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Summary 

Strips of urinary bladder smooth muscle were sul~jected to a series of quick release measurements. Each measurement 
consisted of several releases and resets to the original length, made during one contraction. The complete length-force 
characteristic of series elasticity was quantified by estimating H, the amplitude of quick release necessary to reduce the 
active force to exactly zero, and Db, a measure for the deviation of the characteristic from a straight line. By measuring a 
series of contractions at increasing stretched strip lengths, the length dependence of these parameters was studied. It was 
found that H depends linearly on stretched strip length. On average Hflength amounted to 0.04. Db decreased when strips 
were stretched, i.e. a straight line was more closely approximated. Both parameter dependencies support the concept of 
two separate elastic mechanisms, a linear true passive elasticity in series with a non-linear elasticity in the cross-bridges. For 
the latter, H amounts to 3.8% of the initial strip length. 

Introduction 

Quick release is one  of the tradit ional techniques  of 
invest igat ing the contractile proper t ies  of muscle.  
Even if e q u i p m e n t  wi th  an electronically controlled 
length changer  is used ,  very  often the traditional 
m e a s u r e m e n t  scheme  is followed, in which  one 
release is appl ied  at one  prese t  load level, yielding 
one  data poin t  for each contraction.  In  smoo th  
muscle,  especially that  of the ur inary  bladder ,  the 
n u m b e r  of contract ions which  can be m eas u red  on  
one prepara t ion  is l imited (van Mastr igt  & Glerum,  
1985; van  Mastrigt  et al., 1986). Dur ing a contraction 
the active state changes  relatively s lowly and  quick 
releases measu red  dur ing  var ious  phases  of a 
contraction can be normal ized  s imply  (van Mastrigt  & 
Tauecchio,  1982). It is, therefore,  possible  to measu re  
several  quick releases dur ing  one contraction,  and  
hence  to est imate pa r ame te r s  describing the cross- 
br idge interaction in the s m oo t h  muscle  cell f rom a 
single contraction,  and  to s tudy  the variat ions in the 
pa ramete r s  in different  circumstances.  The p resen t  
s tudy  describes a first analysis  of a set of measu re -  
men t s  on str ips of s m o o t h  muscle  f rom the pig 
bladder ,  t aken  at increasing s t re tched lengths.  

Materials and methods 

Fresh pig bladders from the local slaughterhouse were 
transported to the laboratory in cold Krebs (1932) solution. 
A strip of approximately 10 x 23mm was cut from the 
posterior wall of the bladder and mounted in a container 

