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Abstract

We construct limiting and small sample distributions of maximum likelihood esti-
mators (mle) from the property that they satisfy the first order condition (foc). The
foc relates the mle of the analyzed model to the mle of an encompassing model and
shows that the mle of the analyzed model is a realization from the limiting or small
sample distribution of the mle of the encompassing model given that the foc holds. We
can thus use the unique conditional (limiting or small sample) density of the mle of the
encompassing model given that the foc holds to construct the limiting or small sample
density /distribution of the mle of the analyzed model. To proof the validity of this ap-
proach and thus of the concept of an unique conditional density, we use it to construct
the small sample and limiting distribution of the limited information mle and show that
they are identical to resp. the sampling density and the expression discussed elsewhere
in the literature. We analyze the small sample density further and relate it to existing
expressions and show its limiting behavior in case of weak and strong instruments.

1 Introduction

The statistical properties of the maximum likelihood estimator of the parameters of a specific
model are typically obtained from its closed form analytical expression. The statistical prop-
erties then result from the different (random) elements of the closed form expression of this
estimator. The limiting and small sample distribution of the maximum likelihood estimator
are typically constructed in this way, see e.g. Phillips (1983). It is, however, also possible
to construct the small sample and limiting distribution through an implicit approach that is
based on a property of the maximum likelihood estimator instead of the previously referred to
explicit approach which uses the analytical expression of the maximum likelihood estimator.
That property is the first order condition for a maximum of the likelihood which is satisfied
by the maximum likelihood estimator. The first order condition can be specified such that
it relates the maximum likelihood estimator of the parameters of the analyzed model to the
maximum likelihood estimator of the parameters of an encompassing model. When the limit-
ing or/and small sample distribution of the maximum likelihood estimator of the parameters
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of the encompassing model is known, this maximum likelihood estimator can be considered
as a realization from that distribution. The maximum likelihood estimator of the parameters
of the analyzed model is related to this estimator through the first order condition. It can
therefore be considered as a realization of the random variable characterizing the maximum
likelihood estimator of the parameters of the encompassing model under the condition that
the first order condition holds. It is thus a drawing from the conditional density of the max-
imum likelihood estimator of the parameters of the encompassing model given that the first
order condition holds. When this conditional density is unique, it can be used to construct
the limiting and/or small sample distribution/density of the maximum likelihood estimator of
the parameters of the analyzed model.

In Kleibergen (1998), sufficient conditions for the existence of an unique conditional density
are given. These sufficient conditions a.o. require that the event where we want to condition
on can be represented in an unambigious way. The resulting conditional densities avoid the
Borel-Kolmogorov paradox, which states that the density of a probability distribution is not
defined on sets of measure zero, see e.g. Kolmogorov (1950), Billingsley (1986), and Dreze
and Richard (1983), and can therefore be used to construct the limiting and small sample
distributions of maximum likelihood estimators.

To show the validity of the concept of an unique conditional density and the small sample
and limiting distributions resulting from it, we use the developed methodology in a nontrivial
example, i.e. to construct the limiting and small sample distribution of the limited information
maximum likelihood estimator. The limited information maximum likelihood estimator is
used in instrumental variable regression models which are nested in a standard linear model.
Using the unique conditional density concept we construct the small sample and limiting
distribution of the limited information maximum likelihood estimator from the specified small
sample and limiting distribution of the maximum likelihood estimator of the parameters of the
encompassing linear model, 7.e. the least squares estimator. This example is nontrivial in the
sense that the restriction leading to the instrumental variable regression model when imposed
on the encompassing linear model is more complicated than a linear restriction in which case
the results follow straightforwardly. The resulting small sample and limiting distributions are
identical to resp. the sampling density and the analytical expression discussed elsewhere in
the literature. This proofs the validity of the concept of an unique conditional density and
the procedure for constructing small sample and limiting distributions that results from it.

The paper is organized as follows. In section 2, we show how small sample and limiting
distributions of maximum likelihood estimators result from the small sample and limiting dis-
tributions of the maximum likelihood estimator of the parameters of an encompassing model.
They result from the property of the maximum likelihood estimator that it satisfies the first
order condition and the concept of an unique conditional density. We therefore also give the
sufficient conditions for the existence of an unique conditional density, see Kleibergen (1998).
In section 3, we show the validity of the approach by using it to construct the small sample
density of the limited information maximum likelihood estimator. We analyze the properties
of the resulting small sample density, like its relationship to already existing expressions, see
e.g. Mariano and Sawa (1972) and Phillips (1983), and its limiting behavior when sample
size increases in case of weak and strong instruments, see e.g. Staiger and Stock (1997) and
Nelson and Startz (1990). We also show its equivalence with the sampling density of the
limited information maximum likelihood estimator and thus of the validity of construction
the small sample density using the conditional density approach. In section 4, we construct
the limiting distribution of the limited information maximum likelihood estimator using the
conditional density approach and show that it is equivalent to the expression stated elsewhere
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in the literature, see e.g. Hausman (1983). In section 5 we draw some conclusions a.o. that the
unique conditional density approach offers a novel procedure for constructing small sample
and limiting distributions of maximum likelihood estimators that can sometimes be more or
less convenient than the traditional approach that uses the explicit expression of the maximum
likelihood estimator.

