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Abstract

Important choices for efficient and accurate evaluation of marginal likelihoods

by means of Monte Carlo simulation methods are studied for the case of highly

non-elliptical posterior distributions. We focus on the situation where one makes

use of importance sampling or the independence chain Metropolis-Hastings al-

gorithm for posterior analysis. A comparative analysis is presented of possible

advantages and limitations of different simulation techniques; of possible choices

of candidate distributions and choices of target or warped target distributions;

and finally of numerical standard errors. The importance of a robust and flexible

estimation strategy is demonstrated where the complete posterior distribution

is explored. In this respect, the adaptive mixture of Student-t distributions

of Hoogerheide et al. (2007) works particularly well. Given an appropriately
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yet quickly tuned candidate, straightforward importance sampling provides the

most efficient estimator of the marginal likelihood in the cases investigated in

this paper, which include a non-linear regression model of Ritter and Tanner

(1992) and a conditional normal distribution of Gelman and Meng (1991). A

poor choice of candidate density may lead to a huge loss of efficiency where the

numerical standard error may be highly unreliable.

Keywords: marginal likelihood; Bayes factor; importance sampling; Markov

chain Monte Carlo; bridge sampling; adaptive mixture of Student-t distributions.

1 Introduction

In this article we provide a comparative study of some commonly used Monte Carlo

estimators of marginal likelihood in the context of highly non-elliptical posterior dis-

tributions. As the key ingredient in Bayes factors, the marginal likelihood lies at the

heart of model selection and model discrimination in Bayesian statistics, see e.g., Kass

and Raftery (1995). In several cases of scientific analysis, e.g., in non-linear regression

models or instrumental variables models, one deals with a target distribution that has

very non-elliptical contours and that is not a member of a known class of distributions.

It is therefore of interest to investigate the performance of some widely used estimators

for such cases.

In this paper we restrict our focus to the situation in which one uses either Im-

portance Sampling (IS; due to Hammersley and Handscomb (1964), introduced in

econometrics and statistics by Kloek and Van Dijk (1978)), or the independence chain

Metropolis-Hastings algorithm (MH; Metropolis et al. (1953), Hastings (1970)) for

posterior simulation. That is, our analysis is especially relevant for those cases where

the model structure implies that Gibbs sampling (Geman and Geman (1984)) is not

feasible; e.g., non-linear models like the example model of Ritter and Tanner (1992)

that we will consider in section 4. Obviously, the Griddy-Gibbs sampler of Ritter and
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Tanner (1992) is still feasible in such cases, but we discard this approach due to the

computational efforts that it requires. For the Griddy-Gibbs sampler the computing

time required for obtaining results with a high precision is typically enormously larger

than for the IS and MH approaches.

In Bayesian econometrics, a joint posterior density is given by:

p(θ|y) =
p(y|θ)p(θ)∫

θ∈Θ
p(y|θ)p(θ)dθ

=
k(θ|y)

p(y)
(1)

where θ denotes the set of parameters of interest, typically a scalar, a vector, a matrix,

or a set of these mathematical objects; p(y|θ) is the likelihood function of θ for the

vector of observations y = (y1 · · · yT )′; p(θ) is the exact prior density of θ, i.e., not

merely a prior kernel. In (1) we define k(θ|y) = p(y|θ)p(θ) as the kernel function of

the joint posterior and

p(y) =

∫

θ∈Θ

k(θ|y)dθ (2)

as the marginal likelihood. It is clear that the marginal likelihood (sometimes also

referred to as model likelihood; see e.g., Frühwirth-Schnatter (2001)) is equal to the

normalizing constant of the joint posterior density. The estimation of p(y) can be a

difficult task in practice, especially for complex statistical models.

The aim of this article is to investigate which choices have to be made when esti-

mating a marginal likelihood. We argue that these choices are important. We consider

the following issues:

(i) the sensitivity to the choice of the particular estimation procedure (e.g., making

use of either IS or MH);

(ii) the sensitivity to the choice of the candidate distribution (e.g., a Student-t dis-

tribution or a mixture of Student-t distributions);

(iii) the impact of aiming at the posterior density kernel or aiming at a ‘warped’

version of it;

(iv) the reliability of different types of numerical standard errors (NSE’s) as signals

for the uncertainty on the respective estimators.
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The analysis of the robustness and efficiency of these estimators in the context of

non-elliptical posteriors has not been much investigated so far. Frühwirth-Schnatter

(2004) has considered the special case of mixture models. This article demonstrates

the importance of a robust and flexible estimation strategy which explores the full

joint posterior. A poor choice of the importance density may lead to a huge loss

of efficiency, where the numerical standard error may be highly unreliable. On the

other hand, given an appropriately chosen candidate density, the straightforward IS

approach provides the most efficient marginal likelihood estimator (with a reliable

numerical standard error).

This article proceeds as follows. Section 2 provides a review of some commonly used

Monte Carlo estimators of the marginal likelihood. These methods are all members

of the class of general bridge sampling estimators. Section 3 gives a brief overview of

the approach of Hoogerheide et al. (2007) that uses an adaptive mixture of Student-t

distributions (AdMit) as the candidate or importance distribution. In Section 4 we

investigate the robustness and efficiency of these estimators in the case of a highly

non-elliptical example distribution, a posterior distribution in a non-linear regression

model discussed by Ritter and Tanner (1992). In Section 5 we consider the reliability

of numerical standard errors. In Section 6 we analyze the performance in conditionally

normal distributions of Gelman and Meng (1991). Section 7 concludes.

2 A review of some Monte Carlo methods for marginal

likelihood estimation

We first review some of the most commonly used Monte Carlo estimators of marginal

likelihood. Their performance will be analyzed later. We extend the overview by

Frühwirth-Schnatter (2004), by including the approach of Chib and Jeliazkov (2001),

and addressing some more details on implementation, advantages and drawbacks of

the methods. Moreover, we especially pay attention to the case of the one-block

independence chain MH approach.

4



The Importance Sampling (IS) estimator (Hammersley and Handscomb (1964),

Kloek and Van Dijk (1978), Van Dijk and Kloek (1980), Geweke (1989)) is given by:

p̂IS(y) =
1

L

L∑

l=1

k(θ[l]|y)

q(θ[l])
, (3)

where {θ[l]}L
l=1 are i.i.d. draws from the exact importance density q(·) which should

approximate the joint posterior density p(θ|y). The IS estimator in (3) stems from

p(y) =

∫

θ∈Θ

k(θ|y)dθ =

∫

θ∈Θ

k(θ|y)

q(θ)
q(θ)dθ = Eq

[
k(θ|y)

q(θ)

]
.

where Eq[.] denotes the expectation over the importance density q(·). The IS approach

of marginal likelihood estimation is a globally oriented method that aims at directly

evaluating the integral
∫

θ∈Θ
k(θ|y)dθ over the whole parameter space Θ. An impor-

tance density which globally matches the joint posterior closely will lead to efficient

estimation. For this purpose, the tails of q(·) must also be fatter than the tails of

the posterior. That is, q(·) should ‘wrap’ the posterior density. An advantage of the

IS estimator is that its derivation and implementation are straightforward. A possi-

ble disadvantage is that for efficiency we require a suitable importance density that

covers the whole posterior density: all areas of the parameter space Θ that contain

substantial posterior probability mass must be ‘wrapped’ with a reasonable amount of

candidate probability mass. Finding an appropriate importance or candidate density

can be troublesome, especially if the posterior density is asymmetric or multimodal.

