1 Introduction

In this article we will compare three algorithms for absorption. We call them MB-absorption[2], NCF-absorption[3,5] and RP-absorption[7]. Let two clauses \(C_1=L_1 \lor C_1' \) and \(C_2=L_2 \lor C_2' \), where \(L_1 \) and \(L_2 \) are literals, be given. If there exists a pair of substitutions \((\theta_1, \theta_2)\) which is a most general unifier (mgu) of \(L_1 \) and \(\neg L_2 \), then \(C=C_1' \theta_1 \lor C_2' \theta_2 \) is called the resolvent of \(C_1 \) and \(C_2 \), and \(L_1 \) and \(L_2 \) are the literals to be resolved on. Given clauses \(C_1=L_1 \lor C_1' \) and \(C \), a V-operator is an algorithm to construct a \(C_2=L_2 \lor C_2' \) such that \(C \) becomes the resolvent of \(C_1 \) and \(C_2 \), and \(L_1, L_2 \) are literals to be resolved on. If \(L_1 \) is a positive literal, then we say that this V-operator is an absorption. All three absorptions yield a \(C_2=L_2 \lor C_2' \) such that there is a substitution \((\theta_1, \theta_2)\) from \(C_1 \) and \(C_2 \), respectively, instead of a mgu, with the property \(L_1 \theta_1 = \neg L_2 \theta_2 \). On the other hand, \(C \) can indeed be concluded as a result of \(C_1 \) and \(C_2 \) and if the resolvent of \(C_1 \) and \(C_2 \) is \(C' \), there is always a substitution \(\mu \) such that \(C' \mu = C \). An absorption algorithm which finds a \(C_2 \) by considering a unifier instead of the mgu is said to satisfy the alternative soundness. An absorption algorithm which can find all such \(C_2 \)'s is said to be complete. This article concerns in the first place the completeness of absorption that satisfies alternative soundness. We use here the usual clausal form instead of Horn clauses because we can then forget which one is the body and which one is the head and we can also easier generalize the whole concept to V-operators.

In section 2 we are going to give a short introduction to MB-absorption and NCF-absorption. NCF-absorption is an improvement of MB-absorption and it is complete, so we shall pay more attention to the question how to construct \(C_2 \) when \(C_1' \) is not empty. This question is mostly ignored in [3,5] because there \(C_1 \) is assumed to be a literal. NCF-absorption is divided in two stages. There is a bridge clause which connect these two stages. The second stage has only to do with finding all generalizations from this brige clause with term partitions. It can be done
without considering resolutions or inverse resolutions [3,5,6]. The first stage has to do with how to construct the bridge clause from C and a substitution from C1.

In section 4 we investigate RP-absorption. RP-absorption uses the concept of flattening in absorption. Flattening changes all terms in a clause to variables in a special way. RP-absorption states the algorithm with the assumption that the clauses are already flattened. That RP-absorption does not work well is caused mostly by forgetting the original unflattened clauses. By investigating the absorption of RP we find some other interesting properties about flattening and flattened clauses. These properties are worth investigating by themselves and they help also to understand the problems of RP-absorption. Thus we discuss flattening and generalizations in section 3 as an separate topic. We summarize sections 3, 4 as follows:

1. What is wrong with the RP’s flattening algorithm?
2. How to use the flattened clause of C to get all the generalizations of C? This algorithm can be compared with finding all generalizations with term partitions on C in [3,5,6]. If we have a partially flattened clause of C, then the number of generalizations induced by this clause is less than the number of generalizations induced by the flattened clause of C.
3. Let Cf and Df be flattened clauses of C and D, respectively. If µ is a substitution from C to D, what kind of substitution δ from the variables of Cf does µ induce? Is Df the result of substitution δ from Cf?
4. The RP-absorption can be divided into two stages. The bridge between these two is a clause M which is called the intermediate clause. M is actually a partially flattened clause but not flattened as RP has suggested. We shall see this more clearly if we know more about (1) and (2). The first stage has also to do with a substitution θ1 from C1f, which is the flattened clause of C1. What kind of substitution should θ1 be is not told in RP and it is investigated in this article. The problems, that such a substitution can give, becomes clearer if we know more about (3).
5. The second stage is a direct application of (2). The intermediate clause M can be compared with the corresponding bridge clause in NCF-absorption. This comparison helps us to know more about the completeness of RP.
6. There are three important reasons which make RP not complete. Firstly, the flattening algorithm of RP is not all correct. Secondly, M is mostly not a flattened clause but a result of unification of some variables in a flattened clause. Thirdly, there is a limited choice for the part of M which has to do with C1.
7. We can thus improve RP-absorption in two ways. In the first way we keep essentially the algorithm and improve things which cause problems. Thus we use good flattening algorithm; construct the intermediate clause in a more reasonable way and give restriction to θ1. This improved algorithm gives interesting C2 but still not complete. The second way looks quite
different as the original RP but it is complete. Both ways have disadvantages. We compare these disadvantages with NCF-absorption.

2 MB and NCF absorptions

MB-absorption. Let \(C_1 \) be a positive literal. MB considers a subset \(TP' \) of the set of all term occurrences in \(C \lor \neg C_1 \). \(TP' \) is partitioned in blocks of \(B \)

\[B = \{(r,p_1), \ldots, (r,p_n), (s,q_1), \ldots, (s,q_m)\} \]

such that there is a substitution \(\theta_1 \) from \(C_1 \) which satisfies \(r \theta_1 = s \). Let every such block correspond with a new variable and let \(C_2 \) be the result of replacing terms in \(C \lor \neg C_1 \) by this variable. This algorithm is incomplete and it can be seen from the following examples.

Example 1. Let \(C_1 = P(x) \), \(C = Q(v,g(v)) \). Then \(C_2 = Q(v,g(v)) \lor \neg P(h(v)) \) is not to be found with MB. A block which contains \(x \) in \(C_1 \) should be changed to a variable and it can never be changed to \(h(v) \).

Example 2. Let \(C_1 = P(x,y) \) and \(C = Q(u,f(w)) \). Then \(C_2 = Q(u,f(w)) \lor \neg P(u,u) \) can not be found by MB. A block can never contain \(x,y \) from \(C_1 \) at the same time by definition. Different blocks go to different variables and \(\neg P(u,u) \) of \(C_2 \) can not be constructed.

NCF-absorption. It is known that if the literal \(C_1 \) and the clause \(C_2 \) have resolvent \(C \) w.r.t. \((\theta_1,\theta_2) \), then \(C_2 \) satisfies \(C_2 \theta_2 \lor \neg C_1 \theta_1 \). We call \(C_2 \lor \neg C_1 \theta_1 \) a bridge clause. This terminology shall be used later when we want to compare it with the intermediate clause of RP-absorption. It is observed in [3,5] for constructing \(C_2 \), we should take partitions based on terms in \(C \lor \neg C_1 \theta_1 \) instead of \(C \lor \neg C_1 \). To find such term partitions on \(C \lor \neg C_1 \theta_1 \) and corresponding generalizations of \(C \lor \neg C_1 \theta_1 \) has nothing to do with resolutions or inverse resolutions and thus NCF approaches this problem by defining term partitions on an arbitrary clause. The concept of term partitions is motivated by inverse substitution. For example, given \(C = P(f(g(x)),g(x),g(x)) \) and \(C_1 = P(f(u),g(u),v) \). The variable \(u \) in \(C_1 \) corresponds with the set \(B_u \) containing the first and the second \(g(x) \) in \(C \) and the variable \(v \) corresponds with the set \(B_v \) containing the third \(g(x) \) in \(C \). Thus the two disjoint sets \(B_u, B_v \) form a partition on \(B_{u,v} \). Term partitions can also be defined without inverse substitution. That means a term partition on a clause \(C \) can be constructed by finding suitable terms at suitable positions. The positions of term occurrences should firstly be defined formally by sequences of natural numbers and a term occurrence is determined by its position. For example, the first \(g(x) \) in the example \(C \) above has position \(<1,1> \) and the first \(x \) in \(C \) has position \(<1,1,1> \). A term occurrence is a proper subterm occurrence of the other if the position of the first is longer than the position of the second. The term partitions can then be defined and determined unambiguously. If we apply the theory of term partitions on a general
clause to the clause \(\text{C} \lor \neg \text{C}_1 \theta_1 \) for inverse resolution, then we find all \(\text{C}_2 \)’s which has to do with this \(\theta_1 \). If we let \(\theta_1 \) change, then all \(\text{C}_2 \)’s are found. Hence this algorithm is complete.

