Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Id1 immortalizes hematopoietic progenitors in vitro and promotes a myeloproliferative disease in vivo

Abstract

Id1 is frequently overexpressed in many cancer cells, but the functional significance of these findings is not known. To determine if Id1 could contribute to the development of hematopoietic malignancy, we reconstituted mice with hematopoietic cells overexpressing Id1. We showed for the first time that deregulated expression of Id1 leads to a myeloproliferative disease in mice, and immortalizes myeloid progenitors in vitro. In human cells, we demonstrate that Id genes are expressed in human acute myelogenous leukemia cells, and that knock down of Id1 expression inhibits leukemic cell line growth, suggesting that Id1 is required for leukemic cell proliferation. These findings established a causal relationship between Id1 overexpression and hematologic malignancy. Thus, deregulated expression of Id1 may contribute to the initiation of myeloid malignancy, and Id1 may represent a potential therapeutic target for early stage intervention in the treatment of hematopoietic malignancy.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Akashi K, He X, Chen J, Iwasaki H, Niu C, Steenhard B et al. (2003). Transcriptional accessibility for genes of multiple tissues and hematopoietic lineages is hierarchically controlled during early hematopoiesis. Blood 101: 383–389.

    Article  CAS  Google Scholar 

  • Akashi K, Reya T, Dalma-Weiszhausz D, Weissman IL . (2000a). Lymphoid precursors. Curr Opin Immunol 12: 144–150.

    Article  CAS  Google Scholar 

  • Akashi K, Traver D, Miyamoto T, Weissman IL . (2000b). A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature 404: 193–197.

    Article  CAS  Google Scholar 

  • Alani RM, Hasskarl J, Grace M, Hernandez MC, Israel MA, Munger K . (1999). Immortalization of primary human keratinocytes by the helix-loop-helix protein, Id-1. Proc Natl Acad Sci USA 96: 9637–9641.

    Article  CAS  Google Scholar 

  • Alani RM, Young AZ, Shifflett CB . (2001). Id1 regulation of cellular senescence through transcriptional repression of p16/Ink4a. Proc Natl Acad Sci USA 98: 7812–7816.

    Article  CAS  Google Scholar 

  • Bain G, Engel I, Robanus Maandag EC, Te Riele HP, Voland JR, Sharp LL et al. (1997). E2A deficiency leads to abnormalities in alphabeta T-cell development and to rapid development of T-cell lymphomas. Mol Cell Biol 17: 4782–4791.

    Article  CAS  Google Scholar 

  • Belletti B, Drakas R, Morrione A, Tu X, Prisco M, Yuan T et al. (2002). Regulation of Id1 protein expression in mouse embryo fibroblasts by the type 1 insulin-like growth factor receptor. Exp Cell Res 277: 107–118.

    Article  CAS  Google Scholar 

  • Buitenhuis M, Van Deutekom HW, Verhagen LP, Castor A, Jacobsen SE, Lammers JW et al. (2005). Differential regulation of granulopoiesis by the basic helix-loop-helix transcriptional inhibitors Id1 and Id2. Blood 105: 4272–4281.

    Article  CAS  Google Scholar 

  • Bullinger L, Valk PJ . (2005). Gene expression profiling in acute myeloid leukemia. J Clin Oncol 23: 6296–6305.

    Article  CAS  Google Scholar 

  • Castilla LH, Garrett L, Adya N, Orlic D, Dutra A, Anderson S et al. (1999). The fusion gene Cbfb-MYH11 blocks myeloid differentiation and predisposes mice to acute myelomonocytic leukaemia. Nat Genet 23: 144–146.

    Article  CAS  Google Scholar 

  • Cooper CL, Brady G, Bilia F, Iscove NN, Quesenberry PJ . (1997). Expression of the Id family helix-loop-helix regulators during growth and development in the hematopoietic system. Blood 89: 3155–3165.

    CAS  PubMed  Google Scholar 

  • Fong S, Debs RJ, Desprez PY . (2004). Id genes and proteins as promising targets in cancer therapy. Trends Mol Med 10: 387–392.

    Article  CAS  Google Scholar 

  • Grisolano JL, Wesselschmidt RL, Pelicci PG, Ley TJ . (1997). Altered myeloid development and acute leukemia in transgenic mice expressing PML-RAR alpha under control of cathepsin G regulatory sequences. Blood 89: 376–387.

    CAS  PubMed  Google Scholar 

  • He LZ, Tribioli C, Rivi R, Peruzzi D, Pelicci PG, Soares V et al. (1997). Acute leukemia with promyelocytic features in PML/RARalpha transgenic mice. Proc Natl Acad Sci USA 94: 5302–5307.

    Article  CAS  Google Scholar 

  • Higuchi M, O'Brien D, Kumaravelu P, Lenny N, Yeoh EJ, Downing JR . (2002). Expression of a conditional AML1-ETO oncogene bypasses embryonic lethality and establishes a murine model of human t(8;21) acute myeloid leukemia. Cancer Cell 1: 63–74.