However, we focus on the case in which we make use of IS or the independence chain

MH algorithm, where we anyway require an appropriate candidate distribution to ef-

ficiently generate our candidate draws, so that this requirement of the IS marginal

likelihood estimator does not really pose an extra problem.

The Reciprocal Importance Sampling (RIS) estimator (Gelfand and Dey (1994))

is given by:

p̂RIS(y) =

[
1

M

M∑
m=1

qaux(θ
[m])

k(θ[m]|y)

]−1

, (4)

where {θ[m]}M
m=1 are (correlated) posterior draws from an MCMC sampler. qaux(·) is

an exact auxiliary density from which we do not require draws. That is, even if the
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MCMC draws {θ[m]}M
m=1 are simulated using a candidate density, then this candidate

density should generally not be qaux(·). The RIS estimator (4) stems from

1

p(y)
=

∫

θ∈Θ

qaux(θ)

p(y)
dθ =

∫

θ∈Θ

qaux(θ)

k(θ|y)
p(θ|y)dθ = Ep

[
qaux(θ)

k(θ|y)

]
(5)

where Ep[.] denotes the expectation over the posterior density p(θ|y). The second

equality stems from

p(y) =
k(θ|y)

p(θ|y)
. (6)

The RIS approach is a locally oriented approach: it makes use of the fact that for

each θ ∈ Θ there holds (6). High efficiency is most likely to result if qaux(·) roughly

matches the posterior density. However, the RIS estimator is still consistent if qaux(·)
only covers a small part of the parameter space Θ, since under mild conditions (5)

holds for each density qaux(θ) on the parameter space Θ. For stability of the estimator,

the tails of qaux(θ) must be thinner than those of the posterior in order to keep the

ratio qaux(θ)
k(θ|y)

bounded.

Gelfand and Dey (1994) propose a multivariate normal or Student-t density whose

mean vector and covariance matrix are estimated from the joint posterior sample.

Geweke (1999) proposes the use of a multivariate normal density, truncated to a sub-

space Θ̂ of Θ

qaux(θ) =
1

(1− p) (2π)d/2
|Σ̂|−1/2 exp

[
−1

2
(θ − θ̂)′Σ̂−1(θ − θ̂)

]
1(θ ∈ Θ̂)

where θ̂ and Σ̂ can be chosen as estimates of the posterior mean and covariance matrix,

1(·) is the indicator function, d is the dimension of θ; the parameter subspace Θ̂ is

defined as

Θ̂ =
{

θ : (θ − θ̂)′Σ̂−1(θ − θ̂) ≤ χ2
1−c(d)

}

where χ2
1−c(d) is the (1−c)th quantile of the Chi-squared distribution with d degrees of

freedom. The value of c can be chosen to minimize the numerical standard error of the

resulting marginal likelihood estimator. The additional cost of trying several different

values for c is very low, as this requires no extra draws or evaluations of candidate or

target densities. In the case of (almost) elliptical posterior distributions, one would
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expect small values of c (e.g., c = 0.01) to work best, since then more draws will

be included when estimating the marginal likelihood. In the case of a (highly) non-

elliptical posterior, one should choose θ̂ as the posterior mode rather than the posterior

mean, as the posterior density kernel may be low (or even 0) around the posterior mean.

Further, the optimal value of c can then be much lower (e.g., c = 0.40), since in certain

directions the posterior density kernel may quickly drop.

An advantage of the RIS estimator is that the local character of the approach

implies that the auxiliary density qaux(·) does not have to cover the whole posterior.

Still, we do require that the MCMC draws {θ[m]}M
m=1 are representative of the whole

posterior distribution: otherwise the RIS estimator is no longer consistent.

A special case of (4) is the harmonic mean estimator by Newton and Raftery (1994),

in which the prior p(θ) is used as the importance density. However, it is well-known

that this estimator is unstable because we have

qaux(θ
[m])

k(θ[m]|y)
=

p(θ)

p(θ)p(y|θ) =
1

p(y|θ) ,

where the inverse likelihood function typically does not have a finite variance. The

reason is that some of the likelihood terms in the sum are near zero, leading to extreme

values of 1
p(y|θ) . Therefore, we do not investigate the version of the harmonic mean.

The (optimal) Bridge Sampling (BS) estimator (Meng and Wong (1996)) is ob-

tained as the limit of the sequence

p̂
(t)
BS(y) = p̂

(t−1)
BS (y)×

1
L

∑L
l=1

p̂(θ[l] | y)

Lq(θ[l])+Mp̂(θ[l] | y)

1
M

∑M
m=1

q(θ[m])

Lq(θ[m])+Mp̂(θ[m] | y)

, (7)

where p̂(θ | y) = k(θ | y)/p̂
(t−1)
BS (y) and the initial value p

(0)
BS(y) is set to (3), for instance.

The {θ[m]}M
m=1 are (correlated) posterior draws from an MCMC sampler and {θ[l]}L

l=1

are i.i.d. draws from the importance density q(·). Usually, we set M = L. Convergence

of the bridge sampling technique requires few steps in practice (i.e., typically less than

ten iterations). Moreover, these steps do not require many additional computational

efforts: no extra draws or evaluations of candidate or target densities are needed. The
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BS estimator provides (asymptotically) the optimal combination of draws {θ[m]}M
m=1

and {θ[l]}L
l=1 for the estimation of a (ratio of) normalizing constant(s). That is, the

BS estimator gives the optimal bridge between the posterior kernel and the candidate

density q(·). The original BS estimator in (7) is optimal if the draws {θ[m]}M
m=1 are

i.i.d. We will refer to this estimator as the BS1 estimator. A simple correction for

correlated draws is proposed by Meng and Schilling (2002). This correction means

that one substitutes M by an ‘effective size’ M̃ , defined as M̃ = M(1 − ρ)/(1 + ρ)

with ρ the first order serial correlation of the likelihood evaluations of the {θ[m]}M
m=1.

We will refer to this estimator as the BS2 estimator.

In general, an advantage of the BS estimator is that its variance depends on a ratio

that is bounded regardless of the tail behavior of the importance density q(·), which

renders the estimator robust. A disadvantage is that we require both a set of draws

from the posterior and a set of independent candidate draws. Further, it requires some

implementation cost. It has been investigated by Frühwirth-Schnatter (2004) in the

context of mixture models, where it has shown a good performance.

The BS estimator stems from the following results. Let α(·) be an arbitrary func-

tion such that ∫

θ∈Θ

α(θ)p(θ|y)q(θ)dθ > 0.

Then we have

1 =

∫
θ∈Θ

α(θ)p(θ|y)q(θ)dθ∫
θ∈Θ

α(θ)q(θ)p(θ|y)dθ
=

Eq[α(θ)p(θ|y)]

Ep[α(θ)q(θ)]
.

Multiplying both sides by p(y) yields:

p(y) =
Eq[α(θ)k(θ|y)]

Ep[α(θ)q(θ)]
.

Substituting sample averages for these expectations results in the general bridge-

sampling (GBS) estimator:

p̂GBS(y) =
1
L

∑L
l=1 α(θ[l])k(θ[l]|y)

1
M

∑M
m=1 α(θ[m])q(θ[m])

(8)

The IS and RIS estimators are members of this class of GBS estimators: these corre-

spond to the choices of αIS(θ) = 1/q(θ) and αRIS(θ) = 1/k(θ|y), respectively. The BS1
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estimator corresponds to the choice

αBS1(θ) ∝ 1

L q(θ) + M p(θ|y)

that asymptotically minimizes the relative error of the GBS estimator p̂GBS(y) if the

posterior draws {θ[m]}M
m=1 are independent.