containing Krebs solution equilibrated with 95% 02, 5% 
CO2 at 37 ~ C. The solution had the following composition in 
mmol 1-1: NaCl 118; KC1 4.7; NaHCO3 25; KH2PO 4 1.2; 
CaC12 1.8; MgSO4 1.18 and glucose 11. One end of the strip 
was fixed to a Sensotec load cell with a silk thread. This 
transducer had a resonance frequency of 4.7 kHz, a range of 
10N, and a compliance of 9~m N -1. The other end of the 
strip was mounted in a clamp with penetrating pins which 
could be moved with a pneumatic cylinder. A 2-mm 
movement of the clamp could be effected in 10 ms. Bearing 
in mind that there is a difference in the Vma• of striated and 
smooth muscle in the order of a factor of 30 (Murphy, 1976) 
this compares to the time resolution common in similar 
work on striated muscle. Replacing the muscle strip by a 
silk thread identical to the one used for connecting it 
yielded an overall compliance of 156~m N -1. From this 
value the compliance of the set-up plus that of the length of 
thread tied to the muscle was estimated as less than 60 ~m 
N -1. The excursion of the penumatic cylinder was limited 
by a large plastic disc with a thickness varying in steps of 
0.1 mm. The disc could be rotated by a stepper motor. Its 
position and thus the amplitude of the movement forced by 
the pneumatic cylinder was monitored by an absolute 
rotation transducer. Electrical stimulation was applied 
using two stainless steel electrodes of 20 x 70mm, set 
25 mm apart, and running parallel to the strip on both 
sides. Alternating pulses of 20V, 10ms at a repetition 
frequency of 100 Hz were obtained from a pulse generator, 
a special pulse converter and an operational power 
amplifier. The signal from the load cell was amplified by a 
strain gauge amplifier with cut-off frequency of 1.4 kHz and 
fed into a Digital Equipment Professional 350 computer 
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using and A/D converter. The signal was sampled at 10Hz, 
except during a quick release, when the sampling rate was 
switched to I kHz for I s. The computer also controlled the 
mechanical set-up by rotating and checking the position of 
the stepper motor, triggering the movement of the 
pneumatic cylinder and switching electrical stimulation on 
and off. Following equilibration for 15rain, strips were 
slowly stretched until a tension of 0.05 N was attained, and 
again left to equilibrate for 15rain. Measurements were 
then made at intervals of 15rain. Each measurement 
consisted of a maximum of seven quick releases during a 
period of electrical stimulation. Each release was followed 
by a reset to the original length after 0.7s. Releases were 
applied as soon as the (isometric) force produced by 
electrical stimulation ceased to rise further. There was a 
waiting interval of I s between successive releases and 
electrical stimulation was generally continued until a 
previously specified number of releases (less than 8) had 
been completed, but a maximum stimulation duration was 
also specified to prevent fatigue of the preparation in case 
of errors. Figure 1 shows an example of a contraction with 
seven releases. A program of amplitudes for the releases 
was specified before each measurement. The program was 
adapted in such a way that, according to the results of 
previous measurements, the largest release was expected to 
reduce the active force to approximately zero. This program 
was executed twice, once with the amplitudes in ascending 
order, and once (during a second contraction, 15 rain later) 
in descending order. Before making measurements during 
a contraction, the same program of length changes was 
applied with the same time schedule to the unstimulated 
muscle, in order to be able to compensate for changes in 

passive force. Following the measurement of two contrac- 
tions and associated passive force changes in this way, the 
length of the strip was manually increased. 

The minimum force attained during the release was 
normalized and compensated for passive force changes by 
calculating: 

Fdl - -  Fpasd I 
Fre ] - -  (1) 

Ftrig - Fpa  s 

where Fdl is the minimum force in quick release during 
electrical stimulation; Fpasdl ,  the minimum force in quick 
release without electrical stimulation; Ftrig, the average 
force level 50ms before quick release during electrical 
stimulation; and Fpas, the average force level before quick 
release without electrical stimulation. 

The use of this normalization and correction scheme is 
based on previous work (van Mastrigt & Tauecchio, 1982) 
and was justified by the results of variance analysis (see 
below). To support further the use of Frel (which implies a 
'Maxwell' type configuration) as opposed to the use of 
Fdl/Ftrig (which would follow from a 'Voigt' type configura- 
tion), and to provide a final test of independence of the 
conclusions drawn from this normalization, measurements 
were also processed using Fd~/Ftrig. All measured force 
curves were checked visually to ensure that the detected 
minima were not artefacts. Figure 2 shows an example of 
such a curve. The Fr~l values measured at one strip length 
(generally in two different contractions) were combined 
and fitted with the function: 

Frd = A ( e x p ( b . d l )  - 1) + 1 - g .d l  (2) 

1 
( ts ! 4 s! 

I 0 . 2 s  

Fig. 1 Force as a function of time during one measurement with seven quick releases and resets applied, before and during 
contraction. 
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Fig. 2. Force as a function of time during quick release and reset. Inset shows 36 ms in greater detail. 

where dl is the amplitude of the quick release and A,b and g 
are parameters. 

The function (2) was fitted using a stepwise approxima- 
tion method (van Mastrigt, 1977). In the fitting procedure A 
was limited to values smaller than or equal to 1. Figure 3 
shows an example of a fitted curve. The data were thus 
completely described in terms of the three parameters A,b 
and g. As these parameters are difficult to interpret 
physiologically, the fitted functions were extrapolated to 
yield an estimate of the parameter H, the intercept of the 
function on the horizontal axis, which is the amplitude of 
the quick release necessary to reduce the active force to 
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Fig. 3. The measured minimal active force during a quick 
release as a function of the quick release amplitude, and 
fitted with equation (2) (see text). Results with relative strip 
lengths 0.82 (lower curve) and 1.14 (upper curve) are 
shown. Both comprise data from two successive contrac- 
tions. 

