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Abstract: In this paper we discuss a general framework for single component replacement models. 
This framework is based on the regenerative structure of these models and by using results from 
renewal theory a unified presentation of the discounted and average finite and infinite horizon cost 
models is given. Finally, some well-known replacement models are discussed, and making use of the 
previous results an easy derivation of their cost functions is presented. 
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1 Introduction 

In the extensive literature on infinite horizon single component replacement 
models (for surveys, see McCall [17], Pierskalla and Voelker [21], Sherif and 
Smith [25] and Valdez-Flores and Feldman [27]) a lot of different models are 
analyzed. However, as observed by Zijlstra [30, 31], in most of these models the 
replacement action, prescribed by a given stationary policy, regenerates the 
system, i.e. the system is "as good as new" immediately after the completion of 
such an action. Although this observation is always used in the literature, 
no paper discusses in detail the consequences of the regenerative structure of 
infinite horizon single component replacement models. In this paper we will 
start in Section 2 with such a regenerative structure. Using well-known tech- 
niques and results from the theory of regenerative processes, we will unify the 
derivation of the infinite horizon average and expected discounted costs asso- 
ciated with a given stationary policy. Moreover, we show that under some weak 
nonlattice assumption the difference between the expected discounted costs 
(with discount factor e > 0) up to time t and the infinite horizon expected 
discounted costs, converges exponentially fast with factor e to an easy function 
of the corresponding infinite horizon average costs. Also in this section we 
derive easy upper and lower bounds on the cost functions of the corresponding 
finite horizon model. By the results of the first section and using a so-called cost 
intensity function it is now relatively easy to derive the cost function of a large 
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class of replacement models with or without minimal repairs. This will be 
discussed in Section 3 and due to the absense of differentiability requirements 
for the preventive repair cost function and the regular maintenance cost func- 
tion, these models are more general than those considered by Berg [-4, 5, 6]. In 
fact, one cannot apply to these models the intuitively appealing Marginal Cost 
Analysis (MCA) method of Berg. 

2 General Setup 

In most single-component maintenance models we encounter the following 
framework. Let c~, i > 1, be a sequence of independent and identically distrib- 
uted random variables defined on a probability space (s ~ , P )  with finite mean 
and (right continuous) distribution function F satisfying F(0) = 0 (Feller [11]). 
Moreover, set Co := 0. The nth partial sum S,, n > 1, of the random variables c~, 
i > 1, denotes now the occurrence of the nth regeneration point associated with 
a given stationary replacement policy p ~ d .  For notational convenience set 
also So := 0. Associated with this policy p e d is an increasing nonnegative 
stochastic process {R,(t), 0 _< t < oo}, defined on the same probability space 
(~, ~ ,  P) with right continuous sample paths P-a.s. (P-almost surely), R,(0) = 0 
and R, ( t ,  .) for each t > 0 a Borel measurable function. This process denotes the 
total discounted costs, with discount factor e > 0, up to time t due to policy 
p e d ,  and satisfies the following important regenerative property. 

R e g e n e r a t i o n  P r o p e r t y  

For  each n _> 0 the stochastic process 

{e,+ 1, e,+ 2 . . . .  , { e x p ( a S , ) ( R ~ ( t  + S , )  - R~(S,)): t > 0}} 

is independent of el, . . . ,  e, and its distribution does not depend on n. 