2 Maximum Likelihood Inference using Unique Condi-
tional Densities

The maximum likelihood (ml) estimator of the parameters of a specific nested model can be
considered as a realization of a random variable. Furthermore, ml estimators satisfy the first
order condition (foc) for a maximum of the likelihood. This foc is often such that it relates
the ml estimator of the parameters of a nested model to the ml estimator of the parameters of
an encompassing model. Since both these estimators are realizations of random variables, the
random variable characterizing the ml estimator of the parameters of the nested model can
be considered as a realization of the random variable characterizing the ml estimator of the
parameters of the encompassing model given that the foc holds. This property can be used to
construct the small sample and limiting distributions of the ml estimator of the parameters of
the nested model from the small sample and limiting distribution of the ml estimator of the
parameters of the encompassing model. It involves the use of conditional densities that show
the behavior of the random variable characterizing the ml estimator of the parameters of the
encompassing model given that the foc holds. Because of the Borel-Kolmogorov paradox, see
e.g. Kolmogorov (1950) and Billingsley (1986), these conditional densities need to be defined
such that they unambiguously reflect the imposed restriction, here the foc. We therefore first
briefly discuss the uniqueness of these conditional densities before we proceed with applying
them to ml estimators. For a more elaborate discussion of unique conditional densities we
refer to Kleibergen (1998).

2.1 Unique Conditional Densities

The Borel-Kolmogorov paradox, see e.g. Kolmogorov (1950), Billingsley (1986), Dréze and
Richard (1983), Poirier (1995) and Wolpert (1995), states that the density of a probability
distribution is not defined on sets of measure zero. This would imply that we cannot specify
the conditional density of a random variable given a certain event in an unique way. On the
other hand we often specify joint densities of random variables as products of conditional and
marginal densities. For example in case of a bivariate normal distribution it is well known
that the conditional density of one of the random variables given the other is normal. This,
however, contradicts a literal interpretation of the Borel-Kolmogorov paradox as it indicates
that conditional densities are in some cases uniquely defined. In Kleibergen (1998) sufficient
conditions for the existence of an unique conditional density are therefore defined.

Sufficient conditions for the existence of an unique conditional density for the continuous
random variable x : k x 1; whose space, on which it is defined, is unrestricted and has density
p(z); given the restriction g(z) = 0; g(x) : mx 1, m < k, and g(x) is continuous differentiable
and is defined on the whole space of x; are:

Condition 1. An invertible relationship between x and (y,z) exists; y = h(xz) : m x 1,
z = f(z) : (k—m) x 1, where h is continuous and continuous differentiable for all
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values of x and f is continuous and continuous differentiable except (maybe) for some
lower dimensional subspaces of the space of x; which is such that given that z does not
result from one of the lower dimensional subspaces where f(x) is not continuous, we can
uniquely solve x from (y,z) for all values of y including on all the lower dimensional
subspaces of the space on which y is defined.

Condition 2. The restriction g(x) = 0 is equivalent with y = 0 and imposes no restrictions
on z.

When the sufficient conditions are satisfied, the unique expression for the conditional den-
sity function of the random variable x given that g(z) = 0 reads, see Kleibergen (1998),

pr(@) o p(@)]g()=0 (1)
o p(a(y, 2))ly=ol J (z; (y, 2))[y=0l,

where J(z, (y, 2)) is the jacobian of the transformation from z to (y,z) and |,—o stands for
evaluated in y = 0. In classical statistical analysis these unique conditional densities can a.o.
be used to construct small sample and limiting distributions of ml estimators. The resulting
small sample or limiting distributions can then be compared with already known analytical
expressions or densities constructed through Monte-Carlo simulation to show the validity of
the concept of an unique conditional density. Note that the sufficient conditions for an unique
conditional density are stricter than the conditions for transforming random variables, see
Kleibergen (1998).

