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Abstract

Important choices for efficient and accurate evaluation of marginal likelihoods
by means of Monte Carlo simulation methods are studied for the case of highly
non-elliptical posterior distributions. We focus on the situation where one makes
use of importance sampling or the independence chain Metropolis-Hastings al-
gorithm for posterior analysis. A comparative analysis is presented of possible
advantages and limitations of different simulation techniques; of possible choices
of candidate distributions and choices of target or warped target distributions;
and finally of numerical standard errors. The importance of a robust and flexible
estimation strategy is demonstrated where the complete posterior distribution
is explored. In this respect, the adaptive mixture of Student-t distributions

of Hoogerheide et al. (2007) works particularly well. Given an appropriately
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yet quickly tuned candidate, straightforward importance sampling provides the
most efficient estimator of the marginal likelihood in the cases investigated in
this paper, which include a non-linear regression model of Ritter and Tanner
(1992) and a conditional normal distribution of Gelman and Meng (1991). A
poor choice of candidate density may lead to a huge loss of efficiency where the

numerical standard error may be highly unreliable.

Keywords: marginal likelihood; Bayes factor; importance sampling; Markov

chain Monte Carlo; bridge sampling; adaptive mixture of Student-t distributions.

1 Introduction

In this article we provide a comparative study of some commonly used Monte Carlo
estimators of marginal likelihood in the context of highly non-elliptical posterior dis-
tributions. As the key ingredient in Bayes factors, the marginal likelihood lies at the
heart of model selection and model discrimination in Bayesian statistics, see e.g., Kass
and Raftery (1995). In several cases of scientific analysis, e.g., in non-linear regression
models or instrumental variables models, one deals with a target distribution that has
very non-elliptical contours and that is not a member of a known class of distributions.
It is therefore of interest to investigate the performance of some widely used estimators

for such cases.

In this paper we restrict our focus to the situation in which one uses either Im-
portance Sampling (IS; due to Hammersley and Handscomb (1964), introduced in
econometrics and statistics by Kloek and Van Dijk (1978)), or the independence chain
Metropolis-Hastings algorithm (MH; Metropolis et al. (1953), Hastings (1970)) for
posterior simulation. That is, our analysis is especially relevant for those cases where
the model structure implies that Gibbs sampling (Geman and Geman (1984)) is not
feasible; e.g., non-linear models like the example model of Ritter and Tanner (1992)

that we will consider in section 4. Obviously, the Griddy-Gibbs sampler of Ritter and



Tanner (1992) is still feasible in such cases, but we discard this approach due to the
computational efforts that it requires. For the Griddy-Gibbs sampler the computing
time required for obtaining results with a high precision is typically enormously larger
than for the IS and MH approaches.

In Bayesian econometrics, a joint posterior density is given by:

p(y[0)p(9) k(0y)
Joco P(y10)p(0)do ~ ()

where 6 denotes the set of parameters of interest, typically a scalar, a vector, a matrix,

p(Bly) = (1)

or a set of these mathematical objects; p(y|@) is the likelihood function of # for the
vector of observations y = (y;---yr)’; p(f) is the exact prior density of 6, i.e., not
merely a prior kernel. In (1) we define k(6|y) = p(y|0)p(f) as the kernel function of
the joint posterior and
po) = [ kOl )
EC)
as the marginal likelihood. It is clear that the marginal likelihood (sometimes also
referred to as model likelihood; see e.g., Frithwirth-Schnatter (2001)) is equal to the
normalizing constant of the joint posterior density. The estimation of p(y) can be a
difficult task in practice, especially for complex statistical models.
The aim of this article is to investigate which choices have to be made when esti-
mating a marginal likelihood. We argue that these choices are important. We consider

the following issues:

(i) the sensitivity to the choice of the particular estimation procedure (e.g., making

use of either IS or MH);

(i) the sensitivity to the choice of the candidate distribution (e.g., a Student-t dis-

tribution or a mixture of Student-t distributions);

(iii) the impact of aiming at the posterior density kernel or aiming at a ‘warped’

version of it;

(iv) the reliability of different types of numerical standard errors (NSE’s) as signals

for the uncertainty on the respective estimators.



The analysis of the robustness and efficiency of these estimators in the context of
non-elliptical posteriors has not been much investigated so far. Frithwirth-Schnatter
(2004) has considered the special case of mixture models. This article demonstrates
the importance of a robust and flexible estimation strategy which explores the full
joint posterior. A poor choice of the importance density may lead to a huge loss
of efficiency, where the numerical standard error may be highly unreliable. On the
other hand, given an appropriately chosen candidate density, the straightforward IS
approach provides the most efficient marginal likelihood estimator (with a reliable
numerical standard error).

This article proceeds as follows. Section 2 provides a review of some commonly used
Monte Carlo estimators of the marginal likelihood. These methods are all members
of the class of general bridge sampling estimators. Section 3 gives a brief overview of
the approach of Hoogerheide et al. (2007) that uses an adaptive mixture of Student-t
distributions (AdMit) as the candidate or importance distribution. In Section 4 we
investigate the robustness and efficiency of these estimators in the case of a highly
non-elliptical example distribution, a posterior distribution in a non-linear regression
model discussed by Ritter and Tanner (1992). In Section 5 we consider the reliability
of numerical standard errors. In Section 6 we analyze the performance in conditionally

normal distributions of Gelman and Meng (1991). Section 7 concludes.

2 A review of some Monte Carlo methods for marginal
likelihood estimation

We first review some of the most commonly used Monte Carlo estimators of marginal
likelihood. Their performance will be analyzed later. We extend the overview by
Frithwirth-Schnatter (2004), by including the approach of Chib and Jeliazkov (2001),
and addressing some more details on implementation, advantages and drawbacks of
the methods. Moreover, we especially pay attention to the case of the one-block

independence chain MH approach.



The Importance Sampling (IS) estimator (Hammersley and Handscomb (1964),
Kloek and Van Dijk (1978), Van Dijk and Kloek (1980), Geweke (1989)) is given by:

0
pisly 12 k(6 |y (3)

— q(O"

where {61} are ii.d. draws from the exact importance density g(-) which should

approximate the joint posterior density p(f|y). The IS estimator in (3) stems from

_ _ k(0ly) _ - [kly)
Ply) = /ae@’“”'”de - / 10) 1O E[ 10) } |

where E,|.] denotes the expectation over the importance density ¢(-). The IS approach
of marginal likelihood estimation is a globally oriented method that aims at directly
evaluating the integral fa o k(0ly)dd over the whole parameter space ©. An impor-
tance density which globally matches the joint posterior closely will lead to efficient
estimation. For this purpose, the tails of ¢(-) must also be fatter than the tails of
the posterior. That is, ¢(-) should ‘wrap’ the posterior density. An advantage of the
IS estimator is that its derivation and implementation are straightforward. A possi-
ble disadvantage is that for efficiency we require a suitable importance density that
covers the whole posterior density: all areas of the parameter space © that contain
substantial posterior probability mass must be ‘wrapped’ with a reasonable amount of
candidate probability mass. Finding an appropriate importance or candidate density
can be troublesome, especially if the posterior density is asymmetric or multimodal.
However, we focus on the case in which we make use of IS or the independence chain
MH algorithm, where we anyway require an appropriate candidate distribution to ef-
ficiently generate our candidate draws, so that this requirement of the IS marginal

likelihood estimator does not really pose an extra problem.