    Article  CAS  Google Scholar 

  • Hollnagel A, Oehlmann V, Heymer J, Ruther U, Nordheim A . (1999). Id genes are direct targets of bone morphogenetic protein induction in embryonic stem cells. J Biol Chem 274: 19838–19845.

    Article  CAS  Google Scholar 

  • Hu M, Krause D, Greaves M, Sharkis S, Dexter M, Heyworth C et al. (1997). Multilineage gene expression precedes commitment in the hemopoietic system. Genes Dev 11: 774–785.

    Article  CAS  Google Scholar 

  • Ishiguro A, Spirin K, Shiohara M, Tobler A, Norton JD, Rigolet M et al. (1995). Expression of Id2 and Id3 mRNA in human lymphocytes. Leuk Res 19: 989–996.

    Article  CAS  Google Scholar 

  • Jen Y, Weintraub H, Benezra R . (1992). Overexpression of Id protein inhibits the muscle differentiation program: in vivo association of Id with E2A proteins. Genes Dev 6: 1466–1479.

    Article  CAS  Google Scholar 

  • Kang Y, Chen CR, Massague J . (2003). A self-enabling TGFbeta response coupled to stress signaling: Smad engages stress response factor ATF3 for Id1 repression in epithelial cells. Mol Cell 11: 915–926.

    Article  CAS  Google Scholar 

  • Kim D, Peng XC, Sun XH . (1999). Massive apoptosis of thymocytes in T-cell-deficient Id1 transgenic mice. Mol Cell Biol 19: 8240–8253.

    Article  CAS  Google Scholar 

  • Kogan SC, Ward JM, Anver MR, Berman JJ, Brayton C, Cardiff RD et al. (2002). Bethesda proposals for classification of nonlymphoid hematopoietic neoplasms in mice. Blood 100: 238–245.

    Article  CAS  Google Scholar 

  • Kondo M, Weissman IL, Akashi K . (1997). Identification of clonogenic common lymphoid progenitors in the mouse bone marrow. Cell 91: 661–672.

    Article  CAS  Google Scholar 

  • Koschmieder S, Rosenbauer F, Steidl U, Owens BM, Tenen DG . (2005). Role of transcription factors C/EBPalpha and PU.1 in normal hematopoiesis and leukemia. Int J Hematol 81: 368–377.

    Article  CAS  Google Scholar 

  • Kreider BL, Benezra R, Rovera G, Kadesch T . (1992). Inhibition of myeloid differentiation by the helix-loop-helix protein Id. Science 255: 1700–1702.

    Article  CAS  Google Scholar 

  • Kunisato A, Chiba S, Saito T, Kumano K, Nakagami-Yamaguchi E, Yamaguchi T et al. (2004). Stem cell leukemia protein directs hematopoietic stem cell fate. Blood 103: 3336–3341.

    Article  CAS  Google Scholar 

  • Lasorella A, Noseda M, Beyna M, Yokota Y, Iavarone A . (2000). Id2 is a retinoblastoma protein target and mediates signalling by Myc oncoproteins. Nature 407: 592–598.

    Article  CAS  Google Scholar 

  • Lasorella A, Uo T, Iavarone A . (2001). Id proteins at the cross-road of development and cancer. Oncogene 20: 8326–8333.

    Article  CAS  Google Scholar 

  • Leeanansaksiri W, Wang H, Gooya JM, Renn K, Abshari M, Tsai S et al. (2005). IL-3 induces inhibitor of DNA-binding protein-1 in hemopoietic progenitor cells and promotes myeloid cell development. J Immunol 174: 7014–7021.

    Article  CAS  Google Scholar 

  • Lyden D, Hattori K, Dias S, Costa C, Blaikie P, Butros L et al. (2001). Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nat Med 7: 1194–1201.

    Article  CAS  Google Scholar 

  • Nilsson L, Eden P, Olsson E, Mansson R, Astrand-Grundstrom I, Strombeck B et al. (2007). The molecular signature of MDS stem cells supports a stem cell origin of 5q- myelodysplastic syndromes. Blood 110: 3005–3014.

    Article  CAS  Google Scholar 

  • Norton JD . (2000). ID helix-loop-helix proteins in cell growth, differentiation and tumorigenesis. J Cell Sci 113 (Pt 22): 3897–3905.

    CAS  Google Scholar 

  • Ohtani N, Zebedee Z, Huot TJ, Stinson JA, Sugimoto M, Ohashi Y et al. (2001). Opposing effects of Ets and Id proteins on p16INK4a expression during cellular senescence. Nature 409: 1067–1070.

    Article  CAS  Google Scholar 

  • O'Neil J, Shank J, Cusson N, Murre C, Kelliher M . (2004). TAL1/SCL induces leukemia by inhibiting the transcriptional activity of E47/HEB. Cancer Cell 5: 587–596.

