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1 Preface

This is the second report concerning transaction management in the database
environment. In the first report the role of the transaction manager in protecting
the integrity of a database has been studied [MaNe]. In this report a model will be
given for the transaction manager as a parallel decision process. To that purpose
a modelling method for parallel behaviour, Paradigm, will be introduced. This
method uses parallel decision processes for modelling parallel phenomena. Not all
the notions of Paradigm will be discussed, a more extensive explanation can be found
in [Groe]. After this short introduction to Paradigm, the method will be applied to a
simple transaction manager. In future research more complex transaction managers

will be modelled.
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2  Paradigm.

2.1 Introduction.

Parallel decision processes have been used successfully in the realm of parallel
programming. Formulating a parallel programming problem in terms of a parallel
decision process, provides an object-oriented description of the problem. Solutions
have been offered to several problems, including the critical section [Groe]. A model
has been offered for the kernel of the Unix operating system and it has been imple-
mented in an object-oriented manner [Stee]. This approach has been extended from
parallel programming problems to general parallel phenomena. Parallel decision



processses can offer an object-oriented description for any parallel phenomena and
these descriptions can be translated quite naturally into an object-oriented program.

In the database environment the object-oriented approach usually refers to the
description of entities and the operations of the entities [BHGK]. Here object-
orientedness is usually connected to a static description of the system: the orga-
nisation of the data and the possible operations. Not much attention is given to
an object-oriented approach for the description of algorithms used for the database
management. In this study we will focus on the algorithm of a transaction manager
as a parallel decision proces in order to give an object-oriented approach for such
an algorithm. This also underlines the importance of an object-oriented approach
with respect to the dynamic properties of a system rather than the static ones. The
notion of decision process is a key notion in the operational research [Hind]. Paral-
lel decision processes and the modelling method for parallel behaviour are concepts
developed in [Groe].

2.2 Decision Processes and Parallel Decision Processes.

The dynamic properties of a system can be brought into a decision process by
modelling its behaviour in the following way. At each time instant the system is in
exactly one state. When entering a state z, a strategy = € S selects an action o € A
based on the history h up to that instant. The transition mechanism F selects a
next state y based on h and a. The sojourn mechanism G selects a sojourn time in
state z based on h, o and y. The behaviour of a system is the sequence, summed
up in chronological order of the states that are visited, the actions that are chosen
and the time instants at which a transition occurs. The reward function makes it
possible to compare behaviours. These are the descriptions of the seven components
that have to be specified in a decision process:

1. T is a set of instants of time, ordered by a < relation.
2. X is a nonempty set of states.

3. A= ,ex As is a set of actions where for each » € X the set A, is nonempty;
this A, is called the set of actions available in z.

4. S is a nonempty set of strategies.

5. I’ is a transition mechanism that determines which state of X will be entered
from state z, given the history of the system up to now and the available
action o € A.

6. G is a sojourn mechanism that determines how long it will take before the
next state ( selected by the transition mechanism ) will be entered, given the
history, the present state, the action chosen and the state to be entered.

7. The reward function, which maps the behaviour onto real numbers.



Definition 1 A decision process is a tuple DP = (T, X, A, S, F,G,r) with time
space T, state space X, action space A, a set of strategies S, a transition mechanism
F, a sojourn mechanism G and a reward function r.

A formal definition can be found in [Groe]. These seven components make it possible
to describe decision processes in detail . For many purposes it is not necessary to
use all the components. For example the sojourn mechanism can often be neglected
by stating that the sojourn times are always equal.

A decision process can model the sequential behaviour of a system. In order
to model a set of decision processes including their mutual interaction the notion
of a parallel decision process is necessary. This can be seen as a vector of decision
processes, where the behaviour of one process can depend directly on the behaviour
of other processes.

Definition 2 A parallel decision process denoted as PP = [C P, C'P?,...,C'P", is
a construct where all CP'i € 1,..n are decision processes, called constituent pro-
cesses, with the same time space. The selection of actions, transitions and sojourn
times in a constituent process can depend directly on the history of any set of the
constituent processes up to that time instant.