The Reciprocal Importance Sampling (RIS) estimator (Gelfand and Dey (1994))

is given by:

1 qauxw[m])] h "

= [}
M = k(0tmy)

where {#™}M_ are (correlated) posterior draws from an MCMC sampler. guu(-) is

an exact auxiliary density from which we do not require draws. That is, even if the
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MCMC draws {#™}M_ are simulated using a candidate density, then this candidate

density should generally not be gaux(-). The RIS estimator (4) stems from

L — qaux(e) o Qaux(e) _ Qaux(e)
- W= [ oo =5 [—k(eyy) } (5)

where E,[.] denotes the expectation over the posterior density p(fly). The second
equality stems from
_ k(0ly)

p(y) = 20ly) (6)

The RIS approach is a locally oriented approach: it makes use of the fact that for
each 0 € © there holds (6). High efficiency is most likely to result if g..x(-) roughly
matches the posterior density. However, the RIS estimator is still consistent if gauy(-)
only covers a small part of the parameter space O, since under mild conditions (5)
holds for each density ¢aux(#) on the parameter space ©. For stability of the estimator,
the tails of aux(f) must be thinner than those of the posterior in order to keep the
ratio % bounded.

Gelfand and Dey (1994) propose a multivariate normal or Student-t density whose
mean vector and covariance matrix are estimated from the joint posterior sample.
Geweke (1999) proposes the use of a multivariate normal density, truncated to a sub-

space O of ©

— p)l(zﬁ)d/2 157172 exp [_%(9 —0)ysY0 — é)] 1(0 € ©)

where 6 and > can be chosen as estimates of the posterior mean and covariance matrix,

Ganx (0) =

1(-) is the indicator function, d is the dimension of #; the parameter subspace O is
defined as
O={0:(0-0ys70-0) <3 ()}

where x?__(d) is the (1—c)th quantile of the Chi-squared distribution with d degrees of
freedom. The value of ¢ can be chosen to minimize the numerical standard error of the
resulting marginal likelihood estimator. The additional cost of trying several different
values for c is very low, as this requires no extra draws or evaluations of candidate or

target densities. In the case of (almost) elliptical posterior distributions, one would



expect small values of ¢ (e.g., ¢ = 0.01) to work best, since then more draws will
be included when estimating the marginal likelihood. In the case of a (highly) non-
elliptical posterior, one should choose 6 as the posterior mode rather than the posterior
mean, as the posterior density kernel may be low (or even 0) around the posterior mean.
Further, the optimal value of ¢ can then be much lower (e.g., ¢ = 0.40), since in certain
directions the posterior density kernel may quickly drop.

An advantage of the RIS estimator is that the local character of the approach
implies that the auxiliary density g.ux(-) does not have to cover the whole posterior.
Still, we do require that the MCMC draws {#™}M_  are representative of the whole
posterior distribution: otherwise the RIS estimator is no longer consistent.

A special case of (4) is the harmonic mean estimator by Newton and Raftery (1994),
in which the prior p(6) is used as the importance density. However, it is well-known

that this estimator is unstable because we have

Gaux (01™) p(0) 1

B0 y)  p0)p(ylo)  pylo)’
where the inverse likelihood function typically does not have a finite variance. The

reason is that some of the likelihood terms in the sum are near zero, leading to extreme

values of m. Therefore, we do not investigate the version of the harmonic mean.

The (optimal) Bridge Sampling (BS) estimator (Meng and Wong (1996)) is ob-

tained as the limit of the sequence

1 ZL PO |y)

L £al=1 Lq(0M)+Mp(6l | y) (7)
1 ZM (60 ’
M £—em=1 Lq(6l™)+Mp(ol"™]|y)

~(t ~(t—1
P(y) = sV () x

where p(0 |y) = k(0] y)/ﬁgs_l)(y) and the initial value pg)s)(y) is set to (3), for instance.

The {#™}M_ are (correlated) posterior draws from an MCMC sampler and {8}/
are i.i.d. draws from the importance density ¢(-). Usually, we set M = L. Convergence
of the bridge sampling technique requires few steps in practice (i.e., typically less than
ten iterations). Moreover, these steps do not require many additional computational

efforts: no extra draws or evaluations of candidate or target densities are needed. The



BS estimator provides (asymptotically) the optimal combination of draws {9 }M_
and {01} | for the estimation of a (ratio of) normalizing constant(s). That is, the
BS estimator gives the optimal bridge between the posterior kernel and the candidate
density ¢(-). The original BS estimator in (7) is optimal if the draws {#"™}M_  are
i.i.d. We will refer to this estimator as the BS1 estimator. A simple correction for
correlated draws is proposed by Meng and Schilling (2002). This correction means
that one substitutes M by an ‘effective size’ M, defined as M = M(1 — p)/(1 + p)

M

with p the first order serial correlation of the likelihood evaluations of the {#™}M_

We will refer to this estimator as the BS2 estimator.

In general, an advantage of the BS estimator is that its variance depends on a ratio
that is bounded regardless of the tail behavior of the importance density ¢(-), which
renders the estimator robust. A disadvantage is that we require both a set of draws
from the posterior and a set of independent candidate draws. Further, it requires some
implementation cost. It has been investigated by Frithwirth-Schnatter (2004) in the
context of mixture models, where it has shown a good performance.

The BS estimator stems from the following results. Let «(-) be an arbitrary func-

tion such that

/ a(O)p(0]y)q(6)d0 > 0.
0cO

Then we have
| _ Joco @OpOly)a(0)d0 _ E,[a(0)p(6]y)]
Joco @(0)a(@)p(Oly)do  Ey[a(0)q(0)]

Multiplying both sides by p(y) yields:

Eqla(0)k@]y)]

ala(8)
Eyla(0)q(6)]

Substituting sample averages for these expectations results in the general bridge-

ply) =

sampling (GBS) estimator:

7 i a0k ]y)
3 Lt (0 q (01)

The IS and RIS estimators are members of this class of GBS estimators: these corre-

(8)

DGBS (y) =

spond to the choices of ag(0) = 1/¢(0) and aris(f) = 1/k(0|y), respectively. The BS1



estimator corresponds to the choice

1

RS P OESITICD)

that asymptotically minimizes the relative error of the GBS estimator pgps(y) if the

posterior draws {1 }M_ are independent.

