
E L S E V I E R  European Journal of Operational Research 99 (1997) 530-551 

EUROPEAN 
JOURNAL 

OF OPERATIONAL 
RESEARCH 

A dynamic policy for grouping maintenance activities 

R.E.  W i l d e m a n  a, *, R. D e k k e r  a, A . C . J . M .  S m i t  b,l 

a Econometric Institute, Erasmus University Rotterdam, P.O. Box 1738, 3000 DR Rotterdam, Netherlands 
b Koninklijke / Shell-Laboratorium, Amsterdam, Netherlands 

Abstract 

A maintenance activity carried out on a technical system often involves a system-dependent set-up cost that is the same 
for all maintenance activities carried out on that system. Grouping activities thus saves costs since execution of a group of 
activities requires only one set-up. Many maintenance models consider the grouping of maintenance activities on a long-term 
basis with an infinite horizon. This makes it very difficult to incorporate short-term circumstances such as opportunities or a 
varying use of components because these are either not known beforehand or make the problem intractable. In this paper we 
propose a rolling-horizon approach that takes a long-term tentative plan as a basis for a subsequent adaptation according to 
information that becomes available on the short term. This yields a dynamic grouping policy that assists the maintenance 
manager in his planning job. We present a fast approach that allows interactive planning by showing how shifts from the 
tentative planning work out. We illustrate our approach with examples. © 1997 Elsevier Science B.V. 

Keywords: Maintenance; Multiple components; Planning; Dynamic programming 

1. Introduct ion 

The cost of maintaining a component of a techni- 
cal system (such as a transportation fleet, a machine, 
a road, or a building) often consists of a cost that 
depends on the component involved and of a fixed 
cost that only depends on the system. In that case, 
the system-dependent cost, the so-called set-up cost, 
is shared by all maintenance activities carried out 
simultaneously on the system. For example, the set- 
up cost can consist of the downtime cost due to 
production loss if the system cannot be used during 
maintenance, or of the preparation cost associated 
with erecting a scaffolding or opening a machine. 

Current address: NAM B.V., Assen, Netherlands. 
" Corresponding author. 

Set-up costs can be saved when maintenance activi- 
ties are executed simultaneously, since execution of 
a group of maintenance activities requires only one 
set-up. 

Grouping of maintenance activities can be mod- 
elled over the long term (with infinite-horizon mod- 
els) and over the short term (with finite-horizon 
models). An infinite horizon is applied in practice as 
an approximation of a long-term stable situation. 
This allows one to determine long-term maintenance 
frequencies for groups of related activities. 

In practice however, planning horizons are usu- 
ally finite for a number of reasons: information is 
only available over the short term, a modification of 
the system changes the problem completely, and 
some events are unpredictable. However, as compo- 
nents mostly have a lifetime that is longer than the 

0377-2217/97/$17.00 © 1997 Elsevier Science B.V. All rights reserved 
PH S0377-221  7(97)003  1 9-0 



R.E. Wildeman et a l . /  European Journal of Operational Research 99 (1997) 530-551 531 

length of the horizon, a finite horizon is in practice 
often applied in a rolling-horizon approach, where 
the (first) decisions in the finite horizon are imple- 
mented and subsequently a new horizon starts, and 
SO o n .  

For a literature overview of the field of mainte- 
nance of multi-component systems, we refer to the 
review article by Cho and Parlar [3]. By now there 
are several methods that can handle multiple compo- 
nents. However, most of them suffer from in- 
tractability when the number of components grows, 
unless a special structure is assumed. For instance, 
the maintenance of a deteriorating system is fre- 
quently described using Markov decision theory (see, 
for example, Howard [11], who was the first to use 
such a problem formulation). Since the state space in 
such problems grows exponentially with the number 
of components, the Markov decision modelling of 
multi-component systems is not tractable for more 
than three non-identical components (see, for exam- 
ple, B~ickert and Rippin [1]). For problems with 
many components heuristic methods can be applied. 
For instance, Dekker and Roelvink [5] present a 
heuristic replacement criterion in case always a fixed 
group of components is replaced. Van der Duyn 
Schouten and Vanneste [13] study structured strate- 
gies, viz. (n, N)-strategies, but provide an algorithm 
for only two identical components. Also worth men- 
tioning are Goyal and Kusy [10] and Goyal and 
Gunasekaran [9]; they allow many components, but 
with a very specific deterioration structure only. All 
these approaches are for an infinite horizon and they 
provide simple strategies that are difficult to adapt to 
short-term information. 

Stinson and Khumawala [12] consider a finite 
planning horizon and formulate their problem as a 
mixed-integer nonlinear programming problem. 
However, such an approach does not give any struc- 
ture results and hence little insight. The optimal 
policy is often quite complex and time dependent. 
Moreover, it is usually not robust against changes in 
the horizon length. Another example of short-term 
planning can be found in the model-based approach 
for road maintenance by Worm and Van Harten [17]. 
Roads can be split up into lanes, and lanes into 
segments of a certain length. Doing the same action 
on adjacent lanes or segments yields set-up savings. 
The authors first apply an infinite-horizon single- 

component model to determine the best optimal ac- 
tion for each lane segment, and subsequently they 
apply a very simple rule for the grouping of mainte- 
nance. For given actions in a certain year, the au- 
thors consider whether it is profitable to execute the 
same action on other lane segments. 

In this paper we present a general approach that 
can assist a maintenance manager in making a short- 
term maintenance plan based on long-term mainte- 
nance strategies. To this end we apply a decomposi- 
tion and we determine for each activity separately 
how much it costs to deviate from its tentatively 
planned maintenance time. Subsequently, we deter- 
mine the best way of grouping the activities in a 
given planning horizon. We present an algorithm that 
leaves enough flexibility to adapt the plan according 
to requirements set by the maintenance manager. The 
need of such a short-term planning approach ap- 
peared useful after the development of a decision- 
support system for maintenance at the Shell research 
laboratory in Amsterdam. 

The application of decomposition and a subse- 
quent dynamic grouping allows us to use several 
models for the individual components, such as mini- 
mal repair and block replacement. Besides, our ap- 
proach yields a dynamic policy that cannot only be 
applied on the short term but also on the long term. 
In Dekker, Wildeman and Van Egmond [7] the ap- 
proach of this paper is numerically validated and 
extended to age-replacement policies for a discrete- 
time Markov decision chain, both for an infinite and 
a finite horizon. The performance of the approach 
turned out to be very good: the deviation from the 
optimal costs is less than one per cent provided that 
certain harmonisation effects are incorporated. This 
is an important result since - as we already stated - 
the current Markov decision models allow only few 
components. A great advantage of our approach is 
that many components can be handled. 

This paper is structured as follows. In the next 
section we give the problem formulation and we 
outline a general five-phase approach to solve it. In 
Section 3 we deal with each of these five phases 
successively and throughout the paper we use the 
same example to illustrate each phase when it is 
discussed. Section 4 briefly discusses some advan- 
tages of our approach and in Section 5 we draw 
conclusions. 



532 R.E. Wildeman et al. / European Journal o f  Operational Research 99 (1997) 530-551 

2. Problem definition and outline of approach 

Consider a multi-component system with n com- 
ponents i, i ~  {1 . . . . .  n}. On each component i a 
preventive-maintenance activity i can be carried out. 
(We assume in this paper that there is one preven- 
tive-maintenance activity for each component, but 
the modelling is easily extended to deal with more 
activities per component.) Preventive-maintenance 
activity i has a component-dependent cost c[' and a 
system-dependent cost S. This system-dependent cost 
S is called the set-up cost and is the same for all 
activities. When activity i is executed on its own 
c[' + S has to be paid, whereas for a group G ___ 
{1 . . . . .  n} of  activities that are executed together the 
set-up cost has to be paid only once, that is, we then 
have to pay S + E i~cc  p. This implies that combin- 
ing m activities yields a cost reduction of  (m - 1)S 
compared to executing these m activities separately. 
A fixed set-up cost is not an uncommon assumption 
as it is due to, for example, crew travelling, scaffold- 
ing, shutdown, etc., which is assumed to be the same 
for all activities. Another practical motivation is that 
it is very hard to obtain more specific data; no 
present-day management information system sup- 
ports a data structure for each possible combination 
of activities. Van Dijkhuizen and Van Harten [14] 
present an approach in which multiple levels of 
set-up costs are considered. However, these authors 
consider an infinite horizon and hence do not incor- 
porate short-term circumstances. 

Components 1 . . . .  , n are not used at a constant 
rate; over the short term the use of  a component can 
vary because of, for example, a varying demand (in 
case of  a production system). Furthermore, an oppor- 
tunity may occur because of  a shutdown of  the 
system for whatever reason; in that case no set-up 
cost has to be paid for activities that are carried out 
at that time. 

Opportunities and a varying use of  components 
are typical short-term circumstances that cannot be 
incorporated in long-term (infinite-horizon) mainte- 
nance opt/m/sat/on models. Short-term circumstances 
can be incorporated in finite-horizon models, but this 
has other disadvantages. Finite horizons are often 
much shorter than the lifetime of  a component, 
which implies that we have to introduce a residual 
value for each component at the end of  the horizon. 

This can cause very capricious finite-horizon effects 
that depend on the length of  the horizon and the 
definition of  the residual values (see, for example, 
Dekker, Wildeman and Van Egmond [7]). In practice 
one would like to have a situation in which a small 
change in the horizon causes small changes in the 
generated solution. 

In this paper we present a five-phase rolling- 
horizon approach that has a more stable character 
because short-term plans are made on the basis of a 
long-term tentative plan, The approach has many 
other advantages, some of  which will be discussed in 
Section 4. Here we first give an outline of the 
approach. 

Phase 1: decomposition. Formulate an infinite- 
horizon maintenance model for each activity sepa- 
rately and optimise this model to obtain an optimal 
frequency with respect to the long-term average costs. 
Here we assume an average use of  components and 
we neglect or approximate global interactions be- 
tween components. The result is an individual main- 
tenance rule for each activity. Usually, this phase has 
to be done only once. 

Phase 2: penalty functions. We then derive a 
penalty function hi(At) for each activity i, express- 
ing the additional expected costs of shifting the 
execution time of  activity i At  time units from a 
tentatively planned time. This shift A t may be posi- 
tive and negative (forward and backward in time). 
The penalty functions are derived from the individ- 
ual maintenance models in Phase 1 and usually this 
needs to be done only once. 

Phase 3: tentative planning. Suppose the system 
is considered at a certain time t. Based on the 
individual maintenance rules of  Phase 1, the current 
state of  component i and short-term information, the 
time t/ is determined at which activity i is carried 
out when it were on its own. Now take a finite 
planning horizon and consider the activities to be 
executed in this horizon. Here we choose the horizon 
It, max i t/] induced by the tentative execution times 
t/, i = 1 . . . . .  n, but other choices are also possible. 
In this phase opportunities can be incorporated. 

Phase 4: grouping maintenance activities. In this 
phase it is allowed to shift the tentatively planned 
times within the planning horizon [t, max/ ti] to 
make joint execution of  activities possible. The opti- 
mal grouping structure of  the n activities maximises 



R.E. Wildeman et a l . /  European Journal of Operational Research 99 (1997) 530-551 533 

the set-up cost reduction (because of joint mainte- 
nance) minus the costs of shifting from the tenta- 
tively planned times. The latter costs are expressed 
by the penalty functions derived in Phase 2. In 
Section 3.4 we show that under general conditions an 
optimal grouping can be found in ~ ' (n  2) time. 