To relate the above setup with replacement models, we consider the following 
examples. For  the age replacement family of single component maintenance 
models it follows that e~ = T A X~, with T some positive parameter and X~, 
i >_ 1, a sequence of independent and identically distributed random variables 
on [0, oo). Moreover, T/x Xi := min{T, Xi}. Also, for the block replacement 
family we obtain that e~ = T, with T some positive parameter. Examples of 
generalizations of the latter policy are given by the opportunity-based block 
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replacement policies (Dekker and Smeitink [10]) and the so-called T-policy 
which replaces the component at the first failure after reaching the age T > 0 
(Muth [19], Makis and Jardine [16]). If a component fails before reaching age 
T it is assumed in most of the above models that it is minimally repaired. For 
both extensions of the block replacement rule it is clear that e~ = T + Y~(T) with 
Y~(T), i > 1, a sequence of independent and identically distributed nonnegative 
random variables depending on T. Finally, if one takes the random down time 
of the system into account in a block (Sivazlian [26]) or age replacement model, 
it is also easy to write down an explicit formula for ei. This shows some exam- 
ples of replacement models fitting into the above framework. We will now 
continue with the analysis of this framework. In the remainder it is always 
assumed that the random variable R,(e~) is P-integrable (page 37 of Ash [1]) 
or equivalently E(R~(cl) ) is finite. Since R~(cl) < Ro(ci) for every a > 0 it is 
sufficient to demand that E(Ro(cl)) is finite. Since we need in Lemma 2.2 that 
E(R~(t)) < oo for every t > 0, we make the following observations. Although this 
line of reasoning is well-known within renewal theory it is listed here for com- 
pleteness. Let N(t) := inf{n _> 0: S, > t} denote the renewal counting process 
associated with the random variables c~, i > 0. For this counting process it is 
easy to show that E(N(t)) is finite for every t > 0 due to F(0) = 0 < 1 (Asmussen 
[2]). Applying now the monotonicity of the stochastic process {R~(t): 0 _< 
t < oo} it follows for every t _ 0 that 

iV(t) N(t) 

0 <_ R,(t) <_ ~, (R~(S,) - R~(S,_~)) < Z e xp (~S ,_ j (R , (S , )  - R,(S,_I))  
n=l n=l 

By the regeneration property we obtain that the distribution of the random 
variable exp(~S,_l) (R,(S , )  - R,(S,_I))  is independent of n and this yields that 
the expectation ~_(exp(eS,_l)(R,(S,) - R,(S,_I))) = ~(Rjel)) < oo. Moreover, 
by the same regeneration property the random variable e x p ( e S , _ l ) ( R ~ ( S , ) -  
R,(S,_I))  is independent of e~, . . . ,  c,_~ and so it follows by Wald's identity 
(Wolff [29]) and N(t) is a stopping time with respect to e~, i > 1, satisfying 
E(N(t)) < oo for every t > 0 that 

/' N(t) ) 
0 _< E(R~(t)) _< E~.~i exp(ccS._l)(R,(S.) - R,(S._I)) 

= E ( N ( O ) , ~ ( R , ( c p )  < oo 

To analyze the behaviour of this expectation as t approaches infinity we 
introduce the related stochastic process {R, ( t /x  el): 0 _< t < oo} and the 
function f~: [0, oo) ~ [0, oo] given by f~(t):= ~_(R,(t/x el)). Clearly this process 
represents the total discounted costs with discount factor e > 0 made in the first 
cycle up to time t. It is now easy to establish the following result. 
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Lemma 2.1: The function f~: [0, oo] ~ [0, oo) is uniformly bounded, nonnegative, 
increasing and right continuous with at most a countable number of discontinuities. 
Also it holds that f~(oo) := limt~ ~ f~(t) = E(R,(el) ) < oo. 

Proof'. Since the stochastic process {R~(t): 0 _< t < oo} is increasing and non- 
negative it follows that the function f~ is nonnegative and increasing. Moreover, 
since {R~(t): 0 _< t < oo} has right continuous sample paths P-a.s. we observe 
that limh4,oR~((t + h)/x el) = R,(t/x el) P-a.s. and due to c 1 < ~ P-a.s. also 
limtl, ~ R~(t/~ cl) = R~(cl) P-a.s. Applying now the dominated convergence the- 
orem (Ash [1]) and ~(R~(Cl)) < m this yields that s is right continuous and 
s = ~_(R~(el)). Finally, due to f~ increasing and finite, we obtain by Theorem 
4.1.2 of Mikolfis [18] that f~ has a set of discontinuities which is at most 
countable. []  

It is also easy to relate the discounted stochastic process {R~(t/~ cl): 0 _< 
t < oo} to its undiscounted version {Ro(t A r 0 _< t < oo}. Since the stochas- 
tic process {R~(t/x cl): 0 < t < oo} is increasing and Ro(ez) < oo P-a.s. it 
follows by Theorem 5.7.3 of Mikolfis [18] that for almost every realization 
co e~2 the value R~((t/x cO(co), co) can be written as the Riemann-Stieltjes 
integral 

