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Abstract

We propose a new reference price framework for brand choice. In this frame-
work, we employ a Markov-switching process with an absorbing state to model
unobserved price recall of households. Reference prices result from the prices
households are able to remember. Our model can be used to learn how many
prices observed in the past are used for reference price formation. Further-
more, we learn to what extent households have sufficient price knowledge to
form an internal reference price. For A.C. Nielsen scanner panel data on
catsup purchases, we find that the prices observed at the previous purchase
occasion have an average recall probability of about 20%. Furthermore, the
average probability that a household has sufficient price knowledge to form a
reference price is estimated at about 30%. Even though price recall is very
limited the impact of reference price formation on brand choice is substantial,
and it is stronger than two popular alternative models in the literature sug-
gest. Moreover, contrary to the two alternative models, our model does not
suggest asymmetry between price gains and losses.
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1 Introduction and motivation

The literature provides ample evidence that households do not only consider current
prices when deciding which brand to buy from a category, but also take into ac-
count past prices via the formation of internal reference points, see Krishnamurthi,
Mazumdar and Raj (1992), Putler (1992), Kalyanaram and Little (1994), among
many others. A conceptual basis for such reference price formation is provided
by the Adaptation-Level Theory of Helson (1964). Kalyanaram and Winer (1995)
translate the cumulative evidence into an empirical generalization.

The idea behind reference price effects is as follows. If the price of a brand is
below its reference price, the observed price is lower than anticipated, resulting in
a perceived gain. This would make the brand more attractive. Similarly, the op-
posite situation would result in a perceived loss, reducing the probability that the
brand is purchased. An important consequence of internal reference price formation
is that although frequent price discounts may be beneficial in the short-run, they
may damage the brand in the long-run when households get used to these discounts
and reference prices drop. The reduced price become anticipated and loses its ef-
fectiveness, whereas the non-promoted price becomes unanticipated and would be
perceived as a loss.

As the existence of internal reference prices might imply a tradeoff between
current and future brand sales, it is important to have a good understanding of
how reference prices are formed from past price experience. This includes questions
such as (i) what is the size of the reference effect?, (ii) what is the duration of the
reference effect?, and (iii) how often are households able to construct a reference
price? Still, current brand choice models dealing with reference price effects do not
pay much attention to the operationalization of the reference price construct.

In this paper, we focus on internal reference prices, which are constructed from
past prices, and we do not consider external reference prices, based on the in-store
prices during the purchase occasion. The two most popular specifications for internal

reference price are the price observed at the previous purchase occasion and an



exponentially smoothed average of previously observed prices. Examples of the
former reference price include Krishnamurthi, Mazumdar and Raj (1992), Mayhew
and Winer (1992) and Chang, Siddarth and Weinberg (1999), whereas examples of
the latter specification include Lattin and Bucklin (1989), Kalyanaram and Little
(1994) and Erdem, Mayhew and Sun (2001). By assuming that the reference price
of a brand equals its previous price, a reference effect of only one period is imposed,
while multi-period dynamics may be more appropriate. An argument which is often
made in favor of one-period dynamics is that the literature consistently shows that
households have a very limited ability to recall prices, see, for example, the price
knowledge surveys by Dickson and Sawyer (1990) and Vanhuele and Dreze (2002).
However, this argument would imply that households might not even be able to
recall the previously observed price. On the other hand, the exponentially-smoothed-
average measure for reference price often results in extremely long price dynamics.
For example, Briesch, Krisnamurthi, Mazumdar and Raj (1997) conclude for several
product categories that the lag in the formation of reference price is about six
periods.

Two limitations of current reference price specifications are that (i) the dynamics
underlying the reference price are determined a priori (possibly up to a tuning
parameter), and (ii) it is implicitly assumed that households always have sufficient
price knowledge to form a reference price. Both might result in underestimation of
the size of the actual reference effect. Briesch, Krisnamurthi, Mazumdar and Raj
(1997) note that a misspecified reference price model can obscure the reference effect
even when it may actually exist. Similarly, by not accounting for the possibility
that households forget past prices, one might confound households not forming
a reference price with households not reacting to it, resulting in lower response
estimates. A third limitation of current practice is that the assumed processes
usually do not account for uncertainty in reference price formation. However, as
reference prices are not observed, their existence cannot be inferred without error.

In this paper we propose a new reference price model, which (i) does not a priori



impose a rigid dynamic price structure, (ii) accounts for uncertainty in reference price
formation, (iii) allows that a household may forget past prices, and (iv) even allows
that a household cannot construct a reference price at all. Hence, the model is an
attempt to bridge the gap between survey studies, such as Dickson and Sawyer (1990)
and Vanhuele and Dréze (2002) which report that households have very limited price
knowledge and hence may not be able to construct a reference price, and current
reference price models which do not account for this. In the proposed framework,
price recall of households is modeled as a hidden Markov-switching process with an
absorbing state, and a reference price is constructed from the prices the household
is able to recall. Our model can be used to get insights into the extent to which past
price information is used in individual brand choice decisions, that is, it can address
the question “which past prices do consumers use in forming a reference price, and
how many are used?”, raised by Kalyanaram and Winer (1995).

The structure of the paper is as follows. In Section 2, we put forward our model.
Next, in Section 3, we discuss parameter estimation, and in Section 4, we explain
how the estimation results can be used to analyze the dynamic structure underlying
reference price formation and to analyze the extent to which internal reference prices
are formed. We apply our model to an A.C. Nielsen scanner panel data set on catsup
purchases in Section 5. Finally, in Section 6, we conclude with a discussion of the

implications of our model and we provide some directions for further research.

