
2.

Retractions in Comparing Prolog Semantics

A. de Bruin

Faculty of Economics,

Erasmus Universiteit, P.O.Box 1738, NL-3000 DR Rotterdam

E.P. de Vink

Department of Mathematics and Computer Science,

Vrije Universiteit, De Boelelaan 1081, NL-1081 HV Amsterdam

ABSTRACT We present an operational model O and a continuation based denotational model D for a

uniform variant of Prolog, including the cut operator. The two semantical definitions make use of

higher order transformations Φ and Ψ, respectively. We prove O and D equivalent in a novel way by

comparing yet another pair of higher order transformations Φ̃ and Ψ̃, that yield Φ and Ψ, respec-

tively, by application of a suitable abstraction operator.

Section 1 Introduction

In [BV] we presented both an operational and a denotational continuation based semantics

for the core of Prolog, and we proved these two semantics equivalent. We used a two step

approach, by first deriving these results for an intermediate language, obtained by stripping

the logic programming aspects (substitutions, most general unifiers and all that) from Prolog.

This resulted in the abstract language B in which only the control structure from Prolog

remained, such as the backtrack mechanism and the cut operator. After having compared the

operational and denotational meanings for B successfully we generalized as a next step the

two semantics to the case of Prolog while preserving their equivalence.

The language B will be investigated again in this paper, but now more as a guinea pig.

We will use it to test a new idea for proving equivalence of operational and denotational

semantics based on cpo’s. The main virtue of B in this respect is that although it is a sequen-

tial language it has a nontrivial control structure. In fact, the denotational semantics of this

language needs three continuations to adequately describe the flow of control.

We will discuss our new approach to equivalence proofs by comparing it with the stan-

dard way these proofs have been conducted so far. To this end, we first spend a few words

on operational semantics. The main idea behind this brand of semantics is to describe how

an abstract machine executes a program in the language of interest. The abstract machine is

defined by specifying the configurations it can be in, and by introducing a step function, map-

ping configurations to configurations, thus describing the behavior of the abstract machine.

Starting from an initial configuration Co , repeatedly applying the step function will deliver a

number of intermediate configurations Co , C 1, C 2, with Ci +1 = step Ci . The computation



3.

terminates when a final configuration has been reached.

Our operational meaning function O abstracts from these intermediate results however,

defining the meaning O[[ s ]] of a statement s as a state transformation, mapping initial states

to final states while recording the wanted observations. The final state is obtained by iterat-

ing the step function and this iteration can nicely be captured by taking a fixed point of a suit-

able higher order operator Φ.

Notice that, due to the abstraction of (most of) the intermediate configurations we made,

in general the operator Φ will not have a unique fixed point. For instance, suppose iterating

the step function fails to produce a final configuration, i.e., we deal with a nonterminating

computation. In that case we put O[[ s ]] = ⊥. However, other fixed points of Φ are possible,

yielding different results for such s. The fact that fixed points are not unique complicates

matters when it comes to prove O equivalent to D, the denotational meaning function. The

standard technique in such a proof is to show that a step of the abstract machine does not

affect the denotational meaning of the configurations being transformed. More technically, if

we have that step C = C ′, and if we extend D to a function I taking configurations as argu-

ments, then we have to show hat IC = IC ′. From this result we will then be able to infer hat

ICinitial = ICfinal , by induction on the number of steps needed. We then deduce that

($) D[[ s ]] σ = O[[ s ]] σ.

However, there is a flaw in this line of reasoning. The result ($) is only valid for terminating

computations. If iterating the step function does not produce a final configuration then the

above argument does not work. This means that in order to complete the equivalence proof

D = O, we have to derive the result that O[[ s ]] σ = ⊥ implies D[[ s ]] σ = ⊥. Unfortunately

this takes at least as much effort as was needed to derive the previous result. See for example

the proofs in [Ba1].

On the other hand if the operator Φ would have a unique fixed point then it would not

be necessary to derive this additional result. Uniqueness is guaranteed for instance when one

does not use cpo’s and a continuity argument to ensure the existence of the fixed points, but

when complete metric spaces are used instead and the operators are contracting functions on

these spaces. For in that case Banach’s theorem can be applied. In [KR] unicity of the fixed

point of the operational higher order operator Φ has been exploited successfully to derive

compact equivalence proofs for operational and denotational meanings along the lines

sketched above. A similar line of reasoning has been used in [BM]. The fact that our opera-

tor Φ admits more than one fixed point seems to be an essential consequence due to the fact

that we abstracted away from the intermediate configurations. For instance, it is not possible

to define in a straightforward way a contraction on metric spaces which yields the same

operational semantics.

The idea behind our equivalence proof is to introduce a slightly less abstract operational

semantics using a new operator Φ̃ that does have a unique fixed point. Our semantics is

made more concrete because it does not simply deliver observables σ as the result of a



4.

computation, but also additional information. The resulting states σ are preceded by a

number of clock ticks, a row of τ’s. (In algebraic approaches as e.g. [Mi] and [BeKl], τ
denotes a silent or internal step of a process.) Here the idea is that each τ in this row

corresponds with the execution of an elementary action by the abstract machine, i.e. one

iteration of the step function. Similarly for a nonterminating computation, we do not deliver

⊥ but an infinite row of τ’s instead. So ⊥ is reformulated as internal divergence, (as in

[BBKM]). Now, for the corresponding meaning functions Õ and D̃ a compact equivalence

proof can be given. In order to establish from this the equivalence of our original functions O

and D it is sufficient to show that there exists an abstraction operator strip, “a τ-remover” so

to speak, such that for all s and σ we have (*) O[[ s ]] σ = strip( Õ[[ s ]] σ ) and

D[[ s ]] σ = strip( D̃[[ s ]] σ ).

In the next section we will show that this idea can be made to work for a simple

language, the most complicated construct of which is the while statement. However it will

also become clear that the complexity of the over all proof has not diminished. This is

caused by the fact that substantial additional work has to be performed in proving the equali-

ties (*) above. On the other hand, the reasoning in these proofs is to a great extent indepen-

dent of the particular language investigated. The result O[[ s ]] σ = strip( Õ[[ s ]] σ ) is valid

for each operational semantics derived from (deterministic) step functions. In the proof of

D[[ s ]] σ = strip( D̃[[ s ]] σ ) a number a generic elements seems to be present as well, which

can be carried over unaltered to similar proofs for other languages. This observation is

worked out in section 3, where we present a more general theory on the relation between

abstract domains and concretizations thereof like the ones discussed above. We show that

the abstract domains can be considered as so called retracts of the more concrete ones. We

will derive a few theorems, related to those of [BMZ] and [Me] that enable us to prove

results as in (*) in a more smooth and elegant way. In the remaining sections this theory is

tested using the above described language B: Section 4 describes the operational and denota-

tional semantics of B. Section 5 will be devoted to the actual equivalence proof.

Acknowledgements. From the above it will be clear that our work relies heavily on that

of others. The immediate starting point of this paper is [KR]a where for the first time the

observation was made that compact equivalence proofs could be realized using higher order

transformations. To a great extent, we also benefit from the work on metric semantics of

concurrency performed by De Bakker e.a. E.g. [BZ], [BKMOZ], [BM]a, [Ba2]. It is a pleas-

ure to thank the forum formed by the members of the working group on concurrency, - Jaco

de Bakker, Frank de Boer, Joost Kok, Jan Rutten and others - for their comments and the

good scientific atmosphere they provided. We are also indebted to Philippe Darondeau for

his suggestions for improvement of the manuscript. Finally we are grateful to M279 for her

hospitality.



5.

Section 2 A Simple Example: the While Statement

In this section we will illustrate the basic idea behind our new equivalence proof, by sketch-

ing how such a proof can be given for the very simple language defined below.

(2.1) DEFINITION The set of elementary statements EStat is defined by

e ::= x :=t 4 i f b then s 1 else s 2 fi 4 while b do s od. The set of statements Stat is defined by

s ::= ε 4 e ;s.

As remarked in section 1, an operational semantics is defined via an abstract machine.

Such a machine, called a transition system, can be specified by giving its configurations

together with a relation between configurations which describes the step function. To avoid

too many details we assume the existence of an interpretation I from which the effect of exe-

cuting an assignment statement can be obtained, as well as the value of boolean expressions.