(t A el) (r~)  

e x p ( -  ~y)Ro(dy, co) 
o 

This implies that 

f~(t) := E(R,(t A cl)) = E exp(-~y)Ro(dy ) 

and by the extended monotone convergence theorem (Ash [1]) and Lemma 2.1 
it follows that 

E(R~(cl)) = E ( i  1 exp(-ccy)Ro(dy)) 

To unify the derivation of the finite-valued function v~: [0, oo) --, [0, oo) defined 
by v,(t) := Y_(R~(t))) we show in the next lemma that for every discount factor 

_> 0 it is the unique solution of a renewal type equation. However, before 
presenting this lemma we introduce for ~ _> 0 the (possibly) defective distribu- 
tion function F~ given by 
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F~(x) := i exp(-~y)F(dy) 
0 
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Moreover, we introduce the renewal function U~: [0, oe) ---> [0, oe) associated 
with F, and this function has the well-known representation 

u,(x) := ~ r:*(x) (1) 
n : 0  

where F~"* denotes the n-fold convolution of F~. 
Observe now by Lemma 2.1 and U, is right continuous due to F, is right 

continuous that by Exercise 2 at page 56 of Ash [1] the integral in the next 
lemma can be interpreted as a Riemann-Stieltjes integral. 

L e m m a  2.2: I t  f o l l o w s  f o r  .every d i s coun t  f a c t o r  c~ > 0 tha t  

t 

v~(t) = ~ f~( t  - -  y )U~(dy)  
0 

f o r  e v e r y  t >_ O. 

Proof." Clearly for every t > 0 we obtain that 

v , ( t )  = f~(t)  + i F_(R~(t) - -  R~( t  A c l ) l c  1 = y ) F ( d y )  
0 

By the regeneration property of the stochastic process {R,(t): 0 _< t < oo} it 
follows for every y _< t that 

~(R~(t) - R ~ ( t  ^ c ~ ) l c ~  = y) 

= ~ ( R ~ ( t  - y + c~)  - R ~ ( c ~ ) l c ~  = y )  

= e x p ( - - ~ y ) ~ - ( e x p ( ~ c l ) ( R ~ ( t  - y + c l )  - -  R=(c , ) ) l cx  = y)  

= exp(-~y)~=(exp(~cl)(R~(t - y + c l )  - R e ( e l ) ) )  

= exp( -  ey)~Z_(R~(t - y))  
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and this implies 
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v=(t) = f=(t) + i e x p ( - a y ) v = ( t  - y)F(dy)  = L(t) + i v=(t - y)F=(dy) 
0 0 

By Lemma 2.1 and E(R,(t)) is bounded on every compact interval the desired 
result follows by applying Theorem 2.4 in Chapter 4 of Asmussen [2]. [] 

By Lemma 2.1 it follows immediately that the function G,: [0, oe) ~ [0, 1] 
given by G~(t) := f~(t)/f~(oo) is a right continuous nondefective distribution func- 
tion satisfying G,(0) = 0. Hence, by Lemma 2.1 and Lemma 2.2 we obtain that 

v=(t) = L(oo)  vg(t)  = ~(R~(c~)) v : ( t )  (2) 

with U~(t):= So-G~(t- y)U~(dy) the renewal function associated with the de- 
layed renewal process {S~: n _> 0} where ,S# = S, + d~ and d~ a random variable 
with distribution function G~. By this observation one can easily verify for a = 0 
the following result. 

Theorem 2.1: It follows that the infinite horizon average costs associated with a 
given stationary policy p ~ d equal 

co(p)  :=  l im v~ - E(R~ 
,-.~ t ~(cl) 

I f  additionally the distribution function F is nonlattice and E(c 2) is finite, we 
obtain that 

1 }E(go (y / , eO)dy )  ~(4) , , lim % ( 0 -  ~ ( e l  ) - -  2~11) Cotp) t~oO 0 

Proof: By the elementary renewal theorem (see Proposition 1.4 of Chapter 4 in 
Asmussen [2]) we obtain that limt_,oo Ug(t)/t = 1/E(e 0 and this shows by (2) the 
first part. Moreover, if F is nonlattice and E(el 2) is finite we obtain by Proposi- 
tion 4.1 of Chapter 6 in Asmussen [2] that 

lim (Uo(t) _ ~c~))  - E(c2) 
,-,~o 2(~:(e~)) ~ 
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Hence, it follows that 

