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CHAPTER 11

ELEMENTARY OUTLINE OF THE METHOD
OF CORRELATION ANALYSIS

| FIT 8 3 L iy 5 1550 RRES TR SANT ey

3 % SIMPLE GORRELATION

As has been pomnted out in the previous chapter, the object of
correlation analysis 1s twolold: (1) to test whether some expected

(2) 1f so. to tind the strength of the influences exerted by each causal
phenomenon (measurement). The exact meaning of these terms

and the consecutive steps m the analysis will now be discussed.
[t seermns useful to begin with simple correlation.

Simple correlation 1s expected to exist 1f the
Simple  tluctuations in any series Y are supposed to be caused
correlation. (or chiefly caused) by the fluctuations in only one

other series X. The simplest type of analysis that
can be made in this ease is to draw a scatter diagram. In such a

Graph 11, 1. Graph 11. 2.
NCATTER DIAGRAM. PeErrrcT CORRELATION.
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The curve through the points is called the regression
Regresston  curve. 1f 1t 1s a straight line, its slope is termed the
curves and regression slope and may be measured by a “ re gression
coeffictents. coeffictent ”: this coeflicient indicates the increase
in Y which corresponds to a unit increase in X. In
the table below, which indicates corresponding values for X and Y,
arranged in ascending order, a unit increase in X clearly corresponds
to an merease of 2 Y. The regression coeflicient is therefore 2.
The relation between X and Y may also be described by the
formula Y = [0 — 2 X.

10 50

{1 32

12 34

15 36

14 33

15 4()

“ Corresponding values ” of X and Y will often

Lags.  be values for the same period. In some cases,

however, the relation 1s between values of X and

later values of Y. The time difference between corresponding

values of X and Y is called the lag; Y lags behind X or X leads Y.

It will be clear that if X is cause and Y effect, then X will lead Y.

This fact mayv sometimes be used in order to find out which of
two series i1s cause, which effect.?

The provisional determination of lags is best done with the help
of an historical graph, showing the development in time of both
Series. -

An example is to be found in Graph Il.4, where two series have
been drawn representing:

(A) Total volume of non-farm residential building in the United

States, 1920-1935.
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1 One has, however, to be careful: it may happen, e.g., that X leads Y,
so that it would seem as if X were cause, Y effect. At the same time,
however, Y (the rate of increase in Y) may lead X, and therefore Y may
equally well be cause of X. Finally, it is possible that both causal connections
exist: Y determining X¢+1 and X+ determining Y (+2.
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(B} Total stock of houses, Umnited »>States,
trend (inverted).?

Graph I1. 4. _
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Arx a4 rule, the
Imperfect scatter will not sho~wr
correlation. perfect organisation.
There mav, however,
still be a tendency for the points
to group along a curve: the
umperfect correlation s gaid €
exist. That curve will no~<w
no longer be exactly determined.
Various choices as tn its tvpe
are possible, some of which will
090 oy e ol be discussed later. Onee a choice
s203 has been made, the (iﬁ%’*‘mtmnﬂ
- between the actual points and the curve may be measured. He:
also several methods of measurement may be chosen:; but, af t
this second choice has been made, a measure for th@ degree c -f
organisation can be given.

The usual measure taken in the case of a general
Correlation curve 1s the correlation index, which in the case of @
index;  straight line 1s reduced to a simpler measure called
correlation correlation coefficient. Both expressions have the pro-
coefficient. perty of being always less than or equal to unty s
and they reach unity only if there 1s perfect correlation.
between the two variates (in the case of the correlation coefﬁc:lent

1 The trend of a series is a series mdlcatmg its general tendency Detalls
as to calculation of trend will be found in Appendlx A,
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if there 1s perfect linear correlation). Conversely, if they are equal
to unity, there 1s perfect correlation (in the case of the correlation

(Ve ik

soefficient, perfect linear correlation).

The notions of regression curve and regression

Regresston  coeflicient, introduced above for the case of perfect

curves and correlation, are also used in cases of imperfect

coeffictents. correlation; but they now depend on certain
cholces. |

First, the type of curve has to be chosen. Usually a straight
the pomnts from that line has to be devised. They may be measured
in the direction of the Y-axis, in the direction of the X-axis or
In other ways.

Graph II. 5 1llustrates the procedure. The points representing
the given observations are indicated by P,, P,, ete. As a regression
curve, the line ADB has been
chosen. The deviations of Py, P,,
ete., from AB, measured in the
direction of the Y-axis, are indi-
measured in the direction of the L
X-axis are indicated by PRy, i
P,R,, ete.