Phase 5: rolling-horizon step. Having applied 
Phase 4 we have a grouping structure for the n 
activities in [t, max~ t~]. The maintenance manager 
can change the planning in case h e / s h e  is not satis- 
fied with it and then go back to Phase 3; this can be 
done interactively and as often as desired. Finally, 
the maintenance manager can carry out one or more 
groups of activities according to the generated group- 
ing structure and start with Phase 3 when a planning 
for a new period is required. 

3. Roiling-horizon approach 

In this section we will discuss each phase of our 
rolling-horizon approach in detail and of each phase 
we will give an example. We want to stress here that 
the examples are indeed only for illustrative reasons; 
they do not show all possible aspects and extensions 
of our approach. Some of these aspects and exten- 
sions are discussed in Section 4, but showing all 
would go far beyond the scope of this paper. 

3.1. Phase 1: decomposition 

For each individual activity i we formulate an 
infinite-horizon maintenance model in which we as- 
sume an average use of  component  i and in which 
we neglect or approximate global interactions be- 
tween components.  

In this paper we consider the following kind of 
model. Activity i is a preventive replacement of 
component  i and is executed each x time units at a 
cost of c[' + S. Let Mi(x) denote the expected dete- 
rioration costs for component  i, i.e., the expected 
costs (because of repairs, or increasing energy use) 
incurred in x time units since the latest execution of 
activity i. It is assumed that Mi(-)  is strictly convex. 

Long-term optimisation of the interval between 
executions of activity i is easily achieved by apply- 
ing renewal theory. We find that the long-term aver- 

age costs q~i(x) as a function of the interval length x 
equals (see, for example,  Dekker [4]) 

c[' + S + Mi( x) 
• ~ (x )  = 

X 

Let xi* denote the optimal interval length (if it 
exists) and @i* := ~i(xT) the associated long-term 
average costs. Using 

qO;(x) = 0  ¢~ M ~ ( x ) -  ~ i ( x )  = 0  

and the fact that M~(.)  is strictly increasing, it is not 
difficult to show that this x~* exists if, e.g., 
lim . . . . .  M[(x) = 2.  Furthermore, xi* is then unique 
and the following holds: 

< 0  for x<x~*, 
M ; ( x )  - qbi* 

> 0  for x>xi*. 

Strategies like block replacement and the version of 
minimal repair that we use in this paper are captured 
by this type of maintenance optimisation model (see 
Dekker [4] for a list of  models that can be captured). 
Age replacement is not included in this model, but 
can be incorporated approximately in an extension 
(see Dekker, Wildeman and Van Egmond [7]). 

In this model we neglect the economic depen- 
dence between components since in q~( . )  the set-up 
cost S is attributed wholly to component i, assuming 
that activity i is always executed on its own. The 
modelling is easily extended to deal with harmonisa- 
tion of frequencies, for example by applying a cor- 
rection factor (see Dekker, Wildeman and Van 
Egmond [7]). However,  that does not change the 
concept of decomposition and will thus not be con- 
sidered here. 

Example .  We consider n = 16 maintenance activi- 
ties that are modelled according to a minimal-repair 
model with block replacements. In this minimal-re- 
pair model, preventive replacements are carried out 
after fixed intervals, with failure repair occurring 
whenever necessary. A failure repair restores the 
component  involved into a state as good as before. 
No combination of repair and replacement is possi- 
ble in this variant. Activity i, i = l . . . . .  16, is the 
preventive replacement of component i and costs 
c/' + S. The failure-repair cost of component i equals 
c;. Let ri(.) denote the rate of occurrence of failures, 

rrx F ( then c i j  0 ?,y) d y  are the expected repair costs in- 



534 R.E. Wildeman et al./  European Journal of Operational Research 99 (1997) 530-551 

curred in the interval [0, x] due to failures (see, for 
example,  Dekker  [4]). For ri(.) we take a polyno- 
mial rate of  occurrence of failures with scale parame- 
ter A i > 0 (in days), and shape parameter fli > 1 (this 
is a Weibull process): 

ri( x ) = ~i i (1)  

For the scale parameter A i we took as time unit a 
day, since the aim is to plan the activities in absolute 
time and not, for example, in machine running time. 
However,  if running hours are considered, the pa- 
rameter is easily converted to days through multipli- 
cation by a utilisation factor. 

The expression of ri(.) above yields the follow- 
ing expression for the expected deterioration costs 
Mi(x)  (in this case repair costs) for component  i in 
[0, x]: 

Mi( x )  = cr(  X//l~i) '~' ( 2 )  

The optimal value xi* can be found by setting the 
derivative of  @i( ' )  to zero. For a minimal-repair 
model we thus find the following analytical expres- 
sion for x i : 

x, = c; ' ( /3 i -  1) 

* * t * * Since @i = @i(xi ) = Mi(x i  ), we have for @i , 

( c/' + s)  
~i* x; ( 8 i -  l) 

In Table 1 we give the random data for the 16 
maintenance activities that we use throughout this 
paper. For the set-up cost S we take S = 15, which 

is 5% of the average individual preventive-mainte- 
nance costs, i.e., 

6 

s = 005  E ( c f  + s )  
i=l 

The values of  xi* and @i*, obtained by substitution 
of the data and S = 15 in the two equations above, 
are also given given in Table 1. 

3.2. Phase 2: penalty functions 

The individual maintenance rule of  activity i ac- 
cording to Phase 1 provides a frequency at which 
activity i is executed. In Phase 3 a tentative planning 
is made based on this frequency and this tentative 
planning can be changed to enable grouping of activ- 
ities in Phase 4. To this end we need to calculate the 
costs of  shifting the execution time of an activity 
from its tentatively planned time. This will be done 
here. 

According to the maintenance rule chosen in Phase 
1, activity i is executed each xi* time units. Let t i 
be the tentatively planned execution time of activity 
i, found by adding x,.* time units to the latest 
execution date of  the activity. We distinguish be- 
tween two cases to determine the penalty costs hi(At)  
for a shift At from time t i (where At  may be 
positive or negative). In the first case, called Long- 
Term Shift (LTS), the execution interval is changed 
once, from xi* to xi* + A t, while all future intervals 
remain x~*. This implies that all future execution 
times (after t i) are shifted by At time units. In the 
latter case, called Short-Term Shift (STS), the execu- 
tion interval is changed twice, first from xi* to 
xi* + At,  while the following interval equals xi* - 
At. This implies that all future execution times (after 
t i) remain the same. 

Table 1 
Example data for 16 activities and the corresponding optimal values of@i* and x~ 

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

A i 159 159 190 285 108 285 49 97 84 149 190 117 205 281 281 285 
fli 1.70 1.70 2.00 2.00 1.70 2.00 1.25 1.75 1.50 1.50 2.00 1.70 1.75 1.75 1,75 2.00 
c~ 105 225 345 165 585 345 105 345 345 45 345 885 225 105 105 225 
c~ 92 182 28 30 172 30 90 50 76 12 28 66 36 22 22 30 
@i* 1.27 2.53 1.06 0.52 5.25 0.73 3.21 2.38 2.87 0.26 1.06 3.26 0.78 0.32 0,32 0,60 
x~ 229 231 681 698 278 987 187 353 376 692 681 671 714 873 873 806 



R.E. Wildeman et a l . /  European Journal  o f  Operational Research 99 (1997) 530-551  5 3 5  

In case of an LTS, the deterioration costs in the 
first interval (of length xi* + A t )  are given by 
Mi( xi* + At),  whereas otherwise Mi( x ~ ) was paid. 
So the extra expected deterioration costs as a result 
of a shift At  are given by Mi(x ~ + A t ) -  Mi (x ,  ). 
As all following intervals remain of length xi*, all 
future executions times after t i are deferred by At 
time units, which saves A tq~i*. Altogether, the 
penalty function equals 

h i (A t  ) = Mi( x; + At)  - Mi( x;  ) - AtffPi*, 

At> - x ; .  (3) 
Notice t h a t  hi(.) is strictly convex ( h i ( . ) >  0 since 
Mi(.) is strictly convex) and hi(O) = 0. As 

< 0  for x<x i* ,  
M ; ( x )  - q~i* 

> 0  for x > x ~ ,  

and 

h'i( At  ) = M;( x; + At) - qbi*, 

it follows that 

< 0  for At < 0, 
h'i(At) > 0 for A t >  0. 

Together with hi(0) = 0 this implies that hi ( . )  ~> 0. 
In case of  an STS, the deterioration costs in the 

first two intervals (of length xi* + At and x ,  - At, 
respectively) are given by Mi( x[ + A t) + Mi( x f  - 
At), whereas otherwise in each of  the two first 
intervals Mi(x ~ ) was paid. As all future execution 
times after t i remain unchanged, the penalty costs as 
a result of a shift At  equal the extra expected 
deterioration costs, so that 

hi (At  ) = M i ( x ;  + At)  + M i ( x ;  - At)  - 2 M i ( x ; ) ,  

- x [  < At < x , .  (4) 

Notice that this function is also strictly convex 
( h ' ; ( . ) > 0 ) ,  that h i ( 0 ) = 0  and that hi( . )~>0.  It 
even holds that hi( . )  is symmetric around zero. 

Example.  When we substitute (2) in (3) and (4), we 
obtain the following expressions for the penalty 
functions hi(-). For an LTS we have 

I 
r _ _ C  r hi(A,)=ci Ai J ai ) - a t e : ,  

At> - x ; ,  (5) 

2 0 I I I I I I I 

-200  -150 -100  -50 0 50 100 150 200 

Shi f t  A t  f r o m  t l  

Fig. 1. The penalty function h~(.) of activity 1 according to an 
LTS (see Eq. (5)). Notice that hl(.)>~ 0, that hi(0)= 0 and that 
hi(.) is strictly convex. 

and for an STS, 

r * X i - -  A t  ~' 

hi (At  ) = c i Ai + cr Ai 

x .* ~ ,  

As ri(-) is strictly increasing, Mi(.) is strictly con- 
vex. This implies that h i ( . )  is strictly convex as 
well, both for an LTS and an STS. In case of  an 
STS, hi( . )  is also symmetric around zero. In Fig. 1 
the penalty function of  activity 1 is given for an 
LTS. 

3.3. Phase 3: tentative planning 

In this phase a tentative planning for each activity 
i is made at a certain time t; opportunities are 
incorporated (if any) and based on the individual 
maintenance rules of  Phase 1 we determine at what 
time t i activity i should be carried out. Under aver- 
age conditions, this is x/* time units after the latest 
execution date of  activity i. However, because of a 
varying use of component i this can be at another 
time, depending on the utilisation rate of component 
i since the latest execution of  activity i. 

We now take a finite planning horizon and we 
consider the activities that have to be executed in 
this horizon. There are many possibilities to choose a 
planning horizon and the choice depends very much 
on the specific problem and the requirements of the 
maintenance manager. Here we choose the horizon 



536 R.E.  W i l d e m a n  et  a l . /  E u r o p e a n  J o u r n a l  o f  Opera t iona l  R e s e a r c h  99 (1997)  5 3 0 - 5 5 1  

[t, max~ t i] induced by the tentative execution times 
ti, i = 1 . . . . .  n, and we consider only the first occur- 
rence of  each activity. This implies that for each 
component there is exactly one planned activity. 
(Extending the model to deal with multiple occur- 
rences of  an activity in the planning horizon is 
obvious, but will not be done here.) 