( ' ioo,,,4 ,' lim Ug(t) - ~ o ,~oo o 
t ---~ oo  

2(W(el)) 2 

( t  - y ) 5  G " '  " 7_Ti5-) otay  

and this shows by the first part, relation (2) and the definition of G o the desired 
result. [] 

As already noticed the random variable c, associated with the age replace- 
ment family of single component maintenance models has the representation 
cl = T/~ X~ and so we immediately obtain that w(c 2) is finite. If additionally the 
distribution function F of the random variable c~ = T ^ X~ is nonlattice, it 
follows that the conditions for the second part of Theorem 2.1 are satisfied. 
Observe in Section 4 we will write out the formulas of Theorem 2.1 for a large 
class of age replacement cost models. Similar remarks can be made for the class 
of random variables c, = T + Y~(T). For  this class we need to assume that 
[((Y/(T)) 2) is finite and the distribution function of the random variable Y~(T) 
is nonlattice. Finally, for the block replacement family of single component 
maintenance models it follows due to c~ = T that the corresponding degenerate 
distribution function is clearly lattice. This means that one cannot apply the 
second part of Theorem 2.1. However, it is easy to derive a similar type of result 
by using Lemma 2.2. This is possible since the renewal function is an easy 
stepfunction with unit steps at multiples of T if the underlying distribution 
function is degenerate at T. 

Without any conditions on the distribution function F except finiteness of the 
second moment ~(c~) it is relatively easy to derive upper and lower bounds on 
the function Vo. This is a consequence of the existence of upper and lower 
bounds for the renewal function Uo and therefore we will first discuss these 
bounds. If c ,  is a random variable independent of the nth partial sum S,, n > 1, 
with distribution function Fe given by 

1 i (1  - F ( y ) ) d y  F e ( x )  = o 

then we consider the delayed renewal process {Sa: n > 0} with S~ a = S, + c,,  
n >_ 0. The distribution function F e is called the equilibrium distribution asso- 
ciated with F and it is well-known (Asmussen [2]) that the renewal function Ue 
of this delayed renewal process satisfies 

Ue(x ) = IE l{~_<x} = ~_(Uo(x - c,)l{c,<x}) - IE(cx) (3) 
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By (3) and Uo nonnegative and increasing we immediately obtain the well- 
known linear lower bound x/s = ~-(Uo(x - c,)l{c,_<x}) < Uo(x). Although it 
is relatively easy to improve this lower bound around zero (Van Weeren [28]) 
we will not pursue this. To construct an upper bound we observe the following. 
If c* is a random variable on [0, oo) independent of the random variables c,  and 
S,, n > 0, it follows by (3) that 

f-(Uo(x + e* - c , ) )  = ~(E(Uo(x + c* - c,)l~c,_<x+e,~lc*)) 

1 
- ~_(cl)s + c*) (4) 

It is now possible to prove the following upper bound. This upper bound is 
known as Lorden's inequality and for completeness we list an easier proof as the 
one given in Proposition 4.2 in Chapter 6 of Asmussen I-2]. 

Lemma 2.3: I f  ~_(c z) is finite then for every x > 0 it follows that 

E ( d )  
Vo(x) <_ ~ + (~(c,))~ 

Proof: Let c* and c,  be independent and identically distributed nonnegative 
random variables with distribution function Fe and assume that these random 
variables are independent of the random variables S,, n > 0. Using the sub- 
additivity of the renewal function Uo, i.e. Uo(x + y) < Uo(x) + Uo(y) for every x, 
y > 0 we obtain that 

Uo(x) <_ ~-(Uo(x + e* - e,)) + ~-(Uo(c, - e*)) 

�9 , . ~ ( x + c * )  ~ ( c , )  ~ ( d )  
and this implies by (4) that Uo~X)< ~ ~ - ~ ) .  Since I:(c*)= ~(c,)=217(cl ) 

the desired result follows. [] 

It is now possible to derive the following upper and lower bound for the 
average cost up to time t if the second moment E(c~) is finite. This will be 
discussed in the next theorem, and the listed inequality should be compared 
with the second part of Theorem 2.1. 
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Theorem 2.2: I f  ~_(e 2) is finite then it follows for every t > 0 that 