The third step 1s to adopt A
some method for determining the ™
curve in such a way that the devi-
ations just defined will be as small
as possible. Usually the “method —— — ~
of least squares ” is taken: the & _
sum of the squares of the deviations is made a minimum. In other
words, that line is chosen as a regression line which shows the
minimum sum of squares. q

If deviations are measured in the Y direction—t.e., in the
direction of the dependent variate—the line obtained 1s called
the firs elementary regression line. If deviations are measured in
the X direction, the second elementary regression [ine 1s obtained.
Each of the regression lines will be characterised by a regression
slope and a regression coefliclent.

Graph I1. 5.

MEASUREMENT OF DEVIATIONS
FROM A REGRESSION LINE.
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In the case of perfect lLinear correlation. these two regression
lines coincide, and no trouble arises as regurds the chowee mdicated,
When the correlation is not perfect, the difference between the
two regression coeflicients gives an wdea of the degree of organisation
of the scatter.

All that has been said applies as well to series ., gy, ete. mdicating

1
L)

the deviations which X, Y, ete., show from their average value X
Y, ete. over the period studied.

The correlation coefficient and the regression coeflicients enable the
two objects of the analysis to be substantially attained. The correla-
tion coefficient tells whether or not the assumed relation between X
and Y is exact, and therefore gives an answer to the verification prob-
lem. The regression coeflicients indicate about how large a change m
Y corresponds to a given change in X, and therefore answer the ques-
tion of measurement. A first rough test of the economie significance
of the coeflicients 1s afforded by their signs, which may or may not

be such as economic theory would lead one to expect.

Graph II. 6 gives the scatter diagr:

Example. * value added ” per ton of pig-iron, and Y, pi
production for Germany, 1881-1911. Value added

per ton, which equals price minus raw-material cost, has been taken
Graph II. 6. in order to eliminate the effect

of the most important changes in
production cost. Production has
been measured in a somewhat
unusual way, in order to elimi-
, hate influences of growth in pro-

ductive capacity—viz., as the

percentage deviation from trend.

S (»  Therelation is in its essence a sup-
Yy ply relation, in which disturbing
| influences of cost and capacity
changes have been eliminated by

one of several possible methods.

X  The scatter is moderately organ-
s2e  1sed, and the only indication
of curvilinearity is in the single point to the right, corresponding
to the boom yvear 1900. Leaving aside this point, two elementary

EXAMPLE OF SCATTER DIAGRANM.
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inear regressions have been calculated and the corresponding lines
drawn. The tirst elementary regression formula runs:

Y — ¥ =071 (X — X
j | e WY j | Y AN

in which N is the average value of all X's (except that for 1900)
and Y is the average value of all Y’s (except 1900). The meaning
of the regression equation s that an increase of one point in X
causes an merease of 0.71 pomnts in Y. The second elementary
regression would vield the figure 1.37 instead of 0.71 and shows that
a rather high degree of uncertainty prevails here. The economic
sienificance of these tigures 1s closely connected with the elasticity
of supplv. In fact, 1t follows from the above definitions that an
increase m prices by one unit, raw-material cost being supposed
equal, would cause an inerease in production of about 0.719, (the
trend value of production beingused as a basis). As the average price
for the period was 59.7 Marks per ton, it may easily be deduced that
the elasticity of supply was then 0.42. If the second elementary

regression had been used, a figure of 0.82 would have been obtained.
A first rough test of the economic trustworthiness of this figure

:

ththth

changes are connected with positive changes in supply.

¥ D, MuvrripLE CORRELATION

As has already been said, in by far the greatest num-

Multiple  ber of cases of eco- Graph II. 7.
correlation. nomic importance,  PERFECT MULTIPLE GORRELATION.
ore than one cause N l}ﬁ o
1s ordinarily assumed to have - ?
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acted. Fluetuations i a series &y
will have to be explained by
the fluctuations 1n a number
of other (" explanatory ™) series
Ty, Xy, ete.  To begin with,
the nature of this problem may
best be illustrated by an his-
torical graph of all the series .
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the sake of simplicity, we mayv agam start
linear relationship.

