Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Acute Leukemias

Chromosome 14 copy number-dependent IGH gene rearrangement patterns in high hyperdiploid childhood B-cell precursor ALL: implications for leukemia biology and minimal residual disease analysis

Abstract

Childhood B-cell precursor acute lymphoblastic leukemia (BCP ALL) is generally a clonal disease in which the number of IGH rearrangements per cell does not exceed the number of the IGH alleles on chromosome 14. Consequently, monoclonal high hyperdiploid (HeH) cases with a trisomy 14 can harbor three rearrangements, a pattern that otherwise may be misinterpreted to be oligoclonal. Oligoclonal IGH rearrangements, on the other hand, may be instable at relapse and should therefore not be used for minimal residual disease analysis. We thus investigated the association between IGH allele copy numbers and the IGH rearrangement patterns in 90 HeH BCP ALL with either two (13%) or three copies (87%) of chromosome 14. HeH cases (44%) had an oligoclonal IGH rearrangement pattern, but true oligoclonality—after correction for the respective copy number of IGH alleles—was only 16%. Monoclonal and oligoclonal HeH cases had predominantly VH to preexisting DJH recombinations, a finding that contrasts with oligoclonal cases of other major genetic BCP ALL subgroups in which VH replacements prevail. We conclude that for the precise assessment and correct interpretation of clonality patterns in BCP ALL, the IGH allele copy number has to be taken into consideration.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Pui CH, Relling MV, Downing JR . Acute lymphoblastic leukemia. N Engl J Med 2004; 350: 1535–1548.

    CAS  PubMed  Google Scholar 

  2. Schultz KR, Pullen DJ, Sather HN, Shuster JJ, Devidas M, Borowitz MJ et al. Risk- and response-based classification of childhood B-precursor acute lymphoblastic leukemia: a combined analysis of prognostic markers from the Pediatric Oncology Group (POG) and Children's Cancer Group (CCG). Blood 2007; 109: 926–935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Moorman AV, Richards SM, Martineau M, Cheung KL, Robinson HM, Jalali GR et al. Outcome heterogeneity in childhood high-hyperdiploid acute lymphoblastic leukemia. Blood 2003; 102: 2756–2762.

    Article  CAS  PubMed  Google Scholar 

  4. Heerema NA, Raimondi SC, Anderson JR, Biegel J, Camitta BM, Cooley LD et al. Specific extra chromosomes occur in a modal number dependent pattern in pediatric acute lymphoblastic leukemia. Genes Chromosomes Cancer 2007; 46: 684–693.

    Article  CAS  PubMed  Google Scholar 

  5. Flohr T, Schrauder A, Cazzaniga G, Panzer-Grumayer R, van der Velden V, Fischer S et al. Minimal residual disease-directed risk stratification using real-time quantitative PCR analysis of immunoglobulin and T-cell receptor gene rearrangements in the international multicenter trial AIEOP-BFM ALL 2000 for childhood acute lymphoblastic leukemia. Leukemia 2008; 22: 771–782.

    Article  CAS  PubMed  Google Scholar 

  6. van der Velden VH, Panzer-Grumayer ER, Cazzaniga G, Flohr T, Sutton R, Schrauder A et al. Optimization of PCR-based minimal residual disease diagnostics for childhood acute lymphoblastic leukemia in a multi-center setting. Leukemia 2007; 21: 706–713.

    Article  CAS  PubMed  Google Scholar 

  7. de Haas V, Verhagen OJ, von dem Borne AE, Kroes W, van den Berg H, van der Schoot CE . Quantification of minimal residual disease in children with oligoclonal B-precursor acute lymphoblastic leukemia indicates that the clones that grow out during relapse already have the slowest rate of reduction during induction therapy. Leukemia 2001; 15: 134–140.

    Article  CAS  PubMed  Google Scholar 

  8. Szczepanski T, van der Velden VH, Raff T, Jacobs DC, van Wering ER, Bruggemann M et al. Comparative analysis of T-cell receptor gene rearrangements at diagnosis and relapse of T-cell acute lymphoblastic leukemia (T-ALL) shows high stability of clonal markers for monitoring of minimal residual disease and reveals the occurrence of second T-ALL. Leukemia 2003; 17: 2149–2156.

    Article  CAS  PubMed  Google Scholar 

  9. Panzer-Grumayer ER, Cazzaniga G, van der Velden VH, del Giudice L, Peham M, Mann G et al. Immunogenotype changes prevail in relapses of young children with TEL-AML1-positive acute lymphoblastic leukemia and derive mainly from clonal selection. Clin Cancer Res 2005; 11: 7720–7727.

    Article  PubMed  Google Scholar 

  10. Davi F, Gocke C, Smith S, Sklar J . Lymphocytic progenitor cell origin and clonal evolution of human B-lineage acute lymphoblastic leukemia. Blood 1996; 88: 609–621.