2 The model

In this section we develop our reference price model and we show how it can be

incorporated in a scanner panel data model for brand choice.

2.1 Reference price

We allow that households may forget prices observed in the past, as suggested by

several price knowledge surveys in the literature. To this end, we introduce the



unobserved 0/1 price recall variable ST, such that

o 1 if at time ¢ household i remembers the prices encountered at time 7 < ¢
it

0 otherwise,

where the time indices ¢ and 7 correspond to purchase occasions. As S7, does not
contain a brand-index, price recall is the same across brands. Hence, a household
is either able to recall the prices of all brands or cannot recall any brand price. To
keep implementation of the model feasible, we impose that 57, = 0if ¢t —7 > L, that
is, we assume that households always forget prices which were observed more than
L purchase occasions ago. The value of L has to be chosen by the researcher. As it
does not affect the number of parameters in the model, a possible selection strategy
would be to set L € {1,2,...} such that it gives the highest maximum likelihood
value. The price knowledge of household ¢ at purchase occasion ¢ can be summarized
in one composite price recall variable Si,t = (Sf;L e ,5’52, Sf;l), which indicates
which of the past L prices are recalled at purchase occasion t.

The second step in the development of our model concerns the description of
how price recall of households evolves over time. We assume that, starting from
purchase occasion 7 when prices were observed, the subsequent price recall vari-
ables {S7, }i=rr1,..,r+1 obey a first-order Markov process with states 0 and 1. So,
the probability that prices are recalled at the current purchase occasion depends
on whether these prices were still in memory at the previous purchase occasion.
Moreover, as it is plausible that prices are never recalled again once they have been
forgotten, we let the “forgetting state” O be an absorbing state. The Markov tran-

sition probabilities are given by

Pr(S7, = 0[57,., =0) =1, (1)
Pr(S], = 1[S;,_; =0) =0, (2)
Pr(SZt = O"S’Zt—l =1)=1 — Dit> (3)
Pr(SZt = 1|SZT¢_1 =1) = Dis- (4)

The process is initialized by setting ST = 1, meaning that households are aware of

the prices of brands at the moment of purchase. The memory processes defined by



(1)—(4) are independent across households i as well as independent across purchase
occasions 7 during which prices were observed.
We define the transition probability p;, as

1
L+exp(—=[v+mnlt—7)])

(5)

T
Pir =

This conditional probability of price recall depends on the number of purchase oc-
casions t — 7 which have passed since the prices were observed at purchase occasion
7. Hence, the unconditional probability that the prices at purchase occasion 7 are

still remembered at purchase occasion ¢ is given by

t—1 1
SZT = pz'r ~ Y (6)
t Jll 111+wm—Pm+%ﬂ)

which is a decreasing function in t —7. Figure 1 displays some price memory patterns
which can be reproduced by tuning the parameters vy and 7 in (5). It shows a ge-
ometrically decaying pattern, a 1-period full memory pattern which amounts to the
previously observed brand price being the reference price, a 2-periods full memory
pattern, and a pattern such that prices are sometimes recalled at the next purchase
occasion after which they are kept in memory forever. The graph illustrates that
our model is able to mimic a wide variety of possible memory structures. Finally,
we note that it is straightforward to extend (5) such that the conditional price recall
probability p7, also depends on, for example, the number of days elapsed since the
previous purchase occasion t — 1 and the degree of promotional activity at purchase

occasion 7 when the prices were observed.
Insert Figure 1 about here.

In our model, a reference price is only based on the prices which a household is
able to recall, where price recall develops according to a first-order Markov process
with absorbing state. We define the reference price R; j,; of household ¢ € {1,..., N}

for brand j € {1,...,J} at purchase occasion t € {1,...,T;} as

> 1 ShPiir
Zif ST if ZTtLSz‘T,t>0
Riji= T (7)

Pijg if S =0.



Hence, this reference price equals the average of the prices which are recalled pro-
vided that at least one price observed in the past is still available in memory. How-
ever, it might also be possible that a household has forgotten all past prices. In such
a case, the household does not have enough price information to form an internal
reference price, and it perceives neither a price gain nor a loss. This is captured
by the condition P, ;; — R;;; = 0 in case /7, Si; = 0. The proposed reference
price is an unweighted average from the perspective of the household, reflecting
that households may have forgotten the order in which the recalled prices were ob-
served. From the perspective of the researcher, it is however a weighted average.
The weights are the unobserved 0/1 price recall variables for which the probability
distributions have to be inferred from the data. Note that the weights differ across

purchase occasions and households.

2.2 Brand choice

Our reference price can be incorporated in a standard model for brand choice. In
this paper, we consider a conditional logit model which (i) allows for asymmetric
response of households to price gains and losses, and (ii) accounts for heterogeneity
across households via the latent segments approach of Kamakura and Russell (1989).
By doing so, we follow the mainstream literature on modeling brand choice and
reference price effects, see, for example, Bell and Lattin (2000).

Prospect Theory, developed by Kahneman and Tversky (1979), predicts that
households react more negatively to price losses than they react positively to price
gains of equal size. Indeed, many reference price studies support this hypothesis,
see Mayhew and Winer (1992), Putler (1992), Kalyanaram and Little (1994), and
Erdem, Mayhew and Sun (2001), among others. Kalyanaram and Winer (1995)
propose this gain-loss asymmetry as an empirical generalization. However, the lit-
erature also contains some studies which report either a lack of significance or even
an opposite effect. Such examples include Briesch, Krishnamurthi, Mazumdar and
Raj (1997), Chang, Siddarth and Weinberg (1999), and Bell and Lattin (2000).