The estimator of Chib and Jeliazkov (2001) for marginal likelihood estimation on

the basis of Metropolis-Hastings draws is given by:

_ K(0"]y)
p(6*]y)

where 0* is a certain point in the parameter space © with p(6*|y) > 0. In the case of the

(9)

ﬁCJ(y)

independence chain MH algorithm, the estimated density p(6*|y) of the Chib-Jeliazkov

(CJ) estimator is given by:

S anm (0, 6%)
L350 o (67, 61)

with «(6,60') the probability that a transition from 6 to 6 is accepted in the MH

p(0”|y) = q(07) (10)

algorithm:
- k@y) a(9) }
ayvu(0,0") = min {1, .
un(®:0) k(61y) @)
The CJ estimator stems from the fact that for each 6* € © we have p(y) = %. The

idea behind equation (10) is that we have:

Eylanmu (0, 07)] _ fee@ q(6")onn (60, 6°)p(6]y)do
Eq[aMH(Q*,Q)] f@e@ aMH(H*,Q)q(H)dG 7

p(0"ly) = q(6)

which follows from the MH chain’s key property, the reversibility condition:

p(0ly)q(0")ann (0, 0%) = p(0*[y)q(0)ann (0, 0). (11)

That is, in the Markov chain of MH draws, moves from 6 to 6* (left-hand side of (11))
are observed as often as moves from 6* to 6 (right-hand side of (11)).

The CJ approach can be applied for each 6* € © with p(6*|y) > 0. However, for
efficiency, the point 8* must be taken to be a high-density point in ©, typically the

posterior mode. In the case of a highly non-elliptical posterior distribution it may be

9



a bad strategy to use the (estimated) posterior mean, as this may have a low (or even
0) posterior density value.
The CJ estimator is another member of the class of GBS estimators, corresponding

to the choice of:

acy g (6) = min {q(@*) k(6°]y) }

q(0) " k(Oly)

since substituting this choice of acyg+(#) into (8) gives:

J — I Zlel acyo- (00 k(01 ]y)
2 Zr]\r/{:l acy g+ (0M)q(60M)

L . 0%) k 9*

% -y min { )) ( ly) } k(0")y)

M . k(6* m

> ey min { 9[m1)7 k(e \y } q(om)

gll] «

L Zz pm { 9*\'5)) q( o)) k(0" |y)

o . olml) .
M Zm:l min {1 (( ‘|)) q(g*) Q(e )

anm (01, 0%
_ k<9*|y>/[q<0>MZ SElG 9)].

T o cnn (67, 61)

See Meng and Schilling (2002) and Mira and Nicholls (2004) who show that also other
variations proposed by Chib and Jeliazkov (2001) are individual cases of bridge sam-
pling. This suggests that the CJ approach should always be dominated by the optimal
BS method. However, BS1 is only optimal (i) asymptotically and (ii) if the posterior
draws were i.i.d.. For the BS2 estimator, the optimality is also asymptotical and the
‘effective size’ of the sample of draws may provide a crude correction. Therefore, it
still makes sense to compare the performance of the CJ and BS methods.

Of the approaches that we consider, the CJ method is the most local method: we
only estimate the posterior density in one point #*. This is in sharp contrast with
the IS approach where the whole posterior is ‘wrapped’ by a fat-tailed candidate.
In between we have the RIS method, where a subspace is covered by a thin-tailed
auxiliary density. A graphical overview of these methods is given by Figure 1.

The Gibbs sampler is a special case of the MH approach, so that the method of

Chib (1995) that estimates the marginal likelihood from Gibbs draws, is a special case

10



of the CJ method. In the case of Importance Sampling we can in principle use the
prior as the importance density. However, we do not consider this option in this pa-
per, as this approach is typically very inefficient. In general, the prior has much higher
variance than the posterior, so that the IS estimate would then be based on only a few

IS weights (=likelihood evaluations), with most likelihood evaluations being close to 0.

The methods above can be used in combination with another technique: warping the
target posterior (see Meng and Schilling (2002)). If we assume that the parameter
space of § is © = R?, then the integral
po) = [ KOl = [ k(6 80) + tuly)as (12)
EE) EC)
remains equal if we take the ‘mirror image’ around a certain point ¢, € ©:

p) = [ K=t 0l = [ Ko+ (13)

0cO
Combining (12) and (13) yields:
1
po) = [ klelyo = [ Sik6l) K0+ 2ollas. (10
9cO 0cO
This implies that application of the aforementioned methods to the warped posterior

kernel

FOly) = 5 [K(6ly) + k(0 + 260]y)] (15)

rather than to the posterior kernel k(0|y), also yields an estimator of the marginal
likelihood. The warped posterior kernel 12(9|y) is point symmetric around 6y, where we
choose 0y as the (estimated) posterior mean. This gain in symmetry may substantially
improve the approximation of the target density by the candidate density, typically
a symmetric distribution (e.g., Student-t or Gaussian). This may yield a substantial
increase in efficiency. However, a disadvantage is that for each candidate draw we now
require two evaluations of the posterior density kernel instead of one. We will refer to
the transformation in (15) as the Warpl transformation.

In the two terms of the Warp 1 transformation in (15) we either take the original

parameter vector 6 or the ‘mirror image’ of all elements. A further gain in symmetry

11



is obtained by taking an average over all 2¢ combinations where individual elements

of 6 may be ‘mirrored’. For example, in the two-dimensional case this yields:

(K01, 02]y) + k61, 05]y) + k(67, O2|y) + K(67, 05]y)] (16)

A

k*(0ly) =

where 0 = —6 + 26,. Obviously, a disadvantage is that for increasing values of the
dimension d, the number of posterior kernel evaluations per candidate draw increases
exponentially. We will refer to this transformation, of which the two-dimensional
version is given by (16), as the Warp2 transformation.

Meng and Schilling (2002) use the name Warp-III for both these Warpl and Warp2
transformations: Warp-I and Warp-II correspond to adapting the location and variance
of the target density to the candidate. We always use candidate distributions of which
the location and variance are adapted to the target, so that we only explicitly make
use of the Warp-III type transformation that eliminates asymmetries via mixtures of
the target.