The problem then is to find the figures 4,
Perfect by which the series z,. 1y, etel, have 1o be mult
linear  in order that the sum by, - byr, - . culeulat,

multiple each time-point, mayv equal the corresponding
correlation. for x,. In the theoretical example of Graph
these numbers are 2 and H.  In faet, 2e, D23

exactly z; for each observation. The graph shows some vleme]
features which are important for the carryving-out of the ané

and may therefore be stated. The decline m vear 7

18 CE
entirely by series z,, x5 showing no decline at all in that year.

the other hand, the rise in vear & can only be explained by 2,
does not rise in that year. These two examples clearly sh

'

only a combination of z, and x; can give the right result.
it 18 the combination with coeflicients 2 and
the best result, as 1s seen wvery clearly in vear ., where
that combination will produce the absence of change
These elementary remarks are intended to demonstrate
considerations of this kind may be helpful in the study of

tual relationships, since they may show, after a mere visual

spection of the statistical material, whether or not suceess is to
expected. '

1N

As in the case of simple ¢o rrelation, the coefficien

Regression and 5 1n the above example are called regress

coefficients. coefficients. As before, the regression coefficie

indicates the increase (or decrease) in z, caus

by a unit increase of z, or z; respectively; and, as before,

first rough test can be applied to this conclusion by enquiri

whether the coefficient has the sign which economie theory wot
lead one to expect. ' ' '

_ In the expression 2z, + 5z,, the term 2z, (in genex
Influence b,x,) may be called “ the influence of z,” and 5
of x,.  “the influence of z3;”. In using these terms, o3
must, however, bear in mind that this expression

justified only so far as the economic theory which has prompted t}

calculation is accepted as valid. The special value of such a ter;
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in year ¢ may be called “ the influence exerted in that year ”:
whereas the strength of that influence in a given period may be
characterised by, e.g., the standard deviation of the term—i.e.,
26,, etc.  All these expressions are independent of the units in

which x, or &r,, ete., 18 measured.

In multiple correlation analysis, the scatter diagram
Parttal  may still be used, but with a somewhat different
scatter  tunction. Plotting three or more variates in a plane
diagrams. 18 not easyv; but, instead, two or more partial scatter
diagrams may be considered. The first uses as co-
ordinates x, and x; — bz, (in general, x; — byx5): t.e., x; * minus
the influence of x; ", or * corrected for changes 1n z; 7. The dia-
gram so obtained 1llustrates the relation hetween , and z; “ other
things being equal ” or, more exactly, “ other relevant things heing
equal ". A second diagram may be constructed comparing 2z,
and x, — 22, (in general, ; — bs%,).

The same technique® can be wusefully employed
Imperfect in cases where no figures b,, b5, etc., can be found
multiple  which make b,x, + bsz; + ... exactly equal to z,
correlation. for each time-point. This, in fact, is generally the
case as Jong as the number n of series considered
is smaller than the number N of time-points.2 We must be satistied
if certain values for b,, bs, ... give a fairly good fit. As in the case
of only two variates, such coefficients b,, b5, ... can be calculated
after choosing the way in which deviations are to be measured
and minimised. Again, b,, b; are called regression coefficients, and
the expression
r, = byxy + byxg + ...

is called the regression equation of x; on z,, ,, etc.; z, is often called
the calculated or theoretical value of z,. The differences z, — 2
for each point of time are called residuals. If the line of best
fit is chosen so as to make the sum of the squares of these residuals

1 An example of this technique 1s found in Graphs III. 9-III. 11.
2 If n equals N, then values b,, bs, etc., can always be found, as the number
of unknowns b,, b, etc., equals the number of relations which must be

fulfilled.
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as small as possible (i.e., by application of the prin ciple of least
squares to the residuals), 1t is called the first elementary regress 7y
The corresponding values for b, fy ete will be wril

aee writtern as
biay Dygy -

+

The deviations might, however, have been measured m other
. . * 1 ¥ w X ¥ o ) o _@%
directions—e.g., in that of x,. 1‘)’5" trving to find an ex presswine e, o

il i :h

boiy = bagts -+ ... which shows a minimal sum of the squares ol
Ly — 1* This 15 the second elementary regression. 0 course,
there are n such elementary regressions. In the calenlations
discussed in later chapters, the first elementary regression will
generally be used; but information as to the other regressions will
also be included.

The total correlation coefficient R between x; and » can be used
as a measure of the degree of accordance between », and r, and
therefore, to some extent, as a measure of the success obtained

The technique of partial scatter diagrams is again helpful to show

whether or not the correlation obtained is satisfactory.