An important property of each parallel decision process is, that it is just a special
case of a decision process. To be somewhat more precise on this point, a state
of the parallel decision process PP is considered as the vector (z!,...,2") where
2% is a state of C'P'. Because a parallel decision process is a decision process all
properties of decision processes also hold for parallel decision processes. Parallel
decision processes are often referred to as parallel processes and decision processes
are often called processes.

A parallel process can be represented by a collection of graphs, each one re-
presenting a constituent process. States are denoted by numbers, transitions by
directed edges. Fach transition corresponds to a unique action in the state where
the edge points from.

The definitions will be illustrated with the following example. We will describe
a meeting of n people with one chairman. The processes are represented by the
graphs in figure A meeting.
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Figure 1: A meeting



Remark: Tf transitions are possible from state z' to state 7 and from
state 7 to state z* this is noted as one edge having two directions,
representing the both transitions.

The Member process can be modelled by means of the following states and transi-
tions:

1 The member is not speaking.

2 The member is speaking.

1—1 The member continues not to speak.

1—2 The member starts speaking.

2—2 The member continues to speak.

2—1 The member stops speaking.

The chairman can be modelled by means of the following states and transitions:
0 The chairman is allowing no one to speak.

i The chairman is allowing member(i) to speak.

0—0 The chairman continues giving no one permission to speak.
0—1i The chairman gives member(i) permission to speak.

i—1 The chairman continues allowing member(i) to speak.

i—0 The chairman withdraws member(i)’s right to speak.

T has not to be specified, it can be the the set of natural numbers. For each
constituent process, the set of states, X is specified ( mostly only two states ). The
set of actions can be determined by the table specifiying the transitions. S has been
specified indirectly: each sequence of available actions may be selected, as if there
exists no special dependency between the Chairman and the Member processes.
The transition mechanism has been indicated. The sojourn mechanisme has not to
be specified as all the sojourn times are supposed to be equal. Because it is not
necessary to compare behaviour we will not define reward functions. So only the
state space and the transitions are represented, specifying actions and strategies too.
Each member can be modelled as a decision process, the chairman can be modelled

as a seperate decision process with the same time space. Therefore the Chairman
process together with the n Members process forms a parallel process.



2.3 Subprocesses and trap processes.

Dependencies between constituent processes imply that processes communicate
with each other. In general when a process C'P! is dependent on the behaviour
of process C'P? and no communication has yet taken place, C'P! will be restricted
in its behaviour from a certain point on, until the communication has taken place.
In our example the behaviour of a member has to be restricted by the behaviour
of the chairman. These behaviour limitations are modelled by means of so called
subprocesses.

Definition 3 Let DP = (T, X, A, S, F,G,r) be a given decision process and let S P
be a decision process SP = (T, X, A, S"[X', A'), F,G,r) where S'[X', A'] is defined

as follows:
1. v #X'CX.

2. For each state y € X', A'(y) C A(y) is a non-empty set of available actions in
y such that the transition corresponding to such an action is always to a state
ze X'

3. For each strategy s € S'[ X', A'] C S and for each y € X', only actions from
A'(y) are selected by strategy s in state y.

Then SP is called a subprocess of DP with proper state space X' and a proper
action space A" = J,ex: A'(y). A state ¥ € X' is called a proper state. An action
a € A is called a proper action.

This definition will be illustrated with an extended example of the Meeting. This
second model represents a refinement of the Member process in the previous situa-
tion. The new member process, called the Active Member process can be modelled
by means of the states and transitions in figure The Active Member(i).
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Figure 2: The Active Member(i)

1 The member is neither speaking nor expressing a wish to speak.

2 The member is raising his/her finger, indicating he or she wants to say some-
thing,.

3 The member is speaking.



4 The member is indicating he or she has finished speaking.

1—1 The member continues neither to speak nor to express such a wish.
1—2 The member raises his/her finger.

2—2 The member keeps his/her finger raised.

2—3 The member starts speaking.

3—3 The member continues to speak.