Notice that there is no transition defined from configurations of the form [ ε, σ ] . These are

the final configurations corresponding to terminated computations.

(2.2) DEFINITION

(i) The set of configurations Conf is defined as the collection of statement-state pairs

[ s,σ ] , i.e. Conf = { [ s,σ ] 4 s ∈ Stat, σ ∈ Σ }.

(ii) The step function → is the smallest subset of Conf × Conf such that

[ x :=t ;s,σ ] → [ s,σ′ ] where σ′ = I[[ x :=t ]] σ
[ if b then s 1 else s 2 fi ;s,σ ] → [ s 1;s,σ ] if I[[ b ]] σ = tt

[ if b then s 1 else s 2 fi ;s,σ ] → [ s 2;s,σ ] if I[[ b ]] σ = ff

[ while b do s ′ od ;s,σ ] → [ s ′;while b do s ′ od ;s,σ ] if I[[ b ]] σ = tt

[ while b do s ′ od ;s,σ ] → [ s,σ ] if I[[ b ]] σ = ff

(iii) The operational semantics O : Stat → Σ → Σ⊥ is defined by O[[ s ]] σ = µΦ([ s,σ ] )

where Φ : [ (Conf → Σ⊥) → (Conf → Σ⊥) ] is given by ΦO[ ε, σ ] = σ, ΦOC = OC ′ if

C → C′, and Σ⊥ denotes the flat cpo with least element ⊥.

Our denotational semantics will use continuations. Although this seems to be a bit too

heavy for such a simple language, we do not use direct semantics for two reasons. First of

all, the equivalence proof will proceed more smoothly when using continuations and

secondly, the language B - that will be studied in the sequel - cannot be given a satisfactory

direct semantics. (In order to model the cut operator this way one has to resort to cut-flags or

other kinds of indicators. See [JM], [DM], [Bd], [Vi].)

Our meaning function D is defined as the least fixed point of a higher order operator Ψ.

In fact, it does not matter much how D is defined (as long as it remains denotational), the

more usual approach based on environments as in [Ba1]a would work equally well, cf.



6.

[BM]a. The style of defining here is closer to [KR]a which we take as a starting point.

(2.3) DEFINITION

(i) The collections Cont of continuations and the set Meaning of meanings are given by

Cont = Σ → Σ⊥ and Meaning = Stat → [ Cont → Σ → Σ⊥ ] .

(ii) The denotational semantics D : Stat → Σ → Σst is defined by D[[ s ]] σ = µΨ[[ s ]] ξo σ
where ξo = λσ.σ and Ψ : [ Meaning → Meaning ] is given by

ΨM[[ ε ]] ξσ = ξσ,

ΨM[[ x :=t ]] ξσ = ξσ′ where σ′ = I[[ x :=t ]] σ,

ΨM[[ if b then s 1 else s 2 fi ]] ξσ =

M[[ s 1 ]] ξσ if I[[ b ]] σ = tt,

ΨM[[ if b then s 1 else s 2 fi ]] ξσ =

M[[ s 2 ]] ξσ if I[[ b ]] σ = ff,

ΨM[[ while b do s od ]] ξσ =

M[[ s ]] { M[[ while b do s od ]] ξ }σ if I[[ b ]] σ = tt,

ΨM[[ while b do s od ]] ξσ =

ξσ if I[[ b ]] σ = ff,

ΨM[[ e ;s ]] ξσ = M[[ e ]] { M[[ s ]] ξ }σ.

Before giving the new equivalence proof, we discuss the old approach for a while. First

of all one proves O ≤ D. The idea is to extend D to a intermediate function I defined on con-

figurations: I[ s, σ ] = D[[ s ]] σ. One then proves ΦI = I, in essence by checking this for all

possible configurations (cf. 2.2.ii, and the proof of 2.7). From this result O ≤ D follows

immediately, but in fact we have more than that. Because µΦ delivers results in Σ⊥ , a flat

domain, we have that for all s and σ such that µΦ[ s, σ ] = σ′ ≠ ⊥, also I[ s, σ ] = σ′ holds.

Therefore, in order to complete our proof we only need to show O[[ s ]] σ = ⊥ ⇒
D[[ s ]] σ = ⊥. This is most easily accomplished by showing that for all approximations Ψi⊥
of D we have Ψi⊥ ≤ O, and this can be proved by induction on i, checking all possible forms

a statement s can take.

This second half of the equivalence proof would not be needed if Φ would have a

unique fixed point: for ΦI = I would then imply I = µΦ and thus O = D. The idea now is to

make Φ a little bit more concrete, making it deliver its result in the cpo Σ̃
st

of streams instead

of the flat domain Σ⊥ . This will be accomplished by prefixing a result σ′ with a number of

τ’s, each of which denotes a “clock tick”, corresponding with an elementary step of our

abstract machine. The effect of all this will be that our new operator Φ̃ will indeed have a

unique fixed point (cf. lemma 2.5).



7.

(2.4) DEFINITION

(i) Put Σ̃ = Σ ∪ {τ} for some distinguished τ ∉ Σ. Σ̃ is ranged over by θ. Let Σ̃
st

denote the

cpo of streams over Σ̃, i.e. Σ̃
st

= Σ̃
∗

∪ Σ̃
∗

.⊥ ∪ Σ̃
ω

, and x <st y ⇔ ∃x ′ ∈ Σ̃
∗

∃y ′ ∈ Σ̃
st

\ {⊥ }: x = x ′.⊥ & y = x ′.y ′. (Cf. [Me]a, [MV].)

(ii) The step function → is the smallest subset of Conf × Σ̃ × Conf such that

[ x :=t ;s,σ ] →τ [ s,σ′ ] where σ′ = I[[ x :=t ]] σ
[ if b then s 1 else s 2 fi ;s,σ ] →τ [ s 1;s,σ ] if I[[ b ]] σ = tt

[ if b then s 1 else s 2 fi ;s,σ ] →τ [ s 2;s,σ ] if I[[ b ]] σ = ff

[ while b do s ′ od ;s,σ ] →τ [ s ′;while b do s ′ od;s,σ ] if I[[ b ]] σ = tt

[ while b do s ′ od ;s,σ ] →τ [ s,σ ] if I[[ b ]] σ = ff

(iii) The operational semantics Õ : Stat → Σ → Σ̃
st

is defined by Õ[[ s ]] σ = µΦ̃([ s,σ ] )

where Φ̃ ∈ [ (Conf → Σ̃
st

) → (Conf → Σ̃
st

) ] is given by Φ̃O[ ε,σ ] = σ,

Φ̃OC = τ d OC ′ if C →τ C ′.

Notice that definitions 2.2(ii) and 2.4(ii) are exactly the same except for the labels τ.

It is instructive to observe the relation between the functions O and Õ. We observe,

without proof that O[[ s ]] σ = σ′ ⇔ ∃k ∈ IN:Õ[[ s ]] σ = τk.σ′ and O[[ s ]] σ = ⊥ ⇔
Õ[[ s ]] σ = τω . Of course a similar result is true for µΦ and µΦ̃. Notice that this implies that

for all configurations C we have that µΦ̃C is maximal in Σ̃
st

and this again means that µΦ̃
itself is maximal. Therefore µΦ̃ is not only the least fixed point of Φ̃; it is the only one!

(2.5) LEMMA Φ̃ has a unique fixed point.

PROOF We prove that µΦ̃ is maximal, from which it follows that µΦ̃ is unique. The proof is

by contradiction. Suppose µΦ̃ is not maximal. Then there exists at least one C with the pro-

perty that µΦ̃C is not maximal in Σ̃
st

, i.e. µΦ̃C must be of the form x.⊥ . Now choose from

the set of all configurations with this property one configuration, say C
33

, such that µΦ̃C
33

has

minimal length.

Because µΦ̃ is a fixed point, we have µΦ̃C = Φ̃( µΦ̃C ) = τ.µΦ̃C ′ for some C ′ ∈ Conf such

that C → C ′. This however means that µΦ̃C ′ is also of the form x.⊥, which contradicts the

minimality of 4 µΦ̃C
33
4 . 5

We now have to define a denotational semantics D̃ which should be equivalent with Õ.