L]

Partial scatter diagrams are especially helpful in

Multiple order to test whether or not the assumption that
curvilinear the relation between z; and x,, 2, ... is linear, fits the
correlation. facts.t 1f the partial scatters show curvilinearity,
this assumption 1s no longer valid. Two ways are

open for further attempts. First, more complicated alg
formulee can be tried and treated in a similar way to the linear ones:
secondly, graphic methods can be used. These, however, can only
start with a scatter between x, and one other variate (say, x,),
it being difficult to plot three or more variates in one chart. This
scatter may show a tendency to a curvilinear relation, which may
be drawn as a freehand curve through the cloud of dots. Let its
ordinates (¢f. Graph II. 8) be called x: = @ (Z3). Then for each point
the difference between x, and the value :r: corresponding to its z,
may be calculated, and this difference may be plotted again as z,.
If a close correlation—perhaps also curvilinear—is found, the
curvilinear explanation may be more acceptable than the rectilinear
one. Many alternatives are possible; to give details regarding them

1 Graphs III. 9-I11. 11 provide some examples.



and regarding the refinements of the method wo uld, however,
lead us too far.
Graph 11. §.

As a rule, curvilinear relations are considered in the following
studies only in so far as strong evidence exists. A rough way of in-

troducing the most important features of curvilinear relations is to
use changing coeflicients—{or instance, one system of coefficients

for the description of situations not far above normal and another
tor the description of extremely high levels. 'This amounts to ap-
ProX1iIn z;.x‘tinga CUrVe b ¥y means o [ ' Graph II. 9.

two straight lines (¢f. Graph I1. 9). APPROXIMATION
Another way of ntroduecing 0F A CURVILINEAR RELATION
curvilinear relations is to take ~ BY Two RecTiLINEAR ONEs.

squares of variates, or still other

il

tory series .
Lags may also be mtroduced in _ =
multiple correlation analysis. The -
best lag, however, can no longer 4
he determined by mere examina- 7+
tion of historical graphs, since 1t
depends on the relative influence —
of the warious explanatory fac- 2]
tors, and this relative influence varies in turn with the lag chosen.
In principle, all possible lags must be tried and the regression
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coeflicients calculated on each assumption. In practice, simpli-
fications of procedure are possible if, for instance, one series only 1s
~of major influence and the others are secondary.

As a rule, the results of multiple correlation
calculations will be represented as in Graph II. 10.
At the top, the actual series to be ™ explained ” 1s
\ indicated by dots, and on the same scale the theo-
retical values are indicated by a continuous line. Below the two

lines, the various composing series b,x,, baZs, €tc., are drawn.

Graphic
representa-
tion chosen.

Graph 11. 10.

GRAPHIC REPRESENTATION
OF A CORRELATION CALCULATION.
“BEXPLANATION” OF IRON AND STEEL
CONSUMPTION.
Unitep Kinepom 1920-1936.

= Actual iron and steel consumption.

i

A

B Calculated iron and steel consumption.
C = Influence of profits one year before.

D = Influence of interest rate %-year before.
E = Influence of price of iron Y-year before.
F = Influence of time. '

G

SONBS70

020 1925 1930 1935

= Residuals, i1.e., A-B.

The ordinates of these lines are proportional to—mnot equal to—uz.,,
zy (and even proportional only in cases of linear formule). They
represent what have been called “ the influence of z, ”, “ the influ-
ence of z; 7, etc. The advantages of this procedure are, first, that the
scale of these series is comparable with that of the first series, and sec-
ondly, that it can be seen at once which of the series are important
(a) in general or (b) for the explanation of any particular feature.

For example, Graph 11. 10 1s the result of a calcula-
Example. tion aiming at > the fluctuations in

4

“ explaining °

iron and steel consumption in the United Kingdom
1920-1936; the explanatory series are profits of all industries one
year before, bond yield and iron price half-a-year before, and time.
The regression equation found 1s

z, = 1.17x, — 0.08x3 — 0.242, + 2.39x;
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where z_ represents the calculated physical volume of iron and steel
consumption i percentage deviations from average:

Z,, profits, all industries, percentage deviations from average;

z3 bond yield, deviations from average in hundredths of 19;
r, iron prices, percentage deviations from average:

z, time, years.

