In Chapter 3 we we introduced a hybrid manufacturing/remanufacturing
(HMR) system and an exact analysis to evaluate the associated average
long-run costs under PUSH and PULL control. Furthermore, we presented
in Chapter 4 a numerical study in which the average system costs are
compared under different assumptions with respect to the demand and
return processes, and cost structure. This chapter extends the analysis ot

Chapter 3 and the numerical study of Chapter 4 to allow for stochastic lead-
times for manufacturing and remanufacturing. In particular we investigate

the effects of lead-time duration and lead-time wariability.

The motivations to devote a separate chapter to the analysis of lead-times
are, that the analysis requires a non-trivial modification of the cost calcu-

lation procedure, and that some of the effects of lead-times on costs need
further explanation since they appear somewhat counter-intuitive.

This chapter is further organized as follows. After the introduction of some
additional notation and system assumptions needed for the mathematical
analysis, Section 5.1 outlines the procedures to numerically evaluate the

cost function in presence of stochastic lead-times. Section 5.3 presents the
set-up of a numerical study and discusses its outcomes. Finally, concluding

remarks are presented in Section 3.3.

5.1 System characteristics and analysis

[n presence of stochastic lead-times, the analysis of the cost functions

—C;PUSH(Sm; Qma QT) a‘nd “C_PULL(Smj QTTH 87‘7 Sr) OIlly diffeI‘S from the &n&l-—
ysis in Chapter 3 regarding the distribution of net inventory. To do the
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68 Chapter 5. Lead time effects

analysis, we need some additional notation regarding the (re)manufacturing
lead-time distributions.

Let the manufacturing lead-time L., be a discrete valued stochastic vari-

able with n,, possible outcomes, say E%), E%), . ,ng”‘). Similarly, let the
remanufacturing lead-time L, be a discrete valued stochastic variable with
n, possible outcomes, say ESI), E,(~2), . .,Eﬁn’"). Without loss of generality we

assume that £08) < /2 « < dvm) and 00 < p3B) o < plnn),

The probability mass function (p.m.f) of L,, and the p.m.f. of L, are then
given by
pg,)n =Pr{L, =02}, 1<j< nn.

and

Furthermore, define

[ — {g(l)’ /) _g(n)} A {g(l), 2 _gﬁ_’nr)} U {fg), E,S,g), . .e.}(,:;m)}
with

) <« 1« <)

Then we havefor 1 <k <n

maz{j|ti) <€)}
p¥) — Pr{L,, < E(k)} = Z p%) : (5.1)

™

and

Pl(ff) = Pr{L, < (W} = (5.2)

We need the cumulative probabilities in (5.1) and (5.2) to adapt the tran-

sient analysis that was introduced in Section 3.2 for deterministic lead-
times, to the case of stochastic lead-times.

The procedure to calculate the distribution of net inventory is outlined in

Section 5.1.1 for the PUSH strategy and in Section 5.1.2 for the PULL
strategy.
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5.1.1 Analysis of the PUSH strategy

This section outlines a numerical procedure to calculate the distribution of
the net serviceable inventory in the steady-state situation, Pr{/m¢ = 7€'},
From this distribution, the time-average on-hand serviceable inventory and
the time-average backordering position are derived as

T?H _ Z ?:?Et Pr{I;ﬂ,et _ i’r;et}’ (53)
1et >0
and
B = — Z i Pr{I" = {7t (5.4)
i?et<0

To calculate Pr{I™* = i7¢*} we use relations (3.9) and (3.12) which still
apply, 1.e.,
I7'(t) = I(t — L™*7)
1 Z(t . Lmax’ f— me)
— D(t = L™",t).

and

lim Pr{I?c*(t) = i2¢}

t—00

a!

=3 exp L™ (ApLmn) (5.5)
(2

X T (isa 7’9H) X hz|(zs,29H)(AL)

Note that here L™ = ¢() [mez = g(r) and AL = p(n) — ¢(1). The
conditional probability A, ;om)(AL) is calculated as

oo Qr-1
hai(ss 08y (AL) = k Y | ;) Q(k.0.2)|(is,i0H 0)(AL) (5.6)
=Sm + =

where g (. (AL) is the conditional probability that during the interval
(t — £(") ¢t — £(1)] the initial system state changes from state s(9) € S, into

?
/

state s(1) & S;.