Besides allowing for separate response parameters for price gains and losses, it is



also important to account for household heterogeneity. Several studies show that
ignoring heterogeneity might result in biased response estimates, see, for example,
Chintagunta, Jain and Vilcassim (1991), Jain, Vilcassim and Chintagunta (1994)
and Chang, Siddarth and Weinberg (1999).

We assume that household ¢ with unobserved (composite) memory state §;; =
(St—L t—2 _t—1

it v---»8i1 »Sit ), belonging to the unobserved response segment z € {1,..., 2},

perceives utility

Usijtlzi: = Qi+ Br2BLi j i + Boj: PM; j¢ + B3P 5

+ Ba2Gijlz5:0 + BslzLijiazz, + Eije (8)

from purchasing brand j at purchase occasion ¢, where the random disturbance
€;j¢ 1 assumed to be independently and identically distributed obeying a Type-I
Extreme Value distribution. In (8), . captures the intrinsic brand preferences of
the household, BL; ;, is the brand loyalty measure of Guadagni and Little (1983),
PM; ;. is a 0/1 promotion indicator (feature or display), P; ;. is the shelf price,
G jtl=5., 1S the price gain relative to the reference price, and Lj; 4. s,, is the price

loss. The gain and loss variables are defined as

Gi,j,t|z,§i,t = I{Pi,j,t < Ri,j,t\z,gi,t}(Ri,j,t\z,gi,t - Pi,j,t)> 9)

Li,j,t|z,§i,t - ]{Pi,j,t > Ri,j,t\z,éiyt}(Pi,j,t - Ri,j,t\Z,gi,t)a (10)

where [{-} is the 0/1 indicator function. We note that the reference price R;;y. s, ,
is conditional on both the price recall state s;; and segment membership z, as we
allow the price recall parameters vy and 7, in (5) to be different across the latent
segments.

As suggested by the mental accounting framework of Thaler (1985), total utility
Ui jilz5., derived from purchasing brand j consists of two components, that is, ac-
quisition utility and transaction utility. The acquisition component corresponds to
the “monetary value” of the deal. It is related to the discrepancy between the value
of the brand for the household and the brand price. Additionally, the transaction

component corresponds to the “psychological value” of the deal, which is determined



by the discrepancy between the brand price and the corresponding reference price.
In (8), transaction utility is captured by the price gain and price loss components.
Brand choice models which do not consider reference effects, such as the model of
Guadagni and Little (1983), assume acquisition utility but do not account for trans-
action utility. In his seminal paper on reference price modeling, Winer (1986) refers
to the discrepancy between the observed price and the reference price as a sticker
shock effect.

It immediately follows from the distributional assumptions on ¢; ;, that brand j

is chosen, providing maximum utility, with probability

exp(Uijitz.,)
St exp(Usggosi,)

Pr<Bi,t = j|Zi =z, gi,t = §i,t> = (11)

where Z; describes the unobserved segment membership variable for household 1,

see McFadden (1974).

3 Parameter estimation

In this section we discuss how the parameters of our model can be estimated. Pa-
rameter estimation is not straightforward, as the model contains two kinds of unob-
served variables, that is, segment membership and the price recall states. The price
recall variables obey a first-order Markov process, and hence are not independent.
We use the EM algorithm of Dempster, Laird and Rubin (1977) to deal with the
unobserved response segments, see McLachlan and Krishnan (1997) for a textbook
discussion. Mixture models, such as our model, provide a natural application area
for this algorithm, see Wedel, DeSarbo, Bult and Ramaswamy (1993), Ramaswamy,
Anderson and DeSarbo (1994) and Béckenholt (1999), among others. Within the
EM algorithm, we apply an iterative filter, put forward in Hamilton (1989) and also
described in Hamilton (1994, p. 692—693), to sum out the unobserved price memory
states s ;.

Using the shorthand notation B;;; to denote the sequence of brand choices



Bi1, Bia, ..., B, the (unconditional) likelihood function is given by

D
I
—

s
I
—

Pr(B; 1.1, = biyr,)

I
=
M~

Ty Pr(Bi,lzTi = bi,l:T,-|Zi = Z)a (12)

-
I
—
I
Il
—

where b; 1.7, corresponds to realized brand choice and 7, = Pr(Z; = z) is the size of

segment z.

3.1 Applying the Hamilton filter

In order to evaluate the likelihood function (12), one needs to compute

PT(Bm:n = bi,l:Tilzi = Z)

=> - > Pr(Biiq =bim, Sia =38its-. o, Sim = 8im|Z; = 2), (13)

Si 1 54,T;

21T summations to get rid of all unobserved memory states. We note

which involves
that the Markov property of 5’1-,1, cee S,T implies that all possible price recall paths
have to be considered. For example, even if price recall is restricted to L = 4 periods
and household i has only made T; = 6 purchases in the category, (13) would already
consist of more than 16 million components. Fortunately, the Hamilton (1989) filter
turns out to be a very useful tool to evaluate this objective function, as it avoids
such infeasible summations.

Hamilton (1989) originally developed his nonlinear filter to make inference on
changes in economic regimes using time series. He applied the filter to establish
the dates of historical business cycles, assuming that the underlying recession-
expansion regimes follow a first-order Markov process. Econometric models with
latent Markov-switching processes were first introduced by Goldfeld and Quandt
(1973), and our reference price framework can be considered a member of this class
of models as well.