The estimator of Chib and Jeliazkov (2001) for marginal likelihood estimation on

the basis of Metropolis-Hastings draws is given by:

p̂CJ(y) =
k(θ∗|y)

p̂(θ∗|y)
(9)

where θ∗ is a certain point in the parameter space Θ with p(θ∗|y) > 0. In the case of the

independence chain MH algorithm, the estimated density p̂(θ∗|y) of the Chib-Jeliazkov

(CJ) estimator is given by:

p̂(θ∗|y) = q(θ∗)
1
M

∑M
m=1 αMH(θ[m], θ∗)

1
L

∑L
l=1 αMH(θ∗, θ[l])

(10)

with α(θ, θ′) the probability that a transition from θ to θ′ is accepted in the MH

algorithm:

αMH(θ, θ′) = min

{
1,

k(θ′|y)

k(θ|y)

q(θ)

q(θ′)

}
.

The CJ estimator stems from the fact that for each θ∗ ∈ Θ we have p(y) = k(θ∗|y)
p(θ∗|y)

. The

idea behind equation (10) is that we have:

p(θ∗|y) = q(θ∗)
Ep[αMH(θ, θ∗)]
Eq[αMH(θ∗, θ)]

=

∫
θ∈Θ

q(θ∗)αMH(θ, θ∗)p(θ|y)dθ∫
θ∈Θ

αMH(θ∗, θ)q(θ)dθ
,

which follows from the MH chain’s key property, the reversibility condition:

p(θ|y)q(θ∗)αMH(θ, θ∗) = p(θ∗|y)q(θ)αMH(θ∗, θ). (11)

That is, in the Markov chain of MH draws, moves from θ to θ∗ (left-hand side of (11))

are observed as often as moves from θ∗ to θ (right-hand side of (11)).

The CJ approach can be applied for each θ∗ ∈ Θ with p(θ∗|y) > 0. However, for

efficiency, the point θ∗ must be taken to be a high-density point in Θ, typically the

posterior mode. In the case of a highly non-elliptical posterior distribution it may be
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a bad strategy to use the (estimated) posterior mean, as this may have a low (or even

0) posterior density value.

The CJ estimator is another member of the class of GBS estimators, corresponding

to the choice of:

αCJ,θ∗(θ) = min

{
q(θ∗)
q(θ)

,
k(θ∗|y)

k(θ|y)

}

since substituting this choice of αCJ,θ∗(θ) into (8) gives:

p̂(y) =
1
L

∑L
l=1 αCJ,θ∗(θ

[l])k(θ[l]|y)
1
M

∑M
m=1 αCJ,θ∗(θ[m])q(θ[m])

=

1
L

∑L
l=1 min

{
q(θ∗)
q(θ[l])

, k(θ∗|y)

k(θ[l]|y)

}
k(θ[l]|y)

1
M

∑M
m=1 min

{
q(θ∗)

q(θ[m])
, k(θ∗|y)

k(θ[m]|y)

}
q(θ[m])

=

1
L

∑L
l=1 min

{
k(θ[l]|y)
k(θ∗|y)

q(θ∗)
q(θ[l])

, 1
}

k(θ∗|y)

1
M

∑M
m=1 min

{
1, k(θ∗|y)

k(θ[m]|y)

q(θ[m])
q(θ∗)

}
q(θ∗)

= k(θ∗|y)

/[
q(θ∗)

1
M

∑M
m=1 αMH(θ[m], θ∗)

1
L

∑L
l=1 αMH(θ∗, θ[l])

]
.

See Meng and Schilling (2002) and Mira and Nicholls (2004) who show that also other

variations proposed by Chib and Jeliazkov (2001) are individual cases of bridge sam-

pling. This suggests that the CJ approach should always be dominated by the optimal

BS method. However, BS1 is only optimal (i) asymptotically and (ii) if the posterior

draws were i.i.d.. For the BS2 estimator, the optimality is also asymptotical and the

‘effective size’ of the sample of draws may provide a crude correction. Therefore, it

still makes sense to compare the performance of the CJ and BS methods.

Of the approaches that we consider, the CJ method is the most local method: we

only estimate the posterior density in one point θ∗. This is in sharp contrast with

the IS approach where the whole posterior is ‘wrapped’ by a fat-tailed candidate.

In between we have the RIS method, where a subspace is covered by a thin-tailed

auxiliary density. A graphical overview of these methods is given by Figure 1.

The Gibbs sampler is a special case of the MH approach, so that the method of

Chib (1995) that estimates the marginal likelihood from Gibbs draws, is a special case
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of the CJ method. In the case of Importance Sampling we can in principle use the

prior as the importance density. However, we do not consider this option in this pa-

per, as this approach is typically very inefficient. In general, the prior has much higher

variance than the posterior, so that the IS estimate would then be based on only a few

IS weights (=likelihood evaluations), with most likelihood evaluations being close to 0.

The methods above can be used in combination with another technique: warping the

target posterior (see Meng and Schilling (2002)). If we assume that the parameter

space of θ is Θ = Rd, then the integral

p(y) =

∫

θ∈Θ

k(θ|y)dθ =

∫

θ∈Θ

k((θ − θ0) + θ0|y)dθ (12)

remains equal if we take the ‘mirror image’ around a certain point θ0 ∈ Θ:

p(y) =

∫

θ∈Θ

k(−(θ − θ0) + θ0|y)dθ =

∫

θ∈Θ

k(−θ + 2θ0|y)dθ. (13)

Combining (12) and (13) yields:

p(y) =

∫

θ∈Θ

k(θ|y)dθ =

∫

θ∈Θ

1

2
[k(θ|y) + k(−θ + 2θ0|y)] dθ. (14)

This implies that application of the aforementioned methods to the warped posterior

kernel

k̃(θ|y) =
1

2
[k(θ|y) + k(−θ + 2θ0|y)] (15)

rather than to the posterior kernel k(θ|y), also yields an estimator of the marginal

likelihood. The warped posterior kernel k̃(θ|y) is point symmetric around θ0, where we

choose θ0 as the (estimated) posterior mean. This gain in symmetry may substantially

improve the approximation of the target density by the candidate density, typically

a symmetric distribution (e.g., Student-t or Gaussian). This may yield a substantial

increase in efficiency. However, a disadvantage is that for each candidate draw we now

require two evaluations of the posterior density kernel instead of one. We will refer to

the transformation in (15) as the Warp1 transformation.

In the two terms of the Warp 1 transformation in (15) we either take the original

parameter vector θ or the ‘mirror image’ of all elements. A further gain in symmetry
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is obtained by taking an average over all 2d combinations where individual elements

of θ may be ‘mirrored’. For example, in the two-dimensional case this yields:

k∗(θ|y) =
1

4
[k(θ1, θ2|y) + k(θ1, θ

′
2|y) + k(θ′1, θ2|y) + k(θ′1, θ

′
2|y)] (16)

where θ′ = −θ + 2θ0. Obviously, a disadvantage is that for increasing values of the

dimension d, the number of posterior kernel evaluations per candidate draw increases

exponentially. We will refer to this transformation, of which the two-dimensional

version is given by (16), as the Warp2 transformation.

Meng and Schilling (2002) use the name Warp-III for both these Warp1 and Warp2

transformations: Warp-I and Warp-II correspond to adapting the location and variance

of the target density to the candidate. We always use candidate distributions of which

the location and variance are adapted to the target, so that we only explicitly make

use of the Warp-III type transformation that eliminates asymmetries via mixtures of

the target.