Example.  Suppose the system is considered at time 
(day) t = 0. Activity i is carried out each x~* days 
(see Table 1). The time unit of  these values xi* is a 
day, since the scale parameter A i is in days. As an 
example of  how to incorporate certain short-term 
circumstances, we suppose here that the values of  the 
scale parameter ~i are based on an operating time of 
component i in running hours that are converted to 
days. Suppose the average utilisation factor is a~ 
hours a day. In practice however, utilisation factors 
fluctuate in time. We will show here how this can be 
incorporated in a short-term planning. 

Suppose that at day t = 0 the latest execution time 
of  activity i is x i days ago and that during that 
period component i has been used for u i hours a 
day. Consequently, at time t =  0 it is uix~ running 
hours since the latest execution of  activity i, whereas 
activity i is normally carried out each a~ x~* running 
hours. This implies that the new execution time of  
activity i is aix~ -u~x~ running hours from now. 
Assuming that in the coming period activity i will 
again be used ug hours a day (but this may also be 
another value), we have the following expression for 
the tentative execution day tg of  activity i: 

l a i 
t i =  - - ( a i x i *  - -  u i x i }  = - - x i *  - - x  i .  

u i u i 

As an example, let the values of  a~, u i and x~ for 
the sixteen activities be as given in Table 2. The 
values of t i are then easily calculated and are also 

tabulated in Table 2 (for completeness we repeat the 
values of  xi* given in Table 1). Notice that the 
components are indexed such that tl ~< t 2 ~< . - .  ~< 

t n • 

We want to stress here again that this way of  
incorporating certain short-term circumstances is only 
to illustrate the possibilities of our approach, not the 
limitations. What we present here is a general ap- 
proach; we can apply many extensions or make 
alternative choices whenever a detail of  our approach 
has to be filled in, but this will only blur the global 
picture. The details depend very much on the spe- 
cific problem and they do not change the concept of  
our approach. 

3.4. Phase 4: grouping maintenance activities 

Without loss of  generality assume that the n 
activities that are tentatively planned at execution 
times t i, i = 1 . . . . .  n, in Phase 3 are indexed such 
that t~ ~< t 2 ~< • - • ~ t n (notice that this order can be 
obtained by application of  standard sorting algo- 
rithms with a time complexity of de(n log n)). Con- 
sequently, the planning horizon equals [t, t,]. 

In this subsection we first give a mathematical 
formulation of  the problem of grouping the n activi- 
ties in the finite planning horizon [t, t,]. Subse- 
quently, we derive reduction theorems that make the 
problem more tractable. Finally, based on these re- 
duction theorems, we present an efficient dynamic- 
programming algorithm to solve the problem in 
polynomial time. 

3.4.1. Mathematical formulation of grouping prob- 
lem 

A group of activities is a subset of  {1 . . . . .  n}. A 
partition of {1 . . . . .  n} is a collection of  mutually 

Table 2 

Values of a i, u i, x 7 ,  x i a n d  t i 

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

a i 20 18 12 12 14 8 22 10 12 8 7 7 9 II 11 13 
u i 13 12 15 12 7 8 19 13 11 11 16 9 6 11 12 12 
x~ 229 231 681 698 278 987 187 353 376 692 681 671 714 873 873 806 
x i 352 344 513 661 476 902 129 172 299 366 130 345 887 678 585 656 
t~ 0 3 32 37 80 85 88 100 I l l  137 168 177 184 195 215 217 



R.E. Wildeman et al. / European Journal o f  Operational Research 99 (1997) 530-551 537 

exclusive groups G~ . . . . .  G m, which cover all activi- 
ties, i.e., 

Gj f )Gk=¢ ,  Vj4=k, 

and 

G , U  " "  U G,,,= {1 . . . . .  n}. 

A grouping structure is a partition of  {1 . . . . .  n} such 
that all activities within each group are jointly exe- 
cuted at the same time. 

Given for each activity i is its penalty function 
hi(At) expressing the additional expected costs of 
shifting the execution time of  activity i At time 
units from its tentatively planned time t i. This shift 
A t may be positive and negative (forward and back- 
ward in time). These penalty functions were derived 
in Phase 2. Here we assume the following with 
respect to the penalty functions h,.(.): 

A s s u m p t i o n  1. hi(-)  is strictly convex, i = 1 . . . . .  n. 

A s s u m p t i o n  2. hi(. ) > 0, i = ,  . . . .  n. 

A s s u m p t i o n  3. hi(O) = 0 ,  i = 1 . . . . .  n. 

Notice that the penalty functions derived in Phase 2 
satisfy these assumptions. Assumption 1 is more 
restrictive than necessary. In fact, in the sequel we 
only need to assume that every sum of penalty 
functions has a unique minimum, and that this sum is 
decreasing left of its minimum and increasing right 
of it. However, for reasons of simplicity, we use 
Assumption 1. 

For any group G of  activities, 

: =  Y',  h , (  t - t , )  
i ~G  

is the cumulative penalty function, expressing the 
additional expected costs when executing group G at 
time t. The group G should be executed when HG(.) 
is minimal, say at time t~, which we call the optimal 
execution time of  group G. Let H~ denote the 
minimal value of He( . ) ,  then HG* = HG(t ~ ). 

Each activity has the same set-up cost S, which 
implies that combining the execution of  m activities 
yields a cost reduction of  (m - 1)S. If  for a group G 
the set-up cost reduction ( I G I - 1)S is larger than or 

equal to the minimal value H j ,  G is called cost-ef- 
fective. Equivalently, in this case we say that the 
savings are greater than or equal to zero, where the 
savings are defined as ( I G I  - I ) S -  H j ,  the set-up 
cost reduction minus the sum of the penalty costs. 

An optimal grouping structure (partition) can be 
obtained by solving a set-partitioning problem (see 
also Dekker, Smit and Losekoot [6]), where the 
objective is to maximise the total savings (that is, the 
sum of the savings of the groups in the grouping 
structure). However, set partitioning is NP-complete 
(see Garey and Johnson [8]) and with n the number 
of activities, there are 2 n - 1 possible groups (ignor- 
ing the empty set). In some cases groups can be 
excluded beforehand, which decreases the size of the 
set-partitioning problem. This is possible by using 
the reduction theorems presented below. To this end 
we need the following definition. 

Define intervals I i, i = 1 . . . . .  n, such that 

I i= [t i + A t ~ ,  t i + A t  +], 

with At 7 the smallest and At + the largest solution 
of  the equation h i ( A t ) - S = 0 .  The interval I i 
clearly shows the maximum allowable shift (back- 
ward and forward) of  the execution time of  activity 
i, to form a group with one of the other activities 
such that the penalty costs of  activity i do not 
exceed the reduction in set-up costs. 

3.4.2. Problem reduction 
We will now present theorems that reduce the 

number of  groups that have to be considered for 
identifying an optimal grouping structure. The first 
two originate from Dekker, Smit and Losekoot [6]. 
The proofs of  the other theorems are given in Ap- 
pendix A. 

If for two activities i and j the intersection of the 
corresponding intervals is empty (i.e., I i A lj= ~), 
then i and j cannot be combined cost-effectively, 
since the penalty costs are greater than the reduction 
in set-up costs. Therefore, the group {i, j} cannot be 
part of  an optimal grouping structure. If for more 
than two activities the corresponding intersection of 
intervals is empty, combining these activities can be 
cost-effective but never optimal. This is stated in 
Theorem 1. 



538 R.E. Wildeman et a l . /  European Journal o f  Operational Research 99 (1997) 530-551 

Theorem 1. A group G can only be part  o f  an 
optimal grouping structure i f  f] i ~ G li ~ ~" Further- 
more, the optimal execution time t~ o f  G is in 

O i E G I i  • 

We say that a group F contains a cluster G c F, 
if Vi E F \ G  the following holds: 

i <  min j  or i >  maxj .  
j E G  j E G  

For instance, {3, 5} and {3, 5, 7} are clusters in 
{1, 3, 5, 7, 8}, whereas {3, 7} and {3, 5, 8} are not. 

Theorem 2. A group F cannot be part o f  an optimal 
grouping structure i f  it contains a cluster G that can 
be split up more effectively into two clusters o f  
activities. 

There is some redundancy between the results of 
Theorems 1 and 2. If Iq i~ c li = 0 for a group G, 
then it can be proved, analogously to Theorem 1, 
that G can be split up more effectively into two 
clusters of activities. According to Theorem 2 this 
implies that G cannot be part of an optimal grouping 
structure. A group excluded by Theorem 1 will thus 
also be excluded by Theorem 2. We will, however, 
still use Theorem 1, since it provides a better under- 
standing of the problem and it will appear to be 
useful for the properties defined below and for the 
dynamic-programming algorithm presented later. 

Dekker, Smit and Losekoot [6] present an algo- 
rithm that first eliminates groups that cannot be part 
of an optimal grouping structure according to Theo- 
rems 1 and 2, and that subsequently finds the best 
structure by applying set partitioning to the remain- 
ing groups. A great disadvantage of this method is 
that its time complexity strongly depends on the 
data, since the number of groups excluded by Theo- 
rems 1 and 2 are dependent on the data. Theorems 1 
and 2 might not eliminate any group at all, which 
implies that the number of groups left for the set-par- 
titioning problem can be @(2"). 

In case the penalty functions are of a special 
form, however, the grouping problem has a very nice 
structure. The total number of groups can be reduced 
to @(n 2) if there is an optimal grouping structure in 
which every group has consecutive activities. A 
group G is said to contain consecutive activities if G 

is a cluster in {1 . . . . .  n}. This very important result 
will be established in Theorem 3, assuming one of 
the following properties. (A similar consecutiveness 
result is obtained by Van Dijkhuizen and Van Harten 
[14], but for a different problem and in an infinite 
horizon.) 

Property 
i.e., 

h i ( A t  ) = 

Property 
i.e., 

1 (Symmetry). All h i ( . )  are symmetric, 

h i ( - A t  ) ,  i =  1 . . . . .  n, V A t > 0 .  

2 (Congruency). All h i ( . )  are congruent, 

o t i h i ( "  ) = h i ( "  ) ,  o~ i > 0 ,  i = 2 . . . . .  n.  

Property 3 (Dominance). For all i = 1 . . . . .  n -  1, 
h i ( . )  dominates hi+ l(" ) right of  ti+ I, i.e., 

hi(ti+ 1 - t i + A t  ) > h i + l ( A t )  f o r A t > O ,  

and for  all i = 2 . . . . .  n, h i ( . )  dominates h i_ i(') left 
o f t  i_ j, i.e., 

hi( t i_ 1 - t i - A t  ) > h i _ ~ ( - A t  ) f o r a t > O .  

Notice that these properties need only be true for 
each penalty function hi(. ) on its interval I i. This is 
due to the fact that each activity i must be executed 
within its corresponding interval I i. Any group G 
that contains an activity i such that the optimal 
execution time t~ of G is not in I i cannot be part of 
an optimal grouping structure according to Theorem 
1. 

Theorem 3 (Consecutive activities). I f  Property 1, 2 
or 3 holds, there exists an optimal grouping struc- 
ture with consecutive activities. 

In the proof of Theorem 3 (see Appendix A) it is 
shown that if one of the properties holds for two 
activities i and j it is optimal to execute these 
activities in the order of their tentatively planned 
execution times. This is independent of any activity 
other than i and j, so that the following corollary 
holds. 

