Chapter 7

As was already noted in Chapter 2, only a few papers consider returns
and outside procurement in a manufacturing environment, where the total
amount of products or modules may change over time. We categorized
the most relevant papers into three groups: cash balance models, periodic
review models and continuous review models.

[n cash balance models demands and returns are explicitly modeled and
various inventory control policies are considered. Yet in all variants there

1s no lead-time, which makes the analysis much easier. The same holds for
the few papers discussing the periodic review case, with the exception of
Inderfurth [26]. However, the latter paper focuses on the structure of the
optimal policy and not on finding the optimal policy parameters.

What makes the continuous review case so interesting is that it can handle

(stochastic) lead-times. Yet also Heyman [23] and Hoadly and Heyman
24] assume zero lead-times and do not take fixed order costs into account.

The only paper which does consider lead-times is a paper by Muckstadt
and [saac [37], in which an approximative method is developed for a single

product (s,,,@,,) model with fixed lead-times but no disposal.

In this chapter we will take the model of Muckstadt and Isaac as a starting
point to develop heuristics for the HMR systems that were considered in the
previous chapters. Next, in Section 7.1, we briefly discuss the model and
the approximative method that were introduced in Muckstadt and Isaac.
In Section 7.2 we develop two alternative approximation procedures, which
we will compare to the Muckstadt and Isaac approach in Section 7.3.

111



112 Chapter 7. Heuristics

We consider a single product inventory system similar to the one intro-
duced in Chapter 3, which was first proposed in Muckstadt and Isaac |37]
The only difference with the model of Chapter 3 i1s that we do not make
any assumptions regarding the remanufacturing facility other than inde-
pendence of processing times. Further, holding costs for remanufacturable
inventory and fixed ordering costs for remanufacturing orders are not con-
sidered. We assume that the inventory is continuously reviewed and that
an (Sm,@Qm, @, = 1) PUSH strategy is applied to the inventory position.
Our objective is to determine those parameters s, that minimize the
total long-run average costs.

For the analysis define the net inventory at time ¢, I7¢*(t), as the number of
on-hand serviceables in storage, 19 (t), minus the number of outstanding
backorders, B(t). The inventory position, I4(t), is the sum of the net
inventory, the number of products in the remanufacturing facility, R(t),
and the number of products on order, P(%).

Remark 7.1 Note that the random variable R(t) includes remanufactur-
able inventory and work in process. Consequently, remanufacturable prod-
ucts enter inventory position upon arrival. This differs from the model In
Chapter 3, in which remanufacturable products enter inventory position
only at the moment that they are ordered. Both definitions of inventory
position are equal In the special case that the remanufacturing capacity
1s infinite. In this case every returned product enters the remanufactur-
Ing work 1n process upon arrival. The reason why Muckstadt and Isaac
adopt the first definition is that in this way an analytical expression of the
mean and variance of inventory position becomes available. In practice,
our definition seems more appropriate, since the time of becoming avail-
able tor serviceable inventory is less uncertain for products already in work
in process than for products in remanufacturable inventory.

Notice now that at time ¢ all the outstanding orders at time t — uy, . have
arrived. Hence, the net inventory at time ¢ equals the inventory position at

time ¢t — uy,, minus the number in the remanufacturing shop at that time
minus the demand plus the output of the remanufacturing shop during the
interval (¢t — ur,_,t]. In formula,

IP(t) = I;(t — pr,) — R(t — pr,) + Z(t — pr_, 1), (7.1)
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where the latter term indicates the output of the remanufacturing shop
during the interval (£ — ur,,,,t], minus the total demand during the interval

(t — LI t].

For the analysis we are interested in the average number of orders, the
average on-hand inventory and the average number of backorders. Since
both demand and return inter-arrival times are negative exponentially dis-
tributed, we can formulate a continuous-time Markov chain for the in-
ventory position. Demands now decrease the inventory position with one
product unless the level s, is reached in which case a manufacturing order
instantaneously increases the inventory position to level s, +),,. A prod-

uct return always increases the inventory position by one product. Since at
this point we do not consider disposals we have to assume that Agr < Ap.