3—2 The member renounces from speaking, but he or she immediately raises his/
her finger.

3—1 The member stops speaking.

1—4 The member starts giving a sign to the chairman he or she renounces from
speaking

4—4 The member continues to indicate he or she does not want to speak.

4—1 The member stops signing the chairman.

The Active Member Process can be divided into four subprocesses, 1, 11, 111

and IV.
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Figure 3: The subprocesses I and II of Active Member(i)
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Figure 4: Subprocess III and IV of Active Member(i)



In representing a subprocess graphically, we shall always restrict ourselves to its
proper states and the transitions corresponding to its proper actions.

I. The member has no permission to speak.
II. The member has permission to start speaking and to speak.
III. The member has permission to speak and to stop speaking.

IV. The member’s permission to speak is withdrawn. If the member still wants
to say something and therefore raises his/her finger a transition to state 2 has
taken place, otherwise a transition to state 1 or 4.

In the next definition certain sets of subprocesses, that play an important role
in the communication among processes, are dealt with.

Definition 4 Let V be a collection of n different subprocesses SP' of the decision
process DP. Denote by X' and A’ respectively the proper state space and proper
action space of subprocesses SP', and let \|J'_y X' = X and J'_; A' = A. Then V
is called a partition of DP.

SoV = {1 IL I, IV } is a partition of the process Active Member(i).

It is easily seen that a subprocess actually is a restriction of the original process’
full behaviour. The idea now is that such a behaviour restriction is (temporarely)
prescribed by some other, as we shall see, constituent process. Let us assume that a
decision process is inside the proper state space of its currently prescribed subpro-
cess. As long as it obeys to this prescription, it cannot leave this proper state space.
On the other hand, the decision process may wish to start behaving according to
some other (prescribed) behaviour restriction. In order to express such a wish, the
notion of trap is introduced.

Definition 5 A frap of a subprocess DP, is a nonempty subset Y of the proper
state pace of DP such that for each strategy © and for each state y € Y, any
selected proper action o € A(Y') will always lead to a transition to a state z € Y.

Observe that a trap together with the relevant restrictions of the proper action space
and the corresponding set of strategies, is a subprocess within a subprocess. In our
example a trap of Iis {2} , the set {3} is a trap of II and the set {1,4} is a trap of
III. The sets {1,4} and {2} are traps of subprocess IV.

The notion of a trap structure makes it possible to control the changeover of one
subprocess to other subprocesses.

Definition 6 Let V' be a partition, consisting of n different subprocesses SP' of the
decision process DP. Let TS be a set of subsets of the state space of DP with the
property that for each subset Y € TS, there exist subprocesses SP' and SP? such
that Y is a trap of subproces SP' and also that Y is a subset of X*(\X7. Then TS
is called a trap structure for the partition V, and Y is called a trap from SP' to
SPI.



In the Active Member process we can choose a suitable trapstructure TS for
partition V with the following elements:

e Trapof 1 to II : {2}
o Trapof II to III : {3}

e Trapof II to IV :{3}

Trap of 1II to T :{1,4}

Trapof IV to I :{1,4}
o Trapof IV to II : {2}

The control of communication can be modelled by a seperate decision process, a
trap process. A trap process is defined with respect to a decision process and a trap
structure.

Definition 7 Let DP be a decision process with partition V. and trapstructure T'S.
Then, a trap process of DP with respect to V and TS is a decision process T*, with
state space the set 'V such that the following dependencies hold:

1. Whenever T* is in state v' € V, the decision process DP will behave according
to subprocesses v'

2. after DP is trapped in a trap S € TS, with S a trap from v* to v?, T* can
transit to state v? € V, thereby forcing DP to behave according to subprocess
vl

Notice that the trap process takes the decision, chooses the action corresponding to
a transition to another state, under the restriction that DP has been trapped. In
this way the trap process controls the transitions between the subprocesses defined
by the partition V' and the trapstructure T'S. We say that the parallel decision
process [DP, T*] is a control process of DP with respect to V and T'S. Because the
trap process is one of the constituent processes of the control process ( which is a
parallel decision process ) we will illustrate the definitions after we have introduced
parallel subprocesses and trap processes.