Corollary 1. I f  Property 1, 2 or 3 holds for  all 
activities in a subset A o f  {1 . . . . .  n}, then it is 
optimal to execute the activities in A in consecutive 
order (that is, in the order as tentatively planned). 



R.E. Wildeman et al . /  European Journal of Operational Research 99 (1997) 530-551 539 

This also implies that adding whatever activities to 
the problem does not change the order of  execution 
of the activities in A. 

Due to Theorem 3, only groups with consecutive 
activities need to be considered. This implies that the 
maximum number of groups to be considered re- 
duces from 2" - 1 to ½n(n + 1), as there are 1 group 
of n consecutive activities, 2 groups of  n -  1 con- 
secutive activities . . . . .  and n groups of  1 (consecu- 
tive) activity. 

It is still an open question whether there are more 
properties that guarantee the existence of an optimal 
grouping structure with consecutive activities. In Ap- 
pendix A it is shown that if none of  the properties 
holds, there may be a unique optimal grouping struc- 
ture in which the activities are not consecutive. 

The following theorem also provides a reduction 
of  the number of  groups to be considered; for this 
theorem we implicitly assume that Property 1, 2 or 3 
holds, so that Theorem 3 applies. 

Theorem 4. I f  in an optimal grouping structure o f  
the first s activities activity s is executed in another 
group than an activity p (1 ~ p < s), then for  any 
r > s there is an optimal grouping structure o f  the 
first r activities in which activity s is also executed in 
another group than activity p. 

If we take s = p  + 1 in Theorem 4, we have the 
following corollary: 

Corol la ry  2. I f  in an optimal grouping structure o f  
the first p + 1 activities activity p + 1 is executed on 
its own, then for  any r > p + 1 there is an optimal 
grouping structure o f  the first r activities in which 
p + l is also executed separately f rom the activities 
1 . . . . .  p. Consequently, the groups found in an opti- 
mal grouping structure o f  the first p activities are 
then also optimal in any optimal grouping structure 
o f  the first r activities. 

This implies that if it is optimal for the first p + 1 
activities to execute activity p + 1 on its own, adding 
activities i with ti >~ tp+~ does not influence the 
grouping of  activities 1 . . . . .  p. In that case the 
grouping structure of activities 1 , . . . ,  p is optimal 
independently of  the length of  the time horizon, as 
long as no activity with tentative execution time 

smaller than tp+ ~ is added. This result is important 
since it implies that we can decide that a certain 
solution is stable, so that finite-horizon effects are 
eliminated. Such results cannot always be obtained 
for finite-horizon models. In inventory theory, these 
stability results are usually referred to as planning- 
horizon or turnpike theorems (see, for example, 
Wagner [15]). 

The next corollary is a more complicated applica- 
tion of  Theorem 4 and provides another result with 
respect to the stability of the grouping structure in 
the finite planning horizon. 

Coro l la ry  3. Suppose that for  i = p -  1 . . . . .  q -  1, 
group {l . . . . .  i} ( l < ~ p -  1 < ~ q -  1) is part o f  an 
optimal grouping structure GS i of  the first i activi- 
ties and group {p  . . . . .  q} is part o f  an optimal 
grouping structure GSq o f  the first q activities. For 
any r > q there is an optimal grouping structure GS r 
of  the first r activities, in which the activities that 
are combined in GSI,_ 1 are also combined in GS r. 

Notice that Corollary 3 immediately follows from 
Corollary 2 for the case p = q. 

3.4.3. Dynamic-programming algorithm 
If Property 1, 2 or 3 holds, there is by Theorem 3 

an optimal grouping structure in which the activities 
in each group are consecutive. Every partitioning 
problem with an optimal solution that is consecutive 
can be solved following a shortest-path approach 
(Chakravarty, Odin and Rothblum [2]). This yields a 
solution in G(n  2) time. However, in order to make 
use of  Theorems 1, 2 and 4 as well, we shall present 
a special algorithm that uses the principle of dy- 
namic programming. This algorithm terminates after 
n iterations, while in each iteration j a best group 
with last activity j is found. The array entry First[j] 
indicates the first activity of  this best group. That is, 
if First[j] = i, then {i . . . . .  j} is the best group found 
in iteration j. The total savings of  the corresponding 
optimal grouping structure is stored in the array 
entry TotalSavings[j]. Thus we have the following 
approach. 

Initialisation: TotalSavings[O] := 0. 
I tera t ion 1: The best group with last activity 1 is 
{1}, with corresponding optimal grouping structure 
{1}. 



540 R.E. Wildeman et al . /  European Journal of Operational Research 99 (1997) 530-551 

First[ 1 ] : =  1. 
TotalSavings[1] := 0. 
FOR j := 2 TO n DO I terat ion j: Consider the 
groups with last activity j in the following order: 
{j}, { j -  1, j} . . . . .  {1 . . . . .  j}. 
Find the group for which the corresponding grouping 
structure covering activities 1 . . . . .  j has greatest sav- 
ings. This is the group {i . . . . .  j} for which TotalSav- 
i n g s [ i -  1] + savings o f { i  . . . . .  j} is maximal. 
First[ j] := i. 
TotaISavings[ j]  := TotalSavings[ i - 1] + savings  o f  
{i . . . . .  j}. 

The best grouping structure can be found by 
backtracking. The corresponding total savings equal 
TotalSavings[ n ]. 

In Appendix B it is shown how Theorems 1, 2 
and 4 can be incorporated in this approach and we 
present the resulting dynamic-programming algo- 
rithm. This dynamic-programming algorithm has in 
the worst case a time complexity of ~'(n2), whereas 
in the best case an optimal grouping structure is 
found in linear time. 

Example.  In Table 2 we have the tentative execution 
times t i, i = 1 . . . . .  16, within the planning horizon 
[t, t ,] = [0, 217]. To find the optimal grouping struc- 
ture of  the activities, we can apply the dynamic-pro- 
gramming algorithm. This is optimal when an opti- 
mal grouping structure with consecutive activities 
exists. When using the minimal-repair model as de- 
scribed before, there are different situations in which 
this is the case. 

1. As h i ( ' )  is symmetric around zero if we apply 
an STS, Property 1 holds if each penalty function is 
derived according to an STS. 

2. All /3 i are equal to 2. It is easily shown that if 
~ i =  2, h i ( . )  is symmetric also when an LTS is 
applied. 

3. All components are equal. In that case the 
penalty functions are equal and, afortiori,  congruent, 
which implies that Property 2 holds. It is easily 
shown that the same result is true when all (c]' + S)  
and all c~ differ a positive factor a i (i.e., a;c~ = c[ 
and o~i(ci p + S) = (c[' + S), cei > O, i = 2 . . . . .  n)  and 
all other parameters are equal. 

4. Property 3 holds. Here it is convenient to recall 

the definition of  the intervals I i in the beginning of  
this section: I i = It  i + A t e ,  t i + At+],  with A t  7 the 
largest solution of  the equation h i ( A t )  - S = 0. Due 
to Theorem 1, Property 3 needs only be true for each 
penalty function hi(-)  on its interval I i. This implies 
that we can check for each hi( . )  whether it intersects 
hi+l(-)  on the interval [ti+l, t i + A t + ] ,  or hi_l(-)  
on the interval [ t i + A tT ,  t i_ i ]. If  this is not so, then 
Property 3 holds. 

If none of these situations occurs, there can still 
be a consecutive solution. In Appendix C it is shown 
which strategies can be followed to check the exis- 
tence of  a consecutive solution. When the existence 
of  a consecutive optimal solution cannot be proved, 
there are several other possibilities (see Appendix 
C), one of which is to apply the dynamic-program- 
ming algorithm as a heuristic. In Appendix C it is 
shown that the optimal total savings are always less 
than twice as large as the total savings of the solu- 
tion found with dynamic programming. This implies 
that application of the dynamic-programming algo- 
rithm yields a solution that in the worst case is 
almost twice as bad as the optimal total savings. 
However, to obtain such a worst case, we have to 
define very pathetic penalty functions that are not 
likely to occur in practice. Fortunately, the 
dynamic-programming algorithm can also be used to 
obtain an upper bound that is mostly much better, 
using a technique described in Appendix C. 

We will illustrate here how dynamic program- 
ming can be used as a heuristic. To do so, we choose 
an example that is as general as possible, but such 
that none of  the properties holds for all activities 
(otherwise the dynamic-programming algorithm is 
optimal). Consequently, we will not take the penalty 
functions according to an STS, since these are sym- 
metric so that Property 1 holds. Instead, we take for 
each of the 16 activities tentatively planned in 
[0, 217] a penalty function according to an LTS (see 
(5)). In this case none of the properties holds for all 
activities. Application of  the technique in Appendix 
C to obtain an upper bound on the optimal total 
savings yields that the optimal total savings cannot 
be larger than 191.26. 

When we apply the dynamic-programming algo- 
rithm (as a heuristic) to the data of Table 1, we find 
that the total savings equal 191.24. Consequently, we 
can conclude that this solution -if not optimal- is at 



R.E. Wildeman et al. / European Journal of Operational Research 99 (1997) 530-551 541 

Table 3 
The best group in each iteration 

Iteration Best group Savings of Total 
in this iteration this group savings 

1 {l)  0.0o 0.00 
2 {l, 2} 14.99 14.99 
3 {1,2, 3} 29.37 29.37 
4 {1, 2, 3, 4} 44.03 44.03 
5 {5} 0.00 44.03 
6 {5, 6} 14.99 59.02 
7 {5, 6, 7} 29.89 73.92 
8 {5, 6, 7, 8} 44.26 88.29 
9 {5, 6, 7, 8, 9} 58.22 102.25 

10 {5, 6, 7, 8, 9, 10} 73.01 117.04 
11 {5, 6, 7, 8, 9, 10, 11} 83.53 127.56 
12 {10, 11, 12} 29.83 132.08 
13 {10, 11, 12, 13} 44.79 147.04 
14 {10, 11, 12, 13, 14} 59.73 161.98 
15 {10, 11, 12, 13, 14, 15} 74.52 176.77 
16 {10, 11, 12, 13, 14, 15, 16} 88.99 191.24 

least very good (the maximum deviation from the 
optimal value is 0.01%). The dynamic-programming 
algorithm found for each iteration j a (best) group 
with last activity j, as given in Table 3. 

The grouping structure given by the algorithm is 
found with backtracking. In the last iteration (itera- 
tion 16) group {10, 11, 12, 13, 14, 15, 16} is opti- 
mal. To cover the first 9 activities it is optimal in 
iteration 9 to take group {5, 6, 7, 8, 9}. Finally, in 
iteration 4 group {1, 2, 3, 4} is optimal. The corre- 
sponding grouping structure is given in Table 4. The 
reduction in set-up costs is 13 × 15 = 195 (there are 
only three groups, and consequently three set-ups), 
whereas the total penalty costs amount to 3.76. Con- 
sequently, the total savings are 191.24, which is 
about 4.03% of the total individual preventive main- 

Table 4 
Grouping structure for the data in Table 1 

Group Savings Day 

{1,2, 3, 4} 44.03 7.2 
{5, 6, 7, 8, 9} 58.22 89.6 
{10, 11, 12, 13, 14, 15, 16} 88.99 181.1 
Total savings 191.24 

tenance costs El6__ l(c p + S) = 4740. Applying Theo- 
rem 3 reduced the total number of  groups from 

2" - 1 = 216 - 1 = 65535 to 

½n(n + 1) = ½16(16 + 1) = 136. 