This is done below. Notice that some care has to be taken in adding τ’s in the defining

clauses of Ψ̃ as compared to the definition of Ψ in 2.3. (Notice furthermore that, although

our notation does not show this, the standard continuation ξo now delivers a one element

stream from Σ̃
st

, whereas in definition 2.3 a single element in Σ⊥ was delivered. We tacitly

consider Σ⊥ as a subcpo of Σ̃
st

.)



8.

(2.6) DEFINITION

(i) The collections Cont˜ of continuations and the set Meaning˜ of meanings are given by

Cont˜= Σ → Σ̃
st

and Meaning˜= Stat → [ Cont˜→ Σ → Σ̃
st

] .

(ii) The denotational semantics D̃ : Stat → Σ → Σ̃
st

is defined by D̃[[ s ]] σ = µΨ̃[[ s ]] ξo σ
where ξo = λσ.σ and Ψ̃ : [ Meaning˜→ Meaning˜] is given by

Ψ̃M[[ ε ]] ξσ = ξσ,

Ψ̃M[[ x :=t ]] ξσ = τ d ξσ′ where σ′ = I[[ x :=t ]] σ,

Ψ̃M[[ if b then s 1 else s 2 fi ]] ξσ = τ d M[[ s 1 ]] ξσ if I[[ b ]] σ = tt,

Ψ̃M[[ if b then s 1 else s 2 fi ]] ξσ = τ d M[[ s 2 ]] ξσ if I[[ b ]] σ = ff,

Ψ̃M[[ while b do s od ]] ξσ =

τ d M[[ s ]] { M[[ while b do s od ]] ξ }σ if I[[ b ]] σ = tt,

Ψ̃M[[ while b do s od ]] ξσ = τ d ξσ if I[[ b ]] σ = ff,

Ψ̃M[[ e ;s ]] ξσ = M[[ e ]] { M[[ s ]] ξ }σ.

After extending D̃ into an intermediate function Ĩ acting on configurations we have the

following main lemma.

(2.7) LEMMA Define Ĩ : Conf → Σ̃
st

by Ĩ( [ s,σ ] ) = D̃[[ s ]] σ. Then it holds that Φ̃Ĩ = Ĩ.

PROOF We have to prove Φ̃ĨC = ĨC for all configurations C. We only consider the case

C = [ while b do s ′od;s,σ ] with I[[ b ]] σ = tt. Then on the one hand Φ̃ĨC =

τ d Ĩ[ s ′;while b do s ′ od;s,σ ] = τ d D̃[[ s ′;while b do s ′ od ;s ]] σ, and on the other ĨC =

D̃[[ while b do s ′ od ;s ]] σ = µΨ̃[[ while b do s ′ od;s ]] ξo σ =

µΨ̃[[ while b do s ′ od ]] { µΨ̃[[ s ]] ξo }σ =

τ d µΨ̃[[ s ′ ]] { µΨ̃[[ while b do s ′ od ]] { µΨ̃[[ s ]] ξo } }σ =

τ d µΨ̃[[ s ′ ]] { µΨ̃[[ while b do s ′ od;s ]] ξo }σ = τ d µΨ̃[[ s ′;while b do s ′ od ;s ]] ξo σ =

τ d D̃[[ s ′;while b do s ′ od;s ]] σ. 5

This lemma and lemma 2.5 establish the first part of our proof, viz. Õ = D̃ since this fol-

lows from µΦ̃ = I. In order to derive O = D we introduce an operator which removes the τ’s

from the results of Õ and D̃, cf. the remarks following definition 2.4. This abstraction opera-

tor strip is defined as follows.

(2.8) DEFINITION The function strip ∈ [ Σ̃
st

→Σ⊥ ] is defined by strip = µΡ where

Ρ ∈ [ [ Σ̃
st

→Σ⊥ ] → [ Σ̃
st

→Σ⊥ ] ] is defined by Ρρ⊥ = ⊥, Ρρε = ε, Ρρ(τ. x) = ρx,

Ρρ(σ. x) = σ.



9.

So strip yields the first proper state of a stream over Σ̃. Notice that this operator Ρ
indeed has the functionality as claimed, and that therefore strip is continuous. The next two

lemma’s now furnish the last results needed to prove O = D.

(2.9) LEMMA For all s and σ: O[[ s ]] σ = strip( Õ[[ s ]] σ ).

PROOF The same result holds for all approximations of O and Õ, i.e. we have

Φi⊥ = strip(Φ̃
i
⊥). This can be proved by induction on i. The lemma now follows from the

continuity of strip. 5

(2.10) LEMMA For all s and σ: D[[ s ]] σ = strip( D̃[[ s ]] σ ).

PROOF We first prove a somewhat stronger fact about the approximations: If for some

ξ ∈ Cont, ξ̃ ∈ Cont˜ we have ξ = strip ° ξ̃, then for all i, s and σ: Ψi⊥ [[ s ]] ξσ =

strip(Ψ̃
i
⊥ [[ s ]] ξ̃σ). This fact can be proved by induction on i, checking all possibilities for s.

As an example we consider the statement while b do s od, evaluated in a state in which b is

true. Ψi⊥ [[ while b do s od ]] ξσ = Ψi −1⊥ [[ s ]] { Ψi −1⊥ [[ while b do s od ]] ξ }σ. Now

from the induction hypothesis we learn that Ψi −1⊥ [[ while b do s od ]] ξ =

strip(Ψ̃
i −1

⊥ [[ while b do s od ]] ξ̃) and applying the induction hypothesis again, using this

fact we infer Ψi −1⊥ [[ s ]] { Ψi −1⊥ [[ while b do s od ]] ξ } =

strip(τ d Ψ̃
i
⊥ [[ while b do s od ]] ξ̃σ). 5

From the above lemmas and lemma 2.7 we derive the equivalence of the operational and

denotational semantics for B as outlined before.

(2.11) THEOREM O = D. 5

Let us compare the new equivalence proof with the older one discussed after definition

2.3. Indeed, the core of our proof (lemma 2.7) is more compact now, but we had to pay a

price: lemmas 2.9 and 2.10 had to be proven as well. For lemma 2.9 this is no big problem

though. This proof does not depend on the underlying language, but only on the way the

operator Φ has been derived from the transition system. Therefore this lemma can be used

for other languages as well, (cf. section 5), it needs to be proven only once.

The proof of lemma 2.10 seems to depend more on the underlying language. At first

sight it looks like the work we disposed of in lemma 2.7 now bounces back at us. However

in this proof as well there is a language independent part. In order to see this it is worthwhile

to study the relation between definition 2.6 and 2.3. In the latter one we inserted τ’s while in

the former one we do not have such clock ticks. Notice that if we omit the τ’s from defini-

tion 2.6 we get definition 2.3 back. Notice also that there is a similar relation between defini-

tions 2.4 and 2.2. With some abuse of notation this relation can be written as

(2.2) = strip(2.4) and (2.3) = strip(2.6).



10.

Now these definitions established operators Φ, Ψ, Φ̃ and Ψ̃, and by taking least fixed

points we arrive at the functions O, D, Õ and D̃. For these resultant functions we have proven

a similar result as claimed for the definitions: O = strip(Õ) and D = strip(D̃), (again with some

abuse of notation). We would like to have a generic theorem that would provide us with the

above relations in one blow: Let ∆̃ be a definition of some higher order operator Θ̃ and let ∆
be the same definition, only without τ’s, defining an operator Θ, (i.e. ∆ = strip(∆̃). Then,

under certain restrictions on the form of ∆̃ we have µΘ = strip(µΘ̃).

In the next sections we will develop some theory in which these ideas are worked out.

Section 3 Retractions

In this section we develop a little theory about pairs of cpo’s, one of which can be considered

less abstract than the other. We will give sufficient conditions under which the least fixed

point of a transformation maps on the least fixed point of its abstract version.

(3.1) DEFINITION Let D, D̃ be cpo’s. D is called a retract of D̃ if there exist two continuous

mappings i : D → D̃, j : D̃ → D such that j ° i = idD .