In [3,5] more is done than just finding all \(\text{C}_2 \)’s. Given any clause \(\text{C} \), we can also define an partial order relation between term partitions on \(\text{C} \). It can be proved being equivalent with the order relation between two clauses defined by substitution. The application of it on inverse resolutions is as follows. If we have two term partitions \(\Pi, \Omega \) on \(\text{C} \lor \neg \text{C}_1 \theta_1 \) and if they induce clauses \(\text{C}_2(\Pi) \) and \(\text{C}_2(\Omega) \), respectively, we can use the order relation in partitions to compare \(\Pi \) and \(\Omega \) to know which one of their induced clauses is more general. That means we do not have to construct the clauses \(\text{C}_2(\Pi), \text{C}_2(\Omega) \) and a substitution explicitly.

The theory about comparing term partitions and minimal higher partitions on an arbitrary clause is investigated more in [4].

Improved NCF-algorithm. We can easily improve NCF-absorption by considering \(\text{C}_1 \) not necessarily to be a literal. Let \(\text{C}_1=\text{L}_1 \lor \text{C}_1' \) and \(\theta_1 \) be a substitution of \(\text{C}_1 \). Notice that if we are given \(\text{C} \), then \(\text{C} \) usually does not contain the same literal more than once. If there is a \(\text{C}_2=\text{L}_2 \lor \text{C}_2' \) and \(\theta_2 \) from \(\text{C}_2 \) such that \(\text{L}_1 \theta_1=\neg \text{L}_2 \theta_2 \), then \(\text{C}_1' \theta_1, \text{C}_2' \theta_2 \) may both contain a maximal subclause \(\text{C}' \). That means \(\text{C}_2 \theta_2=(\text{C}-\text{C}_1' \theta_1) \lor \text{C}' \lor \neg \text{L}_1 \theta_1 \). To find all such \(\text{C}_2 \) for a fixed \(\theta_1 \) and \(\text{C}' \), we should find all term partitions of \((\text{C}-\text{C}_1' \theta_1) \lor \text{C}' \lor \neg \text{L}_1 \theta_1 \). Thus we have the new algorithm:

(1) Given \(\theta_1 \) such that \(\text{C}_1' \theta_1 \) is a subclause of \(\text{C} \), we consider a subclause \(\text{C}' \) of \(\text{C}_1' \theta_1 \).

(2) Find all term partitions on \((\text{C}-\text{C}_1' \theta_1) \lor \text{C}' \lor \neg \text{L}_1 \theta_1 \). Every partition induces a \(\text{C}_2 \) up to equivalence of variable names.

(3) Let \(\text{C}' \) change, then we find all \(\text{C}_2 \)'s which have to do with this particular \(\theta_1 \).

(4) Let \(\theta_1 \) change, we find all \(\text{C}_2 \)'s which satisfy the alternative soundness condition.

Thus this new algorithm is complete.

3 Flattening and generalizations

3.1 Flattening

Flattening is a way to change a clause to a clause with only variables. In [7] the authors present an algorithm for flattening. The steps they have presented are unclear and also not complete. With the steps they have presented, we would never get all the generalizations by unflattening.

Let us look at their algorithm:

For each function \(f \) of arity \(n \) \(f(t_1, \ldots, t_n) \) that appears in the program do 1,2, 3

1. Introduce a new predicate symbol \(f_p \) of arity \(n+1 \): \(f_p(t_1, \ldots, t_n, x) \). The additional variable \(x \) represents the result of the function.
2 For each occurrence of \(f \), that is for each term of the form \(f(t_1,\ldots,t_n) \) that appears in a clause \(C \) of the program replace it by a new variable \(x \) and add \(f_p(t_1,\ldots,t_n,x) \) in the body of \(C \).

3 Add the fact \(f_p(t_1,\ldots,t_n,f(t_1,\ldots,t_n)) \) in order to define the predicate \(f_p \). The clauses produced by this step will not be considered for inverse resolution.

In the same article it is added that for a constant, we should also define a predicate. For finding a generalization of a clause, the following comment is given:

With flattened clauses, turning a term into a variable is obtained by removing the literals corresponding to this term in the flat version of the clause, and by unifying the result variables.

With their flattening algorithm we have the following problems when we try to find all generalizations:

Problem. Let \(C=P(x,x) \). This is already made of variables so we can not use this algorithm to add new literals. How can we drop literals to find a generalization like \(P(x,y) \)? To be able to find \(P(x,y) \), we need a new predicate \(I \) as we have defined in the following new algorithm.

Flattening

Let a clause \(C=C_0 \) be given and let \(T \) be the empty clause.

1. If \(a \) is a constant in \(C \), then define a new predicate \(A \) such that \(A(a) \) is true.
2. Define a predicate \(I \) (identity) which satisfies \(I(t,t) \) is true for every term \(t \).
3. If \(f \) is a function in \(C \), then define a predicate \(F \) such that \(F(t_1,\ldots,t_n,f(t_1,\ldots,t_n)) \) is true.
4. Let \(p_1,\ldots,p_n \) be the positions of constants and variables in \(C \). We process all of them in the following way. Let \(p_1 \) be the first of these positions in \(C \) which is not yet processed before. If at \(p_1 \) is a constant \(a \), replace it by a new variable \(x \) not in \(C \). The new clause is called \(C_{i+1} \) and let \(T:=T\lor\neg A(x) \). Let \(C_{i+1}':=C_{i+1}\lor T \). \(A(a) \) is called a *supplementary literal* and \(C_{i+1}' \) is a resolvent of \(C_{i+1} \) and the literal \(A(a) \). The clause \(C_i \) can also be achieved by applying the substitution \(\{x/a\} \) to \(C_{i+1} \). If at \(p_2 \) is a variable \(x \) in \(C_i \), replace it by \(z \) where \(z \) is a new variable. The new clause is called \(C_{i+1} \) and let \(T:=T\lor\neg I(x,z) \). For both situations we define \(C_{i+1}'=C_{i+1}\lor T \). Then \(C_{i+1}' \) is a resolvent of \(C_{i+1} \) and \(I(x,x) \). \(I(x,x) \) is called a *supplementary literal*. \(C_i \) can also be achieved by applying the substitution \(\{z/x\} \) to \(C_{i+1} \). We repeat step (4) until all constants and variables in \(C \) are processed.
5. Find the first compound term \(t=f(x_1,\ldots,x_n) \) in \(C_i \) where \(x_i \) are variables. We replace this \(f(x_1,\ldots,x_n) \) in \(C_i \) by a new variable \(z \) and we call it \(C_{i+1} \). Let \(T:=T\lor\neg F(x_1,\ldots,x_n,z) \). Define \(C_{i+1}'=C_{i+1}\lor T \). Let \(F(x_1,\ldots,x_n,f(x_1,\ldots,x_n)) \) be also called a *supplementary literal*. Then \(C_i \) is a resolvent of \(C_{i+1} \) and the supplementary literal. \(C_i \) can also be achieved by applying \(\{z/f(x_1,\ldots,x_n)\} \) to \(C_{i+1} \). We repeat this step until we do not find any more compound terms in \(C_k \) for
certain k. Then \(C_k' \) is called the flattened clause of \(C \). If \(S \) is the conjunction of all supplementary literals so far, then \(C \) is equivalent with \(C_k' \land S \). \(S \) is called the supplementary clause of \(C \).