2.2 Restrictions imposed by the First Order Condition

MI estimators satisfy the foc for a maximum of the likelihood. Given the limiting or small
sample distribution of a ml estimator of the parameters of an encompassing model, the foc
can be seen as a restriction imposed on the unrestricted random variable of which the ml
estimator of the parameters of the encompassing model is a realization. When these restrictions
satisfy the sufficient conditions for the existence of an unique conditional density, these unique
conditional densities can be used to construct the limiting or small sample distribution of
the ml estimator of the parameters of the nested model from the limiting or small sample
distribution of the ml estimator of the parameters of the encompassing model.
Consider for example the model,

y=X[f(p)+e, (2)

where y : T'x 1; X : T xk;e:Tx1,e ~n(0,0%Ir), ¢ : mx1; f(p) : k x 1, continuous
and continuous differentiable except (maybe) for some lower dimensional subspaces of the
space on which ¢ is defined. Examples of model (2) are the simultaneous equation model, the
autoregressive moving average model and numerous others.



The first order condition (foc) for a maximum of the (log-) likelihood reads,

- (2) X w-xin = 0 @)

1 (gf,|)XX((XX) X'y~ f(p) = 0=

))
= (35) xx (3-10)) = 0%
(@XCX) ;Zj¢a—1>l(QXQX)%éa—l (X'X)? f(@)o 1)

(&) (é—r@(@))) -0

where & = (X'X)"1X"y; © = (X'X)? do~!, b :mx L r(¥) : kb x L, r() = (X'X)? f(@)o !,
r(y) is a contlnuous differentiable function and an invertible relationship between 1 and ¢
exists such that 2 5 1/, is invertible for all ¢, 9; ¥ and @ stands for the ml estimator of the specific
parameter.

The foc (3) relates the ml estimator of ¢, ¢, which can be uniquely solved for from {p, to
the 7¢-values” O of the linear model,

(NI

= 0<&

y=Xo+e. (4)

The ”t-values” © can be considered as a realization of a random variable. Since the foc (3)
holds for all realizations of this random variable, we can consider 121, and thus also ¢, as a
realization of this random variable given that the restriction imposed by the foc holds. When
this restriction satisfies the sufficient conditions for the existence of an unique conditional
density and the density function of O is known, we can construct the density of {b as the
unique conditional density of ) given that the foc holds. A similar reasoning can be pursued
to obtain the limiting distribution of ¢ from the limiting distribution of O, when this limiting
distribution has a known density function.

2.2.1 Small Sample Distributions of Maximum Likelihood Estimators

When the density function of © in (3) is known, say © ~ n(0q, I), O = (X'X)2 f(pe)o",
we can construct the small sample distribution of the ml estimator . When S = X'X and
has a fixed full rank value, such that X is nonstochastic, and (% invertible V¢, the foc (3)
essentially imposes the restriction,

6 — r(@b) =0, (5)

on the random variable ©, which has an identity covariance matrix, since (3) holds for all
values of the random variable ©. When (5) satisfies the sufficient conditions for the existence
of an unique conditional density, the pdf of the ml estimator ¢ results from the conditional
probability density function (pdf) of O given that (5) holds,

Pe(@) o pr(B(@))IT(&, @) (6)
and pr(¢) X p(®)|®:r(1]})
o< (O, A)lscol (O, (&, Vsl



where A : (k —m) x 1 represents the restriction (5) (because of condition 2), r stands for
restricted to indicate that we donot use the marginal densities directly resulting from ©,
and J ({p, @) is the jacobian of the transformation from 121 to @. In section 3, we apply the
above arguments to construct the small sample density of the limited information maximum
likelihood (liml) estimator. We show there that the analytical expression of the small sample
density is equal to the density obtained by simulation which thus shows the validity of the
concept of an unique conditional density and the procedure for constructing small sample
distributions that results from it.

The small sample density constructed by using (6) results from an implicit argument as
it is obtained from the property of the ml estimator that it satisfies the foc (3). The small
sample distributions for maximum likelihood estimators discussed in the literature, see e.g.
Phillips (1983) and Mariano and Sawa (1972), are all constructed using an explicit expression
of the maximum likelihood estimator, i.e. the small sample distribution is constructed using
the exact closed form analytical expression of the maximum likelihood estimator and the
densities of the different elements of it, and do not result from a restriction imposed on a
specific random variable. The procedure for constructing the small sample distribution using
the unique conditional densities is appealing as it can also be applied in cases where we cannot
construct closed form analytical expressions of the maximum likelihood estimator.