Using a generating function approach it is easy to find the following ex-
pressions for the first and second moment of the inventory position, which

read as (see [37])

s Y o Qm — 1 )\R
[, := tgrglgE(Is(t))msm+l+ ; —I—/\DMAR,
and
. (Qm)*—1 ADAR
. e AL Wa——— 7.2
Var(Is) : EEO Var(Is(t)) - + D — Ap)? (7.2)
Taking limits in (7.1) yields
~I1LE m, 1 A —e
Ist:,s,m—}—]_—{-—Q +WB“““““R+(AD""/\R)/U'Lm1 (73)
2 AD — AR

since limy—oo F(Z(t — pr..,t)) = (AD — AR)HLm-
Using (7.2) and Var(Z(pr,,)) = limise Var(Z(t — pr,.,t)) we have

Var(Ip#) m V(Ipe) = Q2h=2 4 ek

D—AR)
+Var(R)+ Var(Z(pL,)),

where in the latter we have discarded the covariance terms.

Note that exact expressions and good approximations for R, Var(R), and
Var(Z(ur, )) are available for various standard queuing systems. Lor ex-

ample, for M/M/c and M/G /oo queues the output of the remanufactur-
ing facility is a Poisson process (see [37]), so in this case Var(Z(uL,,)) =

)\D -}—)\R.
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In order to calculate the average number of backorders we need to get hold
of the distribution of the net inventory at an arbitrary point in time. To do

so Muckstadt and Isaac propose a normal distribution as an approximation
of the distribution of net inventory. This results in the following expression

of the average number of backorders, Bpsy:’

_ .._. 7 ) 1.
Bur=V({II¢| =] - L2 | = , 74

where ¢(.) and ®(.) are the standard normal density and standard normal
distribution functions respectively.

We define the cost function to be optimized, Cprr(Sm,@m), as
amMI(Sma Qm) — c%‘"o"m T CbFMI + hs (-B-MI + T:et) (75)

where O,, is the average number of manufacturing orders per unit of time.
Substituting (7.3), (7.4), and O,, = (Ap — AR)/Qm, we rewrite (7.5) as

Cmi(sm,Qm) = ¢y (ADQ%B‘) + (s + hs) Bmr

+ hg (sm + 1+ Q"”Eml 4+ 2B (7.6)

D —Mp

— R+ (Ap - )\R)P'Lm) ...

Finally, in {37] it is shown that the optimal parameter values s* and Q%
have to satisty

(Qr)°  12(Ap — ARp)c/,
ﬁQ_i%_)_Q_ +d 8 ,
and
*x Y2 "
o [ [@ .
= .
where
AR 1 =
C= AD“AR +§“R+(/\D”AR)/1’Lm7

'In the remainder of this chapter the subscript ‘MT refers to the Muckstadt and Isaac

approach, whereas the subscripts ‘L1’ and ‘L2’ refer to the two alternative procedures
proposed by the author (Section 7.3).
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)\DAR — .....}........ _I._Var(R) - VGT(Z(/JJLm))?

d = ————
(Ap — Ap)? 12

and

A disadvantage of the approximation procedure of Muckstadt and Isaac is
that the asymptotic properties of the approximation of the net inventory
do not correspond to actual behaviour in some CaseSs (see Van der Laan

58], and Table 7.1).

Actual
behaviour

Muckstadt & Isaac

procedure

o
Tri

const./co const. oo

_ - 0

Table 7.1. Asymptotic behaviour of the approrimation procedure of Muckstadt

and Isaac compared to actual behaviour.

7.2 An alternative procedure

For the alternative approximations that we will develop in this section we
assume that at any point in time there is at most one order outstanding.
The output of the remanufacturing facility is now approximated by an
independent Poisson process with mean Agr, which is exact for M/M/c and
M /G /oo queues. In the first approximation we assume that the net demand
during the manufacturing lead-time, Z(uyr,. ), follows a normal distribution.
Furthermore we assume that at the moment of a manufacturing order, the
net inventory equals s,, — RB. Hence, the expected number of backorders
just before a replenishment, F(sp, 4L,,), is approximated by the expected
surplus net demand over the level s — R of a normal distribution with mean

= (Ap — AR)UL,, and variance 0% = (Ap + AR)MUL,,, or in formula,

o y+ T = _
F(sm,pr,,) =+ R —5,)® (H+ Sm) + od (ﬂ+R Sm)
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Assuming a linear increase of the number of backorders per time unit it
follows that the average number of backorders during the time that net

inventory is negative equals F'(sm, pr,,)/2. From the same assumption it
also follows that the average time that net inventory is negative equals

F(sm, 5. )/(Ap — AR) divided by the average cycle length Q,,/(Ap - AR).
Hence, the expected number of backorders can be approximated by

- I Smy HLm ?