We write in the above situation D ≤i, j D̃ or just D ≤ D̃. If D ≤i, j D̃ then i is an embed-

ding and j is strict. (Injectivity of i follows directly from j ° i = idD ; strictness of j follows

from j(⊥D̃) ≤D j(i(⊥D)) = ⊥D .) In the context of D ≤i, j D̃ we call i the inclusion and j the

retraction, respectively.

Consider the cpo’s D = Σ⊥ , D̃ = Σ̃
st

augmented with the stream ordering. Let i : D → D̃

be the inclusion and let j : D̃ → D be defined by j = strip, cf. section 2. Then we have

j ° i(⊥) = strip(⊥) = ⊥ and j ° i(σ) = strip(σ.ε) = σ. So D ≤i, j D̃, i.e. Σ⊥ ≤i, strip Σ̃
st

.

The relation ≤i, j between cpo’s is - roughly speaking - one half of the subdomain ord-

ering in the category CPO. For the subdomain ordering there is the additional requirement

that i ° j ≤ idD̃ . See [Pl].

Given cpo’s D, D̃ the pair of continuous functions i, j such that D ≤i, j D̃ is not unique.

It is already the case (contrary to the subdomain ordering) that for fixed inclusion i there exist

several retractions j such that D ≤i, j D̃. For example, take D = D̃ = IN ∪ { ∞ } together with

the standard ordering. Define i : D → D̃ by i(d) = 2d. Define j 1, j 2 : D̃ → D by

j 1(d̃) =  d̃ /2 and j 2(d̃) =  d̃ /2 . Clearly both j 1 and j 2 are continuous and satisfy

j 1 ° i = idD , j 2 ° i = idD .



11.

(3.2) DEFINITION Suppose D ≤i, j D̃, E ≤k, l Ẽ. A mapping φ̃ : D̃ → Ẽ is called canonical if

there exists φ : D → E such that l ° φ̃ = φ ° j. We define the function space D̃ ∼> Ẽ of canoni-

cal mappings from D̃ to Ẽ by D̃ ∼> Ẽ = { φ̃ : D̃ → Ẽ 4 φ̃ canonical }.

If φ̃ : D̃ → Ẽ is canonical, then there exists a unique φ : D → E such that l ° φ̃ = φ ° j. For

if φ1, φ2 : D → E with l ° φ̃ = φ1 ° j = φ2 ° j then we have φ1 = φ1 ° j ° i = l ° φ̃ ° i = φ2 ° j ° i =

φ2.

If D is a retract of D̃, say D ≤i, j D̃, then we have an equivalence relation ∼D on D̃

(induced by j) defined by d ∼D d ′ ⇔ j(d) = j(d ′). For φ̃ : D̃ → Ẽ we reformulate canonicity

in terms of the equivalence relations ∼D and ∼E . We will have the equivalence of (i)

φ̃ : D̃ → Ẽ is canonical and (ii) the induced mapping on equivalence classes

φ̃ : D̃ / ∼D → Ẽ / ∼E is well defined.

(3.3) LEMMA Suppose D ≤i, j D̃, E ≤k, l Ẽ. Then it holds that φ̃ : D̃ → Ẽ is canonical ⇔
∀d,d ′ ∈ D̃: d ∼D d ′ ⇒ φ̃(d) ∼D φ̃(d ′).
PROOF ″⇒″ Choose φ : D → E such that l ° φ̃ = φ ° j. Let d, d ′ ∈ D̃ such that d ∼D d ′, i.e.

j(d) = j(d ′). Then we have l(φ̃(d)) = φ( j(d)) = φ( j(d ′)) = l(φ̃(d ′)), so φ̃(d) ∼E φ̃(d ′).
″⇐″ Define φ : D → E by φ = l ° φ̃ ° i. Let d ∈ D̃. Then we have φ̃(i( j(d))) ∼E φ̃(d) and

φ( j(d)) = l(φ̃(i( j(d)))) = l(φ̃(d)), since i( j(d)) ∼D d. Conclusion: l ° φ̃ = φ ° j. 5

The above lemma is not very deep but is is helpful in proving that D̃ ∼> Ẽ is a subcpo of

the function space D̃ → Ẽ, since in the presence of 3.3 the proof takes place “in the world of

D̃ and Ẽ.”

(3.4) LEMMA Suppose D ≤i, j D̃, E ≤k, l Ẽ. Then D̃ ∼> Ẽ is a cpo.

PROOF Sufficient to prove: for a chain 〈 φn 〉n in D̃ ∼> Ẽ is φ = lubn φn canonical. Suppose

d ∼D d ′. Then by continuity of l and canonicity of φn : l(φ(d)) = l( lubn φn(d)) =

lubn l(φn(d)) = lubn l(φn(d ′)) = l( lubn φn(d ′)) = l(φ(d ′)) , so φ(d) ∼E φ(d ′). 5

Suppose D and E are retracts of D̃ and Ẽ, respectively. The function space D → E then,

will be a retract of the function space D̃ → Ẽ. More precisely, if D ≤i, j D̃ and E ≤k, l Ẽ then

( D → E ) ≤I, J ( D̃ → Ẽ ) where I = λφ . k ° φ ° j and J = λφ̃ . l ° φ̃ ° i. Continuity of I, J follows

from the continuity of i through l. Furthermore J ° I = λφ . l ° k ° φ ° j ° i = λφ . idE ° φ ° idD =

idD→E . Analogously, if V is a set of values and D ≤i, j D̃ then V → D ≤I, J V → D̃ where

I = λφ . i ° φ and J = λφ̃ . j ° φ̃.

Notice, for φ : D → E is I(φ) : D̃ → Ẽ canonical: if d ∼D d ′ then I(φ)(d) = k(φ( j(d))) =

k(φ( j(d ′))) = I(φ)(d ′) and hence I(φ)(d) ∼E I(φ)(d ′). So we have D → E ≤ D̃ ∼> Ẽ.



12.

Moreover I and J preserve continuity, i.e. φ ∈ [ D → E ] ⇒ I(φ) ∈ [ D̃ → Ẽ ] and

φ̃ ∈ [ D̃ → Ẽ ] ⇒ J(φ̃) ∈ [ D → E ] . Therefore we have [ D → E ] ≤ [ D̃ → Ẽ ] . Combina-

tion of this two facts yields [ D → E ] ≤ [ D̃ ∼> Ẽ ] .

The notion of a retract was introduced here with the comparison of fixed points of

higher order transformations in mind. By virtue of theorem 3.6 below it would therefore be

convenient to have available a means for checking canonicity of these (higher order) transfor-

mations.

(3.5) LEMMA

(i) Choose cpo’s D ≤i, j D̃, E ≤k, l Ẽ, F ≤m, n F̃. Fix Φ : D̃ → Ẽ → F̃. Then it holds that

Φ : D̃ ∼> Ẽ ∼> F̃ ⇔ ∀d,d ′ ∈ D̃, ∀e,e ′ ∈ Ẽ: d ∼D d ′ ∧ e ∼E e ′ ⇒ Φ(d)(e) ∼F Φ(d ′)(e ′).
(ii) Let V be a set, D, D̃, E, Ẽ cpo’s such that D ≤i, j D̃, E ≤k, l Ẽ and fix Φ : D̃ → V → Ẽ.

Then it holds that Φ : D̃ ∼> V → Ẽ ⇔ ∀d, d ′ ∈ D̃ ∀v ∈ V: d ∼D d ′ ⇒
Φ(d)(v) ∼E Φ(d ′)(v).

PROOF We only check (i). For φ, φ′ ∈ Ẽ ∼> F̃ we have φ ∼E→F φ′ ⇔
[ e ∼E e ′ ⇒ φ(e) ∼F φ′(e ′) ] . For it holds that φ ∼E→F φ′ ⇔ n ° φ ° k = n ° φ′ ° k ⇔
∀e ∈ E : n(φ(k(e))) = n(φ′(k(e))) ⇔ ∀e ∈ E : φ(k(e)) ∼F φ′(k(e)) ⇔
[ e ∼E e ′ ⇒ φ(e) ∼F φ′(e ′) ] since k(l(e)) ∼E e. 5

Let ∼ be the equivalence relation induced by strip on the several domains. We verify

that Φ̃ ∈ ( Conf → Σ̃
st

) ∼> ( Conf → Σ̃
st

). Choose O, O ′ ∈ Conf → Σ̃
st

such that O ∼ O ′ and

pick C ∈ Conf. If C = [ ε, σ ] , then Φ̃OC = σ ∼ σ = Φ̃O ′C. If C → C ′ then Φ̃OC = τ.O(C) ∼
τ.O ′(C) = Φ̃O ′C since by assumption O ∼ O ′ and x ∼ y ⇒ τ.x ∼ τ.y.