Table 1 provides an overview of the number of candidate draws and function eval-
uations that are required by different methods. The candidate distributions that we
will consider are Student-t distributions and mixtures of Student-t distributions. The
auxiliary densities (of RIS) will be truncated normal. Evaluations of these densities
and the simulation of pseudo-random draws from these distributions is done easily
and quickly. Therefore, the computational efforts mainly depend on the number of
posterior kernel evaluations. For a fair comparison between methods, we apply these
in such a way that the numbers of posterior kernel evaluations are equal. The IS and
RIS estimators are members of the general bridge sampling (GBS) class of which the
BS2 estimator is (approximately, asymptotically) optimal. However, this result holds
for L and M taken equal in IS, RIS and BS. In this paper we shall take Lig and Mgg

twice as large as Lgs = Mgg, so that IS and RIS could very well outperform BS.

12



We focus on the cases of importance sampling and the independence chain Metropolis-

Hastings algorithm. So, we compare the following strategies:
(IS) use all candidate draws in the IS estimator (3);

(RIS, CJ) transform all candidate draws to a sequence of MH draws (plus a burn-in) and

use these in the RIS estimator (4) or the CJ estimator (9);

(BS) transform 50% of the candidate draws to a sequence of MH draws (plus a burn-
in) and combine these with the other 50% of the candidate draws in the BS1

estimator (7) — with M substituted by the effective size M for the BS2 estimator.

In Sections 4, 5 and 6 the methods will be applied to several target distributions. In
the next section we briefly review the method of Hoogerheide et al. (2007) that uses an
adaptive mixture of Student-t distributions (AdMit) as the candidate or importance

distribution.
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Figure 1: Classification of some well-known methods for estimating marginal likeli-

hoods. All estimators are members of the class of general bridge sampling estimators.
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Table 1:

Computations required by different marginal likelihood estimation ap-

proaches, in case we make use of IS or the independence chain MH algorithm. L

is the number of candidate draws that are not used in the MH algorithm. M is the

number of independence chain MH draws from the posterior. Warpl and Warp2 refer

to the Warp transformations of Meng and Schilling (2002) where one aims at a mixture

of 2 or 2 ‘mirror images’ of the posterior density that is typically more symmetric

than the posterior itself. Further explanations are given in Section 2.

number of number of number of number of
posterior kernel candidate candidate auxiliary
evaluations draws density evaluations density evaluations

IS L L L -

RIS M M M M

BS L+ M L+ M L+ M -

CJ L+ M L+ M L+ M -
Warpl IS 2L L L -
Warpl BS 2(L+ M) L+M L+M -
Warp2 IS 24, L L -
Warp2 BS 29(L+ M) L+M L+M -

15



3 The Adaptive Mixture of t (AdMit) method

The Adaptive Mixture of Student-t (AdMit) approach (Hoogerheide et al. (2007))
consists of two steps. First, it constructs a mixture of Student-t distributions which
approximates a target distribution of interest. The fitting procedure relies only on
a kernel of the target density, so that the normalizing constant is not required. In
a second step, this approximation is used as an importance function in importance
sampling (or as a candidate density in the independence chain Metropolis-Hastings
algorithm) to estimate characteristics of the target density. The estimation procedure
is fully automatic and thus avoids the difficult task, especially for non-experts, of
tuning a sampling algorithm. In a standard case of importance sampling the candidate
density is unimodal. If the target distribution is multimodal then some draws may
have huge importance weights or some modes may even be completely missed. Thus,
an important problem is the choice of the importance density, especially when little
is known a priori about the shape of the target density. The importance density
should be close to the target density, and it is especially important that the tails
of the candidate should not be thinner than those of the target. Hoogerheide et
al. (2007) mention several reasons why mixtures of Student-t distributions are natural
candidate densities. First, they can provide an accurate approximation to a wide
variety of target densities, with substantial skewness and high kurtosis. Furthermore,
they can deal with multi-modality and with non-elliptical shapes due to asymptotes.
Second, this approximation can be constructed in a quick, iterative procedure and
a mixture of Student-t distributions is easy to sample from. Third, the Student-t
distribution has fatter tails than the normal distribution; especially if one specifies
Student-t distributions with few degrees of freedom, the risk is small that the tails
of the candidate are thinner than those of the target distribution. Finally, Zeevi
and Meir (1997) showed that under certain conditions any density function may be
approximated to arbitrary accuracy by a convex combination of basis densities; the
mixture of Student-t distributions falls within their framework.

The AdMit approach determines the number of mixture components, the mixing

16



probabilities, the modes and scale matrices of the components in such a way that the
mixture density approximates the target density p(6|y) of which we only know a kernel

function k(f|y) with § € RY. The AdMit strategy consists of the following steps:

(0) Initialization: computation of the mode and scale matrix of the first component
(typically the posterior mode and minus the inverse Hessian of the log-posterior

evaluated at the mode), and drawing a sample from this Student-t distribution;

(1) Iterate on the number of components: add a new component that covers a part
of the space of # where the previous mixture density was relatively small, as

compared to k(0|y);
(2) Optimization of the mixing probabilities;
(3) Drawing a sample from the new mixture;

(4) Evaluation of importance sampling weights: if the coefficient of variation, the
standard deviation divided by the mean, of the IS weights has converged, then

stop. Otherwise, go to step (1).

For more details we refer to Hoogerheide et al. (2007).

The package AdMit (Ardia et al. (2008)), an R implementation (R Development Core
Team 2008), is available from the Comprehensive R Archive Network (CRAN) at
http://cran.r-project.org/package=AdMit. Its use is discussed and illustrated by
Ardia et al. (2009).

The AdMit approach has been successfully applied to the simulation of posterior
draws from non-elliptical posterior distributions, where the reason for non-elliptical
shapes is typically local non-identification of certain parameters. Examples are the
IV model with weak instruments, or mixture models where one component has weight
close to zero. This paper provides the first analysis of the AdMit method’s performance
in the case of marginal likelihood estimation (and the first application of AdMit to a

non-linear regression model).
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Figure 2: Data from Marske (1967): Biochemical Oxygen Demand (BOD) versus time.

4 Application 1: non-linear regression model

In this section we apply our methods in order to estimate the marginal likelihood in
a non-linear regression model. We consider the biochemical oxygen demand (BOD)
data from Marske (1967) that are analyzed by Bates and Watts (1988) and Ritter and
Tanner (1992) (see Figure 2).

We consider the non-linear model of Bates and Watts (1988)
Y; = 91(1 — exp(—@z I2)> + & (17)

with independent errors €; ~ N(0, 0?), where y; is the BOD at time z; (i = 1,...,6).

Following Ritter and Tanner (1992), we specify a flat prior on a bounded interval:
(01,05,0) € [—20,50] x [—2,6] x [0,20]. (Ritter and Tanner (1992) do not restrict
the interval of o; for the identification of a marginal likelihood we make this choice in
order to have a proper prior.)