exactly zero (Huxley, 1957). Using this parameter, the 
curves measured at different stretched strip lengths were 
normalized, i.e. the quick release amplitudes were express- 
ed as a percentage of H. Figure 4 shows on one graph all the 
normalized functions (2) measured on one strip at different 
stretched lengths. The varying curvatures of these func- 
tions were described by a second parameter: 

Db = 0.7 -- Fre](0.3H) (3) 

Db represents the deviation of the fitted function from a 
straight line between the points (F~l = 1.0, dl = 0) and (Frel 
= 0, dl = 1.0H), measured at dl = 0.3H (see Fig. 5). Thus if 
the fitted function were a straight line, Db would be equal to 
0; if the fitted function had the greatest possible curvature, 
Db would be equal to 0.7. The force curves measured 
during quick releases were thus characterized in terms of 
the physiological parameters H and Db, instead of the 
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Fig. 4. All the fitted and normalized quick release functions 
from a single strip (at different stretched strip lengths). 
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Fig. 5. Example of calculation of the parameter Db, which 
characterizes the degree of curvature of a fitted quick 
release function. 

mathematical parameters A,b and g. The strip lengths at 
which measurements were taken were normalized by 
dividing by the length at which the active force attained its 
maximum value. The resulting curves showing parameters 
H and Db (as well as the active force and the passive force) 
as functions of relative stretched length were interpolated 
to yield equidistant data points, which were averaged over 
all measured strips. The active force was also normalized at 
a given relative length by dividing it by the maximum active 
force attained in that strip. 

R e s u l t s  

Measurements  were  per formed on five strips. Figure 
2 shows an example of the force measured  during a 
quick release and reset. There is a short oscillatory 
p h e n o m e n o n  at the end of the release phase  which is 
a mechanical artefact that was  ignored in this study.  
Table I shows  the results of variance analysis applied 
to Fdl, the min imum force during the release (sample 
number  15 in the inset of Fig. 2), Fdl/Ftrig and Frel- In 
the latter two analyses variance is an order of 
magni tude smaller as compared  to the analysis of Fdl, 
indicating the significance of normalizing Fdl values 
with respect  to Ftrig. There is no significant difference 
be tween  the analyses of Fdl/Ftdg and Frel. In both 
cases almost all variance is explained by the factors dl 
and strip length. Frel was  used  in all further 
calculations and analyses,  except where  explicitly 
indicated. Figure 3 shows  this parameter  as a 
function of dl, for all measurements  made  on one 
strip, at two strip lengths. Equation (2) was  chosen to 
describe the curves o n  pragmatical grounds.  The 
form of the curves (Fig. 3) suggests  an exponential 
function, which can be unders tood  theoretically (van 
Mastrigt & Tauecchio, 1982), bu t  a function with one 

Table 1. Variance analyses of variables and combinations 
of variables used to describe the minimum force during 
quick release. 

Mean square for source of variation: 
Strip Variable dl length residual 

1 Fall 1.94 0.55 0.016 
Fdl/Ftng 0.58 0.023 0.00032 
Ere 1 0.55 (4) 0.022 (7) 0.00035 (40) 

2 Fall 7.44 1.72 0.047 
Fdl/Ft~ig 0.74 0.018 0.00032 
Frd 0.85 (5) 0.064 (9) 0.00065 (69) 

3 Fdl 6.67 3.44 0.057 
Fdl/Ftrig 0.80 0.065 0.00038 
Frel 0.94 (6) 0.19. (11) 0.0016 (106) 

4 Fdl 1.43 2.40 0.024 
Fdl/Ftrig 0.45 0.095 0.00049 
F~ei 0.42 (4) 0.086 (11) 0.0032 (77) 

5 Fdl 4.06 0.54 0.038 
Fdl/Ftrig 0.76 0.016 0.00035 
Frel 0.76 (4) 0.034 (10) 0.00029 (65) 

Values in parentheses are degrees of freedom. 

exponential  term, or one exponential  term plus a 
constant,  did not  adequate ly  fit the measured  data. 
Furthermore,  the extrapolation of such a function to 
yield the parameter  H can introduce large errors. 
Addit ion of a linearly decreasing term to the 
exponential  term eliminates this problem, and was  
suggested by  the almost linear tail of many  measured  
curves especially at larger stretched strip lengths. By 
restricting the parameter  A to values smaller than or 
equal to 1, all measured  curves could be satisfactorily 
fitted and reliably extrapolated. Figure 3 shows a 
typical example of the average goodness-of-fit  of the 
curves. The sums of squared deviations for these 
examples were 0.0020 and 0.0040 respectively. 