We note that for an observed sample, © is just a statistic such that the foc (3) does
not imply the restriction (5), which is also not possible, and we can just solve for ¢ from
(3). However, when © is a random variable defined on the R* and (3) holds for all of its
realizations, the foc (3) does impose the restriction (5) on the random variable ©.

2.2.2 Limiting Distribution of Maximum Likelihood Estimators

The foc (3) can also be used to obtain the limiting behavior of the ml estimator ¢ when the
limiting behavior of © around its true value O is known, say vVT'(0 — 0y) = n(0,1}), © =
S3 do! Oy = S%f(goo)(f_l, S =plimp_ (&) . This limiting behavior can be constructed

using the restriction imposed by the foc on é),T
! % 8f — / 1 % o I % AN _— _
(20 L1 ) (00 8o = (0% f@10) = 040
10 ' 1 1
() o) (X0 (8- ) o = 00} (1)~ o) = 0

The limiting behavior of © is such that v/T (é — @0) converges to a random variable z with
density function,

p (@) = (27)* exp {—%mx] | (8)



So, since VT (@ - @0) converges to a random variable and the condition (7) holds for every
value @, it also implies that,

jim |VT (5550 1)'(ﬁsé (8- fln) ot = VTSH (f0) - i) )| = 0
}E&K%'@)/(ﬁ(é—%) VI (i) =) | = 0

g [(20),) (o= V7 (rw})—rwo))): = 0.9

as S = plimy_o (5X) and 7(¢)) = S7f(p)o~" is an invertible continuous differentiable

function. This results from the continuous mapping theorem, see Billingsley (1986). (9) holds
for every value of x which is a random variable defined on R*. This is therefore only possible
when

2= VT (r(8) = (1)) = 0. (10)

So, when (9) satisfies the sufficient conditions for the existence of an unique conditional density,
we can construct the limiting distribution of v, and thus also of ¢, from the density of x given
that (10) holds,

VT (r(@) = 1)) = elyter-o. (11)

where g(z) = 0 is equivalent with (10). In section 4, we give an example where we construct
the limiting distibribution of the liml estimator using the above arguments and show that
the resulting limiting distribution is equivalent to the one stated in the literature, see e.g.
Hausman (1983). This further shows the validity of the above arguments and the concept of
an unique conditional density.

We note that we obtain the limiting distribution of the ml estimator of the parameters of
the nested model by explicitly using condition (10) which results from the foc. This results
since (9) implied (10) because (9) holds for the random variable x. When we analyze an
observed sample, we have only one realization such that (9) does not imply equality of f(¢)
and @ for the observed sample, which is also not possible in general. Identical to the previous
subsection where the foc (3) implied (5), the foc (9) implies (11) because it is defined in terms
of a random variable, x.

3 Small Sample Density of the LIML Estimator

To proof and illustrate the applicability of the unique conditional densities for constructing
small sample densities of ml estimators, we use the instrumental variables regression model. An
instrumental variables regression model can be considered as a restriction on the parameters of
a linear model and we use this property to construct the small sample density of its maximum
likelihood estimator, the limited information maximum likelihood (liml) estimator. We use
this example because the restriction imposed on the parameters of the linear model by the
instrumental variables regression model is not that straightforward which it is for example
when we construct the small sample density of the ml estimator of the parameters of a linear
model by using that is a restriction on an encompassing linear model. The applicability of the
concept of unique conditional densities is obvious in that case.
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3.1 Instrumental Variable Regression Model

The instrumental variables regression model in structural form can be represented as a limited
information simultaneous equation model, see Hausman (1983) and Kleibergen and Zivot
(1998),

y1 = Yo+ 2y +e, (12)
Yo = XII+ ZT + Vs,

where y; and Y5 are a T'x 1 and T' x (m — 1) matrix of endogenous variables, respectively, Z is
a T x ki matrix of included exogenous variables, X is a T x ks matrix of excluded exogenous
variables (or instruments), £; is a T" x 1 vector of structural errors and V; is T' x (m — 1)
matrix of reduced form errors. The (m — 1) x 1 and k; x 1 parameter vectors /3 and 7 contain
the structural parameters. The variables in X and Z, which may contain lagged endogenous
variables, are assumed to be of full column rank, uncorrelated with £; and V5 and weakly
exogenous for the structural parameter 3. The error terms ¢, and V5, where £1; denotes the
t-th observation on £; and V5, is a column vector denoting the ¢-th row of V5, are assumed to
be normally distributed with zero mean, and to be serially uncorrelated and homoskedastic
with m X m covariance matrix

€1t o1 212
Y = var = . 13
’ (vgt> (221 222) (13)
The degree of endogeniety of Y5 in (12) is determined by the vector of correlation coefficients
defined by p = 2521/ 2'2210f11/ ? and the quality of the instruments is captured by II.

