CHAPTER ONE

INTRODUCTION: TYPES OF MOVEMENTS

ELEMENTARY MOVEMENTS

F'FYHE objective of economic dynamics 1s to describe and ex-
i plain the fluctuations in economic magnitudes. In this first
part of our study we shall limit ourselves to description. This
description can be assisted greatly by the use of diagrams in
which the movements, or changes, of the various economic
magnitudes are represented by certain geometric figures. For a
good understanding of the various types of movements it is
necessary to have a minimum general knowledge of the geomet-
ric properties of these diagrams quite apart from the economic
phenomena which they represent. By way of introduction we
shall start out with these geometric characteristics.

Before we can study the relationship between the movements
of one magnitude and the movements of one or more other
magnitudes, it will be necessary to give a description of the
movements of individual economic magnitudes. It 1s in the
nature of the object of our study that these magnitudes vary;
they are ‘“variable magnitudes,” or, briefly, “variables.” The
movements of these variables are often complicated. There 1s
considerable advantage in separating the movements into com-
ponents of a simpler character, which we may call “elementary
movements.”” These we shall study first.

a) Systematic and random movements

A distinction has to be made between systematic and random
movements. In the case of systematic movements the numbers
representing successive magnitudes of one variable follow each
other according to a design. Any such design is, however, ab-
sent from the magnitudes of successive observations of random
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4 THE DYNAMICS OF BUSINESS CYCLES

variables. Even in the very simple case in which the variable
measured can have only two values (0 and 1) a distinction be-
tween systematic and random movements can be made. The
following two series, for instance, represent systematic move-

ments:

, 0,0,
0, 1

0 91: 30!0)
0, 1,0,0,1

1, 1, 1 0,1,1,1, 0, 0, 0, etc.
.0,1,0,0,1,0, 1 1, 0, 1

1.1
, 0, 0, , ete.

5 2

J 2

There is obviously an infinite number of systematic move-
ments; more and more complicated systems of succession of the
different values can be devised. As has been mentioned, 1n a
random movement all design is absent in the way in which the
successive values are arranged. Such a random movement will
occur, for instance, when one tosses a com and marks 1 for
heads and 0 for tails. The results of an infinite repetition of this
game will show random movements. A variable showing such
movements 1s sometimes called a “random variable.” A “‘nor-
mally distributed random variable” satisfies two conditions,
namely, (1) there is no design in the succession of its values
and (2) the various values satisty the frequency distribution of
the Gaussian law. The distribution under the (Gaussian law,
also called the law of normal distribution or of normal errors,
may be expressed in a mathematical formula which is rep-
resented diagrammatically in the shape of a bell. In a normal
distribution all possible values will occur—not only, as in the
example just quoted, the values 0 and 1. In a normal distribu-
tion there will be a relatively large number of small deviations
from the average and relatively few large deviations from the
average. A normally distributed random wvariable will be ob-
tained in more complicated games of chance in which the
number of possible values is large, or, strictly speaking, in
which the number of possible values is infinite. If, for instance,
one were to toss not one coin but a hundred and were each time
‘to count as the result of one game the number of heads that
turned up, the result would approximate very closely the move-
ment of a normally distributed random variable. In general,
a variable will be a normally distributed random variable if its
values are the sum of the values of a large number of random
variables that are mdependent of each other In nontechmcal
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ruage, the varable will appear as a normally distributed
random variable if its fluctuations are due to a great number of
independent small causes. The larger the number

will the series of sucecessive values approximate the move-
orimally distributed random variable.

F v X4
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Tonotonie and periodie movements

There exist a great many different types of systematic move-
ments., Within the scope of this book there 1s no need for a de-
tatled mathematical treatment of them. A variety of functions
and curves 1s discussed by textbooks m analysis and analytical
ceometryv. One distinetion, however, 15 of great mportance,
Iv, that between monotonie and pertodie movements. A