Figure 6 shows the average and the s tandard 
deviation (where available) of the normalized active 
force, passive force and total force as a function of the 
relative length. Average unnormal ized active force at 
a relative length of 1.0 was  approximately 2.5N, 
implying an active stress in the order of 40 mN mm -2. 
At relative lengths greater than 1.0 the passive force 
becomes  very large in these preparations,  so that 
permanent  deformation of strips cannot  be excluded 
(Griffiths et al., 1979; van Mastrigt & Glerum, 1985). 
Figure 7 shows that H divided by  the stretched strip 
length is approximately constant,  so that H is roughly 
proport ional  to the relative length. 

The curves showing  the min imum active force 
during a quick release (Fig. 3) change significantly in 
shape w h e n  the strips are stretched: at greater 
stretched lengths the curve tends to approach a 
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Fig. 7. The parameter H divided by stretched strip length 
as a function of relative stretched strip length. Average plus 
and minus standard deviation. 

straight line (see also Fig. 4). This behaviour is 
quantified by the Db parameter in Fig. 8 ( D  b = 0 
signifies a straight line). It can be seen that, especially 
at relative lengths greater than 1.0, DB decreases. The 
Dbvalues at length/length(Fma• = 1.3 and 1.2 differ 
significantly from the value at 0.5 (Students t-test, P < 
O.05). 

D i s c u s s i o n  

Although the structure of smooth muscle is not as 
well understood as that of striated muscle, smooth 
muscle contraction certainly involves a sliding 
of actin and myosin filaments past each other accom- 
panied by the successive formation, (apparent) short- 
ening and release of cross-bridges between the 
filaments (Gabella, 1981; Bagby & Corey-Kreylin, 
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Fig. 8. The parameter Db as a function of stretched strip 
length. Db signifies the shape of the curves of minimal 
active force during quick release. D b = 0 signifies a straight 
line. Average plus and minus standard deviation of Db is 
displayed. 

1984). A macroscopic piece of smooth muscle in this 
view consists of a network of cells, each containing a 
network of filaments. As a result, the macroscopically 
measured force is the sum of the forces generated by 
many cross-bridges in parallel and the macroscopic 
shortening is the sum of the shortening of many 
cross-bridges in series. Traditionally, and for striated 
muscle, the dependence of active force on stretched 
strip length has been ascribed to a change in the 
degree in overlap of filaments (Huxley, 1974). For 
smooth muscle too it has been postulated that 
changes in length primarily change the overlap of 
filaments, thus influencing the number of cross- 
bridges that can be formed (Bagby & Corey/Kreyling, 
1984). According to this concept, the force generated 
at a given muscle length is directly proportional to the 
number of active cross-bridges in parallel between 
filaments. The parameter H studied in our measure- 
ments represents the shortening necessary to reduce 
the active force instantaneously to exactly zero. This 
parameter thus describes the working range of the 
muscle and would, in the most simple model, 
represent the product of the average working range 
of a cross-bridge with the effective number of cross- 
bridges in series, which is equal to the number of 
filaments connected in series. Taking this view, the 
addition of more cross-bridges in parallel between an 
invariable number of filaments should not influence 
this working range of the muscle. The normalization 
applied in equation (1), which allows quick releases 
measured at different active force levels during one, 
or even several, contraction(s) to be plotted on a 
single curve (Fig. 3), depends on this assumption 
which is based on earlier work (van Mastrigt & 
Tauecchio, 1982). The same equation also implies the 
additivity of passive and active force. Both assump- 
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tions basically describe a Maxwell configuration of 
elasticity: series elasticity in series with a contractile 
element, and a passive elasticity in parallel to both. 
As an alternhtive a series elasticity can be thought of 
which is in series with both the contractile element 
and the parallel passive elasticity: a Voigt configura- 
tion. Both configurations have been proposed for 
smooth muscle (Ford et al., 1977; Bressler & Clinch, 
1974). The additivity of active and passive force has 
been demonstrated for this type of tissue using a 
different type of measurement (Griffiths et al., 1979). 
In the present data there is no significant difference in 
explained variance versus residual variance between 
analyses according to the Voigt model, where 
normalization should exclude passive force as in the 
variable Fdl/Ftrig (Table 1) and the Maxwell model 
where it should be included as in Frel. Nor did a 
significant difference exist between the forms of the 
quick release curves for both parameters, except that 
analysis on the basis of the variable Fdl/Ftrig yielded a 
lower H value as compared to analysis based o n  Ere 1. 