Example. Let \(C=C_0=P(f(x,g(y)),h(x)) \).

\[C_1': \quad P(f(x_0,g(y_0)),h(x_1)) \lor \neg I(x,x_0) \lor \neg I(x,y_0) \lor \neg I(x,x_1) \]

\(C_1=P(f(x_0,g(y_0)),h(x_1)) \), \(S_1=I(x,x_0) \land I(y,y_0) \land I(x,x_1) \)

\[C_2': \quad P(f(x_0,z),h(x_1)) \lor \neg G(y_0,z) \lor \neg I(x,x_0) \lor \neg I(y,y_0) \lor \neg I(x,x_1) \]

\(C_2=P(f(x_0,z),h(x_1)) \), \(S_2=G(y_0,g(y_0)) \land I(x,x_0) \land I(y,y_0) \land I(x,x_1) \)

\[C_3': \quad P(u,h(x_1)) \lor \neg F(x_0,z,u) \lor \neg G(y_0,z) \lor \neg I(x,x_0) \lor \neg I(y,y_0) \lor \neg I(x,x_1) \]

\(C_3=P(u,h(x_1)) \), \(S_3=F(x_0,z,f(x_0,z)) \land G(y_0,g(y_0)) \land I(x,x_0) \land I(y,y_0) \land I(x,x_1) \)

\[C_4': \quad P(u,w) \lor \neg H(x_1,w) \lor \neg F(x_0,z,u) \lor \neg G(y_0,z) \lor \neg I(x,x_0) \lor \neg I(y,y_0) \lor \neg I(x,x_1) \]

\(C_4=P(u,w) \), \(S_4=H(x_1,h(x_1)) \land F(x_0,z,f(x_0,z)) \land G(y_0,g(y_0)) \land I(x,x_0) \land I(y,y_0) \land I(x,x_1) \)

\(C_4' \) is the flattened clause of \(C \) and \(S \) is the supplementary clause. Notice that all the rightmost argument in the extra literals defined by terms are different. Notice also that every variable in \(C \) is replaced by a variable in the rightmost argument of literals beginning with \(\neg I \). We have changed all the names of variables because we can then easier define the algorithm of tree substitution (see remark 1) and step 3 of the algorithm for generalizations.

Remark 1. Let \(C \) be a given clause and \(C_f \) be the flattened clause of \(C \). Let \(T \) be the set of all extra literals in \(C_f \) defined by term occurrences in \(C \). Notice that every variable in \(C_f \) beside the original variables in \(C \) appears precisely once as the rightmost argument of a literal in \(T \). If \(u \) is such a variable in \(C_f \) then we use \(V_u \) to represent the set of variables in \(C_f \) which are related to \(u \), i.e.

1) Initialize \(V_u:=\{u\} \).
2) if there is an \(\neg H(x_1,...,x_n,u) \) in \(T \) and \(H \neq I \), define \(V_u:=\{u\} \cup V_{x_1} \cup ... \cup V_{x_n} \) where \(n \geq 0 \). If \(H=I \), then define \(V_u:=\{u\} \).

We can find the original term occurrence back by substituting the variable by using the supplementary literals. We take the same example as above. The number in the tree tells the order of substituting:
Thus \(u \rightarrow f(x_0,z) \rightarrow f(x,z) \rightarrow f(x,g(y_0)) \rightarrow f(x,g(y)) \) and \(w \rightarrow h(x_1) \rightarrow h(x) \). Let us call such way of finding the original term back the tree substitutions.

Definition. Let \(C_f \) be the flattened clause of \(C \). A term literal is a literal in \(C_f \) which is defined by a term in \(C \). An important variable of \(C_f \) is defined as a variable which is a rightmost argument of a term literal.

3.2 Finding generalizations with unflattening

According to [7], turning a term into a new variable is obtained by removing the literals corresponding to this term in the flat version of the clause, and by unifying the result variables. What they mean can be seen with the following example:

Example. The flatted version of \(C=P(f(x),f(x)) \) is
\[
C': P(u,w) \lor \neg F(x_1,u) \lor \neg F(x_0,w) \lor \neg I(x,x_1) \lor \neg I(x,x_0),
\]
If we drop \(\neg F(x,u) \lor \neg F(x_1,w) \) and unify \(u, w \) we get \(P(u,u) \lor \neg I(x,x_1) \lor \neg I(x,x_0) \). By resolution (unflattening) we get \(P(u,u) \). Notice that if we would delete \(\neg I(x,x_1) \lor \neg I(x,x_0) \) as well, it would save us the work of resolution. We shall discuss this and other problems of their description below.

Problem 1. What they say sounds as if all the term occurrences of the same term should be turned to only one variable. The example they give indicates also this special situation. This is of course not true. For example, \(P(a,a) \) can be generalized to \(P(x,x) \), \(P(x,a) \) and \(P(a,y) \) and \(P(x,y) \). In fact, we can find generalizations by changing a subset of all term occurrences of the same term into a new variable.

Problem 2. Suppose we want to drop a few literals which correspond to terms and unify the corresponding variables, we have first to know if these variables represent the same term in the original clause. In [7] this condition is not mentioned. We intend also to forget this problem when we look at the simple examples they have given. Now we give a new example.

Example. Given \(C=P(f(g(a)),f(g(x))) \). Then the flattened clause is
\[
C_f = P(u,v) \lor \neg F(y,u) \lor \neg F(z,v) \lor \neg G(x_0,z) \lor \neg G(w,y) \lor \neg I(x,x_0) \lor \neg A(w).
\]
How do we know \(u \) can not be unified with \(v \) if we do not apply the tree substitutions which we have defined above to \(u, v \)? This is still a simple example. If \(u \) and \(v \) are terms with complicated structure, it is even more difficult. There is another way to remedy it than tree substitutions: we keep track of terms and variables representing the terms in every stage of flattening. This shall save the trouble of tree substitutions. This is not directly applicable in the RP-algorithm because their intermediate clause is a combination of two flattened clauses and it is in general not flat.
Problem 3. It is not clear what the order of actions in dropping literals, unifying the variables and using resolution is.

Problem 4. Let us consider the example in problem 2 again. According to RP changing y and u to variables means to drop \(\neg G(w,y) \) and \(\neg F(y,u) \). This does not turn y into a new variable because y represents actually a subterm occurrence of u in the original clause.

From all these problems stated above, we know that the RP-method of unflattening to generalize a clause needs to be modified.

Algorithm 1 for finding generalizations from a flattened clause

Given a clause C, we can find all generalizations of it by the following algorithm.

1. Firstly flatten the clause C to \(C_f \). Let \(C_f = D \lor T \) where T is the part in \(C_f \) which contains the extra literals defined by terms.

2. We choose \(u_1, u_2, \ldots, u_n \) from the variables which are the rightmost arguments in T and which satisfy the condition \(u_i \notin V_{ij} \) for \(i \neq j \). Remove the literals which appear in the substitution trees of all \(u_i \)’s.

3. Divide these \(u_i \)’s in a partition of blocks which satisfies the following condition: if \(\{u_{i1}, \ldots, u_{ik}\} \) is a block then the tree substitutions of all \(u_{ij} \) for \(j=1,\ldots,k \) give the same term. Change these \(u_{i1}, \ldots, u_{ik} \) to \(u_{i1} \) (or \(u_{i2} \), etc.).

4. Apply resolutions by considering other literals in T and their corresponding supplementary literals. The order of resolutions is determined by the following condition: if \(\neg H(x_1,\ldots,x_n,u) \) is a literal such that u is not an argument in another literal, then we may apply resolution to this literal and its corresponding supplementary literal.

Example. Given a clause \(C = P(f(g(x)),g(x)) \). The flattened clause of C is

\[
C_f = P(u,v) \lor \neg I(x,x_0) \lor \neg I(x,x_1) \lor \neg G(x_0,y) \lor \neg G(x_1,v) \lor \neg F(y,u).
\]

1. If we drop nothing and we apply direct resolutions with the following order: \(\neg G(x_1,v), \neg I(x,x_1), \neg F(y,u), \neg I(x,x_0), \) then we get C back.

2. Choose \(x_1 \) for step (2). \(x_1 \) form its own block. Drop thus \(\neg I(x,x_1) \). We have

\[
P(u,v) \lor \neg I(x,x_0) \lor \neg G(x_0,y) \lor \neg F(y,u) \lor \neg G(x_1,v).
\]

With resolutions we get \(P((g(x_1)),g(x_1)). \)

3. Choose \(y, v \) for step (2). By tree substitutions we can see \(y=g(x) \) and \(v=g(x_1)=g(x) \). Thus we can consider them to be in the same block. After dropping literals and unifying \(v \) and \(y \)

\[
P(u,y) \lor \neg F(y,u).
\]

By applying resolution we get \(P((y),y) \)

4. Choose \(y, v \) again for step (2). This time \(\{y\} \) and \(\{v\} \) are different blocks. After dropping literals we have
\[P(u,v) \lor \neg F(y,u) \]

By applying resolutions we get
\[P(f(y),v) \]

5) Choose \(u,v \) for step (2). Let \(\{u\}, \{v\} \) be two blocks. By dropping all literals we get
\[P(u,v) \]

For every term partition on \(C \) and a generalization defined by it, we can apply the method defined above to find the same generalization. Thus this method is complete (i.e. it can find all generalizations) because the method with term partitions is complete.