Unfortunately, probabilities g u) s (E('”') — £1)) cannot be obtained directly
from a Markov chain model, because the transitions of Z (t~£(M), t —¢(1)] are
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time-dependent: a change in Z(t — o) ¢ —¢(1)] due to a (re)manufacturing
order depends on the probability that that particular order will arrive before
time £, and this probability depends on the difference between the time of
ordering and time t. However, the transitions in each sub-interval (t —
¢(k) ¢ — ¢(:=1)] for k = 2,...,n are time-independent. For instance, every
manufacturing order that is ordered in the interval (¢ — plk) ¢ — £5=1)] has
probability Pr{L,, < £¥)} that the order will arrive before time t, and a
probability 1 — Pr{L,, < £(®)} that the order will arrive after time ¢ (see
Figure 5.1).

(k) k
P, 1-p
-0 order -5 t

Figure 5.1. An order placed in the interval (t — £%) ¢ — £5=1] with stochastic

lead-time L will arrive before or at time t with probability Pék) = Pr{L < £~}

and will arrive after time t with probability 1 — Pﬁk).

Thus, we define for each sub-interval (t — ¢(%) ¢ — (k=111 < k< n, a
Markov chain Mgk) with state space S; and state variable

X{k)(r) — (IS,I,,OH,Z(’U,,U-I— T)).

By definition, X(k)( ) = (15,197, 2) whenever I,(7) = i, and 194 (1) =
197 and Z(u ) =z, with 7 € (u, u 4 £%) — g(k=1)],

Using expressions (5.1) and (5.2) we arrive at the following time indepen-
dent transition rates of M( ),

T

(k) (k
(25,22 H, z), (sm+QmPH 2+ Qm—1) — sz )\Dv
(k) k
("'S&"'OH ) (3m+Qm,ZOH z-—-l) (1 o P( ))

'Q'
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Related to t?kE) abovementioned Markov chain we define the conditional
probability ¢ ) 5(0) (6%) — £k=1)) "which is the probability that during the

interval (t — £F) ¢t — £(5=1)] the initial system state of ‘(l(k) changes from
state s(°) into state s{1). Then, the probabilities q.) |S o) (€% — £(1)) can be

expressed 1n terms of the recursive relation (k = 2,...,n)
d5(1)|5(0) (f Z 9 1)|3 k“ o e( )) iIS) (E ) £(k 1)) (57)
SES]
(k)

To calculate q.(3)](0) (ﬁ(k) mf(k“l)) we evaluate the transient behaviour of the

5
Markov chain Mg ). To do so we use the discretization technique, which
is discussed in more detail in Section 3.2.1. This technique transforms

Mgk) into an equivalent discrete time Markov chain M(l ) The one-step
L. e . ——(k
transition probabilities qi}{fl)s(o) In ME ) are as follows.
/©).,0)
C - ks _T'L g
_(1,k)
9s1) |)s(0) _" (5.8)
Y ©
where v\F) = )3 y ) and the constant v(¥) is chosen such that
- s(0) = Lus( e8] ¥ 5(0) 4(1)7

The m-step transition probabilities qiﬁ)g are derived from the recursive
relation
—(m~—1,k) k ...... l,k)
3(1) Is Z q Z)IS 5 1)‘3(2) y (5..9)

Finally, the conditional probabilities q( ) (1) {500 (£(k) — ¢(k=1)) are calculated as

(k) o (6(k) — p(k=1))

qs(l) E
5 —y(¥) (e(k) —g(k=1) L___L__.:{___‘“D_ (5.10)
p—— z exp |5(0)
m=0

Relations (5.5)—(5.10) now enable to calculate the average net inventory
(5.3) and the average backorder position (5.4), which concludes our analysis

for the PUSH strategy.
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5.1.2 Analysis of the PULL strategy

To evaluate the distribution of the net serviceable inventory under the
PULL strategy, the procedure in Section 5.1.1 can also be applied. In
doing so, we have to replace the Markov chain M4 defined in Section 3.2.2

by the family of Markov chains Mgk), 1 < k < n. The Markov chain Mgk)
has state space

:{Sm"l"l,...,U}x {07“'300})( {-——-QO,...,CXD},

and state-vector Xék)( ) = (i5,:9%, 2), indicating that at time 7 € (¢ —

gk ¢ — k=0 [ =4, JOH = 9H and Z = 2.