HATe
monot mm movenent s one which never reverses its direction.
[t mav be etther monotonteally inereasing or monotonically de-
wing. In the first case, each sucecessive value 1s greater than,
or in the limiting case equal to, the previous value: in the see-
ond case, cach successive value is smaller than, or i a hinnating
Case e LI to, the preceding s ahw A pertodie movement, on the
other hand, repeats itself M»--—u*& v after a certamn lapse of time.
This lapse of time 1s called 1ts p-ﬁfri@; .7 We also mmclude m the
category of pertodie movements nonmonotonie movements
which repeat themselves after a certain pertod moan enlarged
or reduced form, i a certain proportion whiech we may indieate
by a. Such movements will be called damped and antidamped
movements, respectively., The following would be an example
uf a purely
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6 THE DYNAMICS OF BUSINESS CYCLES

line. This line may either rise or fall. with the horizontal line us
the intermediate case.
For a straight line the difference in level \
time units (vears, quarters, or months) 1s always the same.
This difference is called the “‘slope,” or the “rate of merease.”
In accordance with mathematical usage we s }mll u~te the term
“increase” also for declining lines, that is, for negative -
creases. A straight line has a constant rate of imerease.

A second important example of monotonie movement 1s
exponential curve. A mathematical property of an exponent
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Fig. 1.—Exponential curves

order t@ O}Jtmn a series uf SUCCESSIVve mhw« e wh M t}w
time distance from the preceding one, the height of the ¢

at each step has to be multiplied by a constant m obtain Mw
next following step. Figure 1 shows two mpmwmml curves.
The first exponential curve is increasing. It is represented
the following figure

Time ¢ = 0 1 2 3 4 5
HEight r =1 > 000 ] » 1 OU ] ¥ 210 1 y Jgil 1 % $(4 1 |

The following series represents a declining exponenti:

WY R YR Wy
[ || - 1 n ! vl
Rl .y ¥ W W

|

Time 5 {) 1 A 3 4 3
Height z = 1,000 300 230 125 2.5 4
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It will be noted that the slope, or rate of increase, of the ex-
ponential curve 1s not constant. It is proportional to the height
attained by the curve. This may also be expressed by saying
that the relative rate of increase is constant.

There are a number of other important monotonic move-
ments. They cannot be treated without mathematical formulas.
We mention here the parabolas of different degrees, represented
by formulas of the form x = ai”, where n 1s the degree. These

~
O

. +] +2 +3 +4. L

O

-4 -3 -2 -]

Fic. 2.—Logistic or growth curve (a = 1, b = 2, k = 120)

curves are monotonic for all positive values of {. Another
monotonic curve of great importance is the logistic, or growth,
curve: ¢ = k/(a + b ). An example of the logistic curve 1s
shown in Figure 2. A logistic curve will be described, for ex-
ample, by the movement of a population, whose rate of growth
per unit of time is proportional to (a) the size of the population
already attained and () the size of the population for which, in
addition to the population already present, means of subsistence
are still available. The total means of subsistence are assumed
to be such that a population of constant size can be maintained.
We count among the monotonic movements also certain
movements that cannot be defined by one mathematical curve
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tor the entire period of time but that are defined, for jinsta,nce,
frst, by a rising straight line and, after a certain period, by a
horizontal straight line.

A very simple type of periodic movement 1s the sine curve
<hown in Figure 8. As this diagram shows, the sine curve may be
described as the distance from the horizontal axis of a point
which moves at constant speed around the circumference of a
oircle. This distance is measured vertically while time 1s meas-
gred horizontally. The distance AB is called the period; the
distances CD and EF are also equal to the period. Half the dis-
tance AG is called the “amplitude.”

Fic. 8.—Sine curve (C, 4, E, D, B, F . ..) indicating the distance from the hori-
zontal axis of a point which moves around a circle with constant speed.

We shall often meet movements that are not exactly but
approximately periodic in character. Such movements will
show fluctuations repeating themselves approximately after
roughly the same period. We shall sometimes refer to such
movements as “fluctuating movements,” or ‘“fluctuations,’”’ or
“waves.” We may also call them “quasi-periodic movements.”’
It should be noted here that random movements are also quasi-
periodic. It may be proved that the quasi-period of these
movements 1s three units of time, that is to say, that, on the
average, one of every three values of such a series will be a peak
and one a trough. The unit of time of such a series must be

taken to be the distance between two successive independent
observations. '