Through application of Theorems 1, 2 and 4, 72 
of these 136 groups needed to be investigated. Alto- 
gether it took 0.11 seconds of CPU time on a 66 
MHz PC-AT to identify the grouping structure. 

Notice that in iteration 5 activity 5 is executed on 
its own. According to Corollary 2 this implies that 
activity 5 will never be executed with one of the 
activities 1 . . . . .  4. Consequent ly,  the group 
{t, 2, 3, 4} is optimal in every grouping structure of 
the first r activities, r >/4. 

Notice also that for i =  9, 10, 11, group 
{5, 6, 7, 8 . . . . .  i} is optimal in iteration i and, conse- 
quently, part of an optimal grouping structure of the 
first i activities, while in iteration 12 group 
{10, 11, 12} is optimal. An (imaginary) activity 17 
cannot be combined with activity 9 or lower accord- 
ing to Theorem 4, thus it will be in group {i . . . . .  17}, 
with 10 ~< i~< 17. If i =  10, then group {5, 6, 7, 8, 9} 
is opt imal  (see Table 3), if i = 11, then 
{5, 6, 7, 8, 9, 10} is optimal, and if i>~ 12, then 
{5, 6, 7, 8, 9, 10, 11} is optimal. This argument can 
be repeated for an activity 18 and so on. We thus 
applied Corollary 3, which implies that there for any 
r >/ 16 it is optimal to group the activities {1, 2, 3, 4} 
(which we knew already from Corollary 2) and to 
group the activities {5, 6, 7, 8, 9} (possibly with ac- 
tivity 10 and 11 if r >  16). 

3.5. Phase 5: rolling-horizon step 

After application of Phase 4 we have a grouping 
structure for the n activities within the finite plan- 
ning horizon [t, tn]. The maintenance manager can 
change the planning in case h e / s h e  is not satisfied 
with it and then go back to Phase 3 or h e / s h e  can 
carry out one or more groups of activities according 
to the generated grouping structure and start with 
Phase 3 when a planning for a new period is re- 
quired, for example because new information (like 
an opportunity) becomes available. 

Example .  Application of Phase 4 yields the grouping 
structure of the 16 activities within [0, 217] as given 
in Table 4. Below we give examples of  how an 



542 R.E. Wildeman et al. / European Journal of Operational Research 99 (1997) 530-551 

opportunity can be incorporated and how the mainte- 
nance manager can change the planning. 

Suppose that an opportunity occurs at t = 0, for 
instance as a result of  a failure of  the system. This 
implies that the system is down and that other activi- 
ties can be carried out at t = 0 without paying the 
set-up cost S. This opportunity can be incorporated 
in our approach by defining an activity opp with 
tentative execution time top p = 0, and with a penalty 
f u n c t i o n  hopp(.)  that is infinite for every shift un- 
equal to zero (hopp(At)  = ~ for At4 :  0) and with 
hopp(O) = 0. When we include this opportunity in 
our example, we obtain the same structure as in 
Table 4, except that activities 1, 2, 3, 4 are now 
executed at time t = 0 instead of at time t = 7.2. 
This involves larger penalty c o s t s  (//{1,2,3,4}(0) --~ 1.33 
whereas H~1.2.3.4/(7.2)= 0.97), but we obtain extra 
savings of  15 cost units since now for group 
{1, 2, 3, 4} no set-up cost has to be paid. Conse- 
quently, the savings of  group { 1, 2, 3, 4} are now 

45  - H{1.2,3,4}(0) = 60  - 1.33 = 58.67 
instead of  44.03. 

Incorporation of  an opportunity can always be 
done like this; we only need to define an appropriate 
activity, in this case an activity that is fixed in time. 
In general, each activity that a maintenance manager 
wants to fix in time can be represented by a penalty 
function that is infinite for every shift unequal to 
zero. 

Another possibility is to fix certain activities in a 
group; suppose for instance that the maintenance 
manager wants to execute activities 8, 9, 10, 11 to- 
gether (possibly with other activities). In that case 
we define a new activity new with tentative execu- 
tion time t,,*ew = t(8.9,10.111' and with a penalty func- 
tion that equals the sum of  the individual penalty 
functions minus the minimum value of  the sum: 

hnew( A t )  : / /{8,9,10,  I I}( t{8,9,10,I 1} + A t )  - H(~,9,I0,11}' 

This implies that h ,ew( . )>/0 ,  h .... (0) = 0 and that 
h,ew( ' )  is strictly convex. Therefore, Assumptions 1, 
2 and 3 are satisfied so that we can apply our 
approach. When we do so we find that activity new 
is executed together with activities 5, 6 and 7; the 
savings of the group {5, 6, 7, new} are 41.33. How- 
ever, as activity new represents a group of  four 
activities, it yields savings itself: there is a set-up 
cost reduction of  3S. Since the penalty costs of 

Table 5 
Grouping structure in case activities 8, 9, 10 and 11 must be 
executed together 

Group Savings Day 

{ 1, 2, 3, 4} 44.03 7.2 
{5,6,7,8,9,  10, 11} 83.51 94.1 
{12, 13, 14, 15, 16} 59.38 186.2 
Total savings 186.92 

executing activities 8, 9, 10, 11 together amount to 
Ht~.9.10,11 ~ = 2.82, the savings of  activity new are 

3 S -  Ht8.9.10, I j~ = 4 S -  2.82 = 42.18. 
When we add this to the savings of  41.33, we find 

that the actual savings of  group {5, 6, 7, new} = 
{5, 6, 7, 8, 9, 10, 11} are 41.33 + 42.18 = 83.51. The 
corresponding grouping structure is given in Table 5. 

The total savings of  this grouping structure are 
186.92, which is slightly less than the (semi-) opti- 
mal value of  191.24 according to Table 4. The 
maintenance manager can now decide whether 
he / she  indeed prefers this grouping structure with 
activities 8, 9, 10, 11 executed together to the struc- 
ture of  Table 4. 

4. Flexibility and insight of the approach 

The approach presented in this paper has many 
advantages some of  which will be discussed below. 

Our approach can be applied to many preventive- 
maintenance optimisation models. In fact, it can be 
applied to all models described by Dekker [4] such 
as minimal repair, block replacement, inspection and 
efficiency models, but also to age-replacement kind 
of  models (see Dekker, Wildeman and Van Egmond 
[7]). Not only preventive maintenance but also cor- 
rective maintenance can be incorporated [7]. 

Yet our approach is not dependent on the underly- 
ing maintenance models. This is due to the fact that 
for an activity only a tentative execution time is 
needed and a penalty function that indicates how 
much we have to pay for deviating from this time. 
This implies that for different activities we can choose 
different models; we can for instance combine activi- 
ties modelled according to a minimal-repair model 
with activities modelled according to a block-re- 
placement model. But it implies also that it is not 



R.E. Wildeman et a l . /  European Journal of Operational Research 99 (1997) 530-551 543 

even necessary to have an underlying model; tenta- 
tive execution times and penalty functions can as 
well be estimated or specified directly (see, for 
example, Dekker, Smit and Losekoot [6]). 

A problem with most finite-horizon models and, 
consequently, also with rolling-horizon approaches is 
that they require the definition of so-called residual 
values, which can be interpreted as the industrial 
value of the state of the system at the end of the 
horizon (compared to a brand-new system, for in- 
stance). The determination of residual values is rather 
arbitrary and depends on future strategies. The choice 
of a definition of the residual values can have sub- 
stantial effects on the solutions that are generated 
(see, for example, Dekker, Wildeman and Van 
Egmond [7]). Our approach gets around the difficulty 
of defining residual values; the penalty functions 
give indications of how short-term decisions influ- 
ence future costs. 

The stability results that are derived in Section 3.4 
are important as they show how the length of the 
planning horizon affects the generated planning. In 
practice it is favourable to choose a horizon such that 
a little change in this horizon hardly affects the 
planning, since it gives little insight and it would 
results in little confidence in the quality of the 
solution. Especially when a rolling horizon is applied 
it is often desirable to know if groups will not 
change (much) when a new horizon is chosen for a 
subsequent planning. By application of Theorem 4 
and its corollaries we can often prove that groups 
will not change with another horizon. Consider for 
instance the example in Section 3.4: after execution 
of group { 1, 2, 3, 4} at day t = 7.2 a new planning 
can be made without losing the optimality of this 
group. 

5. Conclusions 

In this paper we presented a general rolling-hori- 
zon approach to group maintenance activities on a 
short-term basis. To this end a long-term tentative 
plan is made that is adapted to short-term informa- 
tion. This yields a dynamic grouping policy. 

The approach presented in this paper enables 
interactive planning. According to the decisions of 
the maintenance manager, the planning of Phase 4 

for a certain period can be adapted. Each time this is 
done, a dynamic-programming algorithm with a 
quadratic time complexity has to be applied. There- 
fore, the maintenance manager can easily and quickly 
see how decisions work out in the final maintenance 
plan. The stability results with respect to the length 
of the planning horizon also help in obtaining more 
insight in this process. 

The flexibility of our approach and the insight it 
provides are presumably more important in practice 
than the 'optimality' of the solution. The complexity 
of practical situations makes it often impossible to 
find real optimal solutions; models are simplifica- 
tions of practical situations and optimality is hard to 
achieve. Even if it is possible to find the 'optimal' 
solution, the resulting decision rules are often hard to 
implement and lack any structure. 

Acknowledgements 

The authors would like to thank S.W. Hadley and 
K.N. Srikanth of  the K o n i n k l i j k e / S h e l l -  
Laboratorium, Amsterdam for their useful com- 
ments. 

Appendix A. Reduction theorems 

For the theorems in this appendix we use As- 
sumptions 1, 2 and 3 (see Section 3.4). 

The following lemma is a trivial property of 
strictly-convex functions that will implicitly be used 
in the sequel. 

Lemma 1. If f ( . )  and g( . )  are strictly-convex 
functions with minima tf* and tg, where tf < tg, 
then f ( .  ) + g(. ) is strictly convex and for its mini- 
mum we have t 7 < tT+g < tg. 

Recall for the following theorems the three prop- 
erties presented in Section 3.4. 

Theorem 3 (Consecutive activities), If Property 1, 2 
or 3 holds, there exists an optimal grouping struc- 
ture with consecutive activities. 

Proofi Let F and G be two groups of activities. 
Consider two activities i and j, with i E G and 



544 R.E. Wildeman et a l . /  European Journal o f  Operational Research 99 (1997) 530-551  

j E F and i < j. Remark that i < j implies that t i <~ tj .  

Let t F , t~ be the optimal execution times of  the 
groups F and G, respectively, and suppose that 
activity i and j are not executed in consecutive 
order, i.e., t F < t 6 .  

We will prove that when t i < tj, each grouping 
structure that contains F and G cannot be optimal. 
For t i = tj there sometimes can be an optimal group- 
ing structure that contains F and G, but in that case 
there exists a grouping structure that is at least as 
good in which activity i is executed at t F or activity 
j at t~ or both. Altogether this implies that there is 
always an optimal grouping structure in which each 
pair of  activities is executed in consecutive order, 
which completes the proof. 