Example. Consider the same clauses \(C = P(f(g(x)),g(x)) \) and
\[C_f = P(u,v) \lor \neg I(x,x_0) \lor \neg I(x,x_1) \lor \neg G(x_0,y) \lor \neg G(x_1,v) \lor \neg F(y,u). \]

The term partition with only one block \(B = \{(g(x),<1,1>), (g(x),<2>)\} \) corresponds with the variables \(y \) and \(v \) in 3) and this partition generalizes the same clause as \(P(f(y),y) \).

The term partition with two blocks \(B_1 = \{(x,<1,1,1>), (x,<2,1>)\} \) corresponds with the variable \(x_1 \) and the variable \(x \) in 2).

Remark. Notice that there are two ways to get a generalization like \(P(f(g(x)),g(x_1)) \). One is illustrated as 2). The other way is to choose \(x_0 \) and \(x_1 \) for step (2) and drop both \(\neg I(x,x_0) \) and \(\neg I(x,x_1) \). Let \(\{x_0\} \) and \(\{x_1\} \) be blocks, then we get \(P(f(g(x_0)),g(x_1)) \) as the generalization. Let us use another example. If we consider \(\{x_0,x_1\} \) as a block and we use \(x_0 \) for both variables, then we get \(P(f(g(x_0)),g(x_0)) \). This is equivalent with what we find in 1). Thus we can change the algorithm in the following way:

Algorithm 2 for finding generalizations from a flattened clause

Given a clause \(C \), we can find all generalizations of it by the following algorithm.

1) Firstly flatten the clause \(C \) to \(C_f \). Let \(C_f = D \lor T \) where \(T \) is the part in \(C_f \) which contains the extra literals defined by terms.

2) We choose \(u_1,u_2,\ldots,u_n \) from the variables which are the rightmost arguments in \(T \) and which satisfy two conditions: firstly, for every rightmost variable \(x_i \) in a literal beginning with \(\neg I \), there is a \(u_j \) such that \(x_i \in V_{u_j} \); secondly, \(u_i \notin V_{u_j} \) for \(i \neq j \). Remove the literals which appear in the substitution trees of all \(u_i \)’s. Notice that this step makes all \(\neg I \) literals disappear.

3) Divide these \(u_i \)’s in a partition of blocks which satisfies the following condition: if \(\{u_{i1},\ldots,u_{ik}\} \) is a block then the tree substitutions of all \(u_j \) for \(j = 1,\ldots,k \) give the same term. Change these \(\{u_{i1},\ldots,u_{ik}\} \) to a \(u_{i1} \).
(4) Apply resolutions by considering other literals in T and their corresponding supplementary literals. The order of resolutions is determined by the following condition: if \(\neg H(x_1,\ldots,x_n,u) \) is a literal such that u is not an argument in another literal, then we may apply resolution to this literal and its corresponding supplementary literal.

Notice that algorithm 2 gives a more uniform way in finding new variables for a generalization. In fact, step (3) of this algorithm gives all variables of the generalization. Step (4) finds the term occurrences of the generalization which have either some of \(u_1,\ldots,u_n \) as arguments or they are constants. With algorithm 1 we get variables in the generalization in two ways, namely, (3) and part of (4). Thus with algorithm 1 we can sometimes still get the variables which are in the original clause \(C \), for example, the \(x \) of \(P(f(g(x)),g(x_1)) \) in the remark. With algorithm 2 we can only get \(u_i \)'s for variables of the generalization, for example, \(P(f(g(x_0)),g(x_1)) \) in the same remark. In fact, with algorithm 2 we can also easier formulate the proof of the correspondence between term partitions on \(C \) and such generalizations from the flattened clause of \(C \).

Comparison between finding generalizations with unflattening and term partitions.

We have seen how to find generalizations of a clause \(C \) with its flattened clause. If we have a clause \(C \), we should first find the flattened clause \(C_f \) of \(C \). This means we have to change every term in \(C \) by taking a number of steps such that it becomes a variable in the end. For every such step we have to still add a literal to the clause. To get the generalization we should first find a set of variables which satisfies certain conditions and we can then make a partition of these variables. Two variables are allowed in the same block only if they can become the same term after tree substitution. The next step is to drop the literals which correspond to these variables and also to drop the literals which come in the tree substitution. Hence the whole process involves so many changing terms to variables and then changing them back. This process is very complicated compared to the term partitions. For term partitions we need only to change every term occurrence in a block to a variable.

The generalization with term partitions [3,5] gives for every term occurrence in the clause \(C \) a position. This saves the effort of turning first the term occurrences into variables and adding literals. We choose then a subset of term occurrences where no two positions of the occurrences have a subsequence relationship, i.e. no one occurrence is a subterm occurrence of the other. This is equivalent to \(u \notin V_{ui} \) in step (2) in the above algorithm, but finding \(V_{ui} \) gives more trouble and it is not so neat as comparing the sequences which represent positions.
3.3 What kind of transformations between flattened clauses are induced by substitutions?

Let C_f and D_f be flattened clauses of C and D, respectively. If μ is a substitution from C to D, what kind of substitution ϑ from the variables of C_f does μ induce? Is D_f the result of this substitution ϑ from C_f?

Example. Let us consider $\mu = \{x/g(y)\}$ from $C=P(f(x))$ to $D=P(f(g(y)))$. The flattened clauses are thus $C_f=P(u)\lor F(x_0,u)\lor I(x,x_0)$ and $D_f=P(v)\lor F(z,v)\lor G(y_0,z)\lor I(y,y_0)$. The $g(y)$ in D is represented by z. If we consider the substitution $\{x_0/z\}$ from C_f we have $P(u)\lor F(z,u)\lor I(x,z)$ as the result which is quite different from D_f. We can improve $\{x/z\}$ by using $\{u/v,x_0/z\}$. By applying this substitution to C_f we get $P(v)\lor F(z,v)$ and $\neg I(x,z)$. The first part is actually a subclause of D. That means a substitution from C to D induces a substitution which is not necessary a substitution from C_f to D_f.

Algorithm for finding induced substitution. Let μ be a substitution from C to D where C, D are assumed to be atoms for simplicity. Let C_f and D_f be the flattened clauses of C and D, respectively. The substitution ϑ induced by μ can be described as follows:

1. Compare the variables in $C_f=P(u_1,\ldots,u_n)$ and $D_f=P(v_1,\ldots,v_n)$. Initialize $\vartheta=\{u_1/v_1,\ldots,u_n/v_n\}$
2. If $\neg H(x_1,\ldots,x_i,u_j)$ is an extra literal in C_f defined by a term and $H\neq I$, then there is also $\neg H(y_1,\ldots,y_i,v_j)$ in D_f. We extend ϑ by $\{x_1/y_1,\ldots,x_i/y_i\}$.
3. We repeat the process in (2) until we have found a substitution for every variable which is rightmost argument of extra literals in C_f.

If we divide C_f in two parts, one part is the subclause T_1 of all literals in C_f which does not begin with $\neg I$. The other part T_2 is the subclause which begins with literals beginning with $\neg I$. We can prove that the induced ϑ brings T_1 to a subclause of D_f. Furthermore, if $\neg I(u,u_1),\ldots,\neg I(u,u_n)$ are in the clause C_f then the $u_1\vartheta,\ldots,u_n\vartheta$ have the same tree substitutions.

Example. Let $C=P(f(x),f(x))$ and $D=P(f(g(y,a)),f(g(y,a)))$. Then $C_f=P(u,v)\lor \neg I(x,x_0)\lor \neg I(x,x_1)\lor \neg F(x_0,u)\lor \neg F(x_1,v)$.
$D_f=P(u,v)\lor \neg I(y,y_0)\lor \neg I(y,y_1)\lor \neg A(z)\lor \neg A(z_1)\lor \neg G(y_0,z,w)\lor \neg G(y_1,z_1,w_1)\lor \neg F(w,u)\lor \neg F(w_1,v)$

Notice that $\vartheta=\{u/u,v/v,x_0/w,x_1/w_1\}$ brings the subclause T_1 of C_f to a subclause of D_f. Consider $x_1\vartheta=w_1$ and $x\vartheta=w$. The tree substitutions of w and w_1 both give the same term $g(y,a)$.