¢c) Damped, undamped, and antidamped movements

As mentioned above, we include among the periodic move-
ments those nonmonotonic movements that repeat themselves
ol an increasing or decreasing scale. We call periodic move-
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10 THE DYNAMICS OF BUSINESS CYCLES

a monotonic movement; (b) the cyclical component, consisting
of fluctuations with a period of between three and eleven years;
(¢) the seasonal component, consisting of fluctuations with a
period of one year, attributable to fluctuations of the natural
and conventional seasons during the year; and (d) the random
component, which covers both nonrecurrent changes, such as
sudden changes in the level due to a “‘trend break,” and fluc-
tuations due to a large number of random causes, these latter
fluctuations being usually of very short duration, e.g., those
with a quasi-period of three months.

It 1s not advisable to apply this procedure mechanically,
since there are many exceptions to the rule that these four com-
ponents can be found In every economic series. We shall first
mention a number of these exceptions and then treat the whole
subject In a systematic manner.

Some fluctuations have a period in excess of eleven years.
Among these should be counted the so-called *‘long cycles’ and
the fluctuations in certain individual markets. Depending on
the subject and the period under consideration, such move-
ments are classed under (a) or under (b); hence, a movement of
type (@) cannot always be represented by a monotonic move-
ment. There are, further, certain fluctuations which by their
nature are equivalent to seasonal fluctuations but which have
a shorter period, for instance, three months, a month, a week,
or a day. On the other hand, random movements sometimes
show quasi-periods that are considerably longer than three
months. The fluctuations in crops, which must certainly to a
large extent be considered as random, have a time interval of a
year between two successive independent observations and
hence may produce quasi-periods of three years. For these
reasons 1t 1s often difficult to 1solate components (¢) and (d), or
even (b) and (d), at all accurately.

On closer scrutiny, a variety of objectives may be discerned
in the standard procedure. The first and clearest objective is to
1solate movements with different periods. As a rule, all fluc-
tuations with a period in excess of eleven years are comprised
In the trend component. The monotonic movements of the
trend component may be considered as parts of very long
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cycles or even of movements with an infinitely long period. All
movements with a period of between one and eleven years are
considered to be part of the cyclical component; those with a
period of one year represent the seasonal component; and those
with a period of less than one year, the random component. As
mentioned above, however, it is sometimes difficult to classify
the actual movements in accordance with this scheme.

A second objective in the standard procedure is the separa-
tion of systematic and random movements, discussed earlier.

The third objective would appear to be to obtain a classifi-
cation according to the causes of the movements. The separa-
tion of seasonal movements and trend movements would reflect
this objective. The trend movement, for instance, may often be
ascribed to the very slow movements of such data as the size of
the population, technical knowledge, ete.

A fully satisfactory decomposition of an economic variable
into 1ts various elements can be achieved only on the basis of a
complete theory of economic movements. At this stage in our
analysis, therefore, we can consider this decomposition only as
a provisional tool. After having dealt with economic theory in
the second part of this study, we shall in certain simple cases be
able to give very definite directions with respect to the separa-
tion of the various elements (see chap. xvi). It will be shown
that the systematic and random components are often com-
bined in a very intricate fashion which renders it logically im-
possible to separate them in any simple way.

Here, as In the case of the separation of movements according
to causes, a clear distinction between direct and indirect causes
will have to be made. An example may make this clear. If
fluctuations in the quantity demanded of a particular com-
modity are due to (a) changes in income and (b) changes In
price, while the changes in price are due to (¢) changes in the
price of raw materials, then we call (¢) an indirect cause of
changes in the quantity demanded. On the other hand, (a) and
(b) are considered direct causes.

It 1s often useful to 1solate the components on the basm of the
various direct causes:; 1n such cases, however, mdirect causes
should be kept clearly separated from direct causes. The sep-
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aration according to causes may not at all agree with the sep-
aration according to periods: one direct cause may be the origin
of movements of different periods; one and the same period can
occur in movements of different direct causes. In some 1n-

stances the separation by causes and by periods may coincide.
This will often be the case for seasonal movements that have

both a special cause and a special period which does not coin-
cide with the periods of movements due to other causes.

THE RELATIONSHIP BETWEEN THE MOVEMENTS
OF TWO SERIES

Having discussed the various types of movements and the
combination of these types of movements into one series, we
shall now deal with the relationship that may exist between the
movements of two series. These movements may be simple or
composite.