Since it will be more convenient in this proof to 
think in terms of  costs than in terms of  savings, we 
take as objective the minimisation of  the total costs 
instead of  the maximisation of  the total savings (the 
costs of  a group are the penalty costs minus the 
reduction in set-up costs). We distinguish between 
three cases: t* * * * 6 <~t j ,  t i<-~t r and t r < t i < ~ t j < t  o .  

t~ ~<tj. Then we have t F < t  a ~<tj, and thus, 
using Assumptions 1, 2 and 3, it is cheaper to 
execute activity j at t~ than at t r . This implies 

Hr* - ( l  F I - 1 ) S + H  d - ( I G I -  1)S 

= E h l ( t F  --  t l )  + E h t ( t G  --  t t )  
I ¢ F  I ¢ G  

- ( I F l - l + l a l - l ) S  
> E h , ( t ; - , , ) +  E 

I ~ F \ { j }  I E G U { j }  

- ( IFI-2+lal )s  
>~ H / \ { a  ] -- ( I  F[  - 2 ) S  + H S u { j  ) - I G I S .  

(Note that F \ { j }  cannot be empty, and conse- 
quently that [ F [ - 2 >~ 0, since otherwise F = {j} so 
that tv* = tj, which is in contradiction with t /  < t G 
~< tj.) Hence the groups F \ { j }  and G U ( j )  are 
better than F and G. Consequently, F and G cannot 
be part of  an optimal grouping structure. 

t i <~ t F . Then we have t i <~ t F < t * • * G, and thus, 
using Assumptions 1, 2 and 3, it is cheaper to 
execute activity i at t~ than at t G , and we can prove 
analogously that the groups F and G cannot be part 
of  an optimal grouping structure, since the groups 
F U { i }  and G \ { i }  are better. (Note that G \ { i }  

cannot be empty, since otherwise G = {i} so that 
t i = t G , which is in contradiction with t i <~ t F < td  .) 

t F < t i ~< tj < t d . Suppose that it is no t  cheaper to 
execute activity i at t F instead of at t a or to 
execute activity j at t d instead of  at t F (otherwise, 
F or G or both are not optimal as shown above). 
This implies that 

hi (  t~ - t i)  <~ h i (  t F - t i)  (6) 

and 

- , j )  - ( 7 )  

We now distinguish between Properties 1, 2 and 3 
(in all cases Assumptions 1, 2 and 3 are used implic- 
itly). 

1. Property 1 (Symmetry). Eq. (6) and the fact 
that hi(. ) and hi(. ) are symmetric imply that t G - t i 
~< t i - t F and consequently 

t~ - tj <~ t a - t i <~ t i -  t F <~ t j -  t r . 

This implies that 

hj( ,j - O ,; - 0 
2. Property 2 (Congruency). Suppose a h i ( . ) =  

hi(. ), for some a > 0. Eq. (6) implies that 

h i ( t  ~ - t j )  <~ hi (  td - ti) 

<~ h i ( t ;  - t i)  <~ h i ( t ;  - t j ) ,  

and consequently 

<~ a h i ( t F  - t j ) =  h j ( t  F - t j ) .  

3. Property 3 (Dominance). Eq. (6) and the fact 
that h i ( . )  dominates hi( . )  right of  tj and hi( . )  
dominates h/( . )  left of  t i imply that 

h j (  t G - t j )  < h i (  t G - t i )  

<~ h i ( t ;  - ti) < h j (  t F - t j ) .  

If t i < t/, then we have strict inequalities in case 
of  Properties 1 and 2 (we already have a strict 
inequality in case of  Property 3). This implies that if 
equation (6) holds, Eq. (7) cannot be true if t i < tj. 
Analogously, if Eq. (7) holds, then Eq. (6) cannot be 
true (if t i < tj). Consequently, if t i < tj, both equa- 
tions cannot be true at the same time. Hence, in that 



R.E. Wildeman et al. / European Journal of Operational Research 99 (1997) 530-551 545 

case it is more effective to execute activity i at time 
t F or activity j at time t* c or both, which implies 
that F and G cannot be part of  an optimal grouping 
structure. (Note that F \ { j }  and G \ { i }  cannot be 
empty since t ;  < t i < tj < t~ .) If  t i = tj, then we still 
have a strict inequality in case of Property 3, so that 
the same holds in that case. For Properties 1 and 2 it 
holds that strict inequality in one of the equations 
implies a contradiction with the other. So either one 
of the equations is an inequality, or both are equali- 
ties. In the first case it is more effective to execute 
one of the activities at the execution time of the 
group of the other. In the latter case one activity (or 
both) can be executed at the time of the other 
without increasing the costs. This implies that we 
can always find a grouping structure that is at least 
as good and in which the activities i and j are 
executed in consecutive order. [] 

In the following example it is shown that if none 
of the properties holds, there may be a unique opti- 
mal grouping structure in which the activities are not 
consecutive. Suppose that four activities are tenta- 
tively planned at execution times t~, t 2, t 3 and t 4. 
Suppose further that the penalty functions of the 
activities are as drawn in Fig. 2 (with asymptotes of  

1 1 
hi( . )  in 0 and in 201 + t2), of h2(.)  in g( t  I + t2), of 

1 h3( ' )  in -~(t 3 + t4) , and  o f  h 4 ( ' )  in 2 ( t  3 + t 4) and in 
T). Notice that none of the properties holds for all 
activities. 

Table 6 shows the possible grouping structures in 
which only consecutive activities appear, and the 
c o r r e s p o n d i n g  s a v i n g s  ( w h e r e  h2(t2, 3 - t 2) = h3(t2*,3 
- t 3) = e). The grouping structure {1}, {2, 3}, {4} 
with savings S -  2 e is the best structure with con- 
secutive activities. However,  group {1, 3} has an 

S/M~ [ 

0 tl t2 t~,3 ~3 t4 T 

Fig. 2. Penalty functions without Property I, 2 or 3. 

Table 6 
Grouping structures with consecutive activities 

Structure Savings Structure Savings 

{1}, {2}, {3}, {4} 0 {1}, {2}, {3, 4} -~c 
{1,2}, {3}, {4} - 0¢ {1, 2, 3}, {4} -ao 
{1, 2}, {3, 4) -co {1}, {2, 3, 4} - ~o 
{1}, {2, 3}, {4} S - 2 e  {1,2,3,4} - m  

optimal execution time just right of t~ with penalty 
costs S / M  and group {2, 4} has an optimal execu- 
tion time just left of  t 4 with the same penalty costs 
(i.e., S / M ) .  Thus the grouping structure {1, 3}, {2, 4} 
yields savings 

S - S / M  + S - S / M  = 2S - 2 S / M ,  

which is better than S - 2 e  if M is sufficiently 
large. It is easily verified that the grouping structure 
{1, 3}, {2, 4} is Optimal and unique. Consequently, 
the optimal grouping structure does not consist of  
groups with consecutive activities. 

Notice that in the example the quotient of  the 
optimal total savings and the total savings of  the best 
consecutive solution equals ( 2 S - 2 S / M ) / ( S -  
2e ) .  This quotient can be arbitrarily close to the 
value 2 by making M sufficiently large and e suffi- 
ciently small. In Appendix C we show that this is a 
worst case; the optimal total savings are always less 
than twice as much as the total savings of  the 
optimal consecutive solution. 

We will now prove Theorem 4. 

T h e o r e m  4. I f  in an optimal grouping structure o f  
the f i rs t  s activities activity s is executed in another 
group than an activity p (1 <~p < s), then fo r  any 
r > s there is an optimal grouping structure o f  the 
f i rs t  r activities in which activity s is also executed in 
another group than activity p. 

Proof .  In the following, GS i always denotes an 
optimal grouping structure of the first i activities 
(i.e., activities 1 . . . . .  i). 

Consider an optimal grouping structure GS s of 
the first s activities in which activity s is executed 
separately from activity p. Accordingly, in GS,  there 
exists an activity p'  >/, p such that activity p' + 1 is 
executed in a group {p'  + 1 . . . . .  q} with p'  + 1 ~ q 



546 R.E. Wildeman et a l . /  European Journal of Operational Research 99 (1997) 530-551 

~< s. This implies that the grouping s t ruc tu re  GSq 
defined by 

GSq := GSp, t..J { p'  + 1 . . . . .  q} 

(i.e., an optimal grouping structure GSp, of  the first 
p '  activities extended with the group { p'  + 1 . . . . .  q}) 
is an optimal grouping structure of  the first q activi- 
ties. We will prove that for any r > q there is an 
optimal grouping structure GS r of  the first r activi- 
ties in which activity p '  is executed separately from 
activity r. Then this holds afor t ior i  for p and any 
r > s .  

As in the proof of  Theorem 3 we take as objective 
the minimisation of  the total costs instead of  the 
maximisation of  the total savings. Let the total costs 
of  an optimal grouping structure of  the first i activi- 
ties be denoted by C(GSi). Take r > q and let GS' r 
be an optimal grouping structure of  the first r activi- 
ties. I f  in this GS' r activity r is executed separately 
from activity p ' ,  then we take GS r = GS '  r and we are 
ready. If in GS' r activity r is not executed separately 
from activity p ' ,  then GS' r contains a group {l . . . . .  r} 
with l ~< p'. We shall show that the grouping struc- 
ture GSr with group { p ' +  1 . . . . .  r} instead of  
{l . . . . .  r} is at least as good as GS' r. We distinguish 
between the case that t }+  l . . . . .  q <~ tl~ . . . . .  and 

t,;.+, ..... ~ > , ;  . . . . .  • 
Suppose first that tp,+ 1 . . . . .  q <~ tt ..... r" For the costs 

C(GS' r) of  GS'r we have 

C ( O S t r )  

= C ( O S i -  1) + n l ~  . . . . .  - ( r -  I ) S  

~- C ( O Z l _  1) + H i  . . . . . .  ( t ;  . . . . .  ) -- ( r - -  I ) S  

= c ( 6 s , _ , )  + H,  ..... ~,( t ; ,  . . . . .  ) 

+H, ,+!  .. . . . .  (t ,:  . . . . .  ) -- ( r -  I )S .  

Assumptions 1, 2 and 3 in combination with the fact 
that 

tl~ .... p, <~ t* ..... q <~ * p'+ 1 tl .. . . .  r 

yield 

Hi ..... p,( t~, . . . . .  ) >1 H,  ..... p,(t,;,+, .. . . .  q ) .  

Using this and adding 

0 = n p , + ,  ..... q ('p*, + ,  ..... q ) - O p , + ,  . . . . .  u(t~¢+, ..... q)  

we have 

C(GS',)  >/ C ( G S / _  i)  .at- Hi .. . . .  p'( tp** 1 ..... q)  

+ n ~ , + ,  ..... ~ ( , ; ,+ ,  ..... q) 

- H p , + ,  . . . . .  q( tp ,+,  ... . .  q)  

+ l i p , + ,  . . . . . .  ( t l ;  . . . . .  ) - ( r - I ) S  

= C ( G S I _  1) --I- n I ... . .  q(tp*,+l . . . . .  q) 

- (  q - I ) S -  Hp,+, ..... q(tp*,+l ..... q)  

+ n , , + ,  . . . . . .  (t ,:  . . . . .  ) - ( r - q ) S .  

The costs C ( G S  t_ 1) + Hi ... . .  q(tl~*' + i ..... q) - ( q  - l ) S  
are the costs of  a grouping structure of the first q 
activities, which are of  course greater than or equal 
to C(GSq). Since OSq c on t a in s  group {p' + 1 . . . . .  q}, 
we have 

C t G S ' )  >_- C ( G S , , )  + ~/ , ,+ ,  ..... q ( , ; , + ,  ..... ~) 

- - ( q - - p ' - - 1 ) S - H p , + ,  ..... q(tp*,+ i ..... q) 

+n. ,+ ,  ...... ( t ;  ..... ) - ( r - q ) S  

/> C(GSe, ) + Hp*,+, . . . . . .  - ( r - i f -  1)S. 