Table 1 provides an overview of the number of candidate draws and function eval-

uations that are required by different methods. The candidate distributions that we

will consider are Student-t distributions and mixtures of Student-t distributions. The

auxiliary densities (of RIS) will be truncated normal. Evaluations of these densities

and the simulation of pseudo-random draws from these distributions is done easily

and quickly. Therefore, the computational efforts mainly depend on the number of

posterior kernel evaluations. For a fair comparison between methods, we apply these

in such a way that the numbers of posterior kernel evaluations are equal. The IS and

RIS estimators are members of the general bridge sampling (GBS) class of which the

BS2 estimator is (approximately, asymptotically) optimal. However, this result holds

for L and M taken equal in IS, RIS and BS. In this paper we shall take LIS and MRIS

twice as large as LBS = MBS, so that IS and RIS could very well outperform BS.
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We focus on the cases of importance sampling and the independence chain Metropolis-

Hastings algorithm. So, we compare the following strategies:

(IS) use all candidate draws in the IS estimator (3);

(RIS, CJ) transform all candidate draws to a sequence of MH draws (plus a burn-in) and

use these in the RIS estimator (4) or the CJ estimator (9);

(BS) transform 50% of the candidate draws to a sequence of MH draws (plus a burn-

in) and combine these with the other 50% of the candidate draws in the BS1

estimator (7) – with M substituted by the effective size M̃ for the BS2 estimator.

In Sections 4, 5 and 6 the methods will be applied to several target distributions. In

the next section we briefly review the method of Hoogerheide et al. (2007) that uses an

adaptive mixture of Student-t distributions (AdMit) as the candidate or importance

distribution.
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Figure 1: Classification of some well-known methods for estimating marginal likeli-

hoods. All estimators are members of the class of general bridge sampling estimators.

importance globally oriented approach:

sampling

(IS) evaluate integral

prior p(y) =
∫

p(θ)p(y|θ)dθ

general sampling over whole parameter space

bridge optimal

sampling bridge

(GBS) sampling evaluate inverse

reciprocal (BS1,BS2) integral p(y) = locally

importance 1/
∫ f(θ)p(θ|y)

p(θ)p(y|θ)dθ oriented

sampling over approach:

(RIS) (subspace of)

harmonic mean parameter make use

space of the fact

that for

each value

estimate of θ∗

Chib & for one there

Jeliazkov value holds the

(CJ, from MH of θ∗: equality

output)

p(y) = p(θ∗|y) =

Chib (from

Gibbs output) p(θ∗)p(y|θ∗)
p(θ∗|y)

p(θ∗)p(y|θ∗)
p(y)
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Table 1: Computations required by different marginal likelihood estimation ap-

proaches, in case we make use of IS or the independence chain MH algorithm. L

is the number of candidate draws that are not used in the MH algorithm. M is the

number of independence chain MH draws from the posterior. Warp1 and Warp2 refer

to the Warp transformations of Meng and Schilling (2002) where one aims at a mixture

of 2 or 2d ‘mirror images’ of the posterior density that is typically more symmetric

than the posterior itself. Further explanations are given in Section 2.

number of number of number of number of

posterior kernel candidate candidate auxiliary

evaluations draws density evaluations density evaluations

IS L L L -

RIS M M M M

BS L + M L + M L + M -

CJ L + M L + M L + M -

Warp1 IS 2L L L -

Warp1 BS 2(L + M) L + M L + M -

Warp2 IS 2dL L L -

Warp2 BS 2d(L + M) L + M L + M -
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3 The Adaptive Mixture of t (AdMit) method

The Adaptive Mixture of Student-t (AdMit) approach (Hoogerheide et al. (2007))

consists of two steps. First, it constructs a mixture of Student-t distributions which

approximates a target distribution of interest. The fitting procedure relies only on

a kernel of the target density, so that the normalizing constant is not required. In

a second step, this approximation is used as an importance function in importance

sampling (or as a candidate density in the independence chain Metropolis-Hastings

algorithm) to estimate characteristics of the target density. The estimation procedure

is fully automatic and thus avoids the difficult task, especially for non-experts, of

tuning a sampling algorithm. In a standard case of importance sampling the candidate

density is unimodal. If the target distribution is multimodal then some draws may

have huge importance weights or some modes may even be completely missed. Thus,

an important problem is the choice of the importance density, especially when little

is known a priori about the shape of the target density. The importance density

should be close to the target density, and it is especially important that the tails

of the candidate should not be thinner than those of the target. Hoogerheide et

al. (2007) mention several reasons why mixtures of Student-t distributions are natural

candidate densities. First, they can provide an accurate approximation to a wide

variety of target densities, with substantial skewness and high kurtosis. Furthermore,

they can deal with multi-modality and with non-elliptical shapes due to asymptotes.

Second, this approximation can be constructed in a quick, iterative procedure and

a mixture of Student-t distributions is easy to sample from. Third, the Student-t

distribution has fatter tails than the normal distribution; especially if one specifies

Student-t distributions with few degrees of freedom, the risk is small that the tails

of the candidate are thinner than those of the target distribution. Finally, Zeevi

and Meir (1997) showed that under certain conditions any density function may be

approximated to arbitrary accuracy by a convex combination of basis densities; the

mixture of Student-t distributions falls within their framework.

The AdMit approach determines the number of mixture components, the mixing
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probabilities, the modes and scale matrices of the components in such a way that the

mixture density approximates the target density p(θ|y) of which we only know a kernel

function k(θ|y) with θ ∈ Rd. The AdMit strategy consists of the following steps:

(0) Initialization: computation of the mode and scale matrix of the first component

(typically the posterior mode and minus the inverse Hessian of the log-posterior

evaluated at the mode), and drawing a sample from this Student-t distribution;

(1) Iterate on the number of components: add a new component that covers a part

of the space of θ where the previous mixture density was relatively small, as

compared to k(θ|y);

(2) Optimization of the mixing probabilities;

(3) Drawing a sample from the new mixture;

(4) Evaluation of importance sampling weights: if the coefficient of variation, the

standard deviation divided by the mean, of the IS weights has converged, then

stop. Otherwise, go to step (1).

For more details we refer to Hoogerheide et al. (2007).

The package AdMit (Ardia et al. (2008)), an R implementation (R Development Core

Team 2008), is available from the Comprehensive R Archive Network (CRAN) at

http://cran.r-project.org/package=AdMit. Its use is discussed and illustrated by

Ardia et al. (2009).

The AdMit approach has been successfully applied to the simulation of posterior

draws from non-elliptical posterior distributions, where the reason for non-elliptical

shapes is typically local non-identification of certain parameters. Examples are the

IV model with weak instruments, or mixture models where one component has weight

close to zero. This paper provides the first analysis of the AdMit method’s performance

in the case of marginal likelihood estimation (and the first application of AdMit to a

non-linear regression model).
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Figure 2: Data from Marske (1967): Biochemical Oxygen Demand (BOD) versus time.

4 Application 1: non-linear regression model

In this section we apply our methods in order to estimate the marginal likelihood in

a non-linear regression model. We consider the biochemical oxygen demand (BOD)

data from Marske (1967) that are analyzed by Bates and Watts (1988) and Ritter and

Tanner (1992) (see Figure 2).

We consider the non-linear model of Bates and Watts (1988)

yi = θ1(1− exp(−θ2 xi)) + εi (17)

with independent errors εi ∼ N(0, σ2), where yi is the BOD at time xi (i = 1, . . . , 6).