We refer purposely to the relationship that may exist between
the movements of two series. There need not be any relation-
ship between them. The movements may be entirely independ-
ent. In reality there would usually be a certain degree of rela-
tionship. The examples treated below are the ideal case of a
perfect relationship which can only be approximated in reality.
Two series of figures show an exact relationship (or, in math-
ematical language, a tunctional relationship) if for any given
value of the one series there is always a precisely defined value
of the other series. Often no such precise relationship is present,
but 1nstead any given value of the one series is always found to
be accompanied by approximately the same value of the other .
serles. In statistics such a relationship is called a ‘‘stochastic
relationship.” In the following pages we shall discuss some of
the most common functional relationships. _

- To indicate these relationships, we may make use of two
types of diagrams: one shows the movement of the two series in
time, preferably using the same time scale for both series: the
other shows both series on a ““scatter diagram.” Such a diagram
consists of a number of points in a rectangular system of co-ordi-
nates. Each point has two co-ordinates, of which one, the
2-co-ordinate, represents a value of the one series: and the
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other, the y-co-ordinate, the corresponding value of the other
series. In such a diagram there are, therefore, as many points as
there are values in each series. The time sequence of points can-
not be traced in the diagram unless each point is labeled accord-
ing to the time period to which it refers.

The simplest relationship between two series is that of equal-
ity. In that case the time diagrams of the two series cover each
other in every point, if one adopts the same vertical scale for
both series. In the scatter diagram, all points will lie on a
straight line running through the origin at an angle of 45 de-
grees to both axes.

The next simplest relationship between two series 1s that of
proportionality. In this case the time diagrams do not coincide,
if the same vertical scale 1s used for both series. They can, how-
ever, be made to coincide by a special choice of the units for the
vertical scale. If all figures of series ¥ are five times as large
as those of series X, then the choice of the unit for Y at one-
fifth of the unit for X will make the two series coincide. The
scatter diagram still shows points on a straight line through the
origin, but the slope of this line is now different. In this partic-
ular case the slope will be equal to a ratio of 5:1 (See Fig. 4).

One stage more complicated 1s the general linear relationship.
In this relationship there is proportionality between the
changes of the series but not between the absolute values of
them; as a consequence, the ratio of the changes in the series 1s
different from the ratio of their averages. The following two
series give an example of this relationship:

X : 10, 12, 11, 14, 12, 13 (average 12), and
Y : 20, 22, 21, 24, 22, 23 (average 22).

Here the changes of the two series are equal, but the ratio of the
averages 1s +%, not = 1.

A second example is shown in Figure 5. The figure used in
this diagram are as follows:

X : 10, 12, 11, 14, 12, 18 (average 12), and
Y : 20, 26, 23, 32, 26, 29 (average 26),

in which each change in ¥ is three times as large as the corre-
sponding change in X, whereas the ratio of the averages of the
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INTRODUCTION: TYPES OF MOVEMENTS 15

two series 1s 26 < 12, obviously different from 3. If one wanted
to make the graphs of these two time series coincide, it would
not be sufficient to select different scales for them ; it would also
be necessary to draw the lines at different levels. In our first
example 1t would be necessary to set the zero point for the ¥
series at the pomt —10 on the scale for X, in the second ex-
ample 1t would be necessary to make the scale for ¥ one-third
as great as the scale for X and, in addition, to set the zero point
of the Y scale at the point 31 on the X scale.
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F1c. 5.—General linear relationship between X and Y

If two variables are related by a general linear relationship, it
is sometimes said that their movement is parallel and also that
there is a linear correlation between them. To distinguish this
case from the one in which the relationship is only approximate
in the stochastic sense, it is said that the correlation is perfect.

It will readily be realized that, depending on the absolute
magnitudes of the fluctuations of the series and on their
averages, one series may have larger absolute fluctuations
while the other has larger relative fluctuations.

Equality, proportionality, and a general linear relationship
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may occur with a negative sign. In such instances the move-
ments of the two series are in opposite directions.