Suppose D ≤i, j D̃, E ≤k, l Ẽ and F ≤m, n F̃. Say E → F ≤K, L Ẽ → F̃ where

K = λψ . m ° ψ ° l and L = λψ̃ . n ° ψ̃ ° k. Then D → E → F ≤I, J D̃ → Ẽ → F̃ where Iφd̃ẽ =

K( φ( jd̃) )ẽ = m( φ( jd̃)(lẽ) ) and J φ̃de = L( φ̃(id) )e = n( φ̃(id)(ke) ). Slightly more general we

have, if D α ≤ i α , j α D̃ α for α ∈ { 1, .. , n } and E ≤k, l Ẽ then D 1 → .. → Dn → E ≤I, J

D̃ 1 → .. → D̃n → Ẽ where IΦd̃ 1 .. d̃n = k( Φ( j 1d̃ 1) .. ( jnd̃n) ) and JΦ̃d 1 .. dn =

l( Φ̃(i 1d 1) .. (indn) ). Similarly it is possible to extend lemma 3.5: Φ: ( D̃ 1 → .. → D̃n → Ẽ )

→ ( D̃ 1 → .. → D̃n → Ẽ ) we have Φ ∈ ( D̃ 1 ∼> .. ∼> D̃n ∼> Ẽ ) ∼>

( D̃ 1 ∼> .. ∼> D̃n ∼> Ẽ ) ⇔ d 1 ∼1 d1
′ , .. , dn ∼n dn

′ ⇒ Φd 1 .. dn ∼E Φd1
′ .. dn

′ . We will use

this unraveling of the notion of canonicity in section 5.

Finally in this section we arrive at the theorem that relates least fixed points of a

transformation in the function space D̃ → D̃ to the least fixed point of its retract in the func-

tion space D → D. This theorem is strongly related to the Fixed Point Transformation



13.

Lemma. (See [BMZ]a, [Me]a.)

(3.6) THEOREM Suppose D ≤i, j D̃. Let φ̃ : D̃ → D̃ be continuous and canonical. Put

J(φ̃) = φ. Then φ : D → D is continuous with µφ = j(µφ̃).

PROOF Clearly, φ is continuous by definition of J. By canonicity of φ̃ we have φ ° j = j ° φ̃:

φ( j(d)) = J(φ̃)( j(d)) = j(φ̃(i( j(d)))) = j(φ̃(d)) since i( j(d)) ∼D d.

By induction on n we derive j(φ̃
n
(⊥D̃)) = φn(⊥D). Basis, n=0: Directly from the strict-

ness of j. Induction step, n > 0: j(φ̃
n
(⊥D̃)) = j(φ̃(φ̃

n −1
(⊥D̃))) = φ( j(φ̃

n −1
(⊥D̃))) =

φ(φn −1(⊥D)) = φn(⊥D) by the equality j ° φ̃ = φ ° j and the induction hypothesis. By con-

tinuity of j we conclude: j(µφ̃) = j( lubn φ̃
n
(⊥D̃) ) = lubn j(φ̃

n
(⊥D̃)) = lubn φn(⊥D) = µφ. 5

Section 4 Operational Semantics and Denotational Semantics for B

In this section we introduce the abstract backtracking language B. This uniform language

was studied also in [BV]a for it captures the control flow of Prolog with cut, the latter being

the main interest of the particular paper. (See also [BaKo], [Vi]a, [Ba2]a for similar uses of

intermediate abstracta in deriving sound denotational semantics for logic programming

languages.) In the present paper however, we will focus on the residue B itself to serve as a

case study for our method of comparing operational and denotational semantics.

(4.1) DEFINITION Fix a set of actions Action and a set of procedure names Proc. We define

the set of elementary statements EStat = { a, fail, ! , s 1 or s 2, x 4 a ∈ Action, si ∈ Stat,

x ∈ Proc }, the set of statements Stat = { e 1: .. :er 4 r ∈ IN, ei ∈ EStat } and the set of declara-

tions Decl = { x 1←s 1:..:xr←sr 4 r ∈ IN, xi ∈ Proc, si ∈ Stat, i ≠ j ⇒ xi ≠ xj }. The back-

tracking language B is defined by B = { d | s 4 d ∈ Decl, s ∈ Stat }.

So a B program is a declaration together with a statement. Such a statement is a -possi-

bly empty - list of elementary statements of one of the formats action a, procedure variable x,

explicit failure fail, cut operator ! and alternative composition s 1 or s 2.

We let a range over Action, x over Proc, e over EStat, s over Stat and d over Decl. We

write x←s ∈ d if x←s = xi←si (for some i) or if s = fail otherwise. (By this convention we

do not have free procedure variables in a statement, since every x is declared in d having by

default the procedure body fail.)

(4.2) DEFINITION Fix a set Σ of states. Define the set of generalized statements by GStat =

{ 〈s 1 , D 1〉 : .. : 〈sr , Dr〉 4 r ∈ IN, si ∈ Stat, Di ∈ Stack }. Let γ denote the empty generalized

statement. Define the set of frames by Frame = { [ g,σ ] 4 g ∈ GStat, σ ∈ Σ } and the set of



14.

stacks by Stack = { F 1: .. Fr 4 r ∈ IN, Fi ∈ Frame }. We use Ε to denote the empty stack.

Next we describe the operational meaning for B. Consider the program d | s and a state

σ. The declaration d induces a transition system (also called d). The meaning O[[ d | s ]] σ
then will be the stream of labels of the computation with respect to the transition system d

starting from an initial configuration associated with s and σ.

We introduce the collection of Σ-transition systems TS by TS =

Stack →part ( Stack ∪ Σ × Stack ). For t ∈ TS we shall write S →t S ′ if t(S) = S ′ ∈ Stack and

S → t
σ S ′ if t(S) = (σ,S ′) ∈ Σ × Stack. We fix an action interpretation I : Action → Σ →part Σ,

that reflects the effect of the execution of an action on a state. (The language B gains flexi-

bility if actions are allowed to succeed in one state, while failing in another.)

(4.3) DEFINITION Let d ∈ Decl. d induces a transition system d in TS which is defined as the

smallest element of TS (with respect to ⊆) such that

(i) [ γ , σ ] : S →d
σ S

(ii) [ 〈ε , D〉:g , σ ] : S →d [ g , σ ] : S

(iii) [ 〈a; s , D〉:g , σ ] : S →d [ 〈s , D〉:g , σ′ ] : S if σ′ = I(a)(σ) exists

[ 〈a; s , D〉:g , σ ] : S →d S otherwise

(iv) [ 〈fail;s , D〉:g , σ ] : S →d S

(v) [ 〈! ; s , D〉:g , σ ] : S →d [ 〈s , D〉:g , σ ] : D

(vi) [ 〈x ′; s , D〉:g , σ ] : S →d [ 〈s ′,S〉:〈s , D〉:g , σ ] : S where x ′←s ′ ∈ d

(vii) [ 〈(s 1 or s 2) ; s , D〉:g , σ ] : S →d F 1 : F 2 : S

where Fi = [ 〈si ; s , D〉:g , σ ] ( i =1, 2)

A stack S ∈ Stack is a stack of alternatives. Each alternative, i.e. each frame, can be

thought of as holding a (partial) elaboration of an initial statement-state pair, also referred to

as the original goal. The top frame on the stack is the alternative to be tried first. There is no

transition specified for the empty stack.

If the top frame F holds no proper statements, i.e. F = [ γ, σ ] , the state σ is outputted

on the transition, since the initial goal has been solved yielding σ, and the computation con-

tinues with the alternatives embodied by the remainder of the stack. (For we want to deliver

all the answers for the initial goal.) If the top frame does contain a proper statement, say

F = [ 〈s , D〉:g, σ ] , an internal transition is made, that depends on the structure of s. The

empty component 〈ε , D〉 is just skipped.