2.4 Parallel subprocesses and trap processes.

The notions of subprocess, partitions and trap structures, trap processes and
control processes as given above, can easily be extended to parallel processes. The
strength of the next theorems is, that the notions for the parallel processes are of
the same nature as for non-parallel processes. All theory, not presented in this re-
port, that applies for decision processses will therefore also hold for parallel decision
processes. Furthermore it allows for a uniform description of both types of processes.

Let PP be a parallel process denoted as [C'P!,C'P?% .., C'P"], where each
CP% k€ 1,..nis a constituent process. For each i € 1,..n let V* be a partition
of C'P, with elements the subprocesses C'P>!, ..., CP»() and m(i) a positive inte-
ger. In [Groe] it has been shown that:



Theorem 1 Each parallel decision process [C' P, C'P>72, ... CP™"] is a subpro-
cess of PP, with j, € 1,..,m(k) .

Theorem 2 The set V defined as
V = [CPY CPY2 . CPYn g, €1, .m(k), k€1,..n
is a partition of the parallel decision process PP.

The partition V is said to be generated by PP and V' , i € 1,..n.

Theorem 3 For a parallel decision process PP = [CP',C'P?,...,C P"] where V' is
a partition of CP*, and T'S" a trap structure for the partition V* for each 1 € 1,..,n
the set T'S defined as []7_; T'S" is a trap structure for the partition V.

The trap structure T.S for the partition V is said to be generated by PP and
TS i €1,..,n. Because parallel processes are also decision processes trap processes
can be usefull for parallel processes. The structure of a trap process for parallel
processes, indicated in the next corollary, is implied by theorem 3.

Corollary If in the situation as described in Theorem 3 the process
T" is a trap process of C'P* for V' and TS, then the decision process
T =[TY,T?% .., T" is a trap process of PP for V and TS.

A parallel control process will be defined as a trap process together with a parallel
process.

Definition 8 If PP is a parallel decision process [CPY,CP?% ...,CP"] and T* is a
trap process with respect to a given partition V of PP and given trap structure TS
for V generated by V1, ...,V™ and TS?, ..., TS™ respectively, then the control process
[PP,T*] is a parallel control process of C'PY,C'P? ...,CP" with respect to V and
TS.

The parallel control process will be denoted as [C'PY,C'P?,...,CP", T%]

These theorems will first be illustrated with the example of The Meeting as
described in figure 1. The Member process (not the Active Member Process) can be
partitioned in the subprocesses I and II. Subprocess I reflects the situation that the
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Figure 5: The partition of the Member process

member is speaking, subprocess II reflects the situation a member is not speaking.
So V*=[1,II ]is a partition for Member (i). We choose as a trapstructure 7'S"
state 2 as a trap of I to II and state 1 as a trap of 1I to I.



To be able to describe the control process for the individual members, we need
to describe the trapproces. Let T% be the trap process of Member with respect to
V' and T'S*. The trapproces T, defined as [T',T2,..,T"] is the trapprocess with
respect to the partition of all the Member processes and trapstructures. The state
space of this control process T is Xy« = [[i,{[, I}, representing 2" n-tuples
with constituing values I and I1. Not all the states of this control process T™ are
acceptable however, as this would allow several members to be in subprocess I at
the same time, meaning more than one member has the right to speak. Therefore
we will restrict the state pace of T* to be the set of the n-tuples having maximal
one value equal to I. This set consists of exactly n + 1 n-tuples.

The n+ 1 states of the chairman correspond exactly to this trapproces: n states
describe the states in which exactly one member is allowed to speak, state 0 indicates
no members are allowed to speak. Because of this correspondence between the
Chairman Process and the trapprocess T*, the Chairman Process can play the role
of the control process: no extra control process is necessary. This parallel control
process can be denoted as [Member!, Member?, ..., Member™, C'hairman).