The three forms of functional relationship discussed can all
be represented by a straight line in a scatter diagram. We have
discussed them in some detail because it will be found that they
occur very frequently. There is, further, an infinite number of
curvilinear functions that can be represented by other than
straight lines in a scatter diagram. Curvilinear relationships
can have many different shapes, depending on the nature of the
relationship between the two variables. One example 1s given in
Figure 6, which shows the relationship between the price, p, of a

X |

] m—-1-«-!-““-&”-!!—&“-_“_“—.ﬂﬂ#m“"_—q-ﬂm—“Hmmﬂ-“

C :

Fic. 6.—Example of a curvilinear relationship between two variables as repre-
sented by the supply curve (p = price, ¥ = quantity supplied, and ¢ = productive
capacity).

commodity and the quantity supplied, z, on the assumption that
there 1s a certain given productive capacity, ¢, and that no
stocks are available. Starting from a relatively low price, every
Increase 1n price will initially produce a considerable increase
in the quantity supplied. As the total capacity is approached,
however, every further increase in the price by a constant
amount will produce a smaller and smaller increase in the
quantity supplied. The quantity supplied cannot exceed pro-
ductive capacity and will approach this magnitude asymptot-
1cally; the horizontal line drawn at the distance ¢ from the
origin 1s called the “asymptote.” In a time graph a curvilinear
relationship of this nature will be recognized by the fact that
the two series, though increasing and decreasing at the same
time, show a pronounced difference in shape; the peaks in the
p series will be much more pronounced and sharper than those
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in the x series. It will not be possible to make these series coln-
cide by an appropriate adjustment of the scales. This phenom-
enon will, in particular, be encountered with respect to the
prices and production of mineral raw materials in some periods
of boom, when production bottlenecks occur. I

We have so far discussed only the case in which the corre-
sponding values of the two series referred to the same moment of
time for the two economic magnitudes. If, however, there is a
causal relationship between the two variables and if the process
of causation which links ¥ to X takes a certain time, T, there
would be good reason to compare the value of X at a given
moment with the value of Y at a moment 7 later than the cor-
responding value of X, hence one would compare the value of
X at time ¢ with the value of ¥ at time ¢ + 7. If the two vari-
ables are plotted against time 1in the normal manner, the fluc-
tuations of ¥ will be shown to be lagging behind those of X; by
shifting the diagram of I to the left over a distance 7', the two
series can be made to coincide again, provided that appropriate
scales have been chosen for X and Y. Similarly, in the scatter
diagram the co-ordinates should be chosen in such a way that
the value of X at time £ 1s combined with the value of ¥ at
time ¢ + T, in order to obtain points which lie on a straight
line. In such instances we say that ¥ shows a lag with respect
to X, or that the relationship between ¥ and X i1s a lagged
relationship (Fig. 7).

In the case of two series with irregular movements, the pres-
ence of a lag can readily be observed empirically. If, however,
the two series have monotonic movements, the lag is almost
impossible to establish. If the movement is purely periodiec, it is
not possible to establish from the data the direction of the lag,
that 1s, whether Y lags behind X or X lags behind Y, unless one
has separate information concerning the order of magnitude of
the lag. .

Besides lagged relationships, many other relationships are
possible between two variables in which time plays a role. A
very common relationship In economic analysis 1s that of
cumulation. Series Y represents the cumulation of series X, if
the nth value for ¥ 1s equal to the sum of all values from 1 to n
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while X represents the excess of

sroduction over consumption for each time period. If X 1s g?ld
production, then Y represents the total gold stock (assuming
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that the consumption of gold may be neglected); if X is the net
increase of the number of houses during the year, then Y is the
stock of houses.

X fluctuates, ¥ will fluctuate too. Normally, the fluctua-
tions of ¥ will contain a trend component, unless the average
value of X equals zero. If the series X is a sine curve with zero
average, the 1 curve will also be represented by a sine curve.
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This may be proved mathematically and can also be seen from

the following example computed on the basis of approximate
values (compare Fig. 8):

t =0 1 2 3 4 5 6 7 8
X=0,0."7,1, 0.7, 0, —-0.7, —1, —0.7, 0, ete.
Y =0, 07, 1.7, 2.4, 2.4, 1.7, 0.7, 0, 0, etc. .