Figure 9 shows a replot of part of the data of Fig. 3 for 
the former analysis method. It is concluded that 
neither of the models is strictly correct. 

For compatibility with earlier work (van Mastrigt & 
Tauecchio, 1982) the Maxwell type of analysis using 
equation I was maintained. Assuming that increasing 
stretched strip length cannot increase the number of 
cross-bridges in series, normalized quick release 
results (and thus the resulting parameter H) should 
not be affected by changes in active force caused by 
changes in stretched strip lengths. In our data, the 
parameter H is shown to be not only dependent  on, 
but even proportional to, stretched strip length (Fig. 
7) even though the active force is not (Fig. 6). If we 

1.2 

1.0 I 
O.B 

0.6 

0.4 

0.2 

I I I I 

0.4 o.e 1.2 1.6 

dL (ram) 
0.0 

o.o 2.'o 

Fig. 9. Replot of one curve from Fig. 3, for the parameter 
Fdl/Ftrig as opposed to G,l. 

continue to make the assumption that the working 
range of the muscle results from the summation of 
cross-bridges in series, the observed dependence can 
only be understood if the filaments are not oriented 
longitudinally. Stretching the strip then causes 
filaments to take a more longitudinal orientation, so 
changing the macroscopically measured parameter 
H. Indeed, filaments within smooth muscle cells do 
not run longitudinally, so that a reorientation upon 
stretching or shortening is to be expected (Fay et al., 
1984). It is shown in the appendix that the change in 
D b which can be expected from a reorientation of 
filaments from randomly orientated to fully longitu- 
dinally orientated is of the order of 0.13, on the 
assumption that the quick release curve for each 
filament (the microscopic equivalent of Fig. 3) does 
not greatly deviate from a straight line. As the 
minimum D b value which was measured at the 
largest relative length (Db = 0.05, strip 4) does not 
differ greatly from zero, this assumption appears to 
be valid. Figure 8 shows that the value of DB averaged 
over the five measured strips changes significantly 
more than 0.13. In two individual strips the change in 
Db on stretching was more than twice this value. It 
can therefore be concluded that reorientation of 
filaments is not the primary cause of the changes 
observed on stretching. 

An alternative explanation for the dependence of 
shortening behaviour on stretched length is that a 
significant part of the measured series elasticity is due 
to an extra external passive elasticity in series with 
the cross-bridges. Although this idea has been 
suggested previously (Mulvany, 1984; Hellstrand & 
Johansson, 1979; Hellstrand, 1979; Meiss, 1978) 
accurate determinations of the relative size of the 
contribution of passive series elasticity to the total 
series elasticity has been lacking. Figure 10"shows a 
direct plot of the parameter H against the total force 
(active + passive) for all strips, which indicates 
clearly that a unique relation exists between these 
two variables. This relation can be thought of as the 
sum of two characteristics. A constant representing 
the series elastic characteristic of the cross-bridges: 
whatever the force, a constant shortening H must be 
applied to exactly zero it, and a characteristic for the 
passive series elasticity which must be linear, i.e. the 
higher the total force, the more shortening must be 
applied to zero it. The extrapolation of the data in Fig. 
10 yields a vertical intercept of H = 0.99 mm which 
therefore represents the characteristic of the cross- 
bridges. Since the average initial length of the five 
strips was 26 mm, H/initial length for the cross-bridge 
elasticity is 3.8%. For other types of smooth muscle, 
values of H/initial length of the same order or less 
have been reported: 4-5% for rabbit mesotubarium 
(Meiss, 1978); 1-2% for rabbit urinary bladder (Hell- 
strand & Johansson, 1979; Hellstrand, 1979); 1.5% for 
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Fig. 10. Average plus and minus one standard deviation of 
the parameter H (the amplitude of quick release necessary 
to reduce active force to exactly zero) as a function of total 
force (active force + passive force) for five strips, and fitted 
straight line. 