In case of a; s the action interpretation I is consulted for the result of action a in state σ.

If a transforms σ successfully into a new state σ′, the state of the frame F is changed accord-

ingly and the computation continues with the statement s in F. If a can not be executed suc-

cessfully in state σ, i.e. Iaσ is not defined, this will be a failure for the whole frame F: the



15.

alternative is pushed of the stack and the computation continues with the alternatives left on

the failure stack S. An explicit fail is handled similarly.

A cut can always be executed with success. But, there is a side effect. To implement

this side-effect we make use of the cut information represented by the dump stack associated

with a statement. This dump stack contains the alternatives that were open at the moment the

statement was introduced. Executing a cut means restoring these alternatives which amounts

to removal of the alternatives that were created after this (occurrence of) ! was introduced.

So in the right-hand side the failure stack S will be replaced by the dump stack D.

In case of a procedure call we apply body replacement. Thus we introduce a new state-

ment, viz. s ′ in the top frame. Since S consists of the alternatives that are open at this crea-

tion time of s ′ we attach to s ′ the stack S as its dump stack. In case of an alternative compo-

sition s 1 or s 2 the top frame splits into two frames. The uppermost corresponds to s 1, the

other is associated with s 2. So the alternative induced by s 1 will be tried first.

We will associate with a declaration d and its induced transition system →d an answer

function αd : Stack → Σst that for stacks S yields the concatenation of the σ-labels of the com-

putation starting from C according to the transition system d. We use a higher-order transfor-

mation Φd for a fixed point definition of αd .

(4.4) DEFINITION Let d ∈ Decl. Define Φd ∈ [ ( Stack → Σst ) → ( Stack → Σst ) ] by

Φd(α)(E) = ε, Φd(α)(S) = α(S ′) if S →d S ′, Φd(α)(S) = σ d α(S ′) if S →d
σ S ′. The answer

function αd: Stack → Σst associated with the Σ-transition system d is defined by αd = µΦd .

It is straightforward to check that Φd is well-defined and thus that its least fixed point

exists. This answer function is used to formulate the operational semantics for B.

(4.5) DEFINITION The operational semantics O: B → Σ → Σst for the backtracking language

B is defined by O(d | s)(σ) = αd( [ 〈 s,Ε 〉,σ ] ) where αd is the answer function associated

with d.

Next we define a denotational semantics for B.

(4.6) DEFINITION

(i) We define the set of failure continuations FCont = Σst , the set of cut continuations

CCont = Σst , the set of success continuations SCont = [ FCont → [ CCont → Σ →
Σst ] ] , the set of meanings Meaning = Stat → [ SCont → [ FCont → [ CCont → Σ →
Σst ] ] ] . We denote by σ, φ, κ, ξ and M typical elements of Σ, FCont, CCont, SCont

and Meaning, respectively.

(ii) The denotational semantics D: B → Σ → Σst for the backtracking language B is defined



16.

by D(d | s)(σ) = Md[[ s ]] ξo φoκoσ where ξo = λφκσ.σ d φ and φo = κo = ε. Here Md is

the least fixed point of Ψd ∈ [ Meaning → Meaning ] defined by

ΨdM[[ ε ]] ξφκσ = ξφκσ
ΨdM[[ a ]] ξφκσ = ξφκσ′ if σ′ = I(a)(σ) exists

ΨdM[[ a ]] ξφκσ = φ otherwise

ΨdM[[ fail ]] ξφκσ = φ
ΨdM[[ ! ]] ξφκσ = ξκκσ
ΨdM[[ s 1 or s 2 ]] ξφκσ = M[[ s 1 ]] ξ{M[[ s 2 ]] ξφκσ}κσ
ΨdM[[ x ]] ξφκσ = M[[ s ]] {λφ

3
κ
3

.ξφ
3

κ}φφσ where x←s ∈ d

ΨdM[[ e ; s ]] ξφκσ = M[[ e ]] {M[[ s ]] ξ}φκσ

We leave it to the reader to verify the well-definedness of Ψ but comment briefly on the

intuition behind the clauses above.

The transformation is triggered by the statement s. In case of an empty statement we

consider the initial statement to be executed successfully. So the success continuation is

applied to the particular arguments. In case of a primitive action a that transforms the state σ
into the state σ′ we also apply the success continuation but now to the new state σ′. If a fails

in state σ we deliver the failure continuation φ as a denotation. Analogously for the explicit

fail. A cut operator can always be executed successfully but as a side effect the failure con-

tinuation is replaced by the cut continuation. For the alternative composition we evaluate the

first alternative s 1 according to the meaning M and add the other alternative s 2 on top of the

failure continuation. Procedure calls are handled by means of body replacement. The

several continuations are changed appropriately. A sequential composition is denoted by the

meaning of its first elementary statement while pushing the remainder into the success con-

tinuation.

The denotational semantics for B can be computed given a program d | s from the least

fixed point Md of the transformation Ψd using so called standard continuations. Note the for-

mat of the standard success continuation ξo = λφκσ.σ d φ. This will amount to delivering all

remaining alternatives after the first solution is computed.

Section 5 Relating O and D

In this section we will relate the operational and denotational semantics for B of the previous

section. This will be done similarly to the case of the simple while language of section 2: We

extend the defining transformations Φ and Ψ to less abstract transformations Φ̃ and Ψ̃.

Using the results on retracts we infer from the equivalence of Φ̃ and (an variant of) Ψ̃ the

equivalence of O and D.



17.

Recall from section 2 the definition of the cpo Σ̃
st

of streams over Σ̃. By Σst we denote

the subcpo of Σ̃
st

induced by Σ∗ ∪ Σ∗ .⊥ ∪ Σω .

(5.1) DEFINITION The function strip : Σ̃
st

→ Σst is defined by strip = µΡ where Ρ ∈

[ [ Σ̃
st

→ Σst ] → [ Σ̃
st

→ Σst ] ] is defined by Ρρ⊥ = ⊥, Ρρε = ε, Ρρσ. x = σ.ρx,

Ρρτ. x = ρx.

So strip substitutes ε for finitely many τ’s and ⊥ for ω many. Since the operator Ρ that

defines strip is continuous we can easily check by means of fixed point induction the distri-

butivity of strip over d, i.e. strip( x d y ) = strip( x ) d strip( y ).

(5.2) LEMMA Σst is a retract of Σ̃
st

.

PROOF By continuity of strip and the inclusion mapping incl: Σst → Σ̃
st

it suffices to show

strip ° incl = idΣst , i.e. ∀x ∈ Σst: strip(x) = x. It is straightforward to show by induction on n:

(∗) ∀n ∈ IN ∀x ∈ Σn ∪ Σn.⊥: strip(x) = x. Now choose x ∈ Σst arbitrary. Let 〈 xn 〉n be a

chain in Σ∗ ∪ Σ∗ .⊥ with least upperbound x. Then we have by continuity of strip and by (∗):

strip(x) = lubn strip(xn) = lubn xn = x. 5

All retractions considered in the remainder of this section will be derived from strip and

incl using the construction for function spaces as described after lemma 3.4. From now on

retractions will be denoted by I, J (but also by strip).

We continue with the extension of the operational semantics. Now for all transitions we

will have a label from Σ̃. But except for this, definitions 4.3 and 5.3 are the same. So for

example, we again make use of the action interpretation I : Action → Σ →part Σ to establish

the behavior of an action a in a state σ. Furthermore, we let TS̃ denote the collection of Σ̃-

transition systems Stack →part Σ̃ × Stack. We use similar conventions as for Σ-transition sys-

tems.

(5.3) DEFINITION Let d ∈ Decl. d induces a transition system d in TS̃ which is defined as the

smallest element of TS̃ (with respect to ⊆) such that

(i) [ γ , σ ] :S →d
σ S

(ii) [ 〈ε , D〉:g , σ ] :S →d
τ [ g , σ ] :S

(iii) [ 〈a; s , D〉:g , σ ] :S →d
τ [ 〈s , D〉:g , σ′ ] :S if σ′ = I(a)(σ) exists

[ 〈a; s , D〉:g , σ ] :S →d
τ S otherwise

(iv) [ 〈fail;s , D〉:g , σ ] :S →d
τ S

(v) [ 〈! ; s , D〉:g , σ ] :S →d
τ [ 〈s , D〉:g , σ ] : D

(vi) [ 〈x ′; s , D〉:g , σ ] :S →d
τ [ 〈s ′,S〉:〈s , D〉:g , σ ] :S where x ′←s ′ ∈ d



18.