In our application of the Hamilton filter, the unobserved components are the

composite price recall variables gi,t) t=1,...,T;, for which the transition probabil-

ities still have to be derived. It follows from the independence assumptions made in
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Subsection 2.1 and the assumption of complete price information at the moment of

purchase that

Pl"( it = Sit Si,t—l = Si,t—l)
1

t—
= Pr(SZt = Sz‘T,t|Sz‘T,t—1 = SiT,t—l) with Sf,;—ll =1, (14)

T=t—L

where the transition probabilities Pr(S7, = s7,|S7, | = 57, ;) are defined by (1)—(5).
We initialize the process at the first purchase occasion ¢ = 1 by setting
0
PI'(Si’l == 5171) == H PI‘(SZI = Szl), (15)
T=1—L

where, analogous to (6),

1—7 1

Pr( Z1:1):H

o T exp(—[v +mn7])

(16)

We note that, for notational convenience, we suppress the dependence on segment
membership z.

The Hamilton filter allows for inference on the unobserved memory state s;, of
household ¢ at purchase occasion ¢, while taking into account the household’s pur-
chase history b; 1. up to purchase occasion t. As a by-product, it also provides an
evaluation of the brand choice probability Pr(B;; = b;;|Bi14-1 = bi14—1) uncon-
ditional on s;;, which has been summed out. We note that current brand choice
may depend on previous brand choices via the brand loyalty variable BL;;,. By
iteratively applying the filter, one can obtain the unconditional likelihood value for
each household.

In the sequel, we use the shorthand notation &; ,; = Pr(S;, = Sit|Bi1i = bi1g)
to denote the (2% x 1) vector containing the probabilities of all possible states 3, ,
given the household’s observed purchase history b, ;.;. Basically, an iteration of the
Hamilton (1989) filter can be split up into two steps. Starting from &; ;;—1, the first
step consists of updating & s¢—1 to &, that is, updating the inference on 5;; by
including the information contained in the most recent purchase observation b; ;. It

immediately follows from Bayes’ theorem that

Sitlt—1 © Pr(Bi; = bi,t|gi,t = 5it, Bitt—1 = bi1u—1)
V& -1 © Pr(Biy = big|Sie = 3i4, Bige—1 = bij—1) |

it = , (17)

11



where ¢ is the (2L x 1) vector consisting of ones, and ® denotes element-by-element
multiplication. We note that the vector of probabilities Pr(B;; = bi,t\gu =384, Bir1t-1 =
b;1.+—1) is conditional on the memory states §;;, so that it can be evaluated immedi-
ately using (7)—(11). Furthermore, it is crucial to note that the denominator in (17)
amounts to the unconditional probability Pr(B;; = b;4|B;14-1 = b;14-1). This is
the by-product, which allows us to evaluate (13). In the second step of the iteration,
&ige is updated to & 411, that is, the next memory state s;4; is inferred given the
currently available purchase observations b; ;... As price recall obeys a first-order

Markov process, the basic Markov identity

et = Nipra)' i (18)

holds. Here, A;;i1); is the row-conditional (2% x 2%) transition probability matrix
for 5‘” The elements Pr(§i7t+1 = §i,t+1|5~}7t = 5;4) of Aj 411 are defined by (14) and
hence (1)—(5). The output & ;41¢ of (18) can be used as the input for (17) in the
next iteration. This iterative procedure is initialized by setting &; 1j0 = ﬁ(gm =3i1)
in accordance with (15) and (16).

In sum, the following algorithm results in an evaluation of the wunconditional
probability that the sequence of brand choices b; .7, is observed for household i,

that is,
Initialize the unconditional probability: Pr; = 1.
Initialize &; 1)o using (15) and (16).
Do for purchase occasion t = 1,...,T;:
Compute Pr(B;; = bi7t|§,~7t =84, Bi1i—1 = b;14-1) using (7)—(11).
Compute &; ;¢ using (17).
Update the unconditional probability: Pr; = Pr; - [ denominator of (17)].

Compute row-conditional A; ¢, using (14) and hence (1)—(5).

Compute & ;11 using (18).
Return Pr; .

12



3.2 Applying the EM algorithm

In order to obtain the parameter estimates for our model we maximize the likelihood
function (12), which can be evaluated for given parameter values using the Hamilton
filter. Although numerical techniques such as the BFGS algorithm can be applied
directly to find the optimal parameter values, we consider the EM algorithm to
take advantage of the specific structure of the problem. The EM algorithm quickly
moves to reasonable (but not yet optimal) parameter values and it is quite robust
with respect to the starting values, see, for example, Hamilton (1990). As final
convergence of the algorithm is usually slow, one can decide to first apply the EM
algorithm until the steps in the parameter space become rather small, and next one
can do direct optimization of (12) starting from the parameter location obtained
from the EM stage.

The EM algorithm considers the complete data likelihood of our model, that
is, the joint likelihood of both observed brand choices and unobserved segment

membership. The complete data likelihood is given by

KZ;=z}
;Cc = H H (71—2 Pr(Biyl:Ti = b’i,l:Ti|Zi = Z)) . (19)
i=12=1
After taking logarithms we obtain
N Z N Z
InL.=> > KZ =ztIn(m.) + > > KZ; = 2z} n(Pr(B; 1.1, = b, | Zi = 2)).

i=12=1 i=1z=1

(20)

The EM algorithm contains an Expectation step and a Maximization step, which
are performed iteratively. In the E-step, the expectation of the log complete data
likelihood (20) is taken with respect to the unobserved segment membership vari-
ables Z;,, ¢ = 1,..., N, given the household’s observed purchase history b; .7,
1=1,...,N, and given the current parameter values. This results in