Substituting the reduced form equation for Y5 into the structural equation for y; gives the
nonlinearly restricted reduced form specification

Y = XIIB+ ZU +V, (14)

whereY = (y1 Y2 ), B=(f8 In1),¥=IB+(7y 0),V=_v1 Vo), v1=e1+Vp

and, hence, (vy; V5,)" has covariance matrix

. V1t . w11 ng i 6/1 ' 6/1
Q—’Ua’l“<‘/2t)—<921 QQQ)_<B)Z B | (15)

where e; : m x 1 is the first m dimensional unity vector. Note that ¥ is an unrestricted k; x m
matrix.

The unrestricted reduced form of the model expresses each endogenous variable as a linear
function of the exogenous variables and is given by

Y = X®+ ZU +V, (16)

where @ : ky x m. Since the unrestricted reduced form is a multivariate linear regression model
all of the reduced form parameters are identified. It is assumed that ks > m — 1 so that the
structural parameter vector [ is “apparently” identified by the order condition. We call the
model just-identified when ks = m—1 and the model over-identified when ks > m—1. k—m+1
is thus the degree of overidentification. [ is identified if and only if rank(Il) = m — 1. The
extreme case in which 3 is totally unidentified occurs when II = 0 and, hence, rank(II) = 0,
see Phillips (1989). The case of “weak instruments”, as discussed by Nelson and Startz (1990),
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Staiger and Stock (1997), Wang and Zivot (1998), and Zivot, Nelson and Startz (1998), occurs
when II is close to zero or, as discussed by Kitamura (1994), Dufour and Khalaf (1997) and
Shea (1997) when II is close to having reduced rank.

The parameter (3 is typically the focus of the analysis. We can therefore simplify the
presentation of the results without changing their implications by setting v = 0 and I' = 0
(I = 0) so that Z drops out of the model. In what follows, let k& = ks denote the number
of instruments. We note that the form of the analytical results for § in this simplified case
carry over to the more general case where v # 0 and I # 0 by interpreting all data matrices
as residuals from the projection on Z.

3.2 LIML estimator

The maximum likelihood estimator of 3, 3, is obtained from the concentrated log-likelihood

which results when we have concentrated out IT and ¥ from the log-likelihood of the parameters
of the model (12), see e.g. Hausman (1983),

(1 — Y28) Mx(y1 — Y203)
(y1 — Ya3) (y1 — Y2P3)

(17)

oR(L(91X.Y)) = 5Tlog|

1 _ (1 — Y20) X (X' X)L X' (y) — Ya/3) ’
a 2T10g ’1 (y1 — Ya3) (y1 — Y23)
= Tl 1,

where My = Ip — X(X'X) X', n = (yl_Yny )13()(/;;)),((;:1_);;%’)1_%5 ). Since the concentrated log-

likelihood of 3 is a monotonic decreasing function of 77, maximizing with respect to 3 is identical
to finding the minimal value of 7,

(11 = Vo) X(X'X) "' X" (3r — YaP3)

= min , 18
1= (11— Ya) (s — Ya) )

which is identical to solving the eigenvalue problem,
Y'Y - Y'X(X'X)'X'Y| = 0& (19)

nIn — (Y'Y)1OX'XD| = 0,

where ® = (X’'X)~'X'Y, and to use the smallest root of (19), see Anderson and Rubin (1949)
and Hood and Koopmans (1953). The liml estimator of 3, 3, is then contructed such that the

~

eigenvector associated with 7 equals a(1 —( ), where a is the first element of the eigenvector
associated with 7.

3.3 Reduced Rank Restriction on Random Matrix

The liml estimator constructed previously uses the likelihood of the structural form (12). The
foc (3), which we use to construct the small sample density, is, however, specified on the linear
model (2). We therefore use the restricted reduced form (14) to obtain the foc that allows for



constructing the small sample density of the liml estimator. This foc reads,

Ovec(I1B) ! / , B
<(5v66(ﬂ)’ Quec(IT)) 'W) vecl XY = XUB)X Dl =0 (20)
Ovec(I1B) A ! s L
- (avecw) QuecTl ),)|(Q,ﬂ,n)) vee XX (@~ 1B @) =0

(%ec (IIB) ' o . B
< ( dvec(B)" dvec(I1)) |(Q’ﬂvn)) vee(X'X (2 —IIB)Q™ )| g 5, =0
1 dvec(I1B) ! N an B
- ( (e s ((avec(ﬁ)f duec(TL)) ‘“Uiﬂ))) vee(®© —I'D)lg ) =0