Definition. Let C_f and D_f be the flattened clauses of C and D, respectively. Let C_f be divided into two subclauses T_1 and T_2 as above. If there is a substitution ϑ from the variables of C_f such
that $T \partial$ is a subclause of $D \partial$ and for every $\neg I(u,u_1),\ldots,\neg I(u,u_n)$ in T_2, the tree substitutions of $u_1 \partial,\ldots,u_n \partial$ are the same, then we call ∂ a transformation from $C \partial$ to $D \partial$.

Theorem. Let $C \partial$ and $D \partial$ be the flattened clauses of C and D, respectively. Let ∂ be a transformation from the clause $C \partial$ to $D \partial$. Then there is a substitution μ from C to a subclause of D which induces ∂. The converse is also true.

The following example, theorem and corollary perhaps do not make much sense now. We want actually to use them in the comparison of NCF- and RP-algorithms later. They can be used to show that all the generalizations of the intermediate clause of RP-absorption are also generalizations of the corresponding bridge clause of NCF-absorption.

Example. Let $C=\neg P(x) \lor \neg Q(f(x))$ and let $D=R(a) \lor \neg Q(f(a))$. Then

$$
C \partial=\neg P(x_0) \lor \neg Q(z) \lor \neg F(x_1,z) \lor \neg I(x,x_0) \lor \neg I(x,x_1),
$$

$$
D \partial=R(y_0) \lor \neg Q(u) \lor \neg F(y_1,u) \lor \neg A(y_0) \lor \neg A(y_1).
$$

We notice the following:

1) Consider a substitution $\mu=[x/a]$ from $\neg P(x) \lor \neg Q(f(x))$ to a subclause of $E=\neg P(a) \lor \neg Q(f(a)) \lor R(a)$. This induces a transformation $\theta=[x_0/y_0,x_1/x_1,z/u]$ from $C \partial$ to

$$
E \partial=\neg P(y_0) \lor \neg Q(u) \lor \neg F(y_1,u) \lor \neg A(y_0) \lor \neg A(y_1) \lor \neg A(y_2).
$$

(We shall see that this clause corresponds with the flattened clause of a bridge clause in NCF.)

2) Notice that the subclause $\neg Q(z) \lor \neg F(x_1,z) \lor \neg I(x,x_1)$ of $C \partial$ is transformed to $D \partial$ by θ, or precisely, $[x_1/y_1,z/u]$

3) Notice that the following (not flattened) clause which is induced by $D \partial$ and the transformation θ from $\neg P(x_0) \lor \neg I(x,x_0)$,

$$
\neg P(y_0) \lor \neg Q(u) \lor \neg F(y_1,u) \lor \neg A(y_0) \lor \neg R(y_2) \lor \neg A(y_1)
$$

is a partially flattened clause of E and it can also be used for finding some generalizations.

Theorem. Let C and D be given clauses. Let $C \partial$ and $D \partial$ be the flattened clauses of C and D respectively. Let K be the set of all literals in $C \partial$ which begin with $\neg I$ and let V be the set of all rightmost arguments of literals in K. Let θ be a substitution from the variables to variables which brings the variables in V to variables in $D \partial$ and suppose θ satisfies the following conditions: if $u \theta=v$ where v is a variable in $D \partial$, then every literal which does not begin with $\neg I$ in the substitution tree of u is brought to a literal in $D \partial$; if $\neg I(x,x_1),\ldots,\neg I(x,x_n)$ are in the $C \partial$, then $x_1 \theta,\ldots,x_n \theta$ give the same term. Then there is a substitution μ from C to D such that $(C \partial \lor K) \lor D \partial$ is a partially flattened clause of $C \mu \lor D$.

Corollary. Let $C = L \lor C'$ where L is a literal and D be given clauses. Let C_f and D_f the flattened clause of C and D respectively. Let $C_f = U \lor V$ where U is the part of C_f which has to do with L and V is the part of C_f which has to do with C'. Let K be the subclause of U which contains the literals beginning with $\neg I$. Let θ be a substitution from the variables in C_f (rightmost arguments) which satisfies the following two conditions:

1) if $u_\theta = v$ where v is a variable in D_f, then every literal in the substitution tree of u which does not begin with $\neg I$ is brought to a literal in D_f and furthermore, if $\neg I(x_1, \ldots, x_n)$ are in K, then $x_1 \theta, \ldots, x_n \theta$ give the same term.

2) θ induces a transformation from V to D_f.

Then there is a substitution μ from C such that $C' \mu$ is a subclause of D and $(U-K) \theta \lor D_f$ is a partially flattened clause of $L \lor \mu \lor D$.

3.4 Partially flattened clauses defined by a substitution

Definition. Let C and D be two clauses and μ be a substitution from C. If ∂ is the transformation defined by μ, then $C_f \partial \lor D_f$ is called a partially flattened clause of $C \mu \lor D$. We can define generalizations based on $C_f \partial \lor D_f$ the same way as we do with $(C \mu \lor D)_f$. In fact, the generalizations based on $C_f \partial \lor D_f$ is a generalization of $C \mu \lor D$.

1) We choose important u_1, u_2, \ldots, u_n from the partially flattened clause $C_f \partial \lor D_f$. which satisfy two conditions: firstly, for every important x_i in a literal beginning with $\neg I$, there is a u_j such that $x_i \in V_{uj}$; secondly, $u_i \notin V_{uj}$ for $i \neq j$. Remove the literals which appear in the substitution trees of all u_i's. Notice that this step makes all $\neg I$ literals disappear.

2) Divide these u_i's in a partition of blocks which satisfies the following condition: if $\{u_{i1}, \ldots, u_{ik}\}$ is a block then the tree substitutions of all u_{ij} for $j = 1, \ldots, k$ give the same term. Change these $\{u_{i1}, \ldots, u_{ik}\}$ to a u_{i1}.

3) Apply resolutions by considering other term literals and their corresponding supplementary literals. The order of resolutions is determined by the following condition: if $\neg H(x_1, \ldots, x_n, u)$ is a literal such that u is not an argument in another literal, then we may apply resolution to this literal and its corresponding supplementary literal.

Example. Let $C = \neg P(x) \lor \neg Q(f(x))$ and let $D = R(a) \lor \neg Q(f(a))$. Then

$$C_f = \neg P(x_0) \lor \neg Q(z) \lor F(x_1, z) \lor \neg I(x, x_0) \lor \neg I(x, x_1),$$

$$D_f = R(y_0) \lor \neg Q(u) \lor F(y_1, u) \lor A(y_0) \lor \neg A(y_1).$$

We notice the following:
1) Consider a substitution \(\mu = [x/a] \) from \(\neg P(x) \lor \neg Q(f(x)) \) to \(\neg P(a) \lor \neg Q(f(a)) \). We have then a clause \(C_\mu \lor D = \neg P(a) \lor \neg Q(f(a)) \lor R(a) \).

2) \((C_\mu \lor D)_f = \neg P(y_0) \lor \neg Q(u) \lor F(y_1,u) \lor \neg A(y_0) \lor \neg A(y_1) \lor R(y_2) \lor \neg A(y_2) \).

3) The substitution \(\mu \) induces a substitution \(\partial = [x_0/y_0, x_1/y_1, u/u] \). This is a transformation from \(C_f \) to \(D_f \). Consider

\[
C_f \partial \lor D_f = \neg P(y_0) \lor \neg Q(u) \lor R(y_0) \lor \neg A(y_1) \lor \neg A(y_2).
\]

This clause gives generalizations:

1) By dropping \(\neg A(y_0) \) and \(\neg A(y_1) \) and let \(y_0, y_1 \) be in one block we have

\[
\neg P(y_0) \lor \neg Q(u) \lor R(y_0) \lor \neg F(y_0,u).
\]

The resolutions give \(\neg P(y_0) \lor \neg Q(f(y_0)) \lor R(y_0) \).

2) By dropping \(\neg A(y_0) \) and \(\neg A(y_1) \) and let \(y_0, y_1 \) be in apart blocks we have

\[
\neg P(y_0) \lor \neg Q(u) \lor R(y_0) \lor \neg F(y_1,u).
\]

The resolutions give \(\neg P(y_0) \lor \neg Q(f(y_1)) \lor R(y_0) \).