The transition rates of the Markov chain Mg ) are as follows.

ls > Sy OT

V(12097 2),(i2i@H 41,2) = VR OH < 8, — iy — 1,
k
y{z i9H 2),(87,0,248r ~is) T L(IT)AR, } 1s < S and
k) (k) , OH _ o _: _
U(" H 2),(S-,0,z) (]' - P - ))\R by Sr —1s — 1,
ls > Sy -+ 1 or
(k) B .
V(1009 2), (101,105 z=1) = 2D 3 {-f;; sm 1 and
ZT’ _..<...... ST‘ T ?’3} 9
k
Uéz%’ rhZ), (Sr "'OH"‘CU 3+33“1) ( )(A];)’ ZSO; Sy + 1 and
I/(z ,391{13),(5“2"9]{___3,,2_1) T (1 o PL.,.. )AD by 2 o

(k) (k) 1s = S, + 1 and
;. . = P;7 A S m
((z};),z,?ﬂ,z),(sm-l—Qm,z,?H,z—{-QmmI) (k)m b } , Sp 2 Sm + Qm and
I/(isﬂ‘ H,z),(sm-}-Qm,i?H,z) = (1 - P m)AD ng Z y7
(k) _
V%%),ZPH,z),(Sr,if?H--y,z—}-Srmsm--—-l) = P11Ap 1s = Sy + 1 and
V((iﬁ):zOH13)1(ST1£OH“yaz+Qm""""1) — PleD ’ 29§H< Sr - Sm and
V&ig,iq‘?ﬂ,z) (Sri@H —y z4y—1) 7 PQIAD {Zr <Y
k :
"’(fgs),»g;?H,.z),(sr,i,‘?H-y,zml) = PyoAp or $y < S+ Qm }
wherez = S, —s,, ¥y = S;— (S +Qm), P11 = I(anP(r) Py = P}Jﬂ(le(ﬁ)),

Py, = (1 — P}JQ)PU:), and Py = (1 — (k))(l _ p¥ ))

T

5.1.3 Optimization with respect to control parameters

For the case with deterministic lead-times we reported in Chapter 3 that
we did not succeed in identifying a ’nice’ structure in the cost functions
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CpusH (8m,Q@m,Qr) and Cpyrr(Sm, Qm,s,,Sy). Unfortunately, the cost
function In case of stochastic lead-times is even more complex than with

deterministic lead-times. Therefore, as in the numerical study of Chapter
4 we are committed to apply an enumerative search procedure to calculate

HCT;USH — min “CTPUSH(Sma Qma Q?‘)
(Sm:Qm:Qr)
and
m@}ULL = min _C_PULL(Sm, Qm, Sry Sr).

5.2 Numerical study

[n a recent study, Song [51] investigated the effect of manufacturing lead-
times on total expected costs in a stochastic production/inventory system.
The system differs from ours, in that no product returns occur (Ag = 0)
and, consequently, no remanufacturing operation exists. Furthermore, de-
mands are modeled by a compound Poisson process, which is a general-
ization of the Poisson demand process considered in our system. Finally,
manufacturing costs consist of a linear component only, i.e., fixed manu-

facturing cost are zero (c,{; = 0).

Under these assumptions, a base-stock control policy is optimal (see [5, page
604]). Under base-stock control, Song showed the following two results to

hold:

e An increase (decrease) in the duration of the manufacturing lead-time
results in higher (lower) total expected costs,

e An increase (decrease) in the variability of manufacturing lead-times
results in higher (lower) total expected costs.