Following Ritter and Tanner (1992), we specify a flat prior on a bounded interval:

(θ1, θ2, σ) ∈ [−20, 50] × [−2, 6] × [0, 20]. (Ritter and Tanner (1992) do not restrict

the interval of σ; for the identification of a marginal likelihood we make this choice in

order to have a proper prior.)

The top-left panel of Figure 3 gives an illustration of the shapes of this posterior
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distribution of θ = (θ1, θ2, σ)′; it shows a Highest Posterior Density (HPD) credible

set. Note the bimodality and the curved shapes of the larger mode. The sets {θ :

θ1 > 0, θ2 > 0} and {θ : θ1 < 0, θ2 < 0} correspond to concave and convex increasing

functions (through the origin) in (17), respectively. The smaller mode reflects the

small posterior probability of a convex function.

For the importance sampling and independence chain Metropolis-Hastings algo-

rithms we consider three candidate distributions:

(1) the mixture of Student-t distributions resulting from the AdMit procedure of

Hoogerheide et al. (2007);

(2) an ‘adaptive’ Student-t distribution where the mode and scale have been itera-

tively updated by several importance sampling steps (starting with the posterior

mode and iteratively using the estimated posterior mean and covariance as the

mode and scale in the next iteration);

(3) a so-called ‘naive’ Student-t distribution around the posterior mode.

In order to minimize the risk that the candidate ‘misses’ parts of the posterior, we

specify very fat-tailed candidates: we choose one degree of freedom (i.e., Cauchy tails).

Figure 3 shows the shapes of the three candidate distributions. Notice that the Ad-

Mit candidate nicely ‘wraps’ the relevant areas of the parameter space with candidate

probability mass. Figure 4 illustrates how the AdMit approach has constructed this

‘wrapping’ distribution. Starting with the naive Student-t distribution around the

mode, it finds that a Student-t distribution parallel with the θ2 axis must be added,

yielding a cross shape. After that, a third Student-t distribution parallel with the θ1

axis is added, leading to a wrapping of the whole larger posterior mode. Finally, the

fourth Student-t distribution in the mixture wraps the smaller posterior mode, so that

the resulting mixture of four Student-t distributions covers the whole posterior distri-

bution. (This whole procedure took merely 11 seconds on a 2006 Intel (R) Centrino

Duo Core processor.)

We will now use these three candidate distributions in combination with the marginal



likelihood estimators of Section 2. For the IS estimator we generate L = 100000 candi-

date draws. For the RIS and CJ estimators we take M = 100000 independence chain

MH draws; we use a burn-in of 1000 draws, so that we actually generate 101000 draws.

The reason for not including the burn-in in the 100000 draws is that a burn-in of fewer

than 1000 draws may suffice. For the BS estimators we use L = 50000 candidate draws

and M = 50000 MH draws, again not counting a burn-in of 1000 draws.

For the RIS estimator we use a truncated normal auxiliary density around the

posterior mode where the optimal value of c appeared to be (approximately) c = 0.40.

This result differs from the low value of c, e.g., c = 0.01, that is typically optimal in

case of (nearly) elliptical posteriors. For the CJ estimator we choose θ∗ as the posterior

mode.

For each estimator, we repeat the simulation 500 times. Simulation results are re-

ported in Table 2. Since one often works with the (natural) logarithm of the marginal

likelihood, we display results for both the marginal likelihood and its logarithm. Box-

plots of the 500 marginal likelihood estimates are given in Figures 5. The real value

of the marginal likelihood is (rounded to two digits) 12.79 × 10−10 (with logarithm

-20.48). This real value is computed by deterministic integration which is still feasible

(but quite time-consuming) in this three-dimensional example.

First of all, notice the very inefficient estimators that make use of the naive Student-

t candidate distribution. Even though this naive Student-t distribution is chosen very

fat-tailed (one degree of freedom), the resulting estimators have much higher variance

than the estimators based on the AdMit and adaptive candidates. The boxplots show

that the naive Student-t candidate may result in extreme outliers for all marginal

likelihood estimators. This stresses the importance of wisely specifying an appropriate

candidate distribution.

Second, the AdMit candidate clearly outperforms the adaptive Student-t candidate:

iteratively adding Student-t distributions to the mixture candidate distribution leads

to far more precise estimators than merely iteratively adapting the location and scale
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of the Student-t candidate.

Third, the IS estimator is the best, whereas the RIS estimator is clearly the worst.

The BS2, BS1 and CJ are typically ranked second to fourth, although in case of the

adaptive candidate the CJ estimator outperforms the BS1 estimator. In that case,

the difference between the ‘i.i.d. optimal’ BS1 estimator and the ‘serial correlation

corrected’ BS2 estimator is substantial, reflecting the high serial correlation in the

MH chain.

In this example, the winner is clearly the AdMit-IS estimator, the IS estimator

based on the AdMit candidate. It outperforms the alternative estimators (including

the BS estimators) that make use of the same number of candidate draws and function

evaluations.

Simulating draws from a mixture of Student-t distributions takes hardly more time

than generating draws from a Student-t distribution. The AdMit approach does re-

quire the evaluation of multiple Student-t densities, in our case four, instead of one; but

the little extra computing time required for this is typically very small compared to the

time required for evaluation of the posterior density kernel. Further, the ‘victory’ of

the IS estimator over alternative estimators is actually slightly larger than represented

by the tables: the burn-in of the MCMC draws is neglected and the implementation

of the IS estimation of the marginal likelihood and its numerical standard error are

relatively straightforward.

In this example, one comparison is still to be made: the comparison with methods

aimed at the ‘warped’ target density. Figure 6 shows the shapes of the warped posterior

kernels. These are more symmetric than the posterior kernel itself; especially the

Warp2 distribution looks ‘closer to’ a Student-t distribution than the original posterior

distribution. This illustrates the elimination of asymmetries by using mixtures of the

posterior distribution. Table 3 shows the results of IS, BS1 and BS2 (the three best

performing algorithms) for Warp1 and Warp2 transformations in combination with

an adaptive Student-t candidate. The rows with 100000 posterior kernel evaluations
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correspond to IS with 50000 and 12500 draws (BS with 25000+25000 and 6250+6250

draws) for Warp1 and Warp2, respectively. The Warp1-IS results are comparable to

the regular IS results with an adaptive Student-t candidate. The Warp1-BS estimators

are somewhat better than the ‘unwarped’ BS estimators. The Warp2 results are worse

than their ‘unwarped’ counterparts; the obvious reason is that the number of candidate

draws is now much smaller in order to keep the number of posterior kernel evaluations

equal to 100000.

Even if we use the same number of candidate draws, thereby requiring two or eight

times more posterior kernel evaluations in the Warp1 and Warp2 approach, the re-

sulting estimators do not outperform the AdMit-IS estimator. This confirms that the

AdMit-IS estimator is clearly the winner. In this example, warping may provide a

slight improvement, but here it is better to wrap the posterior than to warp it!

We now briefly pay attention to the implications that an unreliable marginal likeli-

hood estimator may have. Suppose we face the choice between the non-linear regression

model (17) and the linear regression model

yi = β1 + β2 xi + εi (18)

with independent errors εi ∼ N(0, σ2) (i = 1, . . . , 6). The linear model ignores that

for x = 0 we should have y = 0: the purpose of considering these two models is

purely illustrative. Suppose we specify a conjugate prior that is approximately as

‘non-informative’ as the prior we used for the non-linear regression model (17), the

Normal-Gamma prior

β

∣∣∣∣
1

σ2
∼ N

(
β, σ2 V

) 1

σ2
∼ Gamma

(
s−2, ν

)
,

with

β =


 8

4


 V =

1

100


 16 0

0 4


 s2 = 100 ν = 3.