The top-left panel of Figure 3 gives an illustration of the shapes of this posterior
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distribution of 8 = (61,02, 0)’; it shows a Highest Posterior Density (HPD) credible
set. Note the bimodality and the curved shapes of the larger mode. The sets {6 :
01 > 0,05 >0} and {0 : 6, < 0,0, < 0} correspond to concave and convex increasing
functions (through the origin) in (17), respectively. The smaller mode reflects the
small posterior probability of a convex function.

For the importance sampling and independence chain Metropolis-Hastings algo-

rithms we consider three candidate distributions:

(1) the mixture of Student-t distributions resulting from the AdMit procedure of
Hoogerheide et al. (2007);

(2) an ‘adaptive’ Student-t distribution where the mode and scale have been itera-
tively updated by several importance sampling steps (starting with the posterior
mode and iteratively using the estimated posterior mean and covariance as the

mode and scale in the next iteration);
(3) a so-called ‘naive’ Student-t distribution around the posterior mode.

In order to minimize the risk that the candidate ‘misses’ parts of the posterior, we
specify very fat-tailed candidates: we choose one degree of freedom (i.e., Cauchy tails).
Figure 3 shows the shapes of the three candidate distributions. Notice that the Ad-
Mit candidate nicely ‘wraps’ the relevant areas of the parameter space with candidate
probability mass. Figure 4 illustrates how the AdMit approach has constructed this
‘wrapping’ distribution. Starting with the naive Student-t distribution around the
mode, it finds that a Student-t distribution parallel with the 6, axis must be added,
yielding a cross shape. After that, a third Student-t distribution parallel with the 6;
axis is added, leading to a wrapping of the whole larger posterior mode. Finally, the
fourth Student-t distribution in the mixture wraps the smaller posterior mode, so that
the resulting mixture of four Student-t distributions covers the whole posterior distri-
bution. (This whole procedure took merely 11 seconds on a 2006 Intel (R) Centrino
Duo Core processor.)

We will now use these three candidate distributions in combination with the marginal



likelihood estimators of Section 2. For the IS estimator we generate L = 100000 candi-
date draws. For the RIS and CJ estimators we take M = 100000 independence chain
MH draws; we use a burn-in of 1000 draws, so that we actually generate 101000 draws.
The reason for not including the burn-in in the 100000 draws is that a burn-in of fewer
than 1000 draws may suffice. For the BS estimators we use L = 50000 candidate draws
and M = 50000 MH draws, again not counting a burn-in of 1000 draws.

For the RIS estimator we use a truncated normal auxiliary density around the
posterior mode where the optimal value of ¢ appeared to be (approximately) ¢ = 0.40.
This result differs from the low value of ¢, e.g., ¢ = 0.01, that is typically optimal in
case of (nearly) elliptical posteriors. For the CJ estimator we choose 0* as the posterior

mode.

For each estimator, we repeat the simulation 500 times. Simulation results are re-
ported in Table 2. Since one often works with the (natural) logarithm of the marginal
likelihood, we display results for both the marginal likelihood and its logarithm. Box-
plots of the 500 marginal likelihood estimates are given in Figures 5. The real value
of the marginal likelihood is (rounded to two digits) 12.79 x 107!% (with logarithm
-20.48). This real value is computed by deterministic integration which is still feasible
(but quite time-consuming) in this three-dimensional example.

First of all, notice the very inefficient estimators that make use of the naive Student-
t candidate distribution. Even though this naive Student-t distribution is chosen very
fat-tailed (one degree of freedom), the resulting estimators have much higher variance
than the estimators based on the AdMit and adaptive candidates. The boxplots show
that the naive Student-t candidate may result in extreme outliers for all marginal
likelihood estimators. This stresses the importance of wisely specifying an appropriate
candidate distribution.

Second, the AdMit candidate clearly outperforms the adaptive Student-t candidate:
iteratively adding Student-t distributions to the mixture candidate distribution leads

to far more precise estimators than merely iteratively adapting the location and scale
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of the Student-t candidate.

Third, the IS estimator is the best, whereas the RIS estimator is clearly the worst.
The BS2, BS1 and CJ are typically ranked second to fourth, although in case of the
adaptive candidate the CJ estimator outperforms the BS1 estimator. In that case,
the difference between the ‘i.i.d. optimal’ BS1 estimator and the ‘serial correlation
corrected” BS2 estimator is substantial, reflecting the high serial correlation in the
MH chain.

In this example, the winner is clearly the AdMit-IS estimator, the IS estimator
based on the AdMit candidate. It outperforms the alternative estimators (including
the BS estimators) that make use of the same number of candidate draws and function
evaluations.

Simulating draws from a mixture of Student-t distributions takes hardly more time
than generating draws from a Student-t distribution. The AdMit approach does re-
quire the evaluation of multiple Student-t densities, in our case four, instead of one; but
the little extra computing time required for this is typically very small compared to the
time required for evaluation of the posterior density kernel. Further, the ‘victory’ of
the IS estimator over alternative estimators is actually slightly larger than represented
by the tables: the burn-in of the MCMC draws is neglected and the implementation
of the IS estimation of the marginal likelihood and its numerical standard error are

relatively straightforward.

In this example, one comparison is still to be made: the comparison with methods
aimed at the ‘warped’ target density. Figure 6 shows the shapes of the warped posterior
kernels. These are more symmetric than the posterior kernel itself; especially the
Warp2 distribution looks ‘closer to” a Student-t distribution than the original posterior
distribution. This illustrates the elimination of asymmetries by using mixtures of the
posterior distribution. Table 3 shows the results of IS, BS1 and BS2 (the three best
performing algorithms) for Warpl and Warp2 transformations in combination with

an adaptive Student-t candidate. The rows with 100000 posterior kernel evaluations
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correspond to IS with 50000 and 12500 draws (BS with 25000425000 and 625046250
draws) for Warpl and Warp2, respectively. The Warpl-IS results are comparable to
the regular IS results with an adaptive Student-t candidate. The Warp1-BS estimators
are somewhat better than the ‘unwarped’ BS estimators. The Warp2 results are worse
than their ‘unwarped’ counterparts; the obvious reason is that the number of candidate
draws is now much smaller in order to keep the number of posterior kernel evaluations
equal to 100000.

Even if we use the same number of candidate draws, thereby requiring two or eight
times more posterior kernel evaluations in the Warpl and Warp2 approach, the re-
sulting estimators do not outperform the AdMit-IS estimator. This confirms that the
AdMit-IS estimator is clearly the winner. In this example, warping may provide a

slight improvement, but here it is better to wrap the posterior than to warp it!