Ovec(I'D) ' A e B
= (((%ec(ﬂ)’ Ovec(IT)) |(Q’ﬂvn)) vee(® —I'D)lqsm =0,

where Sy = X'X, & = (X'X)1X'Y, © = 502<I>Q_‘ I'D = SOQHBQ_‘ I':ikx(m—1)and
D:(m—=1)xm,D= (6 Ini), | @5, stands for evaluated in (2, 3,1I) and T'D stands for
I'D evaluated at (Q, B, f[) Note that the foc (20) also involves the covariance matrix estimator
) as we donot know its value like in the foc (3). Note also that only in case of an unknown
value of the covariance matrix are the structural form (12) and the restricted reduced form
(14) equivalent.

In case the density of the disturbances is known, we can construct the small sample density
of the liml estimator. For example when V' ~ n(0,{y ® I7) and the true value of II, 3, is Iy,
B, respectively. The least squares estimator is then distributed as

D ~ Py, Q S5, (21)

where ®q = I1yBy, By = ( Bo Im-1 ) . The covariance matrix estimator (= %Y’MXY =
LY - X 3)(Y — X®)) based on the least squares estimator @ is distributed as

Q~ W(EQ0, T — k), (22)
which stands for a Wishart distribution with scale matrix ﬁﬁo and T — k degrees of freedom.

The mean of this distribution is TT_’“QO. For details on the Wishart distribution, see Muirhead
(1982). The distribution of © (= S, 2), i.e. the "t-values” of ®, directly results from (21),

O ~ n(Bg, In ® I), (23)

1 _1 .
where Oy = 55 Pf2, . So, the statistic © can be seen as a realization from the distribution
(23). When we consider the foc (20) expressed in the random variable O, the foc can only be
satisfied when O is generated under the condition that

6-I'D=o. (24)

This holds as © is a random variable and the foc (20) holds for all of its realizations. When
(24) satisfies the sufficient conditions for the existence of an unique conditional density, we
can construct the small sample density of the liml estimator from that conditional density.
The restriction (24) is a reduced rank restriction as it implies that the rank of the & x m
(random) matrix © is equal to m — 1. T is namely a k x (m — 1) matrix and D a (m —1) x m
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matrix such that the rank of I'D is equal to m — 1. The rank of a matrix is represented by
the number of nonzero singular values, which are generalized eigenvalues of non-symmetric
matrices, see Golub and van Loan (1989). The singular values result from the singular value
decomposition,

6=UsV, (25)

where U and V are k x k and m x m matrices such that U'U = I, and V'V = I,,, and S
is a k X m rectangular matrix which contains the nonnegative singular values in decreasing
order on its main diagonal (= ($11...Smm)) and is equal to zero elsewhere. The reduced rank
restriction (24) imposed by the foc is thus the restriction that the smallest singular value of
O is equal to zero.

It is convenient to represent the rank restriction on 6 using the specification

O=TD+T,A\D,, (26)

where f‘L is a k x (k—m + 1) matrix such that f"f‘L =0 and f‘lfl = Iy_mait; ﬁL isalxm
vector such that DD/, =0, D, D', =1;and Ais a (k—m+1) x 1 vector to be specified. I"; and
D, can be constructed from the elements of I and D asT'| = ( —fgffl Iy ma1 )/ (Ix—mi1+
D, TTVTY,) "2, where I = ( I T )/ with Iy : (m—1) x (m—1), Ty : (k—m+1) x (m—1);
and D, = (1+ (ASI(AS)_% ( 1 & ) !. The representation (26) is an unrestricted specification of

© and results from the singular value decomposition (25) with
Upjn Ups S1 0 V11 V12
U= , S = dV = , 27
<U21 U22> (0 82)an (‘/21 U22> (27)
where Uy, Sy, Vor are (m — 1) X (m — 1) matrices; vy is 1 X 1; v, v9o are (m — 1) x 1 vectors,
Uz, Uay, and Uy are (m —1) X (k—m+1), (k—=m+1) x (m—1) and (k—m+1) x (k—m+1)

matrices and sy is a (k —m + 1) x 1 vector. Explicit expressions for ¢, I" and A are derived in
Kleibergen (1998) and Kleibergen and van Dijk (1998) and are given by

- U - _ - _1 _1
I'= ( Ui )51‘/2/1, 8= Vi iy, A = (UnaUby) ™3 Uty (0120]5) 3. (28)

The specification of A in (28) is such that A is an orthogonal transformation of the smallest
singular value contained in s,. This implies that we can always solve s; from A for all values
of \. This is also reflected in the Jacobian of the transformation from Sy to \ which is equal
to one and independent of the other parameters as well as the data. Restricting the smallest
singular value to zero is thus equivalent to restricting A to zero and the rank restriction (24)
is thus equivalent with A = 0. The rank restriction (24) resulting from the foc thus satisfies
the sufficient conditions for the existence of an unique conditional density and we can use it
to construct the small sample density of the liml estimator.