(vii) [ 〈(s 1 or s 2) ; s , D〉:g , σ ] :S →d
τ F 1 : F 2 : S where Fi = [ 〈si ; s , D〉:g , σ ]

( i =1, 2)

We shall associate with a declaration d an answer function α̃d : Stack → Σ̃
st

that for

stacks S yields the concatenation of all the labels of the computation starting from S accord-

ing to the transition system d. As before we use a higher-order transformation Φ̃d for a fixed

point definition of α̃d . Note that we presently also demand canonicity for the transformation

Φ̃d .

(5.4) DEFINITION Let d ∈ Decl. Define Φ̃d ∈ [ ( Stack → Σ̃
st

) ∼> ( Stack → Σ̃
st

) ] by

Φ̃d(α)(E) = ε, Φ̃d(α)(S) = θ d α(S ′) if S →d
θ S ′. The answer function α̃d : Stack → Σ̃

st
associ-

ated with the Σ̃-transition system d is defined by α̃d = µΦ̃d .

Canonicity of Φ̃d (as well as continuity) is straightforward to check: Let

α, α′ ∈ Stack → Σ̃
st

such that α ∼ α′. We have to show: Φ̃d(α) ∼ Φ̃d(α′), i.e. ∀S ∈ Stack:

strip( Φ̃d(α)(S) ) = strip( Φ̃d(α′)(S) ). Let S ∈ Stack. Without loss of generality S ≠ E. Say

S →d
θ S ′. Then we have strip( Φ̃d(α)(S) ) = strip( θ d α(S ′) ) = strip(θ) d strip(α(S ′)) =

strip(θ) d strip(α′(S ′)) = strip( θ d α′(S ′) ) = strip( Φ̃d(α′)(S) ) since α(S ′) ∼ α′(S ′) by assump-

tion.

The pleasant property of the new transformation Φ̃, as was elaborated upon before, is

the uniqueness of its least fixed point.

(5.5) LEMMA For all d ∈ Decl: Φ̃d has a unique fixed point.

PROOF Let d ∈ Decl. Uniqueness of the least fixed point of Φ̃d , which exists by continuity

of Φ̃d , follows from the fact that ∀S ∈ Stack, α̃d(S) ∈ Σ̃
∗

∪ Σ̃
ω

. For this property implies

maximality of µΦ̃d : Let S ∈S = { S
3

∈ Stack 4 α̃d(S
3

) ∈ Σ̃
∗

.⊥ } be of minimal length. Then

S ≠ E, so S →d
θ S ′ for some θ ∈ Σ̃, S ′ ∈ Stack. But then α̃d(S ′) ∈ Σ̃

∗
.⊥ is of length strictly less

than α̃d(S). Conclusion: S is empty, so ∀S ∈ Stack: α̃d(S) ∈ Σ̃
∗

∪ Σ̃
ω

. 5

Next we check that the new answer function α̃d derived from Ψ̃d equals the old answer

function αd derived from Ψd modulo clock ticks τ.

(5.6) LEMMA For d ∈ Decl, strip(α̃d) = αd.

PROOF Let d ∈ Decl. By theorem 3.6 it suffices to show: strip(Φ̃d) = Φd . This is clear, since

∀α ∈ Stack → Σst , S ∈ Stack: J(Φ̃d)(α)(S) = strip(Φ̃d(I(α))(S)) = strip(ε) = ε = Φd(α)(S) if

S = E, and J(Φ̃d)(α)(S) = strip(Φ̃d(I(α))(S)) = strip(θ d I(α)(S ′)) = strip(θ) d strip(I(α)(S ′)) =

Φd(α)(S) if S →d
θ S ′. 5



19.

Next we formulate the extension of the higher order transformation Ψ. Note that we

restrict not to “continuous” continuations but rather to both “continuous and canonical” ones.

(5.7) DEFINITION

(i) We define the set of failure continuations FCont˜ = Σ̃
st

, the set of cut continuations

CCont˜ = Σ̃
st

, the set of success continuations SCont˜ = [ FCont˜ ∼> [ CCont˜ ∼> Σ →

Σ̃
st

] ] , the set of meanings Meaning˜= Stat → [ SCont˜ ∼> [ FCont˜ ∼> [ CCont˜ ∼> Σ

→ Σ̃
st

] ] ] . We denote by σ, φ, κ, ξ and M typical elements of Σ̃, FCont ,̃ CCont ,̃

SCont˜and Meaning ,̃ respectively.

(ii) Let d ∈ Decl. By M̃d we denote the least fixed point of Ψ̃d ∈ [ Meaning˜∼> Meaning˜]
defined by

Ψ̃dM[[ ε ]] ξφκσ = τ d ξφκσ
Ψ̃dM[[ a ]] ξφκσ = τ d ξφκσ′ if σ′ = I(a)(σ) exists

Ψ̃dM[[ a ]] ξφκσ = τ d φ otherwise

Ψ̃dM[[ fail ]] ξφκσ = τ d φ
Ψ̃dM[[ ! ]] ξφκσ = τ d ξκκσ
Ψ̃dM[[ s 1 or s 2 ]] ξφκσ = τ d M[[ s 1 ]] ξ{M[[ s 2 ]] ξφκσ}κσ
Ψ̃dM[[ x ]] ξφκσ = τ d M[[ s ]] {λφ

3
κ
3

.ξφ
3

κ}φφσ where x←s ∈ d

Ψ̃dM[[ e ; s ]] ξφκσ = M[[ e ]] {M[[ s ]] ξ}φκσ

Again it is noteworthy that definitions 4.6 and 5.7 are the same except for occurrences

of τ.

It is a matter of routine to check ∀M ∈ Meaning :̃ Ψ̃dM ∈

Stat → [ SCont˜→ [ FCont˜→ [ CCont˜→ Σ → Σ̃
st

] ] ] and that moreover

∀M, M ′ ∈ Meaning˜ such that M ∼ M ′, ∀s ∈ Stat, ∀ξ,ξ′ ∈ SCont˜ such that ξ ∼ ξ′,
∀φ,φ′ ∈ FCont˜ such that φ ∼ φ′, ∀κ,κ′ ∈ CCont˜ such that κ ∼ κ′, ∀σ ∈ Σ: Ψ̃dMsξφκσ ∼
Ψ̃dM ′sξ′φ′κ′σ. So by 3.5 Ψ̃d is well-defined.

(5.8) LEMMA For all d ∈ Decl we have strip(M̃d) = Md.

PROOF Let d ∈ Decl. By theorem 3.6 it suffices to show J( Ψ̃d ) = Ψd , i.e. for M ∈ Meaning,

s ∈ Stat, ξ ∈ SCont, φ ∈ FCont, κ ∈ CCont, σ ∈ Σ it holds that JΨ̃dM[[ s ]] ξφκσ =

ΨdM[[ s ]] ξφκσ. This can be done by a straightforward calculation (relying heavily on the

remark at the end of section 3) of which we shall exhibit only a typical case where s = x ′.
Say x ′ ← s ′ ∈ d. JΨ̃dM[[ x ′ ]] ξφκσ = J( Ψ̃d(IM )[[ x ′ ]] (Iξ)(Iφ)(Iκ)σ) =

J(τ d (IM )[[ s ′ ]] { λφ
3

κ
3

.(Iξ)φ
3

(Iκ) }(Iφ)(Iφ)σ ) = J(τ d (IM)[[ s ′ ]] { I(λφ′κ′.ξφ′κ) }(Iφ)(Iφ)σ ) =

J(τ) d JI ( M[[ s ′ ]] { λφ′κ′.ξφ′κ }φφσ ) = M[[ s ′ ]] { λφ′κ′.ξφ′κ }φφσ = Ψd[[ x ]] ξφκσ. Here we

have used λφ
3

κ
3

.(Iξ)φ
3

(Iκ) = λφ
3

κ
3

.I(ξ(Jφ
3

)(JIκ)) = λφ
3

κ
3

.I(ξ(Jφ
3

)(κ)) = I(λφ′κ′.ξφ′κ) and

(IM )[[ s ]] (Iξ)(Iφ)(Iκ)σ = I(M[[ s ]] (JIξ)(JIφ)(JIκ)σ = I(M[[ s ]] ξφκσ). 5



20.