1 i ~(Ro(y A cl))dy < ~ l ) c o (p )  0 < Vo(t)  - o 
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Proof: By Lemma 2.2 we obtain since fo(0) = 0 that 

i t vo(t) = fo(t -- y)Uo(dy) = ~ Uo(t - y)fo(dy) 
O-  0 + 

Due to fo increasing this yields the desired inequality by substituting the lower 
and upper bound for the renewal function, given by Lemma 2.3, into the above 
expression. [] 

By Theorem 2.2 it is clear for t large enough and H:(c~) finite that a reasonable 

1 t approximation for the average costs up to time t is given by ~(~t) Io ~-(Ro(y A 

Cx))dy. This observation concludes our discussion of the case a = 0. We will 
now analyze the behaviour of the objective function for the discounted case. To 
start with this analysis we will first analyze the behaviour of the renewal func- 
tion U~, introduced in (1). 

Lemma 2.4: I f  c~ > 0 it follows for every t > 0 that 

- '  ( ' )  
1 -F~-(oo) -< exp(c~t) U,(t) 1 - F~(oo) <- 0 

Moreover, if F is nonlattice we obtain that 

limexp(ca)(U,(t) 1 ) ) _ - 1  

Proof: To prove the second part we observe since F is nonlattice with finite 
mean that by (iv) of Proposition 4.1 in Chapter 4 of Asmussen [2] and the 
inequality 

exp(~t)(F,(oo) - F,(t)) = exp(,t) ~ exp(--ccy)F(dy) 
t 

_< 1 - F ( t )  
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the function t ~ exp(et)(F~(oo) - F~(t)) is directly Riemann integrable. Hence, 
by proposition 5.6 in Chapter 6 of Asmussen [2] (substitute F~(t) for z(t)) the 
second part follows. To verify the first part it is shown in the proof of Proposi- 
tion 5.6 in Chapter 6 of Asmussen [2] that 

Ua(t ) - ( U ~ , Z l ) ( t )  
1 - F ~ ( o o )  

with Zl( t  ) : =  ( F ~ ( t )  - -  fa(oo)) / (1 - f~t(oo)). T h i s  implies that 

( ' ) i  exp(~t) U~(t) 1 - F,(oo) = o- exp(e(t - y))zl( t  - y)Uo(dy ) 

and since -exp(c~t)zi(t  ) < (1 - F(t))/(1 - F,(oo)) for every t _> 0 we obtain that 

1 
0 _> exp(et) (U~(t) 1 - F~(oo)) 

- 1  t 

> 1 - r , t  )"'oo; & ( (1 - F(t - y))Uo(dy ) 

- 1  

= 1 _ ~ ( ~ i  [] 

An easy application of Lemma 2.4 is now given by the following result. 

Theorem 2.3: It follows for ~ > 0 that 

lim v ~ ( t )  : E(~~ e x p ( -  ~y)Ro(dy))  
, . ~  i - F,(oo) 

E(So ~ e x p ( -  cty)Ro(dy)) 
S~ (1 - F(y)) e x p ( -  c~y)dy 

Moreover, for every t > 0 the inequality 

E(cl) 
--c~ ~ F~-~(oo) -< exp(~t)(v~(t) - v~(oo)) < 0 
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holds with Co(p) the value of the corresponding infinite horizon average costs. 
Finally, if additionaly the distribution function F is nonlattice we obtain that 

lim exp(c~t)(v,(t) - v,(oo)) - 
t --* cO 

-Co(p )  

Proof: By (2) it follows that 

lim v~(t) = f~(oo) lim U~(t) 
t ~ o O  t --+o0 

= s  lim i U~(t - y)G,(dy) 
t ~ o o  0 

=L(~)~(~) 

L(~) 
1 -  ~ ( ~ )  

As observed before Lemma 2.2 we know that f , ( oo )=  E(R,(cl))= 
~(~'  exp(-ey)Ro(dy)) and this shows the first part. To prove the remaining 
results we first observe by Lemma 2.1 and Theorem 5.7.3 of Mikolfis [18] that 
s = ~oexp(-ey)fo(dy ) for every 0 _< t < oe. This implies using v,(oo)= 
s U~(oo) and Lemma 2.2 that 

exp(~ct)(v~(t )  --  v~(oo)) = i exp (a ( t  --  y ) ) ( U ~ ( t  - -  y )  - -  U ~ ( ~ ) ) f o ( d y  ) 
O -  