1Let Q be an n x n symmetric matrix with spectral decomposition Q = PAP’ where P is an n xn orthogonal
matrix of eigenvectors and A is an n x n diagonal matrix of eigenvalues. The square root of @ is then defined
as Q% = PAT P’
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The conditional density of © given that (24) holds then reads,

pr(©) o p(© (29)

—
Q
S
=
[0
|
i
—

I8
X  exp {—ltr ((f[)_@())’(ff)—@o)ﬂ ‘( Dol eg@T Dl®11 )\

e [ (10 -) (10 -01))

~ A an 1 A A IRV
o |DT[3 | Ly + 882D exp {—Qtr ((FD - @0) (FD . eo)ﬂ ,

N[=

where we have used that, see Kleibergen (1998), Kleibergen and van Dijk (1998) and Kleiber-
gen and Zivot (1998),

17O, (L,6, )50 = (D&l er@T D @l ) (30)

_ \f/m%Umfl 1+ 86 ‘%(kfm+1),

where e; is the first m dimensional unity vector. Since O in (29) has a reduced rank value
an invertible relationship between (I', ), which span the reduced rank space of ©, and (3, IT)
exists,

A A =

P | ERUNIIN A -1 4
0D = $1180,* = SiM1B0 ((BR)  Bur Ly ). (31)

_1
where ,° = ( wi Qs ) with wy; a m x 1 vector and €23 a m x (m — 1) matrix such that

. . o\-1 . N L
6= (BQQ) Bw; and T" = SzIIB;,. (31), however, assumes that we know the value of €2

which we donot and we therefore need to replace it by an estimator of it, which also has a
density function, in order to solve (B,f[) from (f’,(AS) A possible estimator of Qq is 2 and
we can use it instead of Qg in (31). ) is, however, not the only estimator /random variable
that can represent )y and we can use in order to construct the small sample density of the
liml estimator. Any estimator/random variable with a mean that is proportional to €y and is
stochastically independent of O can be used such that we can choose that estimator/random
variable which leads to the most convenient expression of the small sample density. We
therefore use A = QOQ_lQO instead of ) as it leads to a more convenient expression of the
small sample density. A is distributed as,

A~ iW(TQ, T — k),

where W stands for inverted-Wishart, and has a mean equal ﬁQO, see Muirhead (1982),
such that it can be used as the estimator/random variable representing €2y in (31). We,
therefore use instead of (31),

0D = SiTBA = SiT1BA ((BA)) BAY Lot ). (32)
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~

where A=3 = ( JANTRAYY ) with A; a m x 1 vector and Ay a m X (m — 1) matrix such that
. . -1 . Lo A . A
§ = (BAQ) BA, and T' = S3T1BAs, to obtain (3, 11) from (I, 8). The joint density of (3, 1)
and A then results from the joint density of (f‘, 5) and A as A is stochastically independent of
o,
pr(L,8,8) o pr(©)p(A) (33)
- \f/f|é|fmf1 4 83/‘%(k7m+1)|]\‘fé(Tfl~c+m+1)

1 e o
exp {—Etr (TQOA n (FD . @0) (rD . @0))} :
by transforming (f‘, 3) to (B, f[) we then obtain the joint density of (B, 11, A), see appendix A,
pe(BILA) o p(D(B,ILA), 6(3,11,A), A)J((T,6), (3,11))| (34)
. . % ~ %(k—m—i—l)
IT' SpII

A
exp [—%tr ( (TQO + (1B OBO)'SO (115 - HOB(])))} .