To express the variability of stochastic variables, we follow the definition

used by Song:

Definition 5.1 (Song, page 609 in [51]) Consider two random varia-

bles X and Y with equal mean E(X) = E(Y), having distributions F and
G with densities f and g. Suppose X and Y are either both conlinuous or

both discrete. We say, X is more variable than Y, denoted by X >y4r Y,
of
Sign change (f — g) = 2, with sign sequence +, -, +

That is, f crosses g exactly twice, first from above and then from below.
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Note that when Ag = 0 and ¢/, = 0, the above results apply to our PUSH
and PULL control strategies as well, since both strategies are in this case

equivalent to a base-stock control policy with base-stock level s,, + 1.

Main objective in this numerical study is to investigate whether the above

results also apply to our PUSH and PULL strategies when Ag > 0. For
this purpose we have subdivided our numerical study in two parts. In
part one (Section 5.2.1) we analyze the influence of the manufacturing and
remanufacturing lead-time duration on total expected costs, whereas In
part two (Section 5.2.2) we investigate the influence of wvariability in the
manufacturing and remanufacturing lead-times on total expected costs.

The experiments in both sections start out from a base-case scenario defined
in Table 5.1. The influence of alternative assumptions regarding lead-times

and other input parameters are briefly discussed in Section 5.2.3.

component | value unit of measure

fixed remanufacturing costs (¢l ) ' §/remanufacturing batch
variable remanufacturing costs (c¥) $ /product remanufactured

- fixed manufacturing costs (c/ )  $/manufacturing batch j
variable manufacturing costs (c?. ) $ /product manufactured
remanufacturable inventory costs (c”) $/product per time unit

 serviceable inventory costs (c?) $/product per time unit
$/product per time unit

backordering costs (cs)

' remanufacturing lead-time

mean (ur, ) 2 time units
variance (oj ) 0
manufacturing lead-time
mean (ur.) | 2  time units
2 ) 0

varlance (o}

Poisson
1.0

- Poilsson

0.7

' demand process
demand intensity (Ap)
return process

- return intensity (Ag)

| product per time unit

product per time unit

Table 5.1. Base-case scenario.
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5.2.1 The effects of lead-time duration

To analyze the influence of the lead-time duration on total expected costs,
we have conducted a set of computational experiments in which either KL,

or pur, 1s varled, while keeping the other lead-time characteristics fixed.
The parameter settings in our experiments are summarized in Table 5.2.

FEzxperiment | Control | Lead-times | Reference
strateqy ; '

USH
Figure 5,25

pr.. has been varied; py. =0

ULL

PUSH | pr., has been varied; uy;. = 0, | Figure 5.4a
_ Or;,LLrZQ,Or;LLr=4
Figure 5.4b

The computational experiments led to the following observations.

T

U T| T

&

= U2
~
3

-
R

‘ ae
-
e

Table 5.2. Summary of computational experiments.

Observation 5.1 An increase in the manufacturing lead-time results for
both strategies in a much larger costs increase than an equivalent increase

in the remanufacturing lead-time (see Figures 5.2 and 5.3).

The reason why this effect occurs is, that our PUSH and PULL strategies
give priority to remanufacturing and use manufacturing as a last resort.
Therefore, the serviceable inventory position level at which manufacturing
orders are placed is lower than or equal to the serviceable inventory posi-
tion level at which remanufacturing orders are placed. Consequently, when
ur. ~ ur. , the probability that during an outstanding manufacturing or-
der a backordering position occurs is larger than the probability that during
an outstanding remanufacturing order a backordering position occurs. 1This
causes that longer manufacturing lead-times require higher safety stocks to
protect against costly stock-outs events than equivalently longer remanu-
facturing lead-times. As a consequence, it can be expected that the differ-
ence between the effects of increasing the manufacturing lead-time and the
effects of increasing the remanufacturing lead-time should increase with in-
creasing backordering costs. Additional experiments have indeed confirmed

this.
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Costs T

3.0

(6)

Figure 5.2. _é}USH as function of the manufacturing lead-time with pp, = 0
(a), and as function of the remanufacturing lead-time with uy_ = 0 (b).