26 m

Using (7.7) we obtain as total cost function Cr1(5m,Qm):

Cri(s$m,Qm) = ¢l (ﬁﬁfﬂ) + (cv + hs)BrL
Ry (14 92=t 4 Aa (7.8)

AD—AR

— F-{— (/\D — /\R)}le) .

[n the following lemma we prove that the function Cr1 (s, @) is a strictly
convex function in s,, and ¢J,,.

Lemma 7.1 The function Cp1(sm, Q) defined in (7.8) is a strictly convex
function in the control parameters s,, and (),,.

Proof It is quite easy to show that the second derivative with respect to
(Qm 1s positive. Next consider the second derivative with respect to s,.
The main complication is in the term F(s,,,ur, ). Notice now that

25 N 5 d2F S s dF’ Sm
_..__(d__.;.?_n‘_’:éml_ — 2F(sm,ﬂLm)"“"(?i?_gnM’ml+2 (_L?Eféml)
—“‘*Sm dF S 2
— %—F(Smalj‘Lm)Qf’ (E_Jf_'_.%______) + 2 (——(_d;’f—éml) >0,

which shows that the function is convex in s,,. To finish the proof we apply
the following standard lemma on convexity, which we state without proof.

Lemma 7.2 Let f(z) be a positive valued, decreasing and convez function
in z, and let g(y) be a linear positive valued function in y, then h(z,y) :=
f(z)/g(y) is convez in (z,v).

Taking f(sm) = F(8m, p1,,)* and ¢(Qm) = Qm/(Ap—AR) yields the desired
result. O
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The optimal value of (), given s7, is easily found by taking the derivative
of (7.8) and equals

) cs + h, 2Ap — Ap)el,
sz h F(S:naﬂLm)Q‘*‘“'(“‘Q"“g““ﬁ“)“E““

Notice that the second term within the square root resembles the well-
known EOQ formula (see e.g. Silver and Peterson [48]) adjusted for re-
turns. Taking the derivative of (7.8) with respect to s, yields the following

equation for the optimal value of s,, given ) ,

F(S:naﬂLm)z #+“§_ Sm hs
C\my Phm) g (2T YT Om
r Y

which can easily be solved with numerical techniques. Since both s,, and
Q),, are integer valued, the final optimal parameter combination 1s that

neighbor which has lowest average costs.

[n the second approximation procedure we approximate the difference be-
tween the demand and the output process from the remanufacturing tacility
by a Brownian motion with drift equal to g; = (Ap — Ar)t and a variance
o; = (Ap + AR)t over t time units. Consequently, the net inventory ¢ time
units after the ordering of a replenishment follows a normal distribution
with mean s,, — R — (Ap — Ag)t and with variance (Ap + Agr)t. Hence, the
time-average amount of backorders is approximated as

— — HLm
BL2 — --/}-—?—-Q—wiﬁ L ’ F(Sm, t)dt (79)

This leads to another total cost function, Cr2(Sm,@m), defined as

_C“Lg (S, Qm) — C,}fn (-/\-D—Q_;&B‘) + (cp + hs)_B_LQ
b (sm+ 14+ 2270+ B (7.10)
- R+ (Ap - AR)ﬂLm) -

Again it is possible to show that this function 1s convex:

Lemma 7.3 The function Crz(Sm,@m) defined in (7.10) s a strictly con-
vez function in the control parameters sy, and Qn, .
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Proof The main complication is in the term Brz. given by (7.9). We
consider the first and second derivative of [, ™ F(sm,t)dt with respect to

Sy -

1

| .
5o Jo 7 F(sm, t)d /0 s b (Sm, 2l

sm 4 (“ﬁ“"SM) dt < 0

g

i

2
“‘38:2 O“Lm F(Sma t)dt — OMLm @asﬁpb F(Sm’ t)dt
fOL E_;QS(M o )dt>0

1

Thus, [; '™ F(sn,t)dt is strictly decreasing and strictly convex in sp,. Ap-
plying Lemma 7.2 with f(Sm) — O#Lm F(Sm7 t)dt and g(Qm) — Qm/()\D _
Ar) yields the proot. O

Using approximation (7.9), the optimal value of ),,, is computed as

HLom 20Ap — A
Q:n. po ((Cb—l-hs) / F(s;“,},l,t)dt—kc;fn) “L“QE*““‘“}E)-’,
. O S
and the optimal value of s,, must satisty
X\ — K Lo R — hs
D /\R / P Mt T H Sm dt —
Qm Jo of ¢y + hs

Alternative Alternative ~ Actual
procedure 1 procedure 2 behaviour

: Br1 Brs G

const. const. const.