3) The other three possible generalizations of \(C_\mu \lor D \) based on \(C_f \partial \lor D_f \) are

\[
\neg P(y_0) \lor \neg Q(u) \lor R(y_0), \neg P(a) \lor \neg Q(f(y_1)) \lor R(a), \neg P(y_0) \lor \neg Q(f(a)) \lor R(y_0).
\]

The generalizations like \(\neg P(y_0) \lor \neg Q(f(y_1)) \lor R(y_1) \) or \(\neg P(y_0) \lor \neg Q(f(y_1)) \lor R(y_2) \), etc. of \(C_\mu \lor D \) can not be found by using \(C_f \partial \lor D_f \). With this partially flattened clause we can only find generalizations which yields the argument of \(\neg P \) the same as the argument of \(R \).

Remark. Let \(C \) and \(D \) be given clauses and \(\mu \) be a substitution. Let \(\partial \) be the substitution induced by \(\mu \). The clause \((C_\mu \lor D)_f \) gives all the generalizations of \(C_\mu \lor D \) but the clause \(C_f \partial \lor D_f \) not. Because \(C_f \partial \) is a subclause of \(C_\mu \), thus the difference between \(C_f \partial \) and \((C_\mu \lor D)_f \) are in two respects:

1) There are only corresponding variables in \(C_f \partial \) for the terms in \(C \) or in \(D \).

2) The variables in \(C_f \partial \) can be in the part of \((C_\mu \lor D)_f \) which is induced by \(D \). Thus if a variable \(u \) is in both parts \(C_f \partial, D_f \) and if they correspond to \(u_1, u_2 \) in \((C_\mu \lor D)_f \), then the generalizations which are constructed by the first clause shall never have two different terms in \(u_1 \) and \(u_2 \).

Example. Given a clause \(C = P(f(g(x)), g(x)) \). The flattened clause of \(C \) is

\[
C_f = P(u,v) \lor I(x_0,x_0) \lor I(x_1,x_1) \lor G(x_0,y) \lor G(x_1,v) \lor F(y,u).
\]

Define \(C_1 \) by unifying \(y \) and \(v \), then we have

\[
C_1 = P(u,u) \lor I(x_0,x_0) \lor G(x_0,y) \lor F(y,u).
\]

Algorithm for finding induced substitution. Let \(\mu \) be a substitution from \(C \) to \(D \) where \(C, D \) are assumed to be atoms for simplicity. Let \(C_f \) and \(D_f \) be the flattened clauses of \(C \) and \(D \), respectively. The substitution \(\partial \) induced by \(\mu \) can be described as follows:

1) Compare the variables in \(C_f = P(u_1, \ldots, u_n) \) and \(D_f = P(v_1, \ldots, v_n) \). Initialize \(\partial = [u_1/v_1, \ldots, u_n/v_n] \).
(2) If \(\neg H(x_1, \ldots, x_i, u_j) \) is an extra literal in \(C_f \) defined by a term and \(H \neq I \), then there is also \(\neg H(y_1, \ldots, y_i, v_j) \) in \(D_f \). We extend \(\partial \) by \([x_1/y_1, \ldots, x_i/y_i] \).

(3) We repeat the process in (2) until we have found a substitution for every variable which is rightmost argument of extra literals in \(C_f \).

4 \ RP-absorption

4.1 \ RP-absorption

The first stage of RP-absorption does the following. For given \(C \) and \(C_1 \), it first flattens the \(C \) and \(C_1 \) to \(C_{1f} \) and \(C_f \). RP considers then a substitution \(\theta_1 \) from \(C_{1f} \). Combining \(C_{1f} \theta_1 \) and \(C \) they construct an intermediate clause \(M \) which looks like the bridge clause in step (2) in the NCF-algorithm. The second stage does generalizations of \(M \). As we know that NCF is complete and the the algorithm for finding generalizations from flattened clauses is also complete, the problem is \(M \). How far is \(M \) from a flattened clause? How far is \(M \) from the bridge clause in step (2) in NCF? We are going to discuss the following problems of RP-absorption.

Problem 1. Because the flattening algorithm of RP is not complete so \(C_f \) and \(C_{1f} \) are also not good enough. From such \(M \) we can not find all nice \(C_2 \)'s.

Problem 2. The conditions for \(\theta_1 \) stated by RP cause two kinds of problems. One kind shall be explained later and one kind has to do with the difference between transformation and substitution from one clause to other clause.

Problem 3. \(M \) looks like a flattened clause but it is often not a flattened because it contains the same variables as the rightmost argument in the extra literals sometimes more than once. Thus we can not get all generalizations we want from such \(M \)'s in the second stage. Moreover, even we do not require \(M \) to be flattened, we have still limited choice. The reason is that the part of \(M \) which has to do with \(C_{1f} \) has to satisfies some restrictions.

Problem 4. Let \(C_1 = C_1' \lor L_1 \) and \(C_2 = C_2' \lor L_2 \) and let \((\mu_1, \mu_2) \) be an unifier of \(L_1 \) and \(L_2 \), then \(L_1 \mu_1 \) and \(\neg L_2 \mu_2 \) can have a subclause in common. This problem has also been mentioned in NCF and we can also improve RP in the same way as we do with NCF.

The algorithm given by RP supposed that the clauses are flattened. Here is their formulation.

*Given two clauses

\[
C_1: H \leftarrow \alpha \text{ and } R: H \leftarrow \gamma, \text{ do } 1, 2, 3
\]

1. Find \(\theta_1 \) such that \(\gamma = a \land \alpha \theta_1 \)
2. Build the intermediate clause
 \[M: H \leftarrow a \land H_1 \theta_1 \]

3. Find a substitution \(\theta_2 \) such that
 \[H = H_2 \theta_2 \text{ and } a = \beta \theta_2 \text{ and } H_1 \theta_1 = A \theta_2. \]

4. Abs\((C_1,R): H_2 \leftarrow A \land \beta\)

We can formulate their algorithm with clausal form and with consideration of flattening and unflattening as follows:

RP-algorithm

Let \(C \) and \(C_1 = L_1 \lor C'_1 \) be given. We do the following steps:

1. Flatten the clause \(C \) to \(C_f \) and \(C_1 \) to \(C_{1f} = D \lor E \) where \(D = L_1' \lor D' \) is the part of \(C_{1f} \) which has to do with \(L_1 \), i.e., the literal \(L_1' \) is found by changing terms in \(L_1 \) to variables and \(D' \) is the subclause of \(C_{1f} \) consisting of extra literals from the terms in \(L_1 \). Furthermore, \(E \) is the part of \(C_{1f} \) induced by \(C'_1 \). Let \(S_1 \) be the supplementary clause of \(C_{1f} \) and \(S \) be the supplementary clause of \(C_f \).

2. Let \(\theta_1 \) be a substitution from \(C_{1f} \). If \((D' \lor E) \theta_1 \) is a subclause of \(C_f \), then we can construct an intermediate clause \(M = (C_f - (D' \lor E) \theta_1) \lor \neg L_1' \theta_1 \).

3. Choose one way to generalize the clause \(M \), by using \(S_1 \theta_1 \land S \). We get one \(C_2 \).

Suppose \(C_1 = L_1 \lor C'_1 \) and \(C_2 = L_2 \lor C'_2 \). It is possible for given unifier \((\mu_1, \mu_2) \) of \(L_1 \) and \(L_2 \), \(C'_1 \mu_1 \) and \(C'_2 \mu_2 \) have subclause in common. Thus we can understand the following example which has to do with problem 4 above.

Example. Let \(C_1 = P(x,y) \lor \neg R(x,y) \) and \(C = Q(x,y) \lor \neg R(f(x), f(y)) \). We get (with their way of flattening)

\[
C_{1f} = P(x,y) \lor \neg R(x,y) \\
C_f = Q(x,y) \lor \neg R(u,v) \lor \neg F(x,u) \lor \neg F(y,v) \\
\]

Let \(\theta_1 = \{x/u, y/v\} \), then \(M = Q(x,y) \lor \neg F(x,u) \lor \neg F(y,v) \lor \neg P(u,v) \).

We can never get \(C_2 = Q(x,y) \lor \neg R(f(x), f(y)) \lor \neg P(f(x), f(y)) \) by unflattening.

For simplicity we are going to consider only the \(C_2 \) such that \(C_2 \mu_2 \) contains all \(C \) in the rest of the article beside the part of new RP-algorithm.