Although Y also shows a sine curve, it is lagged in comparison
to X, the peaks of ¥ are approximately one-fourth of the
period of fluctuation behind those of X. Any numerical experi-
ment will show that the cumulation of an irregular series will
not reproduce a series of the same shape.

Sine Curve

. .
iy gl - e i .

Cumulated Sine Curve

Fic. 8.—Sine curve and cumulation of sine curve

A purely empirical inspection of Figure 8 might lead one to
believe that the relationship between X and Y was a lagged
one, whereas in reality it is a cumulative relationship. Only
theoretical knowledge of the real relationship between vari-
ables can prevent erroneous inductions of the type just men-
tioned.

THE RELATIONSHIP AMONG MOVEMENTS OF
THREE OR MORE SERIES

In the preceding section we discussed the relationship be-
tween the movements of two series. The changes in two series
will be exactly parallel when the changes in the one are caused
by changes in the other and by nothing else. In the case of
economic phenomena, however, fluctuations in one variable are
usually due to fluctuations in more than one other variable. On
this account it will normally not be possible to find a relation-
ship between one of these causes and the variable in whose
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causation one is interested. Instead of the relationship between
two variables, we will now have to have recourse to more com-
plicated relationships. The simplest of these occurs when the
values of one variable are equal to the sum of the simultaneous
values of two other variables. The numerical example shown in

Example I may make this clear; in each year the value of

EXAMPLE I
g _ |
Year 1 0 3 4 5 | 6 7 8 9
Series A.......... 0 +2 0 0| —2| ~1| —~1| -+2 0
Series B.......... 0 +2 0 +1 0 0 0| —3 0
Series C.......... 0 0 0 -1} -2 —-1| ~1| +5 0 -

series 4 is equal to the sum of the values of series B and C. A
relationship of this nature can graphically best be represented
by time graphs. Figure 9 shows this for Example I. It will be
noted that certain of the characteristics of series B and certain
of those of series C can be found in series A. Thus, the first
peak in year 2 can be traced back to series B and the second
peak in year 8 to series C. The second peak 1s less pronounced
in A than it 1s in C because 1t 1s in part offset by a trough in
series B. The irregular depression in series 4 in years 5-7 is also
found in series C. In short, series A shows the joint effects of
series B and C. Neither series B nor series C can by itself ex-
plain series A, only their sum can explain it.

The relationship between series 4 which we want to explain
and the explanatory series B and C can be much more com-
plicated in many respects. To take a relatively simple case, it
may be that series B and C require to be multiplied each by a
certain coefficient before they are added up. An example of

this is worked out below and is also shown in Figure 9, in which
series A’ equals2 B + 1 C.

- EXAMPLE II

L T T T e

Year 1 2 3 4 5 6 v | 8 9

e e e e B By

Series A 0 | +4| 0 (4+1.5| —1(—0.5/—0.5|—3.5| 0
- 2XseriesB.......| 0 | 44 0O |+2 | 0] 0 0 |—6 0
s Xseries C....... l 0 0 0 |—-0.5, —1|—0.5|—0.5 [4+2.5 0

, .

;;;;;;;;
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It will be seen that the values of B are multiplied by 2 and
those of C' by 3 in order to yield 4’ by addition. Graphically, the
depression of 4’ in the years 5~7 can again be found in series C,
and the peak in year 2 is now more pronounced in series B.
A’ however, has a peak in year 4 which 4 did not have and
which is due to B; in the first example this peak was ofiset by a
trough in C. In year 8 the greater influence of series B now
dominates the peak in C; hence, there is a trough in 4’, whereas
in our first example there was a peak in A.