The last step towards the equivalence theorem below is the formulation of the inter-

mediate function Ĩ defined on configurations which extends M̃d .

(5.9) DEFINITION Let d ∈ Decl. The mappings Ĩd: Conf → Σ̃
st

, Frame → FCont˜∼> Σ̃
st

,

GStat → FCont˜∼> Σ → Σ̃
st

are defined as follows: Ĩd[[ E ]] = ε; Ĩd[[ F : S ]] =

Ĩd[[ F ]] { Ĩd[[ S ]] }; Ĩd[[ [ g,σ ]] φ = Ĩd[[ g ]] φσ; Ĩd[[ γ ]] φσ = σ d φ; Ĩd[[ [ 〈 s,D 〉:g ]] φσ =

M̃d[[ s ]] { λφκ.Ĩd[[ g ]] φ }φ{ Ĩd[[ D ]] }σ.

We leave it to the reader to check the well-definedness of Ĩd . We will check that Ĩd is a

fixed point of the transformation Φ̃d . Therefore by lemma 5.5 we have that Ĩd and α̃d coin-

cide.

(5.10) LEMMA For d ∈ Decl we have Φ̃d( Ĩd ) = Ĩd.

PROOF Let d ∈ Decl. We have to verify Φ̃d( Ĩd )[[ S ]] = Ĩd[[ S ]] for each stack S. We only

treat the case [ 〈 x ′;s,D 〉:g,σ ] :S leaving the other (similar and easier) cases to the reader.

Ĩd[[ [ 〈 x ′;s,D 〉:g,σ ] :S ]] = M̃d[[ x ′ ]] { M̃d[[ s ]] ξ }{ ĨdS }{ ĨdD }σ =

τ d M̃d[[ s ′ ]] { λφκ.M̃d[[ s ]] ξφ{ ĨdD } }{ ĨdS }{ ĨdS }σ =

τ d M̃d[[ s ′ ]] { λφκ.Ĩd[[ [ 〈 s,D 〉:g ]] { ĨdS } }{ ĨdS }{ ĨdS }σ =

τ d Ĩd[[ [ 〈 s ′,S 〉:〈 s,D 〉:g, σ ] :S ]] = Φ̃d Ĩd[[ [ 〈 x ′;s,D 〉:g,σ ] :S ]] ,

where ξ = λφκ.Ĩd[[ g ]] { ĨdS }. 5

Finally we have arrived in a position in which we are able to compare the operational

and denotational semantics for the abstract backtracking language B.

(5.11) THEOREM O = D
PROOF Let d | s ∈B. By uniqueness of the fixed point of Φ̃d and the above lemma we have

Ĩd = α̃d . So it follows that α̃d[[ [ 〈 s, E 〉,σ ] ]] = Ĩd[[ [ 〈 s, E 〉,σ ] ]] =

M̃d[[ s ]] { λφκ.Ĩd[[ γ ]] φ }{ ĨdE }{ ĨdE }σ = M̃d[[ s ]] { λφκ.σ d φ }εεσ = M̃d[[ s ]] ξo φoκoσ.

Finally by the lemmas 5.6 and 5.8 we arrive at O[[ d | s ]] σ = αd[[ [ 〈 s, E 〉,σ ] ]] =

strip( α̃d[[ [ 〈 s, E 〉,σ ] ]] ) = strip( M̃d[[ s ]] ξo φoκoσ ) = Md[[ s ]] ξo φoκoσ = D[[ d | s ]] σ. 5

References

[BV] A. de Bruin and E.P. de Vink, ‘‘Continuation Semantics for Prolog with Cut,’’ pp. 178-192 in
Proc. TAPSOFT’89, volume 1, J. Díaz & F. Orejas (eds.), LNCS 351 (1989).

[Ba1] J.W. de Bakker, Mathematical Theory of Program Correctness, Prentice Hall International,
London (1980).

[KR] J.N. Kok and J.J.M.M. Rutten, ‘‘Contractions in Comparing Concurrency Semantics,’’



21.

pp. 317-332 in Proc. ICALP’88, T. Lepistö & A. Salomaa (eds.), LNCS 317 (1988).
[BM] J.W. de Bakker and J.-J.Ch. Meyer, ‘‘Metric Semantics for Concurrency,’’ BIT 28, pp. 504-

529 (1988).
[Mi] R. Milner, A Calculus of Communicating Systems, LNCS 92 (1980).
[BeKl] J.A. Bergstra and J.W. Klop, ‘‘Algebra of Communicating Processes,’’ pp. 89-138 in Proc.

CWI Symposium on Mathematics and Computer Science, J.W. de Bakker, M. Hazewinkel &
J.K. Lenstra (eds.), CWI Monograph I (1986).

[BBKM] J.W. de Bakker, J.A. Bergstra, J.W. Klop, and J.-J.Ch Meyer, ‘‘Linear Time and Branching
Time Semantics for Recursion with Merge,’’ Theoretical Computer Science 34, pp. 135-156
(1984).

[BMZ] J.W. de Bakker, J.-J.Ch Meyer, and J.I Zucker, ‘‘On Infinite Computations in Denotational
Semantics,’’ Theoretical Computer Science 26, pp. 53-82 (1983).

[Me] J.-J.Ch. Meyer, Programming Calculi Based on Fixed Point Transformations: Semantics and
Applications, Dissertation, Vrije Universiteit, Amsterdam (1985).

[BZ] J.W. de Bakker and J.I. Zucker, ‘‘Processes and the Denotational Semantics of Concurrency,’’
Information and Control 54, pp. 70-120 (1982).

[BKMOZ] J.W. de Bakker, J.N. Kok, J.-J.Ch. Meyer, E.-R. Olderog, and J.I. Zucker, ‘‘Contrasting
Themes in the Semantics of Imperative Concurrency,’’ pp. 51-121 in Current Trends in Con-
currency: Overviews and Tutorials, J.W. de Bakker, W.P de Roever & G. Rozenberg (eds.),
LNCS 224 (1986).

[Ba2] J.W. de Bakker, ‘‘Comparative Semantics for Flow of Control in Logic Programming without
Logic,’’ Report CS-R8840, Centrum voor Wiskunde en Informatica, Amsterdam (1988). To
appear in Information and Computation.

[JM] N.D. Jones and A. Mycroft, ‘‘Stepwise Development of Operational and Denotational Seman-
tics for Prolog,’’ pp. 281-288 in Proc. Symposium on Logic Programming, Atlantic City (1984).

[DM] S.K. Debray and P. Mishra, ‘‘Denotational and Operational Semantics for Prolog,’’ Journal of
Logic Programming 5, pp. 61-91 (1988).

[Bd] M. Badinet, ‘‘Proving Termination Properties of Prolog Programs: A Semantic Approach,’’
pp. 336-347 in Proc. LICS’88, Edinburgh (1988).

[Vi] E.P. de Vink, ‘‘Comparative Semantics for Prolog with Cut,’’ Report IR-166, Vrije Universi-
teit, Amsterdam (1988). To appear in Science of Computer Programming

[MV] J.-J.Ch. Meyer and E.P. de Vink, ‘‘Applicatons of Compactness in the Smyth Powerdomain of
Streams,’’ Theoretical computer Science 57, pp. 251-282 (1988).

[Pl] G.D. Plotkin, ‘‘The Category of Complete Partial Orders: a Tool for Making Meanings,’’ in
Proc. Summer School on Foundations of Artificial Intelligence and Computer Science, Pisa
(1978).

[BaKo] J.W. de Bakker and J.N. Kok, ‘‘Uniform Abstraction, Atomicity and Contractions in the
Comparative Semantics of Concurrent Prolog (Extended Abstract),’’ pp. 347-355 in Proc. Inter-
national Conference on Future Generation Computer Systems 1988, Tokyo (1988).