We now briefly pay attention to the implications that an unreliable marginal likeli-
hood estimator may have. Suppose we face the choice between the non-linear regression

model (17) and the linear regression model

Yi =P+ Pazi + & (18)

with independent errors ¢; ~ N(0,0%) (i = 1,...,6). The linear model ignores that
for x = 0 we should have y = 0: the purpose of considering these two models is
purely illustrative. Suppose we specify a conjugate prior that is approximately as
‘non-informative’ as the prior we used for the non-linear regression model (17), the

Normal-Gamma prior

1 1 _
ﬁ;wN(@,aQZ) ;NGamma(g 2,y),

with

B= V=— =100 v=3.

Under the Normal-Gamma prior the marginal likelihood can be analytically computed,

see e.g., Koop (2003); here it equals 12.40 - 1071, The Bayes factor in favor of the
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non-linear model is 1.0315, so that under equal prior probabilities the posterior model
probabilities for the non-linear and linear models are 0.5078 and 0.4922, respectively.
Figure 5 shows that only for the AdMit-IS estimator all 500 repetitions of the simula-
tion yield marginal likelihood estimates above 12.40- 1071, leading (under equal prior
probabilities) to a ‘correct’ model choice. Here we use the term ‘correct’ to denote that
the model choice is optimal given our data and prior assumptions, and not determined
by simulation ‘noise’. For all other approaches, estimates smaller than 12.40 - 10710
are observed, resulting in an ‘incorrect’ model choice. Arguably, in this situation one
should consider Bayesian model averaging (BMA) rather than model choice. Under
equal prior probabilities, appropriate model weights are 0.5078 and 0.4922. The ex-
treme overestimation of the non-linear model’s marginal likelihood that may occur for
estimators using the naive candidate distribution, would result in highly ‘incorrect’
model weights. We conclude that an appropriate marginal likelihood estimator (using
a suitable candidate distribution) is important, both for model selection and for model

combination.

Until now we have considered the standard deviations of the estimators, when the
simulation process is repeated 500 times. In practice, we usually do not compute
such standard deviations. Instead, we estimate the standard deviation by a numerical
standard error based on a single simulation run. In the next section we consider the

reliability of numerical standard errors.

23



Table 2: Posterior distribution of § = (;,602,0)" in non-linear regression model (17):
estimation of the marginal likelihood (ML) based on 100000 draws from AdMit mixture
of four Student-t distributions, adaptive Student-t or naive Student-t distribution (500

repetitions). True values are ML= 12.79 x 107'% and log(ML)= -20.48.

1019 ML AdMit adaptive naive

mean st.dev. mean st.dev. mean st.dev.
IS 127906  0.0962  12.7899 0.1791  12.7317 1.0945
RIS 13.1803 0.3435 12.8792 0.9456 12.8846 2.5144
BS1 12,7621 0.1984  12.8348 0.4238 13.0995 4.3776
BS2 12.7636 0.1405  12.7890 0.2739  13.0877 4.2780
CJ 12,7816 0.2568  12.7814 0.2841 13.1030 4.4004
log(ML) AdMit Adapt Naive

mean st.dev. mean st.dev. mean st.dev.
IS -20.4772  0.0075 -20.4773 0.0140 -20.4853 0.0824
RIS -20.4475  0.0260 -20.4729 0.0729 -20.4810 0.1354
BS1 -20.4795 0.0155 -20.4743 0.0328 -20.4797 0.1976
BS2 -20.4794  0.0110 -20.4776 0.0212 -20.4798 0.1949
CJ -20.4781 0.0200 -20.4782 0.0221 -20.4796 0.1986
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Figure 3: Posterior distribution of # = (6,65, 0)" in non-linear regression model (17):
Highest Posterior Density credible region (top left) and ‘Highest Candidate Density
regions’ for mixture of Student-t (AdMit, top right), ‘naive’ Student-t (bottom left)

and adaptive Student-t (bottom right) candidate distributions.
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posterior shapes by a mixture of Student—%distributions.
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Figure 6: Posterior distribution of § = (6,05, )" in non-linear regression model (17):
warping of posterior density kernel. A mixture of the posterior density and its ‘mirror
images’ (that naturally have the same normalizing constant) can have shapes that are

much closer to an elliptical distribution than the original posterior.

5 Numerical standard errors

For the IS estimator, the computation of a numerical standard error (NSE) is parti-

k(6Y]y)
q(ol)

(l=1,...,L) by VL. However, for the RIS, BS1, BS2 and CJ estimators we make

cularly straightforward. One simply divides the standard deviation of the terms

use of the usual delta rule. Moreover, the latter four estimators make use of correlated
MCMC draws where we need to take into account serial correlation. In this section
we will consider three methods for computing the standard error of a sample mean of

such correlated series; that is an estimate of the standard deviation stdev(g) of

Na)Y

- %;gw% (19

where {#™}M_ s a series of MCMC draws.
The first estimate of the variance var(g) that we consider, is the estimate of Newey

and West (1987):

b .
o A N 7 A
() =0 +2 (1 i 1) o (20)
=1
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Table 3: Posterior distribution of § = (0, 602,0)" in non-linear regression model (17):
marginal likelihood estimation making use of Warpl or Warp2 transformations in

combination with an adaptive Student-t candidate distribution (500 repetitions).

101°. ML IS BS1 BS2

st.dev. st.dev. st.dev.

Warpl 100000 posterior kernel evaluations) 0.1750 0.3535 0.2250

Warpl

(

Warp?2 (100000 posterior kernel evaluations) 0.3097 0.5813 0.4054
(100000 candidate draws) 0.1250 0.2575 0.1623
(

Warp?2 100000 candidate draws) 0.1182 0.2131 0.1522

log(ML) IS  BSI  BS2

st.dev. st.dev. st.dev.

Warpl (100000 posterior kernel evaluations) 0.0137 0.0276 0.0176
Warp2 (100000 posterior kernel evaluations) 0.0242 0.0454 0.0316
Warpl (100000 candidate draws) 0.0098 0.0201 0.0127
Warp2 (100000 candidate draws) 0.0092 0.0167 0.0119

29



where b is a constant that should represent the lag at which the autocorrelation tapers

M

1, and 4; is its ¢-th order sample

off, 4y is the sample variance of the series {g(6™)
autocovariance. This Newey-West (NW) estimate is used by Chib (1995) and Chib and
Jeliazkov (2001), who set b equal to 10 and 40, respectively. We choose a bandwidth
of b = 40.