+ U~(oe) exp(~t)(f~(t) - f~(oe)) 

Since 0 _< exp(at)(f~(oo) - f~(t)) _< f0(oo) - fo(t) the third part follows by the 
second part of Lemma 2.4. Moreover, by the above inequality, Theorem 2.1 and 
the first part of Lemma 2.4 we obtain for every t _> 0 that 

0 > exp(o~t)(v,(t) - vjoo)) 

-fo(t) 
- 1 -  ~ ( ~ )  + u ~ ( ~ ) ( f o ( t )  - fo(~)) 

-fo(oO) ~(c,) 
- 1 - F ~ ( o o ) -  c~ ~F~(oo) 

and this shows the second part. [] 
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Clearly the above lemma can be used to justify the approximation v,(oo) of 
the discounted cost v,(t) up to time t for t large enough. To be more precise, it 
follows by Theorem 2.3 that 

~(el) 
0 <_ v ,(oo)  - v~(t) <_ exp ( -c~ t )Co(p )  1 _ F~(oo) 

In the next section we will consider some examples of replacement models fitting 
into the previous setup. At the same time we will show an easy and intuitively 
clear way to compute the corresponding objective function. 

3 Replacement Models and their Objective Functions 

Before considering some examples of replacement models fitting into the gen- 
eral setup, and computing by an intuitively appealing procedure their objective 
function, we need to derive a clear interpretation of the function f , ( t ) :=  
~_(R~(t/~ cl) ). Observe by the Lebesgue decomposition theorem (Feller [1t], 
Loeve [14]) that the function f ,  might contain an increasing continuous singu- 
lar component and this implies that such a clear interpretation probably does 
not exist. Fortunately it is possible for most of the replacement models to 
decompose (not necessarily unique!) the stochastic process {R~(t A Cl): 0 _< 
t < oO} into an increasing stochastic process {Z~(t): 0 _< t < oo} with right 
continuous sample paths P-a.s., Z~(0) = 0 and t ~ E(Z,(t)) continuous, and a 
stochastic process {g~(t/x cl): 0 _< t < oo} with g~ an increasing right continu- 
ous finite-valued function satisfying g~(0) = 0. If we denote by {Zo(t): 0 _< t < 
oo} the undiscounted version of the stochastic process {Z,(t): 0 _< t < oo} then 
we introduce for this undiscounted version the so-called cost intensity function 
mo: [0, oo) --* [ -o% + ~ ]  given by 

mo(t ) := lim sup 
h+O h 

E(Zo(t + h) - Zo(t)le 1 > t) 

Moreover, if go(t) := ~ exp(ey)g,(dy) (the undiscounted version of g~) then it is 
possible to prove the following result (Frenk, Dekker and Kleijn [13]). 

Theorem 3.1." I f  the above decomposition with the required properties holds, and 
the cost intensity function m o is finite-valued then it follows that 
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[E(R~(t A ca))= i exp(--~y)mo(y)(1 --F(y))dy 
0 

t 

+ ~ exp(-- ~y)(1 - F(y))go(dy) 
0 

for every t >_ O. 

The above result together with the results of the previous section yield an 
intuitively appealing approach to derive the objective function of a. replacement 
model satisfying the above decomposition property. To show this we will con- 
sider in some detail a few replacement models. Observe this section considers 
similar models, with a more general cost structure, as considered in an intuitive 
way by Berg [-4, 5, 6]. The first model we will consider is the age replacement 
model with running costs and age-dependent replacement costs. In this model a 
component is replaced by a new component either at failure (failure replace- 
ment) or preventively (preventive replacement) if it reaches a critical age 0 < 
T < oo. In this model the regeneration points are given by the replacement 
instances and so el = T/x  X~ with X~, i _> 1, a sequence of independent and 
identically distributed random variables with distribution function G repre- 
senting the random lifetime of the ith component. We assume for convenience 
that the distribution function G has a finite-valued density g. Moreover, the 
replacement costs both at a preventive and a failure replacement depend on the 
age of the component and are given by the increasing, finite-valued and right 
continuous functions cp(.), resp. cz(.). This means if a component of age x < T 
breaks down, the replacement costs are given by ci(x ), while at a preventive 
replacement of a component of age T the corresponding costs are cp(T). Finally, 
it is assumed that the running costs of a component are given by the increasing, 
finite-valued and right continuous function K: [0, oo) ~ [0, oo) with K(0) = 0 
and these costs represent for example regular maintenance costs, depreciation 
costs, costs of reduced output and so on. For  the above model the function go is 
given by 