In the Active Member process however the Chairman process as described is
not able to control all transitions. For example, it cannot distinguish between the
transitions from subprocess II to III and from II to IV, whether a member renounces
from speaking or that the right to speak has been withdrwan from the member.
Therefore the Chairman process has to be refined. This Refined Chairman process
is indicated in figure 6. Only the parts of the behaviour of the chairman towards
member(1) and member(n) are represented. Notice that the Refined Chairman
process is not in only one state of this graph, but in one for every member because
for all the members it has to be indicated to what subprocess their behaviour has
to be restricted.

1b

1€ 14 g n ne
A

Figure 6: A part of the Refined Chairman process

The Refined Chairman can be modelled by means of the following states and
transitions:

0 The chairman is allowing no one to speak, all the active members are restricted
in their behaviour to subprocess 1.

i®  The chairman is allowing active member(i) to start speaking, this active mem-
ber is in subprocess 1I.

) The chairman is allowing member(i) to speak or to stop speaking if he or she
is finished. The active member is in subprocess III.
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i©  The right to speak has been withdrawn from member(i), this member is in

subprocess IV.

0 — 0 The chairman continues giving no one permission to speak.

e

0 — ¢ The chairman gives member(i) the permission to speak.

i* — 1 The chairman continues allowing member(i) to speak.

i® — i® The chairman is giving permission to the member to speak until he or she

is ready with speaking.

i® — 4* The chairman continues to allow member(i) to speak, or to stop speaking.
i® — 0 After the member has indicated he or she has stopped talking, the chairman
withdraws the right to speak of this member.

1 — ¢ The chairman withdraws the right to speak of the member, whether he or

she was ready or not.

;C

1 ¢

— ¢ The chairman continues not to allow member(i) to speak. ( If the right
to speak of this member was withdrawn, but the member wanted to continu
because he or she immediately raises his/her finger again, the chairman can

allow him/her to speak again.)

;C

1 &

— 1% The chairman gives this member permission to speak as he or she had

his/her finger raised.

i® — 0 After having indicated to the chairman the member agreed that his/her
right to speak has been withdrawn, the behaviour of the member is restricted
to subprocess 1.

Since each Member consists of four subprocesses, a trap process for n Member
processes has a state space containing 4" different states, each state being an n-
tuple prescribing one subprocess combination. However, most combinations are not
to occur. The only relevant combinations are

e each Memberin I: (I, I,...,1)

o exactly one Member in II, or in IIT or in IV:

(Lo LIL Lo D) s (Lo, LIL Lo D) s (Lo, LIV, L D)

This results in 1 + 3n different states, exactly corresponding to the 1+ 3n different
states of the Refined Chairman. So the Refined Chairman can play the role of trap
process and the parallel control process can be denoted as

[Active Member®, Active Member?, ..., Active Member™, Re fined Chairman).

11



3 Paradigm applied to simple transaction manager.

3.1 Introduction and definitions

In this section it will be shown that transaction managers for database manage-
ment systems can be modelled using parallel decision processes. As a first, rather
simple example we will consider a model for a single user environment. First we
will present the used definitions, then a description of the transaction manager to
be modelled will be given.

Definition 9 The state of a database system is determined by data items and
devices that have changeable values. There also exists a number of integrity con-
straints referring to these values. A database is in a correct state, if it is consistent
and no integrity constraints referring to values in the database are violated.

Definition 10 The dynamic constraints determine wich transformations in the da-
tabase states are permissable. A transaction is a permissable transformation of one
correct state of the database to another correct system state.

Definition 11 A database management system is the collection of software modules
that support the commands to access the database. The transaction manager is the
part of the database management system that forms the interface between the user
and the database system.

If a transaction is submitted to the transaction manager, this manager should
be able to bring the database from one correct state to another correct state ac-
cording to the transaction. To this aim it supports the three basic operations of a
transaction: Start, Commit and Abort. The transaction manager is responsible for
concurrency control and recovery. Often it can also influence the buffer and cache
manager of the operating system.