The second and third estimate we consider are from Geyer (1992): the initial pos-
itive sequence estimator and the initial monotone sequence estimator. These are spe-
cialized for reversible Markov chains such as the series of Metropolis-Hastings draws.
Theorem 3.1 of Geyer (1992) states the following. For a stationary, irreducible, re-
versible Markov chain with autocovariance v; let I'; = 9 + Y2411 be the sums of
adjacent pairs of autocovariances. Then I'; is a strictly positive, strictly decreasing,

strictly convex function of ¢.

The initial positive sequence estimator (IPSE) estimator is now given by:

2h+1 h
varipsg(g) = Jo + 2 Z Y=Y +2 Z Iy (21)
=0 =0

where I'; = Aot + Y2141 and where h is chosen to be the largest integer such that [, >0
fort=1,... h.

In the initial monotone sequence estimator (IMSE) the value of h is chosen to be
the largest integer such that ft_l > ft and such that f‘t >0 fort=1,...,h. There-

fore, the resulting estimates satisfy: varpse(g) < varpsg(g).

We now inspect the NSE in the example from the previous section. Figures 7, 8 and
9 show boxplots, comparing the numerical standard errors to the standard deviations
for the three candidate distributions.

Figure 7 shows that for the naive Student-t candidate distribution the NSE is
often unreliable: huge underestimation of the uncertainty in the marginal likelihood
estimator often occurs. Figure 8 depicts that for an adaptive Student-t candidate
distribution the NSE is more reliable than in the naive case. However, for all estimators

a substantial underestimation of the uncertainty may still occur. The NSE based on

the IPSE should be preferred over the NSE from the IMSE and NW formula. Figure
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9 shows that for the AdMit candidate distribution the NSE is more reliable than for
the other candidates. Especially for the AdMit-IS estimator, the ‘winner’ of Section 4,
the NSE seems reliable. For the BS1, BS2 and CJ estimators, the NSE from the IPSE
should again be preferred over the NSE from the IMSE or NW approach. Only for
the RIS estimator, which anyway performs poorly in this example, the IMSE provides
a NSE that yields a huge overestimation of the uncertainty.

Another way of assessing the performance of the numerical standard errors is to

inspect the coverage rate of estimated 90% intervals
(D(y) — 1.645 x NSEp,, p(y) + 1.645 x NSE;()).

Table 4 gives these coverage rates. In (approximately) 90% of the simulations, the
interval should include the true value p(y), whereas the situations with too low or
too high intervals should both occur in (about) 5% of the simulations. For the naive
candidate distribution, significant deviations from the correct rates can be found for
the intervals of all estimators. For the adaptive Student-t candidate, the coverage rates
are incorrect for all but the IS estimator. This confirms the unreliable character of the
NSE for the naive or adaptive candidate distributions. For the AdMit-IS estimator the
coverage rates are correct, whereas for the BS1, BS2 and CJ estimators using AdMit
draws only the IPSE and IMSE provide (approximately) correct rates.

We conclude that also in terms of the reliability of the NSE and confidence intervals
the AdMit-IS approach performs best. For other AdMit estimators (BS1, BS2 and CJ)
the initial monotone sequence estimator of Geyer (1992) provides a useful NSE. For the
adaptive (and naive) candidate we find that all three types of NSEs may be (highly)
unreliable. The reason for the failure of the NSE based on the Newey-West formula is
partly that the ‘bandwidth’ b = 40 is simply a too small value. Still, also the IPSE and
IMSE that automatically adapt the ‘bandwidth’ to the autocorrelation in the given
series of MCMC draws (slightly) fail in case of the naive (and adaptive) candidate
distribution. Therefore, the fixed value of b = 40 is arguably not always the only

reason for its failure.
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Figure 7: 500 estimates of 1019 x marginal likelihood in the non-linear regression model
(17), based on 100000 candidate draws from the ‘naive’ Student-t candidate distribu-
tion: standard deviation (horizontal line in first column) versus 500 numerical standard
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(Geyer (1992)) for taking into account the serial correlation in the MH draws.



Table 4: Estimation of marginal likelihood p(y) in non-linear regression model (17):

coverage rate of 90% interval for p(y) based on different NSE’s (in 500 repetitions).

90% interval from 90% interval from 90% interval from
Newey-West NSE IMSE NSE IPSE NSE

too low ok too high | too low ok too high | too low ok too high
AdMit candidate:
IS* 0.056 0.902 0.042 0.056 0.902 0.042 0.056  0.902 0.042
RIS 0.002 0.730 0.268 0.002 0.836 0.162 0.000 1.000 0.000
BS1 0.106 0.824 0.070 0.068 0.886 0.046 0.052 0.912 0.036
BS2 0.102 0.844 0.054 0.082 0.884 0.034 0.072  0.900 0.028
CJ 0.092 0.834 0.074 0.058 0.880 0.062 0.038 0.908 0.054
Adaptive Student-t candidate:
I5* 0.052  0.902 0.046 0.052  0.902 0.046 0.052  0.902 0.046
RIS 0.440 0.312 0.248 0.412  0.360 0.228 0.338 0.532 0.130
BS1 0.128 0.728 0.144 0.080 0.846 0.074 0.068 0.872 0.060
BS2 0.118 0.772 0.110 0.082 0.864 0.054 0.080 0.874 0.046
CJ 0.092 0.834 0.074 0.086 0.866 0.048 0.086 0.866 0.048
Naive Student-t candidate:
I5* 0.258 0.740 0.002 0.258 0.740 0.002 0.258 0.740 0.002
RIS 0.440 0.312 0.248 0.412 0.360 0.228 0.338 0.532 0.130
BS1 0.548 0.220 0.232 0.490 0.316 0.194 0.354  0.546 0.100
BS2 0.578 0.172 0.250 0.450 0.416 0.134 0.368 0.536 0.096
CJ 0.518 0.266 0.216 0.484 0.314 0.202 0.342 0.564 0.094

* For the IS estimators there is no serial correlation in the series of draws, so that only

one (straightforward) NSE formula is used.



6 Application 2: conditionally normal distributions

of Gelman and Meng (1991)

Gelman and Meng (1991) discuss the class of conditionally normal distributions. Sup-
pose we consider a conditionally normal distribution for § € R?. Then after location

and scale transformations in each variable, the joint density kernel of 6 is given by:

k(0) o exp (—% Z A; 079 - 92dj> (22)
J

where the ¢;; attain the values 0, 1 or 2, and where the summation is possibly over 3¢
terms. The 3¢ coefficients A; are allowed to take on any real values for which the joint
density kernel (22) has a finite integral.

In this section we consider the estimation of the normalizing constant (NC) of a
joint density kernel (22) with dimension d = 10. Since in this case the target density
kernel does not correspond to a posterior distribution, this normalizing constant does
not have the interpretation of a marginal likelihood. Nevertheless, for the evaluation of
the quality of our estimation methods this is not an essential difference. The advantage
of the class of conditionally normal distributions is that we can simply choose the
dimension and easily ‘tune’ the shapes of the target distribution.