Observation 5.2 For both strategies an increase in the manufacturing
lead-time results in a costs increase, while an increase in the remanufac-
turing lead-time in some cases results in a costs decrease.

L'hese effects are visualized in Figure 5.4 for the PUSH strategy. Note
that the cost decreasing effect of an increase in remanufacturing lead-times
occurs in particular when py is small compared to uy, . The arguments on
why this effect occurs are identical to the arguments used in Qbservation
d.1. Since our PUSH and PULL strategies give priority to remanufacturing,
the serviceable inventory position level at which a remanufacturing order
1s placed is higher than or equal to the level at which a manufacturing
order is placed. If the lead-time of a remanufacturing order is much shorter
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Costs 1‘
9.0

50 - /

3.0 - _ /

(a)

Costs 1‘

7.0 -

9.0 1

3.0 -

1.0 ¥

()

Figure 5.3. MCM’“;ULL as function of the manufacturing lead-time with uy, . = 0 (a),
and as function of the remanufacturing lead-time with py =0 (b).

than the lead-time of a manufacturing order, manufacturing orders will
arrive too late (which leads to additional stockout costs) or remanufacturing
orders will arrive too early (which leads to excessive holding costs). If the
remanufacturing lead-time becomes as large as the manufacturing lead-time
(i.e., ur. ~ ur. ), the abovementioned problem does not occur and costs
are decreased. Finally, if ui; becomes larger than uy,,, expected costs start
to increase again, since higher safety stocks must be kept to protect against

costly stock-out events that may occur during the (longer) remanufacturing
lead-time.

It should be noted that in the above argumentation we left out any holding
costs associated with work in process in the remanufacturing facility. If
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remanufacturing lead-times increase, holding costs of work in process also
increase. This negative cost effect partly neutralizes the positive cost effect
described above. However, even then it is interesting to observe that an
increase in remanufacturing lead-times may have a smaller impact than

expected.

Costs 1

Q.0 - (1)
+ (2)

(3)
7.0

5.0 ’/

N

1.0

(a)

Costs 1

- _ — _ "

_ . (2)
>0 (1)

30

1.0

(6)

Figure 5.4. E}USH as function of the manufacturing lead-time (a) with py,_= 0
(curve 1), pr. = 2 (curve 2), and pp, = 4 (curve 8), and as function of the
remanufacturing lead-time (b) with py,_ = 0 (curve 1) py = 2 (curve 2), and
ur,, =4 (curve 3).

9.2.2 The effects of lead-time variability

To investigate the effects of lead-time variability, we assume in the initial
set of experiments Bernoulli distributed lead-times. We have chosen for
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Bernoulli distributed lead-times, since the Bernoulli distribution is one of
the tew commonly used discrete probability distributions of which the pa-
rameters provide sufficient freedom to allow for a sensitivity analysis on
lead-time variability (variance) at a constant average lead-time FE(L). As-
sociated to the Bernoulli distribution, we define the parameters £ and £,
reflecting the situation that either an ¢-period lead-time will occur (with
probability F;), or an instantaneous delivery will occur (with probability
1 — F). The parameters £ and P, have been determined, such that the
average lead-time E£'(L) is kept constant at the base-case level of 2 time-
units, whereas the variance U% has been varied (note that for Bernoulli
distributed random variables, a higher variance is equivalent to a higher
variability according to Definition 5.2.1).

Figure 5.5 shows the relation between lead-time variability (expressed in
terms of 07 ) and total expected costs, for the PUSH strategy (Figure 5.5a)
and for the PULL strategy (Figure 5.5b). The curves labeled with (1) corre-
spond to Bernoulli distributed manufacturing lead-times and deterministic

remanufacturing lead-times, whereas the curves indicated by label (2) cor-
respond to Bernoulli distributed remanufacturing lead-times and determin-
1stic manufacturing lead-times. From Figure 5.5 the following observations

can be made:

Observation 5.3 An increase tn the vartability of manufacturing lead-
times results for the base-case scenario in lower total expected costs, both

under the PUSH strateqy and under the PULL strategy (curves (1) in Figure
5.5 are decreasing).