Under the Normal-Gamma prior the marginal likelihood can be analytically computed,

see e.g., Koop (2003); here it equals 12.40 · 10−10. The Bayes factor in favor of the
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non-linear model is 1.0315, so that under equal prior probabilities the posterior model

probabilities for the non-linear and linear models are 0.5078 and 0.4922, respectively.

Figure 5 shows that only for the AdMit-IS estimator all 500 repetitions of the simula-

tion yield marginal likelihood estimates above 12.40 · 10−10, leading (under equal prior

probabilities) to a ‘correct’ model choice. Here we use the term ‘correct’ to denote that

the model choice is optimal given our data and prior assumptions, and not determined

by simulation ‘noise’. For all other approaches, estimates smaller than 12.40 · 10−10

are observed, resulting in an ‘incorrect’ model choice. Arguably, in this situation one

should consider Bayesian model averaging (BMA) rather than model choice. Under

equal prior probabilities, appropriate model weights are 0.5078 and 0.4922. The ex-

treme overestimation of the non-linear model’s marginal likelihood that may occur for

estimators using the naive candidate distribution, would result in highly ‘incorrect’

model weights. We conclude that an appropriate marginal likelihood estimator (using

a suitable candidate distribution) is important, both for model selection and for model

combination.

Until now we have considered the standard deviations of the estimators, when the

simulation process is repeated 500 times. In practice, we usually do not compute

such standard deviations. Instead, we estimate the standard deviation by a numerical

standard error based on a single simulation run. In the next section we consider the

reliability of numerical standard errors.
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Table 2: Posterior distribution of θ = (θ1, θ2, σ)′ in non-linear regression model (17):

estimation of the marginal likelihood (ML) based on 100000 draws from AdMit mixture

of four Student-t distributions, adaptive Student-t or naive Student-t distribution (500

repetitions). True values are ML= 12.79× 10−10 and log(ML)= -20.48.

1010· ML AdMit adaptive naive

mean st.dev. mean st.dev. mean st.dev.

IS 12.7906 0.0962 12.7899 0.1791 12.7317 1.0945

RIS 13.1803 0.3435 12.8792 0.9456 12.8846 2.5144

BS1 12.7621 0.1984 12.8348 0.4238 13.0995 4.3776

BS2 12.7636 0.1405 12.7890 0.2739 13.0877 4.2780

CJ 12.7816 0.2568 12.7814 0.2841 13.1030 4.4004

log(ML) AdMit Adapt Naive

mean st.dev. mean st.dev. mean st.dev.

IS -20.4772 0.0075 -20.4773 0.0140 -20.4853 0.0824

RIS -20.4475 0.0260 -20.4729 0.0729 -20.4810 0.1354

BS1 -20.4795 0.0155 -20.4743 0.0328 -20.4797 0.1976

BS2 -20.4794 0.0110 -20.4776 0.0212 -20.4798 0.1949

CJ -20.4781 0.0200 -20.4782 0.0221 -20.4796 0.1986
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target posterior

distribution

AdMit candidate

(= mixture of four

Student-t distributions)

Student-t candidate

(around posterior mode)

Student-t candidate

(location and scale adapted to target)

Figure 3: Posterior distribution of θ = (θ1, θ2, σ)′ in non-linear regression model (17):

Highest Posterior Density credible region (top left) and ‘Highest Candidate Density

regions’ for mixture of Student-t (AdMit, top right), ‘naive’ Student-t (bottom left)

and adaptive Student-t (bottom right) candidate distributions.
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Student-t component 1

→

candidate 1

(= component 1)

↙

Student-t component 2

→

candidate 2

(= mixture of components 1, 2)

↙

Student-t component 3

→

candidate 3

(= mixture of components 1, 2, 3)

↙

Student-t component 4

→

candidate 4

(= mixture of components 1, 2, 3, 4)

Figure 4: Posterior distribution of θ = (θ1, θ2, σ)′ in non-linear regression model (17):

the AdMit algorithm (automatically and) iteratively approximates the non-elliptical

posterior shapes by a mixture of Student-t distributions.
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Figure 5: Posterior distribution of θ = (θ1, θ2, σ)′ in non-linear regression model (17):

estimates of 1010× marginal likelihood based on 100000 draws from AdMit mixture of

four Student-t distributions, adaptive Student-t or naive Student-t distribution (500

repetitions).



Warp1 (mixture of 2

posterior transformations)

Warp2 (mixture of 8 = 23

posterior transformations)

Figure 6: Posterior distribution of θ = (θ1, θ2, σ)′ in non-linear regression model (17):

warping of posterior density kernel. A mixture of the posterior density and its ‘mirror

images’ (that naturally have the same normalizing constant) can have shapes that are

much closer to an elliptical distribution than the original posterior.

5 Numerical standard errors

For the IS estimator, the computation of a numerical standard error (NSE) is parti-

cularly straightforward. One simply divides the standard deviation of the terms k(θ[l]|y)

q(θ[l])

(l = 1, . . . , L) by
√

L. However, for the RIS, BS1, BS2 and CJ estimators we make

use of the usual delta rule. Moreover, the latter four estimators make use of correlated

MCMC draws where we need to take into account serial correlation. In this section

we will consider three methods for computing the standard error of a sample mean of

such correlated series; that is an estimate of the standard deviation stdev(ĝ) of

ĝ =
1

M

M∑
m=1

g(θ[m]) (19)

where {θ[m]}M
m=1 is a series of MCMC draws.

The first estimate of the variance var(ĝ) that we consider, is the estimate of Newey

and West (1987):

v̂arNW(ĝ) = γ̂0 + 2
b∑

i=1

(
1− i

b + 1

)
γ̂i, (20)
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Table 3: Posterior distribution of θ = (θ1, θ2, σ)′ in non-linear regression model (17):

marginal likelihood estimation making use of Warp1 or Warp2 transformations in

combination with an adaptive Student-t candidate distribution (500 repetitions).

1010· ML IS BS1 BS2

st.dev. st.dev. st.dev.

Warp1 (100000 posterior kernel evaluations) 0.1750 0.3535 0.2250

Warp2 (100000 posterior kernel evaluations) 0.3097 0.5813 0.4054

Warp1 (100000 candidate draws) 0.1250 0.2575 0.1623

Warp2 (100000 candidate draws) 0.1182 0.2131 0.1522

log(ML) IS BS1 BS2

st.dev. st.dev. st.dev.

Warp1 (100000 posterior kernel evaluations) 0.0137 0.0276 0.0176

Warp2 (100000 posterior kernel evaluations) 0.0242 0.0454 0.0316

Warp1 (100000 candidate draws) 0.0098 0.0201 0.0127

Warp2 (100000 candidate draws) 0.0092 0.0167 0.0119
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where b is a constant that should represent the lag at which the autocorrelation tapers

off, γ̂0 is the sample variance of the series {g(θ[m])}M
m=1, and γ̂i is its i-th order sample

autocovariance. This Newey-West (NW) estimate is used by Chib (1995) and Chib and

Jeliazkov (2001), who set b equal to 10 and 40, respectively. We choose a bandwidth

of b = 40.