single cell measurements on Bufo marinus stomach 
(Warshaw & Fay, 1984). 

In Warshaw and Fay's work (1984), quick release 
curves were linearly extrapolated, which probably 
yields an underestimate of the value of H/initial 
length. These values of H/length are about 10 times 
larger than the estimates of cross-bridge elastic 
extension for striated muscle (Ford et al., 1977) which 
points to a drastic difference in structure (shorter 
filaments and/or more compliant cross-bridges). 
Figure 10 also shows that the passive series elasticity 
is almost linear. Fitting a straight line yields an elastic 
coefficient of 3.1 N mm -1. The form of this curve does 
not depend on the usage of the parameter Frel as 
opposed to using Fdl/Ftrig. Recalculating Fig. 10 using 
the latter parameter yields a similar form, a correla- 
tion coefficient of 0.80 (whereas Fig. 10 yields 0.79) an 
intercept of 0.78mm as opposed to 0.99mm and a 
slope of 3.8 N mm -1. The reduction in the curvature 
of the measured quick release curves on stretching (see 
Figs 5 and 8) can thus be accounted for by the 
increasing relative importance of the linear passive 
series elasticity and the descreasing relative import- 
ance of the non-linear cross-bridge series elasticity as 
the muscle strip is stretched. The form of the 
cross-bridge elasticity can be estimated from Fig. 9 by 
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extrapolating the parameter Db back to zero exten- 
sion. This yields a value for Db of the order of 0.3. 

Appendix 

Suppose filaments are randomly or ienta ted in the 
preparation, i.e. the angle a between filaments and a 
plane perpendicular to the direction in which force is 
measured is distributed uniformly in the range 0 - 
~/2. The macroscopically measured force F can then 
be calculated from the forces f in each filament as: 

F = fo/2/'sin(a) Ha (4) 

The force in a filamentfdepends on the amplitude of 
a quick shortening in the filament dl. Suppose this 
dependence (the microscopic equivalent of the rela- 
tion depicted in Fig. 3) takes the form of a straight line 
betweenf = 1, dl = 0 andf = 0, dl = h (h is the per 
filament equivalent of the macroscopic parameter H), 
and zero for dl/h. f can then be written as: 

f = (1 - dl/h).(1 - u(dl - h)) (5) 

where u 0 represents the unit function. Furthermore, 
the relation between a macroscopically applied 
shortening dL and the resulting shortening of the 
filaments dl can be described as: 

dL = dl.sin(a) (6) 

Combining 4,5 and 6 yields F(dL), the macroscopical- 
ly measurable quick release function. This function is 
not a straight line, and its curvature can be calculated 
by normalizing it (dividing by F(0)), inserting it into 
equation 3 and integrating. This yields Db = 0.13. 
Now, if by extreme stretching the orientation of 
filaments changes such that all filaments lie in the 
direction in which force is measured, the macroscopic 
function F(dL) would equal the microscopicf(dl) apart 
from a scale factor. As f(dl) is a straight line the 
curvature of F(dL) would yield Db = 0. The change in 
curvature of F(dL) by an extreme reorientation of 
filaments, from randomly orientated to exclusively 
longitudinally orientated thus leads to a change in Db 
from 0.13 to 0, on the assumption that the per 
filament f(dl) function is a straight line. For other f(dl) 
functions, not deviating too much from a straight 
line, the maximal change in Db due to fibre reorienta- 
tion will be of the same order of magnitude. 
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