3.2 A model of a simple transaction manager

The transaction manager we describe is restricted to a single user environment
to avoid complications due to concurrency. Although the DBMS is assumed to be
single user, the CPU and main memory may be shared with other processes.

The transaction manager uses a log for recovery purposes. The logbuffers are
written to stable storage periodically. Before the database buffers are written to
secundary storage, all logbuffers pertaining information of these data are also trans-
ferred to stable storage. The recovery module does not use checkpoints.

The so-called immediate update protocol is used. This implies it can be nec-
cesary to undo transactions that are rejected because some of the database buffers
containing information about the new situation, may already have been written to
secondary storage.

If a transaction is executed succesfully it will be called partially committed.
This information is written in the log, but the logbuffers may not be written to
stable storage yet. If the logbuffers are written to stable storage, the information
concerning the transaction survives a system failure and a redo of the transaction can
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take place. If however the logbuffers containing the information that the transaction
has reached its partial commit are not written on stable storage, the transaction has
to be undone in the process of recovery.

In figure 7 some situations are shown to illustrate the different operations the
transaction manager must be able to perform.

T1 *
T2 *
T3 *

TimeLog TimeFail
Figure 7: The states of transactions involved in recovery

The interpretation of this figure is as follows: A star, * , indicates a transaction
has reached its partial commit, the end of a line indicates a commit. Both moments
are registered in the log. The moment the logbuffers are written to stable storage
is indicated by TimeLog and the moment of a system failure by Timelail.

e Transaction T1 is completely succesfull: it has reached its commit, the log-
buffers and the database buffers are written to stable resp. secundary storage.
T1 will not be involved in the recovery process.

e Transaction T2 can be redone after the failure: it had reached its partial
commit and the information has survived the system failure. For a redo it is
not necessary to undo the transaction and execute it again because we are in
a single-user environment: the transaction cannot have read incorrect values
of other transactions.

o Transaction T3 has reached its partial commit after the logbuffers were written
to stable storage. So it has to be made undone in the process of recovery.

3.3 A paradigm model for the transaction management

It will be shown that the state of a database during the execution of a transac-
tion can be modelled as a parallel decision process with two constituent processes,
representing the behaviour of the database during the execution of the transaction
( DDE ) and the transaction manager ( TM ).

For both processes only the state space and the transitions will be represented,
specifying actions and strategies too. Because we do not want to compare behaviour
we will not define reward functions. Time is kept implicit. The decision process DDE
can be graphically represented as the directed graph in figure 8.

DDE can be modelled by means of the following 4 states:

1 No transaction has been submitted to the transaction manager. The database
isin a correct state. If the transaction has been committed this is also reflected
by state 1, in that case we say a new transaction has not been submitted yet.

13



Figure 8: The behaviour of a database during the execution of a transaction

2 The transaction is being executed.
3 The transaction is partially committed.
4 The transaction is being rejected.

The interpretations of the transitions between the states is as follows:

1—1 The new transaction has not been submitted yet to the transaction manager.
1—2 The transaction is submitted to the transaction manager.

2—2 The transaction is being executed.

2—4 The transaction is rejected for some reason.

2—3 The transaction enters the state of being partially committed.

3—3 The transaction remains partially comitted.

3—4 The transaction cannot be committed.

3—1 The transaction can be committed and the transaction manager is ready with
its task.

4—4 Information is gathered to support the decision whether to redo the transac-
tion or to undo it.

4—1 The transaction will be undone.
4—2 The transaction will be redone.

The process DDE can be divided into four subprocesses:

I The transaction can be or has been submitted to the transaction manager or
that a transaction can be submitted. This can be for the first time or because
of a redo operation.

II The transaction has been executed succesfully, a partial comit has been rea-
ched and the transaction is waiting for the reply of the transaction manager.

14



II

Figure 9: The subprocesses I and II

I The transaction manager has decided that the transaction has to be rejected.

IV The rejected transaction has to be made undone. ( It is not the transaction

manager who decides whether the rejected transaction will be executed again.)