In this context, it should be noted that Song proved that this effect will
never occur with A\p = 0. To explain why the effect still may occur with
Ar > 0, note that with Bernoulli distributed manufacturing lead-times a

more variable lead-time (given a fixed average lead-time) implies, (i) an
increase in £, and (%) a decrease in F; and, consequently, an increase in the

probability of a zero lead-time occurrence.

Apparently, if Ag > 0 and remanufacturing lead-times are deterministic,
the cost increasing effect of (i) is partly neutralized by a frequent arrival of
remanufacturing orderings, compensating for manufacturing orderings with
a long ¢-period lead-time. Consequently, the impact of the cost increasing
effect of (i) is dominated by the cost decreasing effects of (12), resulting in
the observed net cost decrease. as a consequence of the arguments above,

the magnitude of the effect will not only depend on ¢f, but also on the
return intensity. If the return intensity is low the.cost increasing effect of
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Costs T

| 0.0 4.0 8.0 12.0 16.0

(a)

Costs 1‘
6.5 - - (2)

6.0

0.0 4.0 8.0 12.0 16.0

(6)

Figure 5.5. Cpy sy (a) and Courr (b) as function of the variance in manufac-

turing lead-times (curves 1), and as function of the variance in remanufacturing
lead-times (curves 2).

(1) is more dominant, since not all long (¢-period) manufacturing lead-times
are automatically compensated by the arrival of remanufacturing orderings.
On the other hand, if the return intensity is high, there will only be a small

number of manufacturing orders and the manufacturing lead-time will not
have much influence (see Section 5.3.3).

Since the cost decreasing effect of manufacturing lead-times only occurs
for Ag > 0 one may intuitively conclude that this effect will only occur
in systems with multiple sources to satisfy demands. However in [43] it is

shown that a similar effect occurs in the newsvendor problem, which is a
single source model.
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Observation 5.4 An increase in the variability of remanufacturing lead-
times results in an increase in total erpected costs, both under a PUSH
strategy and under a PULL strategy (curves (2) n Figure 5.5 are increas-

ing).
Although, we can not analytically prove the observed effect, we were unable
to find any dataset for which the opposite effect occurs.

The experimental results also indicate that lead-time variability has not
much influence on the relative performance of PUSH and PULL strategy.
Analogous to the situation with deterministic lead-times (see Figures 5.2
and 5.3, and Section 4.3.2) the PULL strategy outperforms the PUSH strat-
egy in the base-case scenario, where c,’? < CQ.

5.2.3 Sensitivity analysis

To investigate the extent to which the above observations are specific to
the assumptions and parameter settings in the base-case scenario, we also
study the sensitivity of the total expected costs for changes in demand and
return intensity, cost structure, and lead-time distributions. Here we briefly

discuss the outcomes of this study.

e Demands and returns. As can be expected, the results of the sensitiv-
ity analysis indicate that when Ag is small compared to Ap, the influence
of changes in the duration and variability of remanufacturing lead-times
on costs are limited, since most demands are satisfled by manufacturing
rather than by remanufacturing. Also, if Ap & Ap, costs are rather insensi-
tive to changes in the variability and duration of manufacturing lead-times,
since most of the demands are satisfied by remanufacturing. Generally,
the magnitude of the cost decreasing effect related to an increase in the
duration of remanufacturing lead-times and the magnitude of the cost de-
creasing effect related to an increase in the variability of manufacturing
lead-times both increase when increased coordination is required between
the remanufacturing and the manufacturing processes. The coordination
needs to be maximal if the time-average number of remanufactured prod-
ucts is close to the time-average number of manufactured products, 1.e.,

when /\R ~ (AD — )\R).

e Cost structure and cost parameters. The occurrence and magnitude of
the observed effects depend very much on the cost structure and cost pa-
rameters. For instance, work-in-process costs have been disregarded in our
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study. Taking into account these costs would imply that an additional cost
component (which is usually linear in the average lead-time duration), must
be added to the cost function. Depending on the numerical value of the
work-in-process costs, the cost decreasing effect of an increase in remanufac-
turing lead-times will be reduced, or even completely disappear. It should
however be noted that the observations related to lead-time variability will

not be affected by the inclusion of work-in-process costs.