J

Obviously, this relation may be interpreted as a demand relation
for iron where the series z,, 2, and z; have been taken as the other
chief causes for changesin demand, and where a lag of one year for z,
and of half-a-year for z; and 2, has been assumed to exist. The
movements of the three series z,, x5 and z, are responsible for the
shifts in the demand curve during the period under review. The
partial scatter diagram between z, — 1.172, + 0.08x, — 2.39x;
and x, would give the usual representation of the demand curve,
shifts having been eliminated. As both z, and z, have been
measured 1n percentage deviations from average, 1t will readily
be seen that the elasticity of demand for iron would amount to
— 0.24 for prices and quantities near to their average values.
Economically, the negative signs of the coeflicients of x; and
x, are as they should be. In addition, 1t may be mentioned that
the “ influence ” of z; and z, 15 only small.

§ 6. STATISTICAL SIGNIFICANCE OF RESULTS

‘The reliability of results may be judged by statis-
Reliability tical as well as economic criteria. In general, the
of results. figures used are not exact. They are often derived
from samples, or otherwise more or less inadequate for
the problem under consideration. In addition, a number of minor
explanatory causes are omitted; this seems to be the chief reason
why observed and calculated values of z; in general do not coincide,
and this lack of coincidence is responsible for a certain ambiguity
in the results obtained. The question arises whether limits may be
indicated for this uncertainty. As nothing 1s known about the
factors omitted, it can be answered only 1if certain additional
hypotheses are made. ' '



Various methods of statistieal testing have
different hyvpotheses and ing, b
Some account of these methods wil
mathematical reader should be warned
will make somewhat greater demands on his att
foregoing exposition of the method ob mults plw COPT HME i@- b analyvses
itself; and he mav perhaps prefer to take the rencander of ths
chapter, together with Appendix A, on trust.

The elassieal method goes back to Loy
The elassical 1t will be considered here in the tinad form Hoe
niethad. civen to it by Professor RO A Fosuvnb o Avcording

method, it s assumed that the EHMW“M%MM | oparts—the
residuals—are due to the cireumstancee H af the v th ped T ovariate, Hhough
essentially a Hnear function of the ™ exp humi ory  vartafes, contan
additional component representing the influence of neglected explanatory
variates and mayv, moreover, he subject to errors M‘“ Haeas e e nf.  Thas
so-called * erratic component 7 or © disturbunce  in ' .
onlv gives rise to unexplained residuals. but also canses the regression coetli-
cients calculated from the observations to differ from the coeflivients of the
true relation connecting the variates. The probable average magnit mim of
these differences are derived from the assumption H%“a ab the distu l
in subsequent time intervals are to be considered as * random drawing
from the * universe ™ of all possible values of these disturbances. En that
“universe 7 there will be larger and smaller values of these disturbances,
and these values are assumed {o be normally distributed. This normal dis-
tribution means that the number of cases prwmt in each class of magnitude
will be determined by the so-called Graussian law. In ordinary speech, small
disturbances will be numerous and large disturbances will bhe few, their
frequency obeyving a simple law. The square root of the mean vialue of
the squares of these disturbances i1s called their standard deciation, and is
denoted by o.

On certain further assumptions of a rather technic: al nature, it becomes
possible to calculate what results with respect to the regression coefficients
would have been obtained if another sample of disturbances had—by aceident,
so to say—been drawn. By comparing all possible results, one may say
within what limits the results of the great majority of the possible cases will
lie. These limits depend again on the choice one makes as to the “ majority .
Often 999 or 959 is taken. If b, is one of the regression coefficients ﬁﬁil{iuﬁllﬁltyﬁd?
and cbg the so-called standard error of b,, about 959, of the t:tases lie b

-
sy

yefween

1 Cf. Statistical Methods for Research Workers, London and Edinburgh, 1936
*“ The goodness of fit of regression formula and the distribution of re rmqsmn
coefficients 7, Journ. Roy. Stat. Soc., 89, ’192_..,, p. 997; appimatmns of
“¢ Student’s ” dlstrlbutlon Metron, 5, ;3 1926, p. .
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b, + 20y, and by, — 2oy,, e, in a range of width hop, around b,. About
99.79%, lies between b, - %qb |

This standard error gy, is noth_ing’ else than the “ standard deviation ” of
the differences between the calculated and the true regression coefficient in
repeated samples. It depends—and with it the range of uncer‘ralnty in the

calculated regression coeflicients—on the following figures:

(1)  The number (N) of observations containing mutually independent
disturbances. The larger this number, the smaller 65,. In economic problems,
however, 1t 18 not always certain how large should be the time interval to
which one observation refers in order to make successive values of the distur-
bances virtually independent.