N Z N Z

Ellnl )= > W, In(m)+> Y I, In(Pr(B;1r, = b1 |Zi = 2)), (21)

i=1z=1 i=1z=1

where, using Bayes’ theorem,

Pr(Biya, = b1 Zi =
1L, =Pr(Z; = 2|Bi1r, = birr) = Z7r H(Bi, LT ?) — . (22)
i m:Pr(Big = b |2 = 2)

13



Next, in the M-step, (21) is maximized over all segment sizes m = (my,...,7z) and
all model parameters denoted by 0 = (6, ...,07), given the posterior segment prob-
abilities II; , computed in the E-step. This amounts to Z + 1 separate subproblems,
that is,
N Z
max Z Z I, . In(), (23)
i=12=1

N
max Z Hi,z 1H<PI’<BZ‘71:TZ. = bi,l:Ti
i=1

Z; = z)), z=1,..., 72 (24)

z

The resulting parameter updates can again be used as input for the E-step, see (22),
after which a new iteration starts. It can be shown that subproblem (23) has a
closed-form solution, which is given by

1
= .

=1

. M., z=1,...,2 (25)
In sum, an iteration of the EM algorithm consists of the follows steps, that is,
Compute the posterior segment probabilities II; , using (22).
Update the segment sizes m = (my,...,7z) using (25).

Update the model parameters § = (61,...,0) by solving (24).

This iterative procedure converges and the resulting parameter values correspond to
the Maximum Likelihood estimates of (12), see Dempster, Laird and Rubin (1977).
In the first iteration, we initialize the EM algorithm by randomizing the II; , under
the restriction that ), II;, = 1. By considering multiple runs, this is an effective

and easily implemented approach to try out different starting points.

4 Interpretation

In this section we discuss how the estimation results for our model can be used
to analyze (i) the dynamic structure underlying reference price formation, and to
analyze (ii) the extent to which households are able to form an internal reference

price.
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Ideally, for given segment membership z, inference on the unobserved memory
state §;; should be based on all available information b; 1.7, in the data set. This
would give the most reliable results. However, the Hamilton filter described in the
previous section only allows for inference on §;; using the information b; ;. available

up to purchase occasion t < T;. So, again using the notation 5;“5 = Pr(S;; =
8i¢|Bi 1.7 = ;1.5 Zi = z) but now with explicit segment membership index z, we can
only estimate e while we are actually more interested in & Fortunately, the

smoothing algorithm of Kim (1994), also described in Hamilton (1994, p. 694), allows

us to compute £ 7. from &7 ;. This algorithm is characterized by the recursion

f:ﬂTi = f:ﬂt © [Aiz,t+1\t( 5ft+1\Ti © f:t+1|t )] ) (26)
where @ denotes element-by-element division. Using that £ . is already available
from the Hamilton filter and starting from ¢ = T; — 1, the recursion (26) is iterated
backward to obtain all £, t =1,..., T

Finally, one can obtain the posterior distribution of S’i,t = (Sf;L ey Sff, Sf;l)

unconditional on segment membership z by weighting the segment-conditional fift‘Ti,

z =1,...,7Z, with the corresponding posterior segment membership probabilities
II; ., z=1,...,Z. This amounts to computing
~ Z
Pr(Siy = 8i4|Bivr, = bivr) = D iz &y, (27)
z=1

where II; , is defined by (22).
In order to increase the interpretability of (27), one can derive the probability
that household ¢ is still able to recall at purchase occasion t the prices observed at

purchase occasion T as
Pr(S;, = 1|Bi 1.1, = biyr,) = Z PT(S'i,t = 5;¢|Birm, = birn), (28)
Sieis] =1

and one can compute the probability that household 7 has enough price information

to form an internal reference price at purchase occasion t as
t—1

PI’( Z Sz:t > OlBi,lzTi == bi,l:Ti) =1- PI‘(SN == (0, e ,O, 0)|Bi,1:Ti == bi,l:Ti)- (29)

T=t—L
We emphasize that (28) and (29) take into account all information contained in the

household’s purchase history.
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5 Empirical analysis

In this section we apply our reference price model to an A.C. Nielsen scanner panel
data set on catsup purchases in the Sioux Falls SD market. The considered period
consists of 114 weeks from June 1986 to August 1988. The first 57 weeks are used
for initialization purposes and are discarded in the log-likelihood evaluation, while
the remaining 57 weeks are used for either parameter estimation or out-of-sample
model validation. Only households which made at least three purchases in both
periods are considered in the analysis. The estimation sample contains 80% of these
households. The remaining 20% is assigned to a hold-out sample. The total sample
consists of 619 households who made together 9416 purchases in the catsup category.

The brands in our data set are Heinz, Hunts, Del Monte and Private Label.

5.1 Parameter estimates

We consider two variants of our model, that is, the model without unobserved het-
erogeneity and the model with an unknown number of latent response segments to
capture unobserved heterogeneity. For the latter variant, we use the AIC-3 criterion,
proposed by Bozdogan (1994), to determine the optimal number of segments. This
measure is defined as —21In £ + 3K with £ being the maximum likelihood value and
K being the number of parameters to be estimated. The model corresponding to the
smallest AIC-3 value is selected. The AIC-3 criterion suggests more parsimonious
models than the standard AIC criterion, but if the number of observations exceeds
20 it is less parsimonious than BIC, the other popular measure in the literature. An
extensive simulation study by Andrews and Currim (2003) indicates that AIC-3,
applied to multinomial choice data, performs better than several other criteria in-
cluding AIC and BIC. For our model, after setting L = 4 (this lag in price recall gives
the highest maximum likelihood value), we find two response segments in the data
set. Our parameter estimates are reported in Table 1. For the two-segments model,

we show both the segment-specific parameters and the segment-averaged parameters
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for which the standard errors have been obtained using the delta method.*
Insert Table 1 about here.