g~ = [cp(T) + K(T) 
if x <  T 

i f x >  T > 0  

while the (right continuous) stochastic process Zo(t) is defined by 

Zo(t ) = cost in the first cycle up to time t due to a replacement at failure 

Observe now for t > T > 0 that Z o ( t -  ) = Zo(t ) and for t < T that Z o ( t -  ) < 
Zo(t ) if and only if the first failure occurs at time t. By the continuity of the 
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distribution function G this implies that Z o ( t -  ) = Zo( t  ) P-a.s. and hence by a 
standard application of the dominated convergence theorem (Ash [1]) we ob- 
tain that t ~ E(Zo(t)) is a continuous function. To determine the cost intensity 
function notice for t + h < T and h > 0 that Zo( t  + h) = Zo( t  ) = 0 conditional 
on the event {el > t + h} and so 

E(Zo(t + h) - Zo(t) lr  > t) = E((Zo(t + h) - Zo(t))l{c,<j+h)lC ~ > t) 

This implies by the monotonicity of the function e s and the representation of cl 
that 

, ,  G(t + h) - G(t)  
cat )  f12  -G(t) <_ ~-(Zo(t + h) - Zo(t) lc  1 > t) 

+ h) - G(t) 
cf(t  + h)G(t  1 _ G(t) 

for every t + h < T and h > O. Since cs(. ) is a right continuous function and G 
g(t) 

has a failure rate r(.) given by r(t) - for every t _> 0 we finally obtain 
1 - G ( t )  

for t < T that 

E(Zo(t + h) - Zo(t) lc  i > t) 
mo(t ) := lim sup = cr 

h*O h 

Moreover, for t _> T and h > 0 it follows immediately that Zo( t  + h) = Zo( t  ) 
and so ~_(Zo(t + h) - Zo(t))  = 0 or equivalently mo(t) = 0. Using Theorem 3.1 
we obtain 

 z(t) 
E(R~(t/x ci) ) = ( z ( T )  + exp (aT)cp (T) (1  - G(T))  

if t <  T 

if t >  T 

with 

z(t) := i exp( - -~Y)c I (y ) r (y ) (1  - G(y))dy + i e x p ( - a y ) ( l -  G(y) )K(dy)  
0 0 

and so we can determine by Theorem 2.1 and Lemma 2 the behaviour of the 
function v~(-) (the details are omitted). Observe, if K(-) and/or cp(') are not 
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differentiable, the MCA approach of Berg [4, 5, 6] cannot be used. Special cases 
of the above model are discussed by Barlow and Proschan [3], Schaeffer [241 
Cleroux and Hanscom [9], Fox [12], Berg and Epstein [7] and Ran and 
Rosenlund [22]. If we also like to incorporate down times due to repairs we 
obtain that c~, i > 1, equals c~ = (T ^ X~) + Lz with L~ the length of the ith down 
time and the random variables L~, i _> 1, independent and identically distributed. 
In this case the stochastic process {Zo(t): 0 < t < oo} not only counts the costs 
due to a failure replacement but also incorporates the costs due to down time. 
In the above model we only allow replacements and we do not allow minimal 
repairs (Barlow and Proschan [3]) if a component has failed before reaching its 
critical age 0 < T < oo. A minimal repair means that the component is restored 
to its state just before failing or equivalently the failure rate function following 
a minimal repair is undisturbed (for a mathematical definition see Nakagawa 
and Kowada [20]). However, if we may choose either to replace a failed compo- 
nent or to repair it minimally we first need to introduce the cost of a minimal 
repair at age t. To model this we introduce a stochastic process {M(t): 0 < 
t < oo } with right continuous sample paths and define 

M(t) := costs of a minimal repair if a component fails at age t. 