The second and third estimate we consider are from Geyer (1992): the initial pos-

itive sequence estimator and the initial monotone sequence estimator. These are spe-

cialized for reversible Markov chains such as the series of Metropolis-Hastings draws.

Theorem 3.1 of Geyer (1992) states the following. For a stationary, irreducible, re-

versible Markov chain with autocovariance γi let Γt = γ2t + γ2t+1 be the sums of

adjacent pairs of autocovariances. Then Γt is a strictly positive, strictly decreasing,

strictly convex function of t.

The initial positive sequence estimator (IPSE) estimator is now given by:

v̂arIPSE(ĝ) = γ̂0 + 2
2h+1∑
t=0

γ̂t = −γ̂0 + 2
h∑

t=0

Γ̂t (21)

where Γ̂t = γ̂2t + γ̂2t+1 and where h is chosen to be the largest integer such that Γ̂t > 0

for t = 1, . . . , h.

In the initial monotone sequence estimator (IMSE) the value of h is chosen to be

the largest integer such that Γ̂t−1 > Γ̂t and such that Γ̂t > 0 for t = 1, . . . , h. There-

fore, the resulting estimates satisfy: v̂arIMSE(ĝ) ≤ v̂arIPSE(ĝ).

We now inspect the NSE in the example from the previous section. Figures 7, 8 and

9 show boxplots, comparing the numerical standard errors to the standard deviations

for the three candidate distributions.

Figure 7 shows that for the naive Student-t candidate distribution the NSE is

often unreliable: huge underestimation of the uncertainty in the marginal likelihood

estimator often occurs. Figure 8 depicts that for an adaptive Student-t candidate

distribution the NSE is more reliable than in the naive case. However, for all estimators

a substantial underestimation of the uncertainty may still occur. The NSE based on

the IPSE should be preferred over the NSE from the IMSE and NW formula. Figure
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9 shows that for the AdMit candidate distribution the NSE is more reliable than for

the other candidates. Especially for the AdMit-IS estimator, the ‘winner’ of Section 4,

the NSE seems reliable. For the BS1, BS2 and CJ estimators, the NSE from the IPSE

should again be preferred over the NSE from the IMSE or NW approach. Only for

the RIS estimator, which anyway performs poorly in this example, the IMSE provides

a NSE that yields a huge overestimation of the uncertainty.

Another way of assessing the performance of the numerical standard errors is to

inspect the coverage rate of estimated 90% intervals

(p̂(y)− 1.645× NSEp̂(y), p̂(y) + 1.645× NSEp̂(y)).

Table 4 gives these coverage rates. In (approximately) 90% of the simulations, the

interval should include the true value p(y), whereas the situations with too low or

too high intervals should both occur in (about) 5% of the simulations. For the naive

candidate distribution, significant deviations from the correct rates can be found for

the intervals of all estimators. For the adaptive Student-t candidate, the coverage rates

are incorrect for all but the IS estimator. This confirms the unreliable character of the

NSE for the naive or adaptive candidate distributions. For the AdMit-IS estimator the

coverage rates are correct, whereas for the BS1, BS2 and CJ estimators using AdMit

draws only the IPSE and IMSE provide (approximately) correct rates.

We conclude that also in terms of the reliability of the NSE and confidence intervals

the AdMit-IS approach performs best. For other AdMit estimators (BS1, BS2 and CJ)

the initial monotone sequence estimator of Geyer (1992) provides a useful NSE. For the

adaptive (and naive) candidate we find that all three types of NSEs may be (highly)

unreliable. The reason for the failure of the NSE based on the Newey-West formula is

partly that the ‘bandwidth’ b = 40 is simply a too small value. Still, also the IPSE and

IMSE that automatically adapt the ‘bandwidth’ to the autocorrelation in the given

series of MCMC draws (slightly) fail in case of the naive (and adaptive) candidate

distribution. Therefore, the fixed value of b = 40 is arguably not always the only

reason for its failure.
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Figure 7: 500 estimates of 1010× marginal likelihood in the non-linear regression model

(17), based on 100000 candidate draws from the ‘naive’ Student-t candidate distribu-

tion: standard deviation (horizontal line in first column) versus 500 numerical standard

errors (boxplots in other columns). NSE’s are computed using the delta rule, where

NW, IMSE, IPSE refer to the approach of Newey and West (1987), the initial mono-

tone sequence estimator and the initial positive sequence estimator (Geyer (1992)) for

taking into account the serial correlation in the MH draws.
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Figure 8: 500 estimates of 1010× marginal likelihood in the non-linear regression model

(17), based on 100000 candidate draws from the ‘adaptive’ Student-t candidate dis-

tribution: standard deviation (horizontal line in first column) versus 500 numerical

standard errors (boxplots in other columns). NSE’s are computed using the delta

rule, where NW, IMSE, IPSE refer to the approach of Newey and West (1987), the

initial monotone sequence estimator and the initial positive sequence estimator (Geyer

(1992)) for taking into account the serial correlation in the MH draws.
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Figure 9: 500 estimates of 1010× marginal likelihood in the non-linear regression model

(17), based on 100000 candidate draws from the AdMit (mixture of four Student-t)

candidate distribution: standard deviation (horizontal line in first column) versus 500

numerical standard errors (boxplots in other columns). NSE’s are computed using the

delta rule, where NW, IMSE, IPSE refer to the approach of Newey and West (1987),

the initial monotone sequence estimator and the initial positive sequence estimator

(Geyer (1992)) for taking into account the serial correlation in the MH draws.



Table 4: Estimation of marginal likelihood p(y) in non-linear regression model (17):

coverage rate of 90% interval for p(y) based on different NSE’s (in 500 repetitions).

90% interval from 90% interval from 90% interval from

Newey-West NSE IMSE NSE IPSE NSE

too low ok too high too low ok too high too low ok too high

AdMit candidate:

IS∗ 0.056 0.902 0.042 0.056 0.902 0.042 0.056 0.902 0.042

RIS 0.002 0.730 0.268 0.002 0.836 0.162 0.000 1.000 0.000

BS1 0.106 0.824 0.070 0.068 0.886 0.046 0.052 0.912 0.036

BS2 0.102 0.844 0.054 0.082 0.884 0.034 0.072 0.900 0.028

CJ 0.092 0.834 0.074 0.058 0.880 0.062 0.038 0.908 0.054

Adaptive Student-t candidate:

IS∗ 0.052 0.902 0.046 0.052 0.902 0.046 0.052 0.902 0.046

RIS 0.440 0.312 0.248 0.412 0.360 0.228 0.338 0.532 0.130

BS1 0.128 0.728 0.144 0.080 0.846 0.074 0.068 0.872 0.060

BS2 0.118 0.772 0.110 0.082 0.864 0.054 0.080 0.874 0.046

CJ 0.092 0.834 0.074 0.086 0.866 0.048 0.086 0.866 0.048

Naive Student-t candidate:

IS∗ 0.258 0.740 0.002 0.258 0.740 0.002 0.258 0.740 0.002

RIS 0.440 0.312 0.248 0.412 0.360 0.228 0.338 0.532 0.130

BS1 0.548 0.220 0.232 0.490 0.316 0.194 0.354 0.546 0.100

BS2 0.578 0.172 0.250 0.450 0.416 0.134 0.368 0.536 0.096

CJ 0.518 0.266 0.216 0.484 0.314 0.202 0.342 0.564 0.094

∗ For the IS estimators there is no serial correlation in the series of draws, so that only

one (straightforward) NSE formula is used.