For both the model without unobserved heterogeneity and the two-segments
model, all response parameters have the expected sign. Furthermore, all parameters
are significant at a 1% level in the first model, whereas in the second model this holds
for all parameters except the price parameter. However, the parameter estimates do
not indicate a strong response asymmetry concerning price gains and price losses.
In the two-segments model, the first segment contains about 45% of the households
and the second segment contains the remaining 55%. Comparison of the segment-
specific parameter estimates suggests that households in segment 2 react stronger
to promotional activities of brands, while households in segment 1 are more driven
by state dependence, which is represented by the brand loyalty variable. For both
variants of our model, the estimates of the price recall parameters vy and 7 in (5)
indicate that price memory is very limited, as 79 + 1 is much smaller than zero,

and hence even price recall related to the previous purchase occasion is already far

below 50%.

5.2 Impact of purchase timing and promotion on price recall

In order to see whether interpurchase times and (non-price) promotional activity
affect price recall, we also estimate our model after including these variables in the
price recall probability (5). Here, we define promotional activity as the average
promotion rate in the category at purchase occasion 7 when the prices were ob-
served. Hence, promotional activity is measured as %Zgzl PM; 1. -. We note that it

is conceptually straightforward to include such time-varying variables in the memory

!The segment-averaged parameter values should not be interpreted as the parameter values for
“the average household”, as any household belongs to exactly one of the unobserved segments and
hence cannot have preferences and response parameters corresponding to some convex combination.
For an appropriate meaning, we have to reformulate our model as a random effects model in which
the parameters for each household are drawn from some continuous heterogeneity distribution. In a
mixture model, the heterogeneity distribution is represented by a discrete distribution. This subtle
difference is pointed out by Jain, Vilcassim and Chintagunta (1994). However, as the difference is
only conceptual and not methodological, we continue to interpret the segment-averaged parameter
values as aggregated estimates.
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process, but a practical drawback is that the transition probability matrix A;; 1)
has to be computed for each purchase occasion in order to evaluate the likelihood
function (12). This makes parameter estimation very time-consuming. In contrast,
for the original model in which (5) just depends on ¢t — 7, A; 1), only needs the be
evaluated once (for each response segment) per likelihood evaluation.

It turns out that interpurchase time does not have a significant impact on price
recall. For the model without unobserved heterogeneity, the z-score is —0.668. For
the two-segments model, the z-score becomes 0.019. This lack of significance is
consistent with the price knowledge study by Vanhuele and Dreze (2002), which
reports that purchase recency does not affect price knowledge. On the other hand,
the effect of promotional activity on price recall is positive and significant at a 1%
level for both models, with z-scores of 3.011 and 2.699, respectively. So, promotional
activities such as features and displays substantially increase the probability that
corresponding prices are kept in memory, and hence affect both current and future
brand choices. This result is, in a sense, consistent with the study by Lattin and
Bucklin (1989), which also demonstrates that promotional activity has significant
reference effects. Still, there is an important difference. We model the reference
effect of promotion on brand choice as an indirect effect via the reference effect of
price, whereas Lattin and Bucklin (1989) model the reference effect of promotion as
an effect in itself. However, it is not clear why such promotional activities, which
only aim at drawing the attention of households, should directly affect future brand

choice utility.

5.3 Model performance

In order to see how well our model performs in-sample and out-of-sample, we com-
pare it with three popular alternatives in the literature. The competing models are
a brand choice model which does not account for any reference price, a model in
which the reference price of a brand is the price observed at the previous purchase
occasion, and a model in which the reference price is defined as an exponentially

smoothed average of previously observed prices.
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Insert Table 2 about here.

Table 2 contains the results of the empirical comparison. The in-sample log-
likelihood values without unobserved heterogeneity show that our reference price
is the most flexible one. Interestingly, after accounting for heterogeneity, the AIC-
3 criterion identifies three segments for the three competing models, whereas it
suggests only two segments for our model. Hence, our model has one response
segment less. This is probably due to its richer dynamical structure, allowing for
additional household heterogeneity to be picked up. The AIC-3 value of our model
is slightly lower than it is for the “previous price model”, but it is clearly lower than
the AIC-3 values of the remaining two models. Our model also has the highest out-
of-sample log-likelihood, although the difference with the “previous price model” is
again quite small. The out-of-sample comparison would even become more favorable
if we set the number of response segments for all models equal to two, as in our
model. Overall, we conclude that our model has a good performance relative to

three popular alternative models.

5.4 Size and symmetry of the reference effect

The parameter estimates in Table 1 suggest that the effect of reference price on
brand choice is substantial, but without a clear asymmetry between price gains and
losses. It would however be interesting to consider these results in more detail, and
to compare them with the sticker shock effects resulting from the two other reference

price specifications that we have considered in the empirical comparison.
Insert Table 3 about here.

The top part of Table 3 shows the estimated price gain and price loss parameters
for the three models, and the middle part of the table provides the corresponding z-
scores. Clearly, both in an absolute sense and in terms of significance, the reference
effect in our model is largest. This is not surprising, as our reference price is the

most flexible one, and only our model is able to distinguish between households
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not forming a reference price and households not reacting to it. Neglecting this
distinction would result in a downward bias of the estimated response to price gains
and losses given that a reference price is available. As the reference effect resulting
from our new model is substantially larger than the size we would obtain from
applying current practice, the impact of internal reference price formation on brand
choice might be even larger than is currently believed.