Non-zero fized costs may also influence the total expected operating costs,
since non-zero fixed manufacturing (remanufacturing) costs imply larger
manufacturing (remanufacturing) batches. We observed that a larger man-
ufacturing or remanufacturing batch will reduce the cost decreasing effect
of an increase in the variability of manufacturing lead-times (Figure 5.6).

The reason why this effect occurs is, that with larger remanufacturing
batches the inter-arrival time between subsequent remanufacturing batches
will become more erratic. Consequently, long manufacturing lead-times
may not be compensated immediately by the arrival of remanufacturing
orderings. Similarly, larger manufacturing batches imply that a long man-

ufacturing lead-time can not be compensated by the arrival of a single
remanufacturing ordering.

Finally, analogous to the situation with deterministic lead-times the experi-
ments for the case with stochastic lead-times indicate that when remanufac-
turable inventory is valued lower than serviceable inventory (c? < c?), the
PULL strategy outperforms in most cases the PUSH strategy. Otherwise,
the PUSH strategy yields in most cases lower total expected costs. This is

consistent with the results of Inderfurth [26] who proved for a similar but
periodic system, that a PULL strategy is optimal if ¢ < c?.

o Lead-time distributions. The results of a simulation study by Van der
Kruk [57] indicate that Observations 5.3-5.4 are not specific to Bernoulli
distributed lead-times only. The effects related to lead-time variability
also occur for continuously distributed lead-times, such as for lognormal

distributed lead-times (Figure 5.7a), and for Coxian-2 distributed lead-
times (Figure 5.7b).!

‘For Lognormal and Coxian-2 distributed random variables a larger variance (with

constant expectation) is equivalent to a higher variability according to the definition of
>var used by Song [51].
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Figure 0.0. “C_;)USH (a) and _C—;ULL (b) as funCt'ion Of the variance in manu-
facturing lead-times for ¢/ = ¢/ = 0 (curves 1), ¢!, = ¢/ = 5 (curves 2), and
¢! =c¢/ =10 (curves 3).

5.3 Summary and conclusions

We have investigated the influence of lead-time duration and lead-time vari-
ability on total expected costs in a system with manufacturing and remanu-
facturing operations. To control the system, we have applied simple PUSH
and PULL strategies. Although these strategies are non-optimal they have

the advantage that they are easy to implement and actually used in prac-
tice. Also, we have introduced a novel and non-trivial procedure to include

stochastic lead-times in our analysis.

A numerical study shows that changes in the duration of manufacturing
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Figure 5.7. Costs as function of the variance in manufacturing lead-times (curves

1), and remanufacturing lead-times (curves 2), while lead-times follow a Lognormal
distribution (a) and a Cozxian distribution (b).

lead-times have larger influences on total expected costs than changes in
the duration of remanufacturing lead-times. In some cases, an increase
in remanufacturing lead-times may even result in cost decreases. In this
context, it has been stressed that one should strive for a situation in which
the remanufacturing lead-time and the manufacturing lead-time do not
differ too much in expectation. Also, the numerical study indicates that
cost increases are more sensitive to a larger variability in remanufacturing
lead-times than to a larger variability in manufacturing lead-times. In some

cases, a higher variability in manufacturing lead-times may even result in
cost decreases.



5.3. Summary and conclusions {5

The experiments also indicate that with stochastic lead-times the PULL
strategy in most cases outperforms the PUSH strategy when ¢ is smaller
then ¢?. However, further experiments also indicate that when remanu-
facturable inventory is valued as high as serviceable inventory, the PUSH
strategy may outperform the PULL strategy. These observations corre-
spond to the observations made in Section 4.3.2 in relation to deterministic

lead-times.