(2)  The number (n — 1) of explanatory series. The larger this number,
the larger op,. This will be understood if it is realised that, by n = N (i.e.,
if the number of explanatory series 1s one less than the number of observations),
a perfect correlation can be obtained by any set of mutually independent
explanatory series, even if they do not bear at all on the subject.

(3)  The total correlation coefficient (R). The nearer to 1 this number is,
the smaller i1s o; for R = 1, op bhecomes zero, except when there is per'fect
correlation between one o-f t;h.e explaining variates and a group of other

explanatory variates.

(4) The correlations between two or more of the explanatory series. If af

least one of these correlations is high, some of the regression coefficients show a
larger oy, (1.e., are very uncertain). This, too, is easy to understand. In fact, in
the extreme case, where two explanatory series were exactly parallel, it is clear
that a substitution of one of them for the other would not change the correla-
tion. The “ best ” fit could therefore he obtained with each of an infinite
number of different combinations, in which one series would successively be
substituted to a larger and larger extent for the other. The two regression
coeflficients of these two series would be entirely indeterminate; only some
combination of them would be determinate.
Now even if the correlation between two explanatory series is not exact,
small disturbances—which are always present—can change the result con-
siderably, and therefore the various possible * samples ™ would show con-
siderable differences. 'Hence o, will be large. The exact expression for o),
and its computation are given in Appendix A, § &.

Professor R. Friscu,* in his treatment of these problems,

Friseh’s does not use the concept of some unknown “ universe ” from
method. which a “sample” is drawn. He considers every variate

as being built up of a systematic part and a disturbance. The

relations assumed between the variates are supposed to hold good exactly
between the systematic parts, and the regression coeilicients in these relations

L Cf. Statistical Confluence Analysis by Means of Complete Regression
Systems. Universitetets @konomiske Institutt, Publ. Nr. 5, Oslo, 1934.
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are called the true coeflicients. The caleulated coetlivients may
deviations from the true, and the object is to find these
to them.

On t 1} e furth e assu ffn plio ns that theps 18 nocorre fation (e, ¢ hat +h€
correlation coeflicient 1s zero) between: ) the disturlbanees of d;i ffereﬂt
variates; (i) the disturbances of one and the systematic part of another
variate; and (i) the disturbances und the systematic part of R e sam€
variate; it may be shown that, at least for problems of two varintes + he z,1:€
regression lies between the elementary regresstans.,

. | .
e e agaln Sl,,lg”‘ff
fevintiong or & 1im : t

This 1s why Professor Frisch proposes to construct ~what
Bunch-map he calls dunch maps. These indicate the regression gjo pes
analysis.  obtained for one pair of variates, if all possible elementar >4
regression equations are solved. For a technical reason all
variates are normalised—u.e., expressed in their own standard deviation as
units.
In order to explain the principle, a three-variate problem may be considered.
where an endea‘?‘our 1S rnf"a.de to “"ﬂexpl:&in ” r, by x, and z,, The first ele-
mentary regression equation provides an * explanation ™

Ty == Dig.g &y + byz.p Ty (1)

with a regression goefﬁcient bio.q fOT Zy and b,3., for oy, Taking the second
elementary regression, we obtain an * explanation ™ of x,

Lo = bgy.3 2y + bag.y s,

which may, however, be transformed into an “ explanation ” of 2, by putting
x, = x, and solving for z,: - -

1 * bos.1
b . 2T
21°'3

’
Ty =

2T g 3 - (2).

21°3 - _
The two dashes have been added to indicate the second elementary regression
as the origin of this estimate. Similarly, the third elementary regression

!

Lg == Day.o Ly - b32'1 Lo

bag-1

aives xy = — 1

o s Xo T “g;:;* g - (3)-
The equations (1), (2) and (3) are three estimates of the relation betweerx
the variates; two bunch maps are constructed to illustrate them. The first
compares the three coefficients (in graphical representation, the slopes)
obtained for the influence of z,, viz. by,.3 from (1), 7 L from (2) and — :39'1
21°3 | Y31-2
from (3). They are represented by three beams, numbered 1, 2 and 8 (being
the numbers of the variates in whose direction the minimising has beelt
nerformed). The beams 1 and 2 will be marked(®, indicating that the slopPeS
are those between 1 and 2, 1 (the lower numbered variate) being considered
as the variate to be “explained ”. The second bunch map compa_resbthe
- 23-1