It would be possible to cite many more complicated cases. In

the examples given so far the relationships were additive, that
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Fie. 9—Examples of multiple correlation; 4 = B+ C; 4’ = 2 B + 1(
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is to say, 4 was obtained by the addition of B and (', 4" by the
addition of 2 B and % C. Sometimes more complicated math-
ematical relationships (multiplicative, exponential, etc.) may
prevail. It may, however, be proved that, for fluctuations that
are relatively small in proportion to the average of the series,
the more complicated operations will yield results only slightly
different from the results of appropriate additions. Thus, for
instance, the multiplication of two index numbers that deviate

only slightly from 1, as shown in Table 1, may, with a high degree

TABLE 1
MULTIPLICATION OF TWO INDEX NUMBERS
m———— ‘ | o | ___"""__“‘“’“"“""""‘_. _——
Year ! 2 g | 4 7 G 7 8 9
Series P.......... 1.02 |1.04 [0.99 [1.00 [0.98 [0.97 (1.02 [1.00 |0.98
Series @.......... 1.01 (0.99 | .98 [1.02 |1.00 {1.01 (1.02 |[0.97 (1.00
PXQ......... - .'1 03021.02960.9702/1.0200|0.9800/0.9797|1.0404/6 . 9700/0. 9800
| I S | |
TABLE £
APPROXIMATION OF PRODUCT BY SUM
I T | ' i ep———
Y car 1 Q 3 | 4 5 6 7 8 9
Denations: | i |
P............. 10.02 | 0.04/—0.01| 0.00 |—0.02(—0.03{ 0.02 | 0.00|—0.02
Q............. | .01 |— .01]— .02/ .02 00— .01] .02 [— .03] .00
Sum........... 0.03 | 0.03/—0.03 0.02 |—0.02 —o.oezl 0.04 [—0.03/—0.02

of approximation, bereplaced by adding to 1 the sum of the devia-
tions of each of the two series P and @, as shown by the figures
in Table 2.

If the two series have other averages or if other mathematical
operations have to be performed, the addition used as an ap-
proximation becomes somewhat different. But it will always be
possible to give a suitable approximation by addition. For this
reason, Example II has a very general significance. We shall
therefore discuss it in slightly more detail. '

The coefficients 2 and % by which series B and C are multi-
plied may be called “influence coefficients.” The series 2 B and
3 U, given on the last two lines of Example II, are called the in-
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Hluence of B on A’ and the influence of €' on A4’. If we desire to
represent these influences by one single number, by which we
may want to indicate whether the influence of B on 4’ is large
or small, we can use for this number the average deviation of the
standard deviation of 2 B or  C, respectively, as is known
from theoretical statistics. The theory of mathematical statis-
tics provides an answer to the question of how to select the
influence coefficients of the two series B and C in order to
obtain as good an approximation as possible to any given
series A". This 1s of particular importance if we want to verify
and give quantitative precision to a certain economic theory
which would state that the movements of the variable A4’
result from the movements of B and ¢ but which does not
indicate how large the relative influences are. This is the usual
situation in economic theory, namely, that it can give qualitative
but not quantitative indications about certain relationships. The
coefficients found by the methods developed in theoretical statis-
tics are usually called *‘regression coefficients.” If 4"’ 1s exactly
equal to the sum of a certain number times B and a certain num-
ber times C or, as we shall say, to the weighted sum of B and C
(as 1s the case in Example I for series A and in Example II for
series A’), then a perfect multiple correlation between A’ on
the one hand, and B and C, on the other hand, 1s said to exist; it
A" 1s not exactly equal to the weighted sum of B and C for all
periods of time, there 1s a certain degree of multiple correlation
which may be expressed by the multiple-correlation coefficient.
Reference 1s made to the textbooks on statistics for the condi-
tions which have to be satisfied 1n order to estimate, with a
stated degree of precision, regression coefficients on the basis
of series of figures for A", B, and C.

Example II, as shown in Figure 9, will be considered as the
prototype of a multiple relationship among more than two vari-
ables. The number of explanatory variables need, however, not
be limited to two; indeed, there may be any number. But,
whatever their number, the explanatory series will always have
to satisfy the condition that they must provide the explanation
for the peaks and troughs in the series to be explained. Thus,
not all the explanatory series can be straight lines. Applied to
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economic fluctuations, this would mean, for example, that it
would not be possible to explain cyclical fluctuations on the
basis of series which themselves show only a trend movement.
This statement would not seem to be redundant since, for ex-
ample, in certain theories the recovery phase of the business
cycle has been attributed to an increase in the population. Yet
this series shows almost exclusively a trend movement. Simi-
larly, changes in labor productivity cannot provide an explana-
tion for cyclical fluctuations, since for the economy as a whole
labor productivity normally shows a straight line or only a
very slightly curved line. ’