    Article  CAS  Google Scholar 

  • Pagliuca A, Gallo P, De Luca P, Lania L . (2000). Class A helix-loop-helix proteins are positive regulators of several cyclin-dependent kinase inhibitors' promoter activity and negatively affect cell growth. Cancer Res 60: 1376–1382.

    CAS  PubMed  Google Scholar 

  • Perk J, Iavarone A, Benezra R . (2005). Id family of helix-loop-helix proteins in cancer. Nat Rev Cancer 5: 603–614.

    Article  CAS  Google Scholar 

  • Prabhu S, Ignatova A, Park ST, Sun XH . (1997). Regulation of the expression of cyclin-dependent kinase inhibitor p21 by E2A and Id proteins. Mol Cell Biol 17: 5888–5896.

    Article  CAS  Google Scholar 

  • Quesenberry PJ, Iscove NN, Cooper C, Brady G, Newburger PE, Stein GS et al. (1996). Expression of basic helix-loop-helix transcription factors in explant hematopoietic progenitors. J Cell Biochem 61: 478–488.

    Article  CAS  Google Scholar 

  • Rosenbauer F, Koschmieder S, Steidl U, Tenen DG . (2005). Effect of transcription-factor concentrations on leukemic stem cells. Blood 106: 1519–1524.

    Article  CAS  Google Scholar 

  • Rosmarin AG, Yang Z, Resendes KK . (2005). Transcriptional regulation in myelopoiesis: hematopoietic fate choice, myeloid differentiation, and leukemogenesis. Exp Hematol 33: 131–143.

    Article  CAS  Google Scholar 

  • Ruzinova MB, Benezra R . (2003). Id proteins in development, cell cycle and cancer. Trends Cell Biol 13: 410–418.

    Article  CAS  Google Scholar 

  • Sikder HA, Devlin MK, Dunlap S, Ryu B, Alani RM . (2003). Id proteins in cell growth and tumorigenesis. Cancer Cell 3: 525–530.

    Article  CAS  Google Scholar 

  • Suh HC, Gooya J, Renn K, Friedman AD, Johnson PF, Keller JR . (2006). C/EBPalpha determines hematopoietic cell fate in multipotential progenitor cells by inhibiting erythroid differentiation and inducing myeloid differentiation. Blood 107: 4308–4316.

    Article  CAS  Google Scholar 

  • Tenen DG . (2003). Disruption of differentiation in human cancer: AML shows the way. Nat Rev Cancer 3: 89–101.

    Article  CAS  Google Scholar 

  • Valk PJ, Verhaak RG, Beijen MA, Erpelinck CA, Barjesteh van Waalwijk van Doorn-Khosrovani S, Boer JM et al. (2004). Prognostically useful gene-expression profiles in acute myeloid leukemia. N Engl J Med 350: 1617–1628.

    Article  CAS  Google Scholar 

  • Wilson RB, Kiledjian M, Shen CP, Benezra R, Zwollo P, Dymecki SM et al. (1991). Repression of immunoglobulin enhancers by the helix-loop-helix protein Id: implications for B-lymphoid-cell development. Mol Cell Biol 11: 6185–6191.

    Article  CAS  Google Scholar 

  • Wong YC, Wang X, Ling MT . (2004). Id-1 expression and cell survival. Apoptosis 9: 279–289.

    Article  CAS  Google Scholar 

  • Yokota Y, Mori S . (2002). Role of Id family proteins in growth control. J Cell Physiol 190: 21–28.

    Article  CAS  Google Scholar 

  • Zhang J, Kalkum M, Yamamura S, Chait BT, Roeder RG . (2004). E protein silencing by the leukemogenic AML1-ETO fusion protein. Science 305: 1286–1289.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the technical support of Steve Stull, Kathleen Noer, Roberta Matthai and Samantha Bauchiero. We also thank Dr Nancy Colburn, Dr Sandra Ruscetti and Dr Kristbjorn Gudmundsson for their critical review of this article. This project has been funded, in part, with Federal funds from the National Cancer Institute, National Institutes of Health, under contract number NO1-CO-12400. This research was supported, in part, by the Intramural Research Program of NIH, National Cancer Institute, Center for Cancer Research. Clinical specimens were provided by the Sidney Kimmel Cancer Center at Johns Hopkins Tumor and Cell Procurement Bank, supported by the Regional Oncology Research Center Grant no. 5 P30 CA06973.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J R Keller.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suh, H., Leeanansaksiri, W., Ji, M. et al. Id1 immortalizes hematopoietic progenitors in vitro and promotes a myeloproliferative disease in vivo. Oncogene 27, 5612–5623 (2008). https://doi.org/10.1038/onc.2008.175

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.175

Keywords

This article is cited by

Search

Quick links