    CAS  PubMed  Google Scholar 

  11. Steenbergen EJ, Verhagen OJ, van Leeuwen EF, von dem Borne AE, van der Schoot CE . Distinct ongoing Ig heavy chain rearrangement processes in childhood B-precursor acute lymphoblastic leukemia. Blood 1993; 82: 581–589.

    CAS  PubMed  Google Scholar 

  12. Steward CG, Goulden NJ, Katz F, Baines D, Martin PG, Langlands K et al. A polymerase chain reaction study of the stability of Ig heavy-chain and T-cell receptor delta gene rearrangements between presentation and relapse of childhood B-lineage acute lymphoblastic leukemia. Blood 1994; 83: 1355–1362.

    CAS  PubMed  Google Scholar 

  13. Wasserman R, Yamada M, Ito Y, Finger LR, Reichard BA, Shane S et al. VH gene rearrangement events can modify the immunoglobulin heavy chain during progression of B-lineage acute lymphoblastic leukemia. Blood 1992; 79: 223–228.

    CAS  PubMed  Google Scholar 

  14. Beishuizen A, Hahlen K, Hagemeijer A, Verhoeven MA, Hooijkaas H, Adriaansen HJ et al. Multiple rearranged immunoglobulin genes in childhood acute lymphoblastic leukemia of precursor B-cell origin. Leukemia 1991; 5: 657–667.

    CAS  PubMed  Google Scholar 

  15. Bird J, Galili N, Link M, Stites D, Sklar J . Continuing rearrangement but absence of somatic hypermutation in immunoglobulin genes of human B cell precursor leukemia. J Exp Med 1988; 168: 229–245.

    Article  CAS  PubMed  Google Scholar 

  16. Alt FW, Oltz EM, Young F, Gorman J, Taccioli G, Chen J . VDJ recombination. Immunol Today 1992; 13: 306–314.

    Article  CAS  PubMed  Google Scholar 

  17. Szczepanski T, Willemse MJ, van Wering ER, van Weerden JF, Kamps WA, van Dongen JJ . Precursor-B-ALL with D(H)-J(H) gene rearrangements have an immature immunogenotype with a high frequency of oligoclonality and hyperdiploidy of chromosome 14. Leukemia 2001; 15: 1415–1423.

    Article  CAS  PubMed  Google Scholar 

  18. Hubner S, Cazzaniga G, Flohr T, van der Velden VH, Konrad M, Potschger U et al. High incidence and unique features of antigen receptor gene rearrangements in TEL-AML1-positive leukemias. Leukemia 2004; 18: 84–91.

    Article  CAS  PubMed  Google Scholar 

  19. Brumpt C, Delabesse E, Beldjord K, Davi F, Cayuela JM, Millien C et al. The incidence of clonal T-cell receptor rearrangements in B-cell precursor acute lymphoblastic leukemia varies with age and genotype. Blood 2000; 96: 2254–2261.

    CAS  PubMed  Google Scholar 

  20. Mann G, Cazzaniga G, van der Velden VH, Flohr T, Csinady E, Paganin M et al. Acute lymphoblastic leukemia with t(4;11) in children 1 year and older: the ‘big sister’ of the infant disease? Leukemia 2007; 21: 642–646.

    Article  CAS  PubMed  Google Scholar 

  21. Verhagen OJ, Willemse MJ, Breunis WB, Wijkhuijs AJ, Jacobs DC, Joosten SA et al. Application of germline IGH probes in real-time quantitative PCR for the detection of minimal residual disease in acute lymphoblastic leukemia. Leukemia 2000; 14: 1426–1435.

    Article  CAS  PubMed  Google Scholar 

  22. Szczepanski T, Pongers-Willemse MJ, Langerak AW, Harts WA, Wijkhuijs AJ, van Wering ER et al. Ig heavy chain gene rearrangements in T-cell acute lymphoblastic leukemia exhibit predominant DH6-19 and DH7-27 gene usage, can result in complete V-D-J rearrangements, and are rare in T-cell receptor alpha beta lineage. Blood 1999; 93: 4079–4085.

    CAS  PubMed  Google Scholar 

  23. Paulsson K, Morse H, Fioretos T, Behrendtz M, Strombeck B, Johansson B . Evidence for a single-step mechanism in the origin of hyperdiploid childhood acute lymphoblastic leukemia. Genes Chromosomes Cancer 2005; 44: 113–122.

    Article  CAS  PubMed  Google Scholar 

  24. Onodera N, McCabe NR, Rubin CM . Formation of a hyperdiploid karyotype in childhood acute lymphoblastic leukemia. Blood 1992; 80: 203–208.

