < S — 15 —
— : OH __ :
V(i, iOH),(S,,0) = AR, is < s and 7Y =S, — 1, — 1,
U(i, iOH), (i,~1,i9H) = AD, ts > sp + 1 or

{is > $m + 1 and i9F SS,.-—-Z'S},
U(i iOH):(Sr:iOH“(sr“Sr)) — AD} is — Sp + ]- and 27(-)}{ Z Sr — Sy,

V(i, iOH) (8, iOH (S, =sm=Qm)) = AD, s =8m +1and s, > sy, + Qnm

Ui i9H), (sm+Qm iOH) = AD, is = Sm + 1 and i ¥ < S — s
and {Z?H < Sr — 8m — WUm
OT Sp < Sm + Qm}.

T'hese transition rates can be explained as follows:

(1);

A product return increases the remanufacturable inventory
with one. The inventory position remains unchanged.

A product return triggers a remanufacturing order. The re-

manufacturable inventory drops to zero, while the inventory
position 1s raised to S,.

A product demand decreases the inventory position with one.
T'he remanufacturable inventory remains unchanged.

A product demand triggers a remanufacturing order. The in-

ventory position is raised to S,, while the remanufacturable
Inventory is decreased by S, — s, products.
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(v): A product demand triggers a manufacturing order and a reman-
ufacturing order. This is possible if the manufacturing order

increases the inventory position to a level smaller than or equal
to s,, 1.e., $,, + @, < s,., and the remanutfacturable inventory

contains enough products to increase the inventory position fur-
ther to 5,. The inventory position is increased to S,, while the

remanufacturable inventory is decreased with S5, — (Sm -+ Qm)
products.

(vi): A product demand triggers a manufacturing order. The inven-
tory position is raised to s,, + (J,,, while the remanufacturable
inventory remains unchanged.

The limiting joint probability distribution mp (s, :9%) is obtained by solv-
Ing the associated balance equations. Note that here, in contrast with

expression (3.3), we do not have an analytical expression for the marginal
distribution of remanufacturable inventory. Instead, we obtain this distri-

bution numerically as

U
@) = N mais i), (3.14)

'£5=3m+1

Using (3.14), all components of Cpyrr(Sm,Qm, S, Sr) apart from the av-
erage number of remanufacturing batches per time unit, the average ser-
viceable inventory per time unit, and the average backorder position per

time unit, are obtained from Table 3.4.

average remanufacturable inventory per time unit

average number of remanufactured products per timeunit = Ap
average number of manufactured products per time unit = Ap — AR
average number of manufacturing batches per time unit = @Q—"ﬂ

Table 3.4. Cost components of “C’-pULL(sm Qm, sr,Sy) apart from the average
number of remanufacturing batches per time unit, the average serviceable inven-

tory, and the average backorder position.
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Using (1,5, 19H) and the PASTA (Poisson Arrival See Time Averages)
property (see e.g. Wolff [67]) we derive the average number of remanufac-

turing batches as

O, = Mg X Pr{a return triggers a remanufacturing batch}
+ Ap X Pr{a demand triggers a remanufacturing batch}

= Z 77'2('53;57' g I)AR
1s=8Sm+1
+ Z o (sr + 1,29 Ap
1 OH =5, 5, (315)

0, otherwise.

T'he calculation of the average serviceable inventory (3.4) and the aver-

age backorder position (3.5) again is based on the distribution of the net
inventory. Similar to (3.10) we have

lim Pr{I¢(t) ="} =

L 00

_ ma \nMind o
S expAol™® QoL o o (i, iOHY x oy, iom (AL),

{2

where Q2 and h,(; ;om)(AL)are defined in (3.11) and (3.12). The procedure
to derive the conditional distribution hy(is,i08) (A L) proceeds analogously

to the analysis in the previous section, although instead of the Markov
chain M; we use the Markov chain M}, with state space

Sy={sm+1,...,U3} x {0,..., 00} x {—00,...,00}

and state variable
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The transition rates of M/, are