Thus we have a grouping structure of  the first r 
activities with costs less than or equal to C(GS' s) and 
with group { p'  + 1 . . . . .  r} instead of  group {l . . . . .  r}; 
for GSs we take this grouping structure. Since GS' r is 
optimal, GS~ must also be optimal. 

If  tp,+ l ..... q > t * t ... . . . .  then H t ...... (tt ...... ) is not 
split up in 

H t ..... p,( t * * t . . . . . .  ) + n , , , + ,  . . . . . .  ( t  t . . . . . .  ) 

but in 

n t ..... q ( t *  * ' . . . . . .  ) + H q + ,  . . . . . .  ( t  t . . . . . .  )" 

Further the proof is analogous. [] 

Appendix B. Dynamic-programming algorithm 

Here we show how Theorems 1, 2 and 4 can be 
incorporated in the approach of  Section 3.4 and we 
present the resulting dynamic-programming algo- 
rithm. 

Although Theorem 1 is redundant when Theorem 
2 is applied, it will be used because it takes less time 
(the intervals I~ can be stored, hence checking 
whether Iq t ~ c It = ~ is easier than calculating Hd ). 



R.E. Wildeman et a l . /  European Journal o f  Operational Research 99 (1997) 530-551 547 

Besides, having the intersection n ; ~ c It facilitates 
the calculation of  H j .  

Let  G = {i . . . . .  j},  i < j ,  be an arbitrary group 
with consecutive activities. If n ;~ G lt = ¢,  then G 
and every other group that contains G cannot be 
optimal according to Theorem 1. We use a parameter 
Low,  indicating the lowest indexed activity that can 
be in an optimal group together with activity j in 
iteration j. If  n ;  ~ a It = ~, then Low is updated to 
i + 1, because in later iterations k > j  no activity 
with index smaller than i + 1 can be in a group that 
is part of the optimal grouping structure. 

If  G is not excluded by Theorem 1, then the 
savings of  G, ( j - i )S  - H j ,  and the corresponding 
optimal execution time t~ are calculated. Subse- 
quently, G is compared to the groups G 1 = G \ { i }  

and G 2 = G \ { j } .  If  G has less savings than G l or 
G 2, then G can be split up more effectively into two 
clusters of  activities, viz. into {i} and G~ or into G 2 
and {j} (remember that the savings of an activity 
executed on its own are zero). Then G and every 
group that contains G as a cluster cannot be part of 
an optimal grouping structure according to Theorem 
2. These are the groups (1 . . . . .  k), l~< i and k>~j.  In 

that case Low is updated to i + 1, since we do not 
need to consider groups with first activity lower than 
i + 1 in later iterations. To avoid extra work while 
comparing G to G 1 and G 2, we use a variable with 
the savings of G 1 (the previous group considered) 
and, after checking G, update it with the savings of 
G. For G 2 we use an array with the savings of the 
groups considered in the previous iteration, and we 
update the i-th entry, after reading the savings of  
G 2 ,  with the savings of G. 

Suppose that G = {i . . . . .  j} is the best group in 
iteration j. This implies that G is part of  an optimal 
grouping structure of  the first j activities. In any 
following iteration k > j there is by Theorem 4 a 
best group containing activity k, which does not 
contain any of  the activities 1 . . . . .  i -  1. This im- 
plies that the variable Low can be updated to i. 

Altogether, we have the algorithm presented in 
Table 7 (for the definitions of the arrays TotalSav- 

ings and First  see Section 3.4). 
In the worst case, e.g., when t i = t o + i e  for all i, 

with e sufficiently small, Theorems 1, 2 and 4 do 
not exclude any group at all, which implies that 
½n(n + 1) groups are considered. In the best possible 

Table 7 

LOW :~ 1 

TotalSavings[O] := = 0; 
FOR j : =  1 TO n D O  

i :=j ;  
First[ j]  ;= j; 
TotalSavings[ j ] :=  TotalSavings[ j - 1 ]; 
W H I L E  i <~ Low DO 

Step 1. Let C = {1 . . . . .  j}. 
I F  i = j  

T H E N  the savings S(C) of C are zero; goto Step 5; 
Step 2. IF N t~ cll = ~ 

T H E N  Low := i + 1 (Theorem 1); goto Step 5; 
Step 3. Calculate S(C) = the savings of C, and the corresponding optimal execution time. Let C~ = C \ { i } ,  C 2 = C \ { j } ,  and S(C I) 

and S(C 2) be the corresponding savings; 
IF  S(C)  < S(C~) OR S(C) < S(C 2) 

T H E N  Low := i + 1 (Theorem 2); goto Step 5; 
Step 4. IF  S(C)  + TotaISavings[ i - 1] > TotatSavings[j] 

THENFirs t [ j ]  := i; 
TotalSaving~i j]  := S(C)  + TotalSaving~{ i - 1]; 

Step 5. i := i - l ; 
END W H I L E  
Low := First[ j] (Theorem 4). 

END FOR 



548 R.E. Wildeman et al. / European Journal of Operational Research 99 (1997) 530-551 

case, e.g., when the distances between the tentative 
execution times are so large that combining is never 
cost-effective, only the groups consisting of one and 
two activities are considered, of  which there are 
n + (n - 1) = 2 n - 1. This implies that in the worst 
case the algorithm has a time complexity of  ~(n2) ,  
whereas in the best case an optimal grouping struc- 
ture is found in linear time. 

Appendix C. Optimality of dynamic program- 
ming 

In the example of Section 3.4 a number of situa- 
tions for the minimal-repair model is mentioned in 
which there exists an optimal grouping structure with 
consecutive activities. When such a structure exists, 
it can be found with the dynamic-programming algo- 
rithm described before. 

If  none of these situations occurs, there can still 
be a consecutive solution. Corollary 1 states that 
activities in a set A satisfying one of the Properties 
1, 2 or 3 are always executed in consecutive order. 
This result can be used to check the existence of  an 
optimal consecutive solution. We shall clarify this 
with an example. Suppose there are four activities 
1, 2, 3, 4. Activities 1 and 2 have symmetric penalty 
functions and are therefore executed in consecutive 
order. The function h2( . )  dominates h3( - )  right of  t 3 
and h3( .)  dominates h2( . )  left of  t2; therefore, 
activities 2 and 3 are executed in consecutive order. 
Activities 3 and 4 have congruent penalty functions 
and are therefore also executed in consecutive order. 
This implies that all activities are executed in con- 
secutive order, so that a consecutive optimal solution 
exists. 

When the existence of a consecutive optimal solu- 
tion cannot be proved, then Corollary 1 can also be 
used in a branch and bound procedure in which 
enumeration (set partitioning) is applied on the re- 
maining possibilities. Consider, for instance, the ex- 
ample of  Fig. 2 in Appendix A. The penalty function 
of activity 1 dominates that of  activities 2 (right of 
t 2) and 4 (right of  t4), so that activity 1 is executed 
before activities 2 and 4. The penalty function of 
activity 4 dominates that of  activities 1 (left of  t E) 
and 3 (left of  t3), so that activity 4 is executed after 
activities 1 and 3. By this result many grouping 

structures are eliminated. For the remaining possibili- 
ties enumeration can be applied. One can of course 
still use Theorems 1 and 2 while applying enumera- 
tion, to make further eliminations. 

Another possibility is to apply the dynamic-pro- 
gramming algorithm as a heuristic in case the exis- 
tence of an optimal consecutive solution cannot be 
proved. The dynamic-programming algorithm finds a 
grouping structure that is optimal among the group- 
ing structures with consecutive activities. As we saw 
in the example of  Fig. 2 in Appendix A, this is not 
necessarily an overall optimal grouping structure 
when none of the properties holds for all activities. 
We constructed an example in which the optimal 
total savings can be arbitrarily close to twice as 
much as the best grouping structure with consecutive 
activities. Below we show that this is the worst case. 
The optimal total savings are never twice or more as 
much as the total savings of  the best grouping struc- 
ture with consecutive activities. 

To this end we need the following lemma. In this 
lemma we use the notion of intermediate activities. 
We say that an activity i is intermediate for a group 
G if i E [ m i n j ~  c j, max j~  c j], but i f~G.  For ex- 
ample, for group {2, 5, 7, 8, 9, 11} activities 
3, 4, 6, 10 are intermediate activities. If activity 3 is 
executed in group {1, 3, 4, 6, 10} then activities 
2, 5, 7, 8, 9 are intermediate activities for this group. 
Lemma 2 states that in an optimal grouping structure 
each activity that is an intermediate activity for a 
certain group, is executed before the tentative execu- 
tion time of the first activity in that group (that is, 
the activity in the group with the lowest index) or 
after the tentative execution time of the last activity 
in the group (the one with the highest index). For 
example, if group {2, 5, 7, 8, 9, 11} is in an optimal 
grouping structure, then activity 3, which is an inter- 
mediate activity for this group, must be executed 
before t 2 or after t~.  Consequently, if activity 3 is in 
group {1, 3, 4, 6, 10}, then the optimal execution 
time /{].3,4,6.10} of this group must be outside the 
interval It2, tit]. 

Lemma 2. In an optimal grouping structure it holds 
that each activity i that is an intermediate activity for  
a group G must be executed in a group F i with 
optimal execution time tr~ q~ [minj~ c tj, m a x j e  c tj]. 



R.E. Wildeman et al . /  European Journal of Operational Research 99 (1997) 530-551 549 

Proof.  Let activity i be an intermediate activity for 
group G:i ~ [minj~ c j, maxj~ c j] ,  but i q ~ G .  Le t  
min denote the activity in group G with the lowest 
index and m a x  the activity with the highest index 
and let t,,i, and tma x be the corresponding tentative 
execution times, then t,,i, = minj~ c tj and t,,o, = 
maxj~ c tj. Let activity i be in a group F i with 
optimal execution time t ; .  We will show that if 
tF, ~[tm, .,  t ..... ] the group G cannot be optimal 
(notice that this also implies that the group F~ con- 
tains activities other than activity i, since otherwise 
t* F, = t, ~ [tmi . ,  t,,ox]). 

Let t~ be the optimal execution time of group G, 
then t~ 4= tF,, since otherwise the group G tJ F~ is a 
group with the same penalty costs and with an extra 
set-up cost reduction of  S, so that the group G U F~ 
is better than G and F/, which implies that G and F~ 
cannot be optimal. Consequently, if t * F, ~ [t,ni,' tmox] 
we have that t d ~ [t,nin , tF) or t~ ~ (t;, ,  t ..... ] 
(notice that this also implies that t,,g, is strictly 
smaller than t ..... ). Due to Assumptions 1, 2 and 3 it 
is in the first case cheaper to execute activity max at 
time tF, instead of  at t~, and in the latter case it is 
cheaper to execute activity min at time tF, instead of 
at t~. As in both cases the penalty costs are smaller 
and the total set-up cost reduction does not change, 
we have that group G cannot be optimal. [] 

Let now TS* ( P )  be the total savings of an opti- 
mal grouping structure of a problem P and let 
Tsdp(p) be the total savings of  the grouping struc- 
ture found with the dynamic-programming algo- 
rithm. Hence Tsdp(p) are the total savings of  a best 
grouping structure with consecutive activities. Using 
Lemma 2, we can now prove that TS* ( P ) / T S d P ( P )  

< 2 .  

Theorem 5. It holds that  T S * ( P ) / T S d p ( p )  < 2. 