The following example is given by RP[7]. Although with their algorithm we can find some interesting \(C_2 \), but not all interesting \(C_2 \). This has to do with their flattening algorithm not complete and also other problems mentioned above.
Example of RP-absorption. In arithmetic we know x is less than its successor and x is also less than the successor of successor of x. We want to use absorption to find new concepts such as: if x is less than y, then x is less than the successor of y. In our notation L means less, $s(x)$ means $x+1$. The way RP has used to solve this problem is first given below ((1)-(4)'). We shall then investigate their steps.

1. Given $C_1 = L(v, s(v))$ and $C = L(u, s(s(u)))$.
2. $C_1f = L(u, x) \lor \neg S_p(u, y) \lor \neg S_p(y, x)$, supplementary $S = S_p(u, s(u)) \land S_p(y, s(y))$.
3. Consider $\theta_1 = \{v/u, x/y\}$.
4. Unflatten with $S_p(y, s(y))$: $C_2 = L(u, s(y)) \lor \neg L(u, y)$. It means if u is less than y, then it is less than $s(y) = y+1$.

(3)' Consider $\theta_1' = \{v/y\}$. We have then $M = L(u, x) \lor \neg S_p(u, y) \lor \neg L(y, x)$
(4)' Unflatten by using $S_p(u, s(u))$: $C_2' = L(u, x) \lor \neg L(s(u), x)$. It means if $s(u)$ is less than x, then u is less than x.

Discussion of the example. For simplicity we use D_{1f} or D_f to name the flattened clauses of C_1 and C according to our algorithm.

Step (2): According to our definition of flattening (for simplicity we do not use $\neg I(v, v_0)$) C_{1f} and C_f should be

\[
\begin{align*}
D_{1f} &= L(u, x) \lor \neg S_p(u, y) \lor \neg I(v, v_1) \\
D_f &= L(u, x) \lor \neg S_p(u, y) \lor \neg S_p(y, x) \lor \neg I(u, u_1)
\end{align*}
\]

From their clause C_{1f} we can never get $L(v, s(v_1))$ as generalization of $C_1 = L(v, s(v))$. From their C_f we can never get $L(u, s(s(u)))$ as a generalization of C.

Step (3), (4): We define a substitution $\theta_1 = \{v/u, v_1/u_1, x/y\}$ and an intermediate clause N in their way but by using D_f and D_{1f} as basis. We have

\[
N = L(u, x) \lor \neg S_p(u_1, y) \lor \neg S_p(y, x) \lor \neg L(u, u_1)
\]

By resolution with $S_p(y, s(y))$, $S_p(u_1, s(u_1))$, we get $L(u, s(s(u))) \lor L(u, s(u))$. This means: if u is less than the successor of u_1, then u is less than the successor of successor of u_1. This clause can not be found by the corresponding M in RP.

Step (3), (4) based on N: Suppose we take N instead of M as the intermediate clause, we still have problems to find all the C_2 which should be found. All rightmost arguments in literals of a flattened clause should be different. In N we have y in both $\neg S_p(u_1, y)$ and $\neg L(u, y)$. Furthermore, every variable in a flattened clause should appear precisely once as the rightmost argument of literals defined by terms. This is not true for u_1 and u. If we consider the corresponding substitution $\mu = \{v/u, u_1\}$ from the unflattened C_1 and the clause $C \lor C_1 \mu_1 = L(u, s(u)) \lor L(u, s(u))$ then we can have $L(u, s(y)) \lor L(u_1, y)$, $L(u, s(y)) \lor L(u_1, y_1)$ as generalizations (these two clauses are
mathematically uninteresting). These two are not constructable from N. As we have mentioned in the end of section 3, this N is only partially flattened.

On the other hand, if we use the flattened clause of \(\overline{C \lor \overline{C_1}} \), then we find all generalizations of this clause just as we can find all generalizations by term partitions on \(\overline{C \lor \overline{C_1}} \) with NCF.

4.2 Improvements of RP

To begin with we need the good \(C_f \) and \(C_{1f} \) by using the flattening defined in this article. In other words, we assume that the absorptions, be they the old absorptions or the improvements, all begin with good \(C_f \) and \(C_{1f} \). We can then improve the algorithm in two ways.

1 First way to improve RP. This change can not give all the generalizations, but it would give the interesting generalizations. To understand the improvements we should first understand the shortcomings of RP. We will explain them by giving examples.

Looking at the RP-algorithm, we notice that RP states actually the algorithm for general clauses and it can not be directly applied to the flattened clauses. For example, \(L_1 \) after flattening has more than one literal and these extra literals do not have to do with the flattened clause of \(C \). In the RP-algorithm it is required that these extra literals shall be absorbed into \(C_f \) after the substitution \(\theta_1 \). This is an unreasonable requirement, as the following shows:

Example. Given \(C_1=P(f(x)), C=Q(g(x)) \). To find \(C_2=Q(g(x)) \lor \overline{P(f(x))} \) is a problem because

1. Flatten \(C_1 \) and \(C \), we get \(C_{1f}=P(z) \lor \overline{I(x,x_0)} \lor \overline{F(x_0,z)}, C_f=Q(u) \lor \overline{I(x,x_0)} \lor \overline{G(x_0,u)}. \)

2. There is no substitution \(\theta_1 \) from \(C_1 \) such that \(\overline{F(x_0,z)} \theta_1 \) is a subclause of \(C_f \). Thus this \(C_2 \) can not be constructed.

A similar example is first thought of by P. v. d. Laag (personal communication). He suggests to carry \(\overline{F(x_0,z)} \) to the intermediate clause. By the explanation above we can also see why the intermediate clause should carry the literals induced by \(L_1 \). In fact if we consider \(\theta_1=[x/x,z/u] \)
then we have the following clause:

\[M=Q(u) \lor \overline{I(x,x_0)} \lor \overline{G(x_0,u)} \lor P(u) \lor \overline{I(x,x_0)} \lor \overline{F(x_0,u)}. \]

Then the resolutions with \(F(x,f(x)), G(x,g(x)) \) and \(I(x,x) \) give \(P(f(x)) \lor \overline{Q(g(x))} \)

Example. An example in [7] brought problems as it is told in that article. A suggestion of Muggeleton to solve this problem is also given in [7]. Although the suggestion is good, it is not certain if the reason given is correct. Let us find the solution in our way.

\[E_1: \text{denser(hammer,feather)}. \]
\[E: \text{heavier(hammer,feather)}. \]
C: larger(hammer, feather).

Using RP we cannot find the following clause by absorptions

heavier(X,Y) ← denser(X,Y) ∧ larger(X,Y).

Let us change them to the clausal forms and flattened forms in the same time. The constants a, b represent hammer and feather, respectively. P means heavier, D means denser and L means larger.

\[E_1: D(x,y) \lor \neg H(x) \lor \neg F(y), \quad S_1 = H(a) \land F(b) \]

\[E: \quad P(x,y) \lor \neg H(x) \lor \neg F(y), \quad S = H(a) \land F(b) \]

\[C_1: \quad L(x,y) \lor \neg H(x) \lor \neg F(y), \quad S_{C_1} = H(a) \land F(b) \]

The intermediate clause of \(E_1 \) and \(E \) with identity substitution is

\[M = P(x,y) \lor \neg H(x) \lor \neg F(y) \lor \neg D(x,y) \]

after we omit some double literals. Let \(C = P(x,y) \lor \neg D(x,y) \) be a generalization of \(M \). According to old RP we have problem to construct new intermediate clause because the literal with \(\neg F \) can not be absorbed by \(C \). With this improvement we can find \(C_2 = P(x,y) \lor \neg D(x,y) \lor \neg L(x,y) \) from \(C_f \) and \(C_{1f} \).

Another problem which RP has not noticed is the choice of \(\theta_1 \). It is not true that every substitution from variables in \(\neg C_1 \) is good substitution. We give a few examples.

Example. Let us consider \(C_1 = P(f(x)) \) and \(C = Q(g(x)) \) again. For simplicity we do not change \(x \) to \(x_0 \).