three coefficients obtained for the influence of z; upon z, Viz., byg.,, — m N




The beams are again numbered 1, 2 and 3, but here 1 and 8 are

and
D312
marked (¢).
Similar bunch maps are made for all conceivable combinations of variates,
starting with the simplest and ending with the “ complete set” including
all variates. 'The bunch maps for a two-set are of course extremely simple:
they always consist of two beams only, which, by the choice of units referred to
above, are necessarily situated symmetrically with respect to the two axes.
~In general, each bunch map consists _.
of a number of beams, two of which SPEcmf;af) }; gu ;gH Map
—the “leading beams ”—have their o o
ends marked () (¢f. Graph II. 11).
The numbers at the ends of these two
beams indicate the variates, the re-
gression between which 1Is being
studiéd. In the cases considered
in Chapters I1I, IV and V, the variate
with the lower number will always be
taken as the one *“ to be explained ”.
Every other beam bears a number,
and all the numbers together repre-
sent the 'group of variates used. 3o«
The number attached to any beam
represents the variate used as the left-hand variate in the regression equation
before transformation. In other words, it indicates the direction in which
deviations have been minimised in constructing the regression formula studied.t
A case of perfect relationship without any ambiguity is provided by bunch
maps where all beams coincide; for it cannot make any difference in what
direction we decide to measure deviations, if there are no deviations to be
measured. But if in any case one of the explaining variates has been omitted,
perfect correlation cannot exist, and no perfectly closed bunches appear.

If, therefore, in a given case the bunch is not closed, the

Useful, = aim of further research, and in particular of including further
superfluous variates in the analysis, is to close the bunch. Any econo-
and mically significant variate which helps to close the bunch, or

 detrtmental brings about a distinct change in the various slopes in the
variates.  bunch without making it Iess closed, is called a useful variate.
Any new variate which only slightly changes the bunch is

called superfluous. There is, however, a third possibility: the bunch may
“explode "—i.e., show a larger spread after a new variate has been introduced.
This ‘happens 1f there is a high correlation between the new series and one
or several of the previous explanatory factors. We are then faced with
a situation whlch is called “ multicollinearity ”. It has been shown that,

1 An ex.planation of differences 1n the 1ength of the beams would lead us
into too much technical detail.

| E:.hh_rmgg‘? H



; object of Fisher’s argument could be called the error of sampling. According to
5

! Fisher’s hypotheses, it is due to the fact that the disturbances in the explained

%}
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in such a case, some of the regression coeflicltents become very uncertain;
it is therefore possible that quite different results will be obtained if
the deviations are measured in different directions. The new wvariate, or
one of the older variates, is then called deirimental. This should be inter-
preted as meaning that, if all variates are included at the same time, no
trustworthy measurement can be made. This does not mean that the variate
in question may not be economically significant, but only that, owing to
some circumstance (fortuitous or systematic), complete measurement 1is
impossible. A less ambitious measurement may still be possible. Because
of the great importance which attaches to these cases, the following simple
example may bhe given.

Suppose one tries to determine the demand function for butter; xz;, the
quantity of butter sold, has to he explained by

x, the price of butter,
r, the price ol margarine,
xr, the income of consumers.

Now we find that butter and margarine prices (at least their annual averages)
are fairly highly correlated. Hence in the proposed demand equation

93:1 = by Zy + b33 + byy, (1)

while b, may perhaps be readily determined, it will be impossible to find
b, and b, separately with sufficient accuracy. One expedient, however, may
be adopted. If 2z, is left out, the equation

may be tried; it will be possible to determine b, and b, provided the correla-
tion coefficient found is not too bad (b, will be approximately equal to b,).
Equation (2) may be used instead of (1) if it is kept in mind that z, now
stands for the combined influence of x, and z;; it will be found that approxi-
mately byx, = b,y + bsz,. This holds good only as long as the correlation
between z, and z; persists. Equation (2) may therefore be used in all pro-
blems in which this correlation does not fail. For example, if the price of
butter is raised by State regulation, but the price of margarine is raised as
well so as to maintain the correlation between the two prices, then the con-
sequences of the policy on the amount sold may be calculated. If, on the
confrary, the regulation does not maintain the correlatlon the formula
becomes useless for this purpose. '