    CAS  PubMed  Google Scholar 

  25. Maia AT, Tussiwand R, Cazzaniga G, Rebulla P, Colman S, Biondi A et al. Identification of preleukemic precursors of hyperdiploid acute lymphoblastic leukemia in cord blood. Genes Chromosomes Cancer 2004; 40: 38–43.

    Article  PubMed  Google Scholar 

  26. Maia AT, van der Velden VH, Harrison CJ, Szczepanski T, Williams MD, Griffiths MJ et al. Prenatal origin of hyperdiploid acute lymphoblastic leukemia in identical twins. Leukemia 2003; 17: 2202–2206.

    Article  CAS  PubMed  Google Scholar 

  27. Panzer-Grumayer ER, Fasching K, Panzer S, Hettinger K, Schmitt K, Stockler-Ipsiroglu S et al. Nondisjunction of chromosomes leading to hyperdiploid childhood B-cell precursor acute lymphoblastic leukemia is an early event during leukemogenesis. Blood 2002; 100: 347–349.

    Article  CAS  PubMed  Google Scholar 

  28. Gruhn B, Taub JW, Ge Y, Beck JF, Zell R, Hafer R et al. Prenatal origin of childhood acute lymphoblastic leukemia, association with birth weight and hyperdiploidy. Leukemia 2008; 22: 1692–1697.

    Article  CAS  PubMed  Google Scholar 

  29. Steenbergen EJ, Verhagen OJ, van den Berg H, van Leeuwen EF, Behrendt H, Slater RR et al. Rearrangement status of the malignant cell determines type of secondary IgH rearrangement (V-replacement or V to DJ joining) in childhood B precursor acute lymphoblastic leukemia. Leukemia 1997; 11: 1258–1265.

    Article  CAS  PubMed  Google Scholar 

  30. Fine BM, Stanulla M, Schrappe M, Ho M, Viehmann S, Harbott J et al. Gene expression patterns associated with recurrent chromosomal translocations in acute lymphoblastic leukemia. Blood 2004; 103: 1043–1049.

    Article  CAS  PubMed  Google Scholar 

  31. Ross ME, Zhou X, Song G, Shurtleff SA, Girtman K, Williams WK et al. Classification of pediatric acute lymphoblastic leukemia by gene expression profiling. Blood 2003; 102: 2951–2959.

    Article  CAS  PubMed  Google Scholar 

  32. Szczepanski T, Willemse MJ, Brinkhof B, van Wering ER, van der Burg M, van Dongen JJ . Comparative analysis of Ig and TCR gene rearrangements at diagnosis and at relapse of childhood precursor-B-ALL provides improved strategies for selection of stable PCR targets for monitoring of minimal residual disease. Blood 2002; 99: 2315–2323.

    Article  CAS  PubMed  Google Scholar 

  33. Beishuizen A, Verhoeven MA, van Wering ER, Hahlen K, Hooijkaas H, van Dongen JJ . Analysis of Ig and T-cell receptor genes in 40 childhood acute lymphoblastic leukemias at diagnosis and subsequent relapse: implications for the detection of minimal residual disease by polymerase chain reaction analysis. Blood 1994; 83: 2238–2247.

    CAS  PubMed  Google Scholar 

  34. Russell LJ, Akasaka T, Majid A, Sugimoto KJ, Loraine Karran E, Nagel I et al. t(6;14)(p22;q32): a new recurrent IGH@ translocation involving ID4 in B-cell precursor acute lymphoblastic leukemia (BCP-ALL). Blood 2008; 111: 387–391.

    Article  CAS  PubMed  Google Scholar 

  35. Akasaka T, Balasas T, Russell LJ, Sugimoto KJ, Majid A, Walewska R et al. Five members of the CEBP transcription factor family are targeted by recurrent IGH translocations in B-cell precursor acute lymphoblastic leukemia (BCP-ALL). Blood 2007; 109: 3451–3461.

    Article  CAS  PubMed  Google Scholar 

  36. van der Velden VH, Hochhaus A, Cazzaniga G, Szczepanski T, Gabert J, van Dongen JJ . Detection of minimal residual disease in hematologic malignancies by real-time quantitative PCR: principles, approaches, and laboratory aspects. Leukemia 2003; 17: 1013–1034.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by a grant from the OENB 12519 to Georg Mann and the St Anna Kinderkrebsforschung to E Renate Panzer-Grümayer. We thank Annemarie Wijkhuijs for technical support and Marion Zavadil for proofreading the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E R Panzer-Grümayer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Csinady, E., van der Velden, V., Joas, R. et al. Chromosome 14 copy number-dependent IGH gene rearrangement patterns in high hyperdiploid childhood B-cell precursor ALL: implications for leukemia biology and minimal residual disease analysis. Leukemia 23, 870–876 (2009). https://doi.org/10.1038/leu.2008.390

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2008.390

Keywords

Search

Quick links