Finally, the bottom part of Table 3 shows the p-values of the Likelihood Ratio
[LR] test for the null hypothesis “no gain-loss asymmetry”, that is, 54 = — 5. These
results are interesting too. For our model the null hypothesis cannot be rejected at
any reasonable significance level, whereas it is strongly rejected at a 5% level for the
two other models. So, although applying current practice would result in finding an
asymmetric sticker shock effect, as predicted by Prospect Theory, this asymmetry

seems to disappear when our more advanced reference price model is considered.

5.5 Analyzing reference price formation

Our model can be used to get insights into (i) the probabilities that each of the past
prices is used for reference price formation, and (ii) the probability that households
have sufficient price knowledge to form an internal reference price. Current reference

price models in the literature do not allow for such inference from scanner panel data.
Insert Figure 2 about here.

We discuss the results for our model with two response segments. Figure 2
contains histograms revealing the extent to which households are still able to recall
the prices which were observed ¢ — 7 purchase occasions ago, where t — 7 =1, 2, 3, 4.
These histograms are obtained by computing (28) for all purchase occasions in the
estimation sample. Figure 2 clearly demonstrates that price memory of households
is very limited. For example, even the recall probabilities for prices observed at the
previous purchase occasion are seldom larger than 50%. The average percentages
of price recall are 21.0%, 7.3%, 3.7% and 2.4%, for 1, 2, 3 and 4 purchase occasions

ago.
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Insert Figure 3 about here.

Figure 3 shows an analogous histogram indicating to what extent households
form internal reference prices. This histogram is obtained by computing (29) for all
purchase occasions in the estimation sample. It can be seen that the probability of
reference price formation is usually smaller than 60%. The average probability is
31.1%. We note that this low percentage is a direct consequence of the low price

recall probabilities.

5.6 Price elasticity analysis

The existence of internal reference prices implies a tradeoff between current and
future brand sales. Related to this tradeoff, Greenleaf (1995) and Kopalle, Rao and
Assuncao (1996) develop dynamic programming models to investigate the impact
of reference effects on the profitability of price promotions, and to obtain optimal
pricing schemes. They define reference prices at the market level. However, in our
model for scanner panel data, we consider reference prices at the household level
and we can only analyze the impact on household demand, and not the impact on
profitability.

Our model suggests a strong and significant effect of reference price on brand
choice, but the managerially relevant implications for current and future brand sales
are still unclear. In order to get a better understanding of the effects of a price
adjustment, we perform a simulation study. We are not aware of studies in the
literature which do something similar, except for a study by Erdem, Imai and Keane
(2003) in which the effects of future price expectations on household demand are
considered. Households forming price expectations are forward-looking, whereas
households forming internal reference prices are backward-looking.

In the simulation study we investigate two scenarios. In the first situation the
price of the considered brand is temporarily adjusted by 1% at the current purchase
occasion, whereas in the second setting this price is kept at its original level. For

both scenarios, future prices are unchanged. Moreover, the prices of all other brands

21



remain unaffected. By comparing the current and future brand choice probabilities
for the two settings, one can obtain estimates of both the instantaneous sensitivity
of own brand choice and the lagged response via the reference price effect. For each
purchase occasion in the estimation sample which is followed by at least L = 4
future purchase occasions, we compute the current brand choice probabilities and
the brand choice probabilities for L = 4 periods ahead. Proxies for current and
future sales are obtained by adding the corresponding probabilities over different
purchase occasions. We repeat this procedure 1000 times, and we add the “sales”
values obtained from all runs. For each run, segment membership of each household
is drawn from its posterior distribution, and the price recall states are drawn from
the corresponding first-order Markov processes.

Table 4 reports the percent change in sales between the two scenarios, where we
distinguish between current sales and the sales levels up to L = 4 periods ahead.
Furthermore, the table shows the “total effect” of the temporary price adjustment.
This effect is in percents too. It is computed as the ratio of the net change in
sales over time and the current sales level for the scenario without price adjustment.
For comparison, Table 4 also contains the results for the exponentially-smoothed-
average reference price model. We note that the previous-price model cannot capture
dynamic effects lasting for more than one period, while a brand choice model without

any reference price component can only capture instantaneous effects.
Insert Table 4 about here.

Table 4 illustrates that the impact of internal reference price formation on sales
is substantial, even though price recall of households is very limited. Although
the instantaneous own price elasticities of all brands are located in between —10
and —4, the net effects after L = 4 subsequent purchase occasions are rather close
to zero, that is, all net price elasticities are larger than —3. For all brands, the
net effect of a price adjustment on current and future sales is less than 40% of its
instantaneous effect. A comparison with the results obtained for the exponentially-

weighted-average reference price model illustrates that the reference effect implied
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by our model is much stronger, in an absolute sense as well as in a relative sense.

6 Conclusions

In this paper, we have proposed a new reference price framework for brand choice.
Price recall of households is modeled as a hidden Markov-switching process with
an absorbing state, and an internal reference price is constructed from the prices
the household is able to recall. Features of our reference price model include the
following, that is, (i) it does not a priori impose a rigid dynamic price structure, (ii)
it accounts for uncertainty in reference price formation, (iii) it allows that households
may forget past prices, and (iv) it even allows that a household cannot construct a
reference price at all. Our model can be used to analyze how many prices observed in
the past are considered for reference price formation, and to what extent households
have sufficient price knowledge to form an internal reference price.