Then

\[C_{1f} = P(z) \lor \neg F(x,z), \quad S_1 = F(x,f(x)) \]

\[C_f = Q(u) \lor \neg G(x,u), \quad S_2 = G(x,g(x)) \]

Take \(\theta_1 = \{ z/u, x/x \} \), we have

\[M = Q(u) \lor \neg G(x,u) \lor \neg P(u) \lor \neg F(x,u) \]

If we use \(F(x,f(x)) \) to resolve with \(M \), we get \(Q(f(x)) \lor \neg G(x,f(x)) \lor \neg P(f(x)) \). If we use \(G(x,g(x)) \) to resolve with \(I \), then we get \(Q(g(x)) \lor \neg F(x,g(x)) \lor \neg P(g(x)) \). We can not eliminate all extra literals by resolution. If we look at the original clause, \(\{ x/x, z/u \} \) means that \(f(x) \) is replaced by \(g(x) \), such a substitution for the original clauses is not allowed.

On the other hand, if \(C_1 = P(f(x)) \) and \(C = Q(f(x)) \), then

\[C_{1f} = P(z) \lor \neg F(x,z) \lor \neg I(x,x) \]

\[C_f = Q(u) \lor \neg F(x,u) \lor \neg I(x,x) \]

Take the substitution \(\theta_1 = \{ z/u \} \), we have

\[M = Q(u) \lor \neg F(x,u) \lor \neg P(u) \lor \neg F(x,u) \lor \neg I(x,x) \]

The resolvent of \(M \) and \(F(x,f(x)) \) is \(Q(g(x)) \lor \neg P(g(x)) \). This is a good \(C_2 \).
Example. Let $C_1 = P(x) \lor \neg Q(x,a)$ and let $C = R(a) \lor \neg Q(a,a)$. This is a case where C_1' is not empty. According to RP, the part of C_1 which has to do with C_1' should be brought to C_f as a subclause. Let $\mu = [x/a]$ be the substitution from C_1. A good C_2 is $R(y) \lor \neg P(y)$ which is a generalization of $P(a) \lor \neg R(a)$ (see NCF). This can not be found with old RP-algorithm because if we consider

$$
C_1 = P(x_1,x_2) \lor \neg I(x_1,x_1) \lor \neg I(x_1,x_2),
$$

$$
C_f = R(y_1) \lor \neg Q(y_1,y_2) \lor \neg A(y_1) \lor \neg A(y_2).
$$

The subclause $\neg Q(x_1,x_2) \lor \neg I(x_1,x_1) \lor \neg I(x_1,x_2)$ of C_1 can not be brought to C_f because $\neg I$ is another predicate than those of the literals in C_f.

What is a good θ_1? A good θ_1 should map the variables in C_1 in a consistent way. Let θ_1 be a substitution from variables in C_1. Then such θ_1 should satisfy the following conditions:

Let $C_1 = L_1 \lor C_1'$. We use the corollary in the last section to apply to $D_1 = \neg L_1 \lor C_1'$. Let $D_1 = U \lor V$ where U is the part of D_1 which has to do with $\neg L_1$ and V is the part of D_1 which has to do with C'. Let K be the subset of U which contains literals beginning with $\neg I$. Then a good θ_1 is a substitution from the variables in C_f which satisfies the following conditions:

1) if $u \theta = v$ where v is a variable in C_f, then every literal in the substitution tree of u which does not begin with $\neg I$ is brought to a literal in C_f and furthermore, if $\neg I(x_1),...,\neg I(x_n)$ are in K, then $x_1 \theta_1, ..., x_n \theta_1$ give the same term.

2) θ_1 induces a transformation from V to D_f.

Such a θ_1 can give an intermediate clause $(U-K) \theta_1 \lor C_f$ which is a partially flattened clause of some $\neg L_1 \mu_1 \lor C$. This μ_1 is a substitution from C_1 which brings C_1' to C.

Improved RP-absorption 1

1) Choose a θ_1 which is a good substitution from C_1 defined as above.

2) Define the intermediate clause $M = (U-K) \theta_1 \lor C_f$ where U and K are defined as above.

3) Find all generalizations of M.

Remark. Looking at the μ_1 which is induced by a good θ_1, we notice that μ_1 brings variables in C_1 to terms in C. In fact we can give θ_1 some more freedom, especially when C_1' is empty or the variables in L_1 are different from the variables in C_1'. Some variables in K can then be brought to variables which are not in C_f. But a good θ_1 is for us often enough to find a good C_2. Thus a non-empty C_1' gives more restrictions to θ_1.

If a C_2 constructed by NCF-algorithm satisfies the condition: if a block of term occurrences in $C \lor \neg L_1 \mu_1$ for constructing C_2 contains occurrences from $\neg L_1 \mu_1$, that block contains also occurrences from C, then such C_2 can be constructed by RP-algorithm which we have modified above.
2 Change the intermediate clause to \((C \lor \neg L_1 \mu_1)f\) for some \(\mu_1\). In principle we can make RP-algorithm complete by considering other intermediate clauses which are flattened versions of \(C \lor \neg L_1 \mu_1\) for some \(\mu_1\). In this situation the part of \((C \lor \neg L_1 \mu_1)f\) which has to do with \(L_1 \mu_1\) can have more literals than the literals in \(C_1f\) which have to do with \(L_1\) (we use \(A \lor B\) in the discussion above). If we still want to consider a substitution from \(C_1f\) then it should be a transformation from \(C_1f\) to \((C \lor \neg L_1 \mu_1)f\).

Example. Let \(C_1=P(x), C=Q(y)\). Then \(C_1f=P(\alpha(x))\lor \neg I(\alpha(x),\alpha(y))\) and \(Cf=Q(\beta(y))\lor \neg I(\beta(y),\beta(z))\). We get only \(Q(y)\lor \neg P(\alpha(y))\) and \(Q(y)\lor \neg P(\beta(y))\) as result if we consider \(\theta_1\) only variables to variables. We can for example never get \(C \lor \neg \neg C_1 \mu_1=Q(y)\lor \neg P(f(y))\). On the other hand, if we consider the flattened clause of \(Q(y)\lor \neg P(f(y))\), we have
\[
Q(\beta(y))\lor \neg I(\beta(y),\beta(z))\lor \neg I(\beta(y),\beta(z))\lor \neg P(\beta(z))\lor \neg F(\beta(z),z)
\]
as intermediate clause. From this clause we get the generalization we want. Notice that a literal beginning with \(\neg F\) does not exist in \(C_1f\). It is possible to make the a modified RP-algorithm if we allow every \((C \lor \neg L_1 \mu_1)f\) as an intermediate clauses and consider the transformation induced by \(\mu_1\) from \(C_1f\) to \((C \lor \neg L_1 \mu_1)f\) instead of a \(\theta_1\) which induces no new literals than the literals from \(L_1\) after transformation. This is rather artificial. We can just as well build a \(\mu_1\) and a \(C \lor \neg L_1 \mu_1\) and then build \((C \lor \neg L_1 \mu_1)f\). With this flattened clause we can construct all generalizations and we can forget what for transformations \(\mu_1\) shall induce.

The following algorithm gives actually a complete algorithm which we consider as the second kind of improvement.

Improved RP-absorption 2. Let \(C\) and \(C_1=L_1 \lor C_1'\) be given. We follow the following steps to construct \(C_2\).

1. Let \(\mu_1\) be a substitution from variables of \(L_1\) which satisfies that \(C_1' \mu_1\) is a subclause of \(C\).
2. For a given \(C'\) which is a subclause of \(C_1' \mu_1\) we consider the clause
\[
(C \lor C_1' \mu_1) \lor C' \lor \neg L_1 \mu_1.
\]
3. Let \(M\) be the flattened clause of \((C \lor C_1' \mu_1) \lor C' \lor \neg L_1 \mu_1\).
4. Find generalizations of \(M\) to get \(C_2\)'s.

With this new algorithm we have two questions to ask:

Question 1. We compare the first stage of NCF with the first stage of the improvement 1. For a \(\mu_1\) which brings variables in \(L_1\) to terms in \(C\), improvement 1 is good enough for constructing \(C_2\)
which satisfies some conditions as stated in the remark above. The question is whether it is worth of using it. We have to go through the process of flattening and find good \(\theta_1 \). In this stage finding \(\mu_1 \) and then consider \(C \lor \neg L \mu_1 \) look easier. The first stage of improvement 2 should also begin with \(C \lor \neg L \mu_1 \). We have still to flatten it. Thus it is more work.

Question 2. We have already discussed the advantages of term partitions compared with generalizations from flattened (or partially flattened) clause. We can use the same discussion to compare the second stage of NCF and the second stage of improved RP-absorption 1, 2.

Acknowledgements. I express here my gratitude to the discussions I have had with Drs. P. v. d. Laag and Dr. J. C. Bioch.

References