Proof. Take an arbitrary problem P with n activities 
and with penalty functions that satisfy Assumptions 
1, 2 and 3. Let GS,  be an optimal grouping structure 
and let T S * ( P )  be the corresponding optimal total 
savings. Assume that in GS,  not all activities are 
executed in consecutive order (otherwise T S * ( P ) =  
TSdP(P) and hence T S * ( P ) / T S d P ( P )  = 1 < 2 ,  so 
that the proof immediately follows). From this non- 
consecutive GS.  we will construct a consecutive 

grouping structure GS'. such that the total set-up cost 
reduction is not smaller than half the total set-up cost 
reduction of  GS.  and such that the total penalty costs 
of  GS'. are smaller than those of  GS..  This implies 
that GS'. has total savings that are larger than 
T S * ( P ) / 2 .  Since GS'. is a grouping structure with 
consecutive activities, its total savings are of  course 
smaller than or equal to Tsdp(p) ,  so that TSdP(P) is 
larger than TS* ( P ) / 2  and the desired result follows. 

How do we construct such a GS'. from GS.? 
Consider in grouping structure GS.  the group Gt 
that contains activity 1. If there is no intermediate 
activity for group G~, then all activities in G~ are 
executed in consecutive order (group G~ may then 
consist of activity 1 only). In that case we define 
G' 1 = G~ for the grouping structure GS',. If  there is at 
least one activity that is an intermediate activity for 
group G 1, let then activity i be such an activity with 
the lowest index. Then we know that activities 
1, 2 . . . . .  i -  1 are in group G~ and are executed in 
consecutive order, and we define G' t = {1, 2 . . . . .  i - 
1} for the grouping structure GS', (it may be that i 
equals 2, so that G' l = {1}). Notice that this implies 
that G'~ is the first consecutive subgroup in group 
G]. 

Let m a x  be the activity in G t with the highest 
index, then t . . . .  = m a x i ~ c ,  tj. Furthermore, we 
have that minj~ ~, tj = t~. Application of Lemma 2 
yields that all intermediate activities for group G~ 
are executed before t~ or after t , , , , .  Execution be- 
fore tl can never be cost-effective when Assump- 
tions 1, 2 and 3 are satisfied, so that all intermediate 
activities for group G~ are executed after t ..... . Let 
now activity j be the first activity in group G~ with 
an index higher than i, then activities i, i + 1 . . . . .  j 

- 1 are all intermediate activities for group G~ (this 
may concern activity i only if j = i + 1), and are 
therefore executed after t,,~x. Let now k be the 
index of  the first activity after activity j that is 
intermediate for group G~. This implies that activi- 
ties j, j + l  . . . . .  k - 1  are in group G I and are 
executed in consecutive order (it may be that k = j 
+ 1, so that it concerns activity j only). This implies 
that the group {j, j + 1 . . . . .  k -  1} is a consecutive 
subgroup of  G~ and that these activities can be 
grouped cost-effectively. Activities i, i + 1 . . . . .  j -  
1 are intermediate activities for group G~ and, conse- 
quently, executed after t,~.~. Execution of these ac- 



550 R.E. Wildeman et al . /  European Journal of Operational Research 99 (1997) 530-551 

tivities before tma x is always cheaper due to As- 
sumptions 1, 2 and 3, so that these activities can 
cost-effectively be grouped with activities j, j + 
1 . . . . .  k - 1 .  Now we define a new group G' i for 
grouping structure GS'.: 

G' i={ i ,  i +  l . . . . .  j -  1, j ,  j +  l,  k - l } .  

Notice that group G' i, through the way it is con- 
stmcted, contains at least two activities and that 
there are not more than two activities only if j = i + 1 
and k = j +  1 (in that case G'i = {i, j}). Notice fur- 
ther that for each activity in this group its penalty 
costs are smaller than or equal to those in grouping 
structure GS',, since the shifts for these activities in 
group GS' i are equal or smaller and Assumptions 1, 2 
and 3 are satisfied. 

Subsequently, we start with a new group G~ as 
above, where activity k plays the role of activity i. 
We continue until all activities 1, 2 . . . . .  max are 
covered. 

Then we go on with activity max + 1 that is not 
in group G z but in a group G,~x + I. Activity max + ! 
plays the role of activity 1 above. Notice that by our 
construction all activities with index higher than max 
in GS. must be executed after tmax÷~, so that the 
situation is indeed the same as with activity 1 above. 
We continue this process until all n activities are 
covered. 

In the above construction, each group of the 
grouping structure GS. is split up in subgroups and 
intermediate activities are added. Let there be m 
groups in GS. ,  then the total set-up cost reduction of 
GS. equals (n - m)S. Each time a group of GS. is 
split up, the first activity (equivalent with activity 1 
above) may be executed on its own in the new 
grouping structure GS'., but each of the other activi- 
ties of the group is executed with at least one other 
activity. Consequently, as there are rn groups in 
GS. ,  there may be m activities that are executed on 
their own in GS'~. However, the remaining n - m  
activities are in the worst case paired. Therefore, the 
total set-up cost reduction of GS'~ is equal to (n - 
m ) S / 2  in the worst case. Summarising, in the worst 
case the total set-up cost reduction of the grouping 
structure GS'. is half the total set-up cost reduction 
of the grouping structure GS.. 

The penalty costs of the activities in grouping 
structure GS'. are equal to or smaller than the penalty 

costs in GS.,  since the shifts for each activity are 
equal or smaller. Altogether, this implies that the 
total savings of GS'. are larger than half TS * (P) ,  the 
total savings of GS..  Since the total savings of GS'. 
are smaller than or equal to the total savings Tsdp(P) 
of a best grouping structure with consecutive activi- 
ties, we have that TsdP(P) > TS* ( P ) / 2 ,  and conse- 
quently that T S * ( P ) / T S d P ( P ) < 2 ,  which com- 
pletes the proof. [] 

When we apply the dynamic-programming algo- 
rithm as a heuristic, this is according to Theorem 5 
always less than twice as had as solving the problem 
to optimality. This is a nice result. Yet we can obtain 
another bound that is mostly much better by using 
the dynamic-programming algorithm itself. 

To this end we apply a technique of Wildeman 
[16]. We define for each penalty function hi( . )  a 
symmetric function hi( .)  such that hi ( . )  ~ h i ( . )  and 
Assumptions 1, 2 and 3 are satisfied. Let P and _P 
be the problems with hi( . )  and _hi(.), respectively, 
and let TS* (P )  and TS* (_P) be the total savings of 
the corresponding optimal grouping structures of 
these two problems. Let TS@(P) be the total savings 
of the grouping structure of P found by the dy- 
namic-programming algorithm. It is obvious that 

TS* ( P )  /> TS* ( P )  /> T s d p ( p ) ,  

since the savings are defined as the reduction in 
set-up costs minus the penalty costs. Now _P can be 
solved to optimality with the dynmnic-programming 
algorithm, since for this problem Property 1 holds 
(hi( . )  is symmetric). This implies that the upper 
bound TS*(_P) on the total savings can easily be 
determined. If TS*(_P) is close to Tsdp(P), then 
solving P with dynamic programming obtains a 
good approximation to an optimal solution TS* (P) .  

This approach is used in Section 3.4 to find an 
upper bound on the total savings of an optimal 
grouping structure of the 16 activities modelled ac- 
cording to a minimal-repair model. This is based on 
the following lemma: 

Lemma  3. For a penalty function hi(. ) evaluated 
according to an LTS (Eq. (5)) it holds that 

> / h i ( l / I t [ )  for f l i<~2 ,  

h i ( - [ / I t [ )  ~ h / ( [ A t [ )  for f l i>~2.  



R.E. Wildeman et a l . /  European Journal of Operational Research 99 (1997) 530-551 551 

Consequently, for /3 i ~< 2, we can define h~(.) as 
follows: 

hi(At ) := hi( l Atl ). 
For/3 i >i 2, we take 

hi(At ) :=hi(-I  Atl). 
Notice that _h;(. ) is symmetric (i.e., Property 1 holds), 
and satisfies Assumptions 1, 2, and 3. Application of 
the dynamic-programming algorithm to _P for the 16 
maintenance activities in Section 3.4 yields the fol- 
lowing upper bound: TS*(_P)= 191.26. Conse- 
quently, an optimal grouping structure of the 16 
activities (problem P) has total savings TS*(P) 
smaller than or equal to 191.26. 

References 

[1] B~ickert, W., and Rippin, D.W.T., "The determination of 
maintenance strategies for plants subject to breakdown", 
Computers and Chemical Engineering 9 (1985) 113-126. 

[2] Chakravarty, A.K., Orlin, J.B., and Rothblum, U.G., "A 
partitioning problem with additive objective with an applica- 
tion to optimal inventory groupings for joint replenishment", 
Operations Research 30 (1982) 1018-1022. 

[3] Cho, D.I., and Parlar, M., "A survey of maintenance models 
for multi-unit systems", European Journal of Operational 
Research 51 (1991) 1-23. 

[4] Dekker, R., "Integrating optimisation, priority setting, plan- 
ning and combining of maintenance activities", European 
Journal of Operational Research 82 (1995) 225-240. 

[5] Dekker, R., and Roelvink, I.F.K., "Marginal cost criteria for 
preventive replacement of a group of components", Euro- 
pean Journal of Operational Research 84 (1995) 467-480. 

[6] Dekker, R., Smit, A.C.J.M., and Losekoot, J.A., "Combin- 
ing maintenance activities in an operational planning phase: 
A set-partitioning approach", IMA Journal of Mathematics 
Applied in Business and Industry 3 (1992) 315-331. 

[7] Dekker, R., Wildeman, R.E., and van Egmond, R., "Joint 
replacement in an operational planning phase", European 
Journal of Operational Research 91 (1996) 74-88. 

[8] Garey, M.R., and Johnson, D.S.,Computers and Intractabil- 
ity. A Guide to the Theory of NP-Completeness. Freeman, 
San Francisco, CA, 1979. 

[9] Goyal, S.K., and Gunasekaran, A., "Determining economic 
maintenance frequency of a transport fleet", International 
Journal of Systems Science 4 (1992) 655-659. 

[10] Goyal, S.K., and Kusy, M.I., "Determining economic main- 
tenance frequency for a family of machines", Journal of the 
Operational Research Society 36 (1985) 1125-1128. 

[11] Howard, R.A., Dynamic Programming and Markov Pro- 
cesses. Wiley, New York, 1960. 

[12] Stinson, J.P., and Khumawala, B.M., "The replacement of 
machines in a serially dependent multi-machine production 
system", International Journal of Production Research 25 
(1987) 677-688. 

[13] Van der Duyn Schouten, F.A., and Vanneste, S.G., "Analy- 
sis and computation of (n, N)-strategies for maintenance of a 
two-component system", European Journal of Operational 
Research 48 (1990) 260-274. 

[14] Van Dijkhuizen, G., and van Harten, A., "'Optimal clustering 
of repetitive frequency-constrained maintenance jobs with 
shared setups", European Journal of Operational Research 
99 (1997) 552-564. 

[15] Wagner, H.M., Principles of Operations Research. Prentice- 
Hall International, Englewood Cliffs, N J, 1975. 

[16] Wildeman, R.E., "Combined maintenance scheduling", 
Master's thesis, Leiden University, 1991. 

[17] Worm, J.M., and van Harten, A., "Model based decision 
support for planning of road maintenance", to appear in 
Reliability Engineering and Systems Safety. 