Applied to A.C. Nielsen scanner panel data on catsup purchases, our model
has a good performance relative to two popular reference price specifications in
the literature. Our main findings are as follows. First, a price supported by a
feature/display has a higher probability to be recalled than a price which is not
supported by such promotional activity. Second, contrary to the two competing
reference price models, our model does not indicate an asymmetry between price
gains and losses. However, our model suggests a stronger and more significant
reference price effect. This is an indication that the impact of internal reference
price formation on brand choice might be even larger than is currently believed.
Third, we find that the prices observed at the previous purchase occasion have an
average recall probability of about 20%. We estimate the average probability that a
household has sufficient price knowledge to form an internal reference price at about
30%. Fourth, even though price recall is very limited, the impact of reference price
formation on brand choice is very substantial. For all brands in the data set, the
total effect of a price discount on current and future sales is less than 40% of its

instantaneous effect.
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We conclude by mentioning some limitations of our framework and we provide
some suggestions for further research. A conceptual remark about our model is that
we interpret “recalling a price” as being equivalent to “using this price for reference
price formation”. We report price recall probabilities, but in fact we can only make
inference on the probabilities that prices from the past show up in the reference
price. It might be possible that a household is able to recall prices observed in
the past, but still does not use this price information to form a reference price.
However, this is only a matter of interpretation. A second issue is that households
might have different degrees of price knowledge, see, for example, Vanhuele and
Dreze (2002) who distinguish between recallable price knowledge, price recognition
and deal spotting. Our model does not account for this. Finally, we have focussed
on internal reference prices, constructed from past prices, and we have not allowed
for an external reference price, based on the in-store prices during the purchase
occasion. However, several studies indicate that both are important and can exist
at the same time, see Mayhew and Winer (1992), Rajendran and Tellis (1994) and
Mazumdar and Papatla (2000).
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Table 1: Parameter estimates for our model.
given in parentheses.

The estimated standard errors are

no heterogeneity

2-segments model

averaged segment 1 segment 2

brand loyalty 0.232%* 0.200*** 0.299** 0.120**
(0.010) (0.013) (0.037) (0.040)

promotion 0.456* 0.469*** 0.372%* 0.548***
(0.034) (0.037) (0.076) (0.093)
price —1.130"** —1.077* —0.777 —1.321
(0.421) (0.654) (1.375) (0.893)

price gain 0.949** 0.913*** 0.203 1.494**
(0.255) (0.330) (0.277) (0.578)

price loss —1.092*** —1.010"* —1.001 —1.017***
(0.187) (0.275) (0.612) (0.322)
p: intercept —2.105"* —2.007*  —2.142 —1.897*
(0.509) (0.696) (1.971) (1.006)
pt—T 0.653* 0.686 0.688 0.684
(0.347) (0.634) (1.816) (0.687)
segment size 0.449 0.551

*  significant at 10%.

Xk

significant at 5%.

*** significant at 1%.
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Table 2: Empirical comparison of our model and three competing models. From
left to right, we report the in-sample log-likelihood value without accounting for
unobserved heterogeneity, the number of segments identified by the AIC-3 criterion,
the corresponding number of parameters, the in-sample log-likelihood, the AIC-3
values, and the out-of-sample log-likelihood.

LL no het. #seg. #par. LL in AIC-3  LL out®

2 23 —2961.0 5991.0  —716.2
exp. weighted average  —3009.6 3 32 —2951.5 5999.0  —725.8
previous price —3011.8 3 29 —2952.7 0992.3  —T718.7

3 23 —2973.1 6015.2  —7224

our reference price —2992.3

no reference price —3019.0

a: The LL-out values for the final three models with two segments are —726.4,
—723.1, and —723.7, respectively.
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Table 3: The top part shows the estimated response parameters of the price gain
and price loss variables. For the multi-segment models, these response parameters
amount to segment-weighted averages. The middle part reports the corresponding z-
scores. The bottom part contains the p-values of the LR test for the null hypothesis

“no gain-loss asymmetry”.

no heterogeneity

multi-segment

gain loss gain loss

param. our reference price 0.949 —1.092 0.913 —1.010

exp. weighted average 0.045 —0.215 0.083 —0.269

previous price —0.050 —0.115 0.046 —0.111
z-score our reference price 3.722 —5.852 2,772 —3.674

exp. weighted average 0.646 —3.899 0.781 —2.238

previous price —1.008 —3.419 0.586 —2.631
p-value our reference price 0.642 0.740

exp. weighted average 0.013 0.000

previous price 0.003 0.000
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Table 4: Estimated price elasticities indicating how current and future “sales” are
affected by a temporary own price adjustment.

t t+1 t+2 t+3 t+4 “total”

our reference price

Heinz —4.45 1.84 0.59 0.28 0.17 —1.65
t Hunts —6.07 2.56 0.80 0.40 0.26 —1.86
Del Monte  —8.54 4.49 1.47 0.74 0.39 —1.37
Rest —9.08 3.70 1.41 0.77 0.53 —2.67

exp. weighted average

Heinz —5.28 1.58 0.75 0.33 0.15 —2.55
t Hunts —7.45 2.17 1.02 0.50 0.26 -3.31
Del Monte — —8.77 2.57 1.27 0.65 0.29 —-3.92
Rest —8.33 1.19 0.69 0.42 0.26 —5.71
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Figure 1: Illustration of some price memory patterns which can be reproduced by our
model. The unconditional probability of price recall is plotted against the number
of purchase occasions which have passed since the prices were observed.
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Figure 2: The probability that a household is able to recall the prices observed ¢t — 7
purchase occasions ago, t — 7 = 1,2, 3,4. The histograms are based on all purchase
occasions in the estimation sample.

34



Pr( reference price )

O L L L L L L L
0.0 0.2 0.4 0.6 0.8 1.0

Figure 3: The probability that a household has enough price knowledge to form an

internal reference price. The histogram is based on all purchase occasions in the
estimation sample.
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