V(iﬁviQHaz)a(iSaiyc?H'l"l,Z) — /\R7 zs > ST‘ Or

49

.OH .
z-r < SrmZS”" ].7

V(¢ ,iOH 2),(5r.0,248(Sp—is)) = AR, s < S and

T

iOHZSrmism].,

' GOH 2) (11,408 ,—1) = AD, 15> S+ 1 or

{is > sm + 1 and
iQHSST“is}a

U(is iOH 2),(Sr iOH—(Sr =5, ),24+6(Sr —sr)—1) = AD, s = §r + 1 and

V(i ,iOH 2) (Sr,iOH =Sy +5m+Qum,z+c(8)) = AD:

1/(?:5’igHvz)’(Sm+Qm,'i,QH,Z-}—(l--S)Qm--l) — /\D’

iTC.)H 2 Sr o Sr’

1, = S, + 1 and

where ¢(6) = (1 — 8)Qm + 6(Sr — S — @m). The final step in the analysis
of the PULL strategy is the transient analysis of Section 3.2.1.

3.3 Optimization with respect to control param-

eters

In the previous section we outlined procedures to calculate the cost func-

tions Cpysy (Sm,Q@m, Qr) and CpuLL(Sm,@m, Sr,Sr) for arbitrary sets of
control parameters. However, to analyze system behaviour, we are inter-

ested in the particular set of strategy parameters under which the cost

functions are minimszized.

In order to find

_CH*PUSH — min _C“PUé'H(Sma Qma Q'r')a o

(SmaQM1QT‘) '
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and

“C“?}ULL = min CPULL(Smana'STvS?”)
(Sm,Qm15T1ST)

we have implemented an enumerative search procedure. Although an ex-
tensive numerical study has indicated that for every problem instance only
one single local minimum exists, we did not succeed in constructing a for-
mal proof. Despite of the latter, it must be noted that the objective of
this chapter is to analyze real system behaviour and not to develop fast,
approximative optimization algorithms. Our focus is therefore on accuracy

rather than on computation time.

3.4 Numerical aspects and validation

Although the analysis of our HMR system under the PUSH and PULL
strategy is ezact, we have to evaluate the cost functions numerically. The
main problem here involves the truncation of infinite sums. While in specific
situations there exist general rules for truncation, they did not always apply
for our procedures. In these cases we had to commit ourselves to heuristical
bounds and stopping criteria. The numerical procedures that were used in
the numerical studies in Chapter 4, 5, and 6, were extensively tested and

validated by repeated experiments. Moreover, all outcomes presented were
validated by simulation.

3.5 Relaxation of system assumptions

T'he analysis in the foregoing sections is limited in the sense that it only ap-
plies to systems with uncorrelated Poisson arrivals of demands and returns,
and to systems with constant lead-times for (re)manufacturing. To further
study the influences of process interactions and process uncertainties on

system performance, we will investigate the system defined in Section 3.1
under relaxation of the following assumptions:

o Uncertainties in returns and demands. To evaluate the influences of
uncertainties in the timing of demands and the timing and quality of
returns in more detail, the assumption of exponentially distributed

demand and return inter-occurrence times has been generalized to
Coxian-2 distributed demand and return inter-occurrence times. Be-

sides that the Coxian-2 distribution enables to fit a first and second
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moment of processes, rather than a first moment only, it is also pos-
sible to model these processes as a Markov chain. In this way, we
can adapt our procedures to more realistic demand and return pro-
cesses. The required modifications to calculate ZTPUSH(Sm., Qm,Qr),
and “C_'_pULL(sm, Qm, Sr, Sr) under Coxian-2 distributed demand and
return inter-occurrence times are outlined in Section 4.1.

e Correlation between returns and demands. The correlation between
returns and demands is modeled by the coefficient prp, which indi-
cates the fraction of product returns that instantaneously induce a
demand for a new product to replace the returned product. The in-
troduction of correlations between returns and demands changes the
calculation of Cpysy (Sm,Qm,Qr) and CpyrLrL(Sm:Qm, sy, Sr). For
further details we refer to Section 4.2.

o [ead-time uncertainty. The system defined in Section 3.1 can be
evaluated in presence of stochastic lead-times for (re)manufacturing.
Since we have devoted a separate chapter on lead-time effects, we
will address the mathematical analysis to evaluate the cost functions

CrusH(Sm,Qm,@Qr) and Cpyrr(Sm,@m, Sr, Sr) under lead-time un-
certainty in Section 3.1.