6 Application 2: conditionally normal distributions

of Gelman and Meng (1991)

Gelman and Meng (1991) discuss the class of conditionally normal distributions. Sup-

pose we consider a conditionally normal distribution for θ ∈ Rd. Then after location

and scale transformations in each variable, the joint density kernel of θ is given by:

k(θ) ∝ exp

(
−1

2

∑
j

Aj θ
c1j

1 · · · θcdj

d

)
(22)

where the cij attain the values 0, 1 or 2, and where the summation is possibly over 3d

terms. The 3d coefficients Aj are allowed to take on any real values for which the joint

density kernel (22) has a finite integral.

In this section we consider the estimation of the normalizing constant (NC) of a

joint density kernel (22) with dimension d = 10. Since in this case the target density

kernel does not correspond to a posterior distribution, this normalizing constant does

not have the interpretation of a marginal likelihood. Nevertheless, for the evaluation of

the quality of our estimation methods this is not an essential difference. The advantage

of the class of conditionally normal distributions is that we can simply choose the

dimension and easily ‘tune’ the shapes of the target distribution.

We analyze a highly non-elliptical example distribution where the shapes of the

marginal distribution of (θ1, θ2) are depicted by Figure 10. This example can roughly

be interpreted as a ten-dimensional extension of the posterior in the non-linear regres-

sion model of Section 4.

We again apply our methods with 100000 candidate draws (and 100000 target

density evaluations); for each estimator we repeat the simulation 50 times. The results

are given by Table 5. To a large extent, conclusions are similar to those of Section 4.

The AdMit-IS estimator performs best, with reliable numerical standard errors. The

construction of the AdMit candidate distribution, again a mixture of four Student-t

distributions, took 26 seconds on a 2006 Intel (R) Centrino Duo Core processor.

In this application, the ‘victory’ over the naive and adaptive Student-t candidate

distributions is larger. All estimators based on the naive candidate are downwards
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Figure 10: Contour plot: marginal density of (θ1, θ2) in a ten-dimensional conditionally

normal distribution (Gelman and Meng (1991)).

biased, since the second mode (with (θ1, θ2) ≈ (0, 5)) is completely ‘missed’. The

standard deviations (and all standard errors) are deceptively low: these obviously do

not signal that part of the target distribution is not ‘covered’. In this ten-dimensional

space, the smaller mode is simply not ‘found’. For this reason, the ‘adaptive’ Student-t

distribution is not simply iteratively obtained by starting with the distribution around

the posterior mode and iteratively using the estimated posterior mean and covariance

as the mode and scale in the next iteration, as this approach would also yield a candi-

date that ‘misses’ the second mode. A robust optimization of the IS weight function

is required. Still, after this optimization the resulting estimators are less precise than

their AdMit based counterparts, also if we apply the Warp1 transformation to the tar-

get distribution (even if we use twice as many evaluations of the target density kernel).

We did not compute the Warp2 estimators, since these would require 210 = 1024 target

density evaluations per candidate draw. The AdMit-RIS estimator has a remarkably

small standard deviation, but seems upwards biased. The NSE’s based on the IMSE

and IPSE are again often more reliable than the NSE’s based on the Newey-West

approach (with bandwidth 40).
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Table 5: Simulation results for estimation of the logarithm of the normalizing con-

stant (NC) of a 10-dimensional highly non-elliptical, conditionally normal distribution

of Gelman and Meng (1991), based on 100000 candidate draws from an AdMit, adap-

tive Student-t or naive Student-t candidate distribution (50 repetitions). NSE’s are

computed using the delta rule, where NW, IMSE, IPSE refer to the approach of Newey

and West (1987), the initial monotone sequence estimator and the initial positive se-

quence estimator (Geyer (1992)) for taking into account the serial correlation in MH

draws. For the IS estimators there is no serial correlation in the series of draws, so

that only one (straightforward) NSE formula is used.

log(NC) estimate NSE (NW) NSE (IMSE) NSE (IPSE)

mean st.dev. mean st.dev. mean st.dev. mean st.dev.

Without Warping:

AdMit IS 20.9231 0.0070 0.0071 0.0007 0.0071 0.0007 0.0071 0.0007

(mixture RIS 20.9773 0.0097 0.0147 0.0001 0.0194 0.0001 0.0616 0.0003

of 4 BS1 20.9324 0.0150 0.0108 0.0003 0.0127 0.0008 0.0192 0.0035

Student-t) BS2 20.9331 0.0124 0.0091 0.0003 0.0117 0.0010 0.0194 0.0027

candidate CJ 20.9273 0.0633 0.0493 0.0189 0.0508 0.0191 0.0510 0.0192

Adaptive IS 20.9235 0.0217 0.0217 0.0005 0.0217 0.0005 0.0217 0.0005

Student-t RIS 20.9143 0.0384 0.0201 0.0007 0.0362 0.0020 0.0378 0.0028

candidate BS1 20.9272 0.0574 0.0420 0.0023 0.0607 0.0047 0.0643 0.0063

(location & scale BS2 20.9159 0.0264 0.0253 0.0003 0.0302 0.0015 0.0312 0.0023

adapted to target) CJ 20.9439 0.1262 0.0939 0.0148 0.1186 0.0207 0.1222 0.0216

Naive IS 20.6580 0.0060 0.0053 0.0015 0.0053 0.0015 0.0053 0.0015

Student-t RIS 20.6582 0.0083 0.0068 0.0002 0.0072 0.0004 0.0076 0.0020

candidate BS1 20.6582 0.0073 0.0074 0.0002 0.0078 0.0003 0.0081 0.0014

(round BS2 20.6577 0.0062 0.0064 0.0002 0.0067 0.0004 0.0072 0.0015

mode) CJ 20.6594 0.0616 0.0454 0.0254 0.0462 0.0259 0.0462 0.0259

Warp 1 transformation:

100000 target density kernel evaluations:

Adaptive IS 20.9236 0.0218 0.0214 0.0006 0.0214 0.0006 0.0214 0.0006

Student-t BS1 20.9119 0.0530 0.0413 0.0021 0.0520 0.0056 0.0561 0.0035

candidate BS2 20.9226 0.0270 0.0259 0.0004 0.0299 0.0017 0.0314 0.0032

(location and 100000 candidate draws (= 200000 target density kernel evaluations):

scale adapted IS 20.9220 0.0133 0.0152 0.0003 0.0152 0.0003 0.0152 0.0003

to target) BS1 20.9306 0.0371 0.0292 0.0010 0.0372 0.0019 0.0390 0.0026

BS2 20.9249 0.0214 0.0184 0.0002 0.0215 0.0012 0.0224 0.0021



7 Concluding remarks

In the title we posed the question: to bridge, to warp or to wrap? In our examples

of non-elliptical distributions where we use an importance sampling or independence

chain Metropolis-Hastings approach for posterior simulation, we have the following

findings on different marginal likelihood estimators. Given a wisely specified candi-

date or importance density that appropriately ‘wraps’ the posterior, the straightfor-

ward importance sampling estimator outperforms the bridge sampling estimators and

also the importance or bridge sampling estimators that are aimed at a warped target

density. So, in our applications the answer is: to wrap!

In further research, we intend to consider different empirical applications. We

will further compare the performance of different types of bridge sampling estimators

with the approach of Chib (1995) in cases of non-elliptical posteriors where the Gibbs

sampler is applicable. We will also consider the quality of the estimators when these are

applied in combination with the radial-based transformation of Bauwens et al. (2004).

Another possibility is to consider the path sampling method of Gelman and Meng

(1998), which extends the bridge sampling approach.
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