111

,QO

K 4

v

Figure 10: Subprocess III and IV of DDE

SoV = { L II, I, IV } is a partition of the process DDE. We choose a suitable
trapstructure TS for partition V with the following elements:

Trap of
Trap of
Trap of
Trap of
Trap of
Trap of
Trap of
Trap of

Trap of

I

I
II
II
111
111
v
v
v

to

to

to

to

to

to

to

to

to

II
111
I
111

v

II
111

{2}
{2}
{3}
{3}
{4}
{4}
{1,2}
{2}
{2}

15



Figure 11: The transaction manager

The decision process representing the transaction manager as described in section
3.2 can be graphically represented as a directed graph in the figure The transaction
manager.

Notice that this graph corresponds to a large extent with the graph representing
the behaviour of a transaction. The only exception is state 5 where the transaction
manager undo’s a transaction. The reason for this similarity is, that in a single user
environment the transaction manager can be dedicated completely to one transac-
tion at the time. The interpretations of states and the transitions between the states
is as follows:

1 Waiting for a transaction to be processed.

2 Executing the transaction.

3 The transaction is partially committed, the transaction manager prepares a
commit ( e.g. writing the log-buffers to stable storage and the db-buffers to
disk ).

4 The transaction has to be rejected, the transaction manager decides whether

to undo or redo its results.
5 The transaction is made undone.
1—1 Waiting for a transaction to be processed.
1—2 A transaction has been submitted to the transaction manager.
2—2 The transaction manager is executing the transaction.

2—4 The transaction has to be rejected for some reason. It is still unclear whether
the results have to be undone or that the transaction can be submitted again
for execution.

2—38 The transaction has so far been executed successfully and has to enter the
state partially-committed.

3—3 The transaction manager is preparing for a commit.
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3—4 The transaction cannot be committed.

3—1 The transaction can commit and the transaction manager is ready with its
task.

4—4 Information is gathered to support the decision whether to redo the transac-
tion or to undo it.

4—5 The transaction must be undone.

4—2 The transaction can be redone.

5—5 The transaction is being made undone.
5—1 The transaction manager is finished.

From the two meeting examples and from other experiences, one can consider the
transaction manager as a useful candidate for the trapprocess. To this aim we first
indicate a correspondence between each state of the transaction manager and a
subprocess of DDE. This results in the following combinations of such a state and
such a subprocess, together with their interpretation. In this interpretation we also
mention the various transitions from one combination to a following.

(1, I) The TM is ready to receive a transaction. If a transaction is submitted, a
transition to (2, I) will follow.

(2, I) The TM is executing a transaction. If the execution is successfull to the
extent that the transaction enters the state of being partially committed, a
transition to (3, II) ( TP in state 3) occurs. If it does not finish succesfully a
transition to (4, I1I) takes place.

(3, IT) The transaction has reached its partial commit and the TM is checking
whether a commit is possible. A transition to (4, III) will follow if the trans-
action manager cannot commit the transaction, in case of success a transition

to (1, I) will follow.

(4, IIT) The transaction has been rejected and the transaction manager is deciding
wether to redo or undo the transaction. A redo implies a transition to (2, I),
an undo implies a transition to (5, IV )

(5, IV) Indicates an undo takes place: a return to (1,I) will follow.
The list of these combinations, together with the various transitions between

them can be graphically represented as follows, denoted as The candidate trap pro-
cess.
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Figure 12: The candidate trap process

From the strong resemblance of the graphical representations of the transaction
manager and the candidate trap process, we indeed give the transaction manager
this trap process role. So it can control the transitions of the database during the
execution of a transaction to other subprocesses, no extra trap process is necessary.
This means that the transaction manager, called TM, and the database during the
execution of a transaction, called DDE, can be modelled by the parallel control
process [ DDE, TM ].

We now formulate the following conclusions. The DDE and the transaction
manager both are relatively simple, but the corresponding Paradigm model of this
situation is correspondingly simple. Therefore, this example gives us hope that also
in more complicated and more realistic situations a Paradigm model of the various
processes involved will result in a clear and precise specification thereof.
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