- - 0

/\R"*AD
Sm —* OO

Table 7.2. Asymptotic behaviour of the two alternative approrimation procedures
compared to actual behaviour.

We summarize the asymptotic properties of the two alternative approxi-
mation methods in Table 7.2. Clearly, the asymptotic properties of the

second alternative procedure follows the actual behaviour more accurately
than the procedure of Muckstadt and Isaac.. .
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Figure 7.1 Ezact expected total costs as function of the return intensity, under
the optimal strateqy and under the strategies determined by the approzimation
procedures, with ¢, = 10 (a), ¢ = 50 (b), and c, = 100 (c).
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7.3 Numerical comparison

For the following numerical comparison of the alternative approximation
procedures we use the following base case scenario: A\p = 1.0, Ap = 0.7.
ur = 10, ¢/ = 10, by = 1.0, ¢, = 10. The remanufacturing facility is
modeled by an M/M /oo queue with mean remanufacturing time y;_ = 0.5.
The remanutfacturing batch size is always equal to 1. As a consequence we
can compute exact costs given some combination of the policy parameters,
by applying a similar analysis as given in Chapter 3 for the PUSH-strategy.
Details can be found in Salomon et al. [45].

l.xtensive numerical experiments using the optimal values obtained by our
two methods and the method of Muckstadt and Isaac, and computing the
accompanying eract costs, show that the three methods differ only slightly
for moderate values of ¢, together with high values of Agp/Ap (see Figures
7.1(a) and 7.2(a)). For higher values of ¢, alternative procedure 1 does

not perform very well for Ar/Ap < 0.75, whereas for values of Agr close
to Ap the Muckstadt and Isaac procedure performs considerably worse for

Ar/Ap > 0.75 (see Figures 7.1(b)—(c)) and 7.2(a)-(c)). In all cases that
we considered our second method generated results that are very close to
optimal, and we have to conclude that this procedure 1s very accurate, and
superior to the other methods in almost all cases.
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29 according to the netting approach l
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Figure 7.3. Comparison between the optimal average costs resulting from the
explicit modeling of the return flow and the optimal average costs as estimated by

the netting approach.

A popular method to handle return flows in practice is the so-called ‘net-
ting approach’. Basically, in this approach the returns are treated as neg-
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ative demands. The expected demand flow is corrected by subtracting the
number of expected returns from the number of expected demands. The
resulting expected demand flow after correction, is then treated with the
existing planning and control methods that do not allow for return flows.

To show that this approach is fundamentally a bad approximation to the
real underlying processes, we present the following example. First we ex-
plicitly model the return flow with intensity Ar and the demand flow with
intensity Ap, and calculate for the base case scenario the optimal average
costs. Second, we model only the demand flow corrected for the expected
return flow, thus with intensity Ap — Ar, and calculate the optimal average
costs. These costs can be seen as the costs that would result if the netting
approach would be a correct procedure.

Figure 7.3 shows that the netting aproach considerably underestimates the
optimal average costs in a remanufacturing environment. This can by ex-
plained by the fact that an increasing return rate causes an increase of
process uncertainty and eventually in an increase of average costs. The
netting approach however predicts the opposite, namely that the uncer-
tainty decreases due to a decreasing net demand flow, Ap — Ar. From this
simple example it can be seen that the netting approach fundamentally
1s a poor methodology to handle product returns, since it not only disre-
gards the uncertainty related to product returns, it also assumes that the

uncertainty decreases with an increasing return rate, while the opposite is
true.

7.4 Summary and discussion

In this Chapter we introduced some heuristical procedures to find optimal
policy parameters to control a system that was first introduced by Muck-
stadt and Isaac. At least one of these procedures seems to be reasonably
accurate for the scenarios that we considered. A disadvantage of these pro-
cedures however is that they only apply to PUSH type strategies. If PULL
type strategies are considered, it is crucial to take into account the interac-
tions between the remanufacturable inventory and the inventory position,
which 1s quite difficult. The same holds for disposal strategies, although

some preliminary ideas for a heuristical approach are given in Van der Laan
58] and Van der Laan et al. [61].

A simple heuristical approach to handle product returns, the ‘netting ap-
proach’, does not capture the increase in uncertainty due to the return flow.
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Therefore, optimization methods that are based on a netting approach ap-
plied to traditional inventory models are not expected to be very successtul.
The approximation procedures developed in this chapter seem to provide a
better basis for an extension to more realistic HMR systems.