Dr. T. Koopmans 1 has pointed out that the classical

A combination method and that of Friscu are complementary rather than
of the two  alternative. Kach of them deals with a part of the margin of
methods. uncertainty which must be assigned to calculated regression
B coefficients. That part of this margin which constitutes the

variate may affect the calculated regression coefficients to an unpredlctable

L Linear Regression Amﬂysw of Economic Time Series, Haarlem 1986



amount, which can be dealt with only by means of laws of probability. Since
Fisuer does not assume disturbances in the explanatory series, he thus rules
out the type of uncertainty studied by Frisch. For this additional uncertainty
arises from the circumstance that we usually do not know to what extent the
disturbances found to be present in the whole set of data must be ascribed
to this or that variate entering into the relation; or, in more technical terms.,
since we do not know exactly, in calculating the regression coefficients, what
relative weights should be applied to express the relative accuracy of each
of the several statistical series representing the variates, we incur, by any
choice of weights whatever, the risk of introducing an error of weighting in
the calculated coetficients. On the other hand, the error of sampling is excluded
from Frisch’s argument by his somewhat restrictive assumptions which have
been indicated above.

Koopmans therefore combines the two theories into one method which
deals simultaneously with the error of sampling and the error of weighting
in the calculated coefficients. His procedure is as follows: For any set of
relative weights of the wvariates that we may choose—ri.e., for any numerical
guess we may make about the relative strength of the disturbances in the
several variates,— mathematical deductions lead to:

(1) A set of “ best estimates ” for the regression coefficients, which
takes the place of the first elementary regression in the classical method;

(2) A set of “standard errors” indicating the degree to which each
of these estimates may be subject to errors of sampling; these standard
errors correspond to those of the classical theory;

(3) A set of estimates of the standard deviations of the disturbances
in each of the statistical series employed, which estimates measure the

absolute strengths of these disturbances.

- Where normally the correct relative weights are unknown, it appears that,
under certain conditions including mutual independence of disturbances in
different variates, the estimates of the regression coefficients mentioned under
(1) remain within certain limits for all a priort possible weights. These limits
correspond to those found by Frisch for the case of two variates, and are given
by the two ultimate beams (not always the two “leading” beams) in the
bunch map for the corresponding coefficient in the complete set of varlates
They constitute ultimate limits to the error of weighting.

In a number of cases, however, narrower limits can be established with the
help of the estimates mentioned under (3). It is often very improbable that
the disturbances in any variate are of a size comparable to that of the variate
itself. If such a result were arrived at from any presumed set of relative
weights, such weights could be discarded as being inacceptable. Thus, fre-
quently, the elementary regressions corresponding to variates that exercise
only a secondary influence on the explained variate are excluded by this rule.
Interpreting this proposition in terms of the bunch-map analysis, it might be
said that, in these cases, the beams correspondmg to such series should be
disregarded, or at least be asmgned less 1mp0rtance than the others even

if they are “leading” beams



12—

(1) In the early phases of statistical business cycle research,
attention was paid to somewhat superficial phenomena, such as
the length of cycles, the degree of simple correlation between series
and the relative amplitudes of their movements, the decomposition
of series into trend, seasonal components, etc. Certainly all this
work had its value, especially for the negative evidence 1t afforded
on the validity of certain theories. For the purpose of applying
more searching tests, however, 1t 1s necessary to dig deeper. An
apparently simple relation, such as that between prices and pro-
duction, 1s often not a direct causal relation at all, but a more
or less complicated chain of many such relations. It 1s the object
of analysis to 1denti{y and to test these direct causal relations:
production, for instance, may be regarded as determined by the
volume of orders; the wvolume of orders by the income of
consumers and by prices; income by employment, wage rates and
SO On. | '

The part which the statistician can play in this process of analysis
must not be misunderstood. The theories which he submits to
examination are handed over to him by the economist, and with
the economist the responsibility for them must remain; for no
statistical test can prove a theory to be correct. It can, indeed,
prove that theory to be incorrect, or at least incomplete, by showing
that 1t does not cover a particular set of facts: but, even if one
theory appears to be in accordance with the facts, it is still possible
that there 1s another theory, also in accordance with the facts,
which 1s the “ true ” one, as may be shown by new facts or further
theoretical investigations. Thus the sense in which the statistician
can provide “ verification ” of a theory is a limited one. '

On the other hand, the rﬁé]e of the statistician is not confined
to “ veritication ”. As the above example illustrates, the direct
causal relations of which we are in search are generally relations,
not between two series only—one cause and one effect—but
between one dependent series and several causes. And what we
want to discover 1s, not merely what causes are operative, but also
with what strength each of them operates: otherwise it is impossible
to find out the nature of the combined effect of causes working
i opposite directions. On this problem—the problem of
" measurement 7, as 1t may be called—the statistician can