We analyze a highly non-elliptical example distribution where the shapes of the
marginal distribution of (0, 6;) are depicted by Figure 10. This example can roughly
be interpreted as a ten-dimensional extension of the posterior in the non-linear regres-
sion model of Section 4.

We again apply our methods with 100000 candidate draws (and 100000 target
density evaluations); for each estimator we repeat the simulation 50 times. The results
are given by Table 5. To a large extent, conclusions are similar to those of Section 4.
The AdMit-IS estimator performs best, with reliable numerical standard errors. The
construction of the AdMit candidate distribution, again a mixture of four Student-t
distributions, took 26 seconds on a 2006 Intel (R) Centrino Duo Core processor.

In this application, the ‘victory” over the naive and adaptive Student-t candidate

distributions is larger. All estimators based on the naive candidate are downwards
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Figure 10: Contour plot: marginal density of (61, 6s) in a ten-dimensional conditionally

normal distribution (Gelman and Meng (1991)).

biased, since the second mode (with (01,6;) ~ (0,5)) is completely ‘missed’. The
standard deviations (and all standard errors) are deceptively low: these obviously do
not signal that part of the target distribution is not ‘covered’. In this ten-dimensional
space, the smaller mode is simply not ‘found’. For this reason, the ‘adaptive’ Student-t
distribution is not simply iteratively obtained by starting with the distribution around
the posterior mode and iteratively using the estimated posterior mean and covariance
as the mode and scale in the next iteration, as this approach would also yield a candi-
date that ‘misses’ the second mode. A robust optimization of the IS weight function
is required. Still, after this optimization the resulting estimators are less precise than
their AdMit based counterparts, also if we apply the Warp1 transformation to the tar-
get distribution (even if we use twice as many evaluations of the target density kernel).
We did not compute the Warp2 estimators, since these would require 2'° = 1024 target
density evaluations per candidate draw. The AdMit-RIS estimator has a remarkably
small standard deviation, but seems upwards biased. The NSE’s based on the IMSE
and IPSE are again often more reliable than the NSE’s based on the Newey-West

approach (with bandwidth 40).
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Table 5: Simulation results for estimation of the logarithm of the normalizing con-
stant (NC) of a 10-dimensional highly non-elliptical, conditionally normal distribution
of Gelman and Meng (1991), based on 100000 candidate draws from an AdMit, adap-
tive Student-t or naive Student-t candidate distribution (50 repetitions). NSE’s are
computed using the delta rule, where NW, IMSE, IPSE refer to the approach of Newey
and West (1987), the initial monotone sequence estimator and the initial positive se-
quence estimator (Geyer (1992)) for taking into account the serial correlation in MH
draws. For the IS estimators there is no serial correlation in the series of draws, so

that only one (straightforward) NSE formula is used.

log(NC) estimate NSE (NW) NSE (IMSE) NSE (IPSE)
mean st.dev. mean st.dev. mean st.dev. mean  st.dev.
Without Warping;:

AdMit 1S 20.9231 0.0070 0.0071  0.0007 0.0071 0.0007 0.0071 0.0007
(mixture RIS 20.9773  0.0097 0.0147 0.0001 0.0194 0.0001 0.0616 0.0003
of 4 BS1 20.9324 0.0150 0.0108 0.0003 0.0127 0.0008 0.0192 0.0035
Student-t) BS2 20.9331 0.0124 0.0091 0.0003 0.0117 0.0010 0.0194 0.0027
candidate cJ 20.9273  0.0633 0.0493 0.0189 0.0508 0.0191 0.0510 0.0192
Adaptive IS 20.9235 0.0217 0.0217 0.0005 0.0217 0.0005 0.0217  0.0005
Student-t RIS 20.9143 0.0384 0.0201  0.0007 0.0362 0.0020 0.0378  0.0028
candidate BS1 20.9272  0.0574 0.0420 0.0023 0.0607 0.0047 0.0643 0.0063
(location & scale BS2 20.9159 0.0264 0.0253  0.0003 0.0302 0.0015 0.0312 0.0023
adapted to target) CJ 20.9439 0.1262 0.0939 0.0148 0.1186 0.0207 0.1222 0.0216
Naive IS 20.6580  0.0060 0.0053 0.0015 0.0053 0.0015 0.0053 0.0015
Student-t RIS 20.6582  0.0083 0.0068 0.0002 0.0072 0.0004 0.0076 0.0020
candidate BS1 20.6582  0.0073 0.0074 0.0002 0.0078 0.0003 0.0081 0.0014
(round BS2 20.6577  0.0062 0.0064 0.0002 0.0067 0.0004 0.0072 0.0015
mode) cJ 20.6594 0.0616  0.0454 0.0254 0.0462 0.0259 0.0462  0.0259

Warp 1 transformation:

100000 target density kernel evaluations:

Adaptive IS 20.9236  0.0218 0.0214 0.0006 0.0214 0.0006 0.0214 0.0006
Student-t BS1 20.9119 0.0530 0.0413 0.0021  0.0520 0.0056 0.0561  0.0035
candidate BS2 20.9226  0.0270  0.0259 0.0004 0.0299 0.0017 0.0314 0.0032
(location and 100000 candidate draws (= 200000 target density kernel evaluations):

scale adapted IS 20.9220 0.0133 0.0152 0.0003 0.0152 0.0003 0.0152  0.0003
to target) BS1 20.9306 0.0371  0.0292 0.0010 0.0372 0.0019 0.0390 0.0026

BS2 20.9249 0.0214 0.0184 0.0002 0.0215 0.0012 0.0224 0.0021




7 Concluding remarks

In the title we posed the question: to bridge, to warp or to wrap? In our examples
of non-elliptical distributions where we use an importance sampling or independence
chain Metropolis-Hastings approach for posterior simulation, we have the following
findings on different marginal likelihood estimators. Given a wisely specified candi-
date or importance density that appropriately ‘wraps’ the posterior, the straightfor-
ward importance sampling estimator outperforms the bridge sampling estimators and
also the importance or bridge sampling estimators that are aimed at a warped target
density. So, in our applications the answer is: to wrap!

In further research, we intend to consider different empirical applications. We
will further compare the performance of different types of bridge sampling estimators
with the approach of Chib (1995) in cases of non-elliptical posteriors where the Gibbs
sampler is applicable. We will also consider the quality of the estimators when these are
applied in combination with the radial-based transformation of Bauwens et al. (2004).
Another possibility is to consider the path sampling method of Gelman and Meng

(1998), which extends the bridge sampling approach.
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