It is realistic to assume that the stochastic process {M(t): 0 < t < oo} is in- 
creasing and to determine whether a failed component is minimally repaired we 
also introduce a so-called repair-cost limit function l: [0, oo) - .  [0, oe]. This 
function is increasing and right continuous and represents the maximum costs 
one is willing to pay for a minimal repair of a component of age t. This implies 
that a minimal repair on a failed component of age t is performed if and only if 
M(t) <_ l(t) and so the probability p(t) that a failed component of age t is mini- 
mally repaired is given by Pr{M(t)  < l(t)}. Since the function l is increasing 
and right continuous and the increasing stochastic process {M(t): 0 < t < oo} 
has right continuous sample paths we obtain that the function p: [0, oo) 
[0, 1] is right continuous. To determine the random time until the first replace- 
ment we consider the stochastic process {(Y,, I,): n > 1} with I, = 0, resp. 1, if a 
minimal repair, resp. a replacement, is carried out at the instance Y,, with Y,, 
n > 1, the instance of the nth failure of the first component. Clearly, if ~ := 
inf{n > 1: I, = 1} then by definition Y, = oo for every n >_ ~ + 1 and the ran- 
dom variable cl is represented by cl = T ^ Y~. By the definition of minimal 
repair the point process {N(t): 0 < t < oo} associated with {Y.: n > 0} (define 
Yo := 0!) and given by N(t) := sup{n > 0: Y, < t} is a nonhomogeneous Poisson 
process with random intensity function r(t, e)) = r(t) for every t < Y~(co) and 
r(t, co) = 0 otherwise. This implies that the failure rate at time t of the distribu- 
tion of Y~ equals (1 - p(t))r(t) and hence its distribution function G is given by 

1 -- G(x):= Pr{Y~ > x} = exp -- (1 -- p(y))r(y)dy 
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This yields as already observed by Berg [6] a much easier way to derive the 
above distribution function than the approach of Block, Borges and Savits [8]. 
For  this model the function 9o is the same as for the first model and the right 
continuous stochastic process {Zo(t): 0 < t < oo} is given by 

Zo( t  ) = cost in the first cycle up to time t due to 
minimal repairs and a replacement at failure 

As before it is not difficult to verify that t ~ ~_(Zo(t)) is a continuous function. 
Moreover, by the definition of e 1 it follows for every t < T that 

~(Zo(t  + h) - Zo(t)lc~ > t) 

-= ~-((Zo(t + h) - /0(t))l{rN, t,+l_<,+h,,=N(0+l}l Y~ > t) 

+ E((Zo(t + h) - Zo(t))I{rN,,,,~<_,+h,,>N(O+~}I Y~ > t) 

and this yields by the definition of a nonhomogeneous Poisson point process 
(Ross [233) that 

lim ~_(Zo(t + h) - Zo(t)[c~ > t) 
h$O h 

= (1 - p(t))r(t)Cs(t ) + r ( t )E(M(t )  l{M(t)_<z(,)}) 

= (1 - p(t))r(t)Cs(t ) + p( t ) r ( t )E(M(t ) [M( t )  <_ l(t)) 

Moreover, it is also easy to see that ~_(Zo(t + h) - Zo(t))  = 0 for every t > T 
and h > 0 and so as before one can work out the expressions for the discounted 
and average cost criterium (the details are left for the reader). Finally, we like to 
observe that a special case of the above model is considered by Berg [6] and 
Block, Borges and Savits [8]. To conclude this section we observe that one can 
also very easily include in the above analysis a cost function for minimal repairs 
which not only depends on the age of the component but also on the number of 
minimal repairs already performed on this component. If one additionally intro- 
duces a third option that a minimal repair is unsuccesful with a probability 
depending on the age and the number of previous minimal repairs and if this 
happens that one has to replace it by a new component this can still be analyzed 
using the above approach. This generalization is considered by Makis and 
Jardine [16]. Also other classes of maintenance models can be analyzed using 
the above approach. As an example we mention the so-called T-policy of Muth 
[19] already considered in Section 2 (see also Makis and Jardine [15]). To 
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conclude this paper we finally observe that an overview on these other classes of 
maintenance models is given by Sherif and Smith [25] and Valdez-Flores and 
Feldman [27]. 
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