In case that m = 2, we can integrate out II from (34) analytically to obtain the joint density
of (,A), see appendix A,

pr(?, {\) ) (35)
o pr(BIN)pr(A)

. I
- |A|—%(T—k+2m) exp {_ﬁtr (A—l (TQO + BéH650H030)>:|

. |A‘fé(Tfl~c+2m) SO|%(m71)

1
—sm
~/ 2

Ay (A12A521 p )/f\i 2 (A12A52 - ﬁ/>

_l’_
0 Ay + (A12A§2 ﬁo) Ay (A Agy B) 1165011
j=0 2 A2_21 + (A12A2_21 — ) ( )
I(3(k+2j + 1)))]
JIT(5(k+25)) /]’
such that
pe(BI8) o [Ag + (Redz — ) Al (Aniz - )| (36)
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which shows that A ~ iW (T + BT, Sollg By, T — k +m — 1) and has thus changed because
of the rank reduction imposed on G) and the dependence of (ﬂ , ) on A. Note that the mean
of this inverted-Wishart density is #(T Qo + BHII,SoIlBy) = Q + %B{JH{)SOHOBO and
that this density is centered close around its mean for reasonably large values of T' (T > 25). A
good approximation of the marginal density of 3 is therefore pT(B|A = Qo+ %B(’)H{)SOHOBO).
This is also the reason why we use A instead of € since the resulting marginal density of
Q) does not belong to a standard class while the density of A does such that we can use its
properties, like the mean as shown above.

3.4 Properties of the Small Sample Density

The previous (sub)sections focussed on the construction of the small sample density of the
liml estimator. In this section we discuss the properties of the resulting expression of the
small sample density (35). We discuss the small sample density itself, its relationship with the
already existing expressions in the literature, its convergence properties when the sample size
increases, how it relates to the sampling density and its implications for testing hypotheses.

3.4.1 The Small Sample Density

The conditional small sample density of 3 given A (36) consists of the product of a Cauchy
kernel and a single infinite sum. Since the first element of the infinite sum does not depend
on B, the tail behavior of the conditional density is identical to the tail behavior of the
Cauchy density, i.e. no finite moments besides the distribution exist. Furthermore, because
the marginal density of A is finite everywhere, as it is an inverted-Wishart density, the tail
behavior of the marginal density of B is thus identical to the tail behavior of the conditional
density of 3 given A. So, also marginally no finite moments of B besides the distribution exist.
When Il = 0, the only element remaining of the infinite sum is a constant such that in that
case the conditional small sample density of @ given A is even equal to a Cauchy density.
Another simplification occurs when A12A§21 = [3; since the conditional density is symmetric in
that case.

A nice and elegant feature of the joint small density of (B, A) is that it can be decomposed
into the product of a marginal density of A that belongs to a known class of density functions,
i.e. the inverted-Wishart, and a conditional density of 3 given A. This is also the reason why
we use A instead of 2. We can therefore use the properties of the inverted-Wishart density in
our analysis. The mean of the inverted-Wishart distribution of A is equal to W(TQO +
BT SoIloBy) ~ Qg + 1B’ I SpIlo By and its variance is proportional to T’ see Muirhead
(1982). The mean of A is therefore equal to = 7 times the expectation of the quadratic form
of the endogenous variables, 7FE(Y'Y"). This result is not that surprising since Y'Y is used
to construct the liml estimator in (19). Because the variance of A is proportional to , the

density of A quickly concentrates around its mean when the sample size, T, increases. ThlS
convergence is quite fast which can be concluded for example from the well-known result
that an univariate ¢ density with 25 degrees of freedom is almost identical to the normal
density. It implies that already for quite small sample sizes (T' > 25), the density of A s
so concencrated around its mean that we can approximate the marginal density of 3 by the
conditional density of 3 given that A is equal to the mean of its marginal density very well.
So, we then use p.(3) ~ p(B|A = Qo + + BT SoIlpBy). For smaller sample sizes, we can
compute the marginal density of 3 straightforwardly by sampling A from its marginal density
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and taking the average of the conditional density of B given the sampled As.

The small sample density of (3,A) reads as (35) when m = 2. For larger values of m
there is no straightforward analytical expression of the conditional density. It is possible
though to construct such an expression but we will not pursue such kind of an analysis here
largely because the resulting expressions are quite complicated in nature. This results as it
involves the moment of the determinant of a noncentral-Wishart distributed random matrix.
For details on this, see Muirhead (1982). Since we do have the expression of the joint small
sample density of (ﬁ I A) we can sample from that density using Sampling Algorithms like
Importance Sampling, see e.g. Kloek and van Dijk (1978) and Geweke (1989), or Metropolis-
Hastings Sampling, see e.g. Metropolis et. al. (1953) and Hastings (1970). In Kleibergen
and Paap (1998) and Kleibergen and van Dijk (1998), these algorithms are used in Bayesian
analyzes of cointegration and simultaneous equation models where the posteriors are closely
related to the joint small sample density of (3, I, f\), see Kleibergen and Zivot (1998). The
computed densities can then be compared with the sampling density to show the validity of
the approach.

3.4.2 Relationship with Existing Analytical Expressions

The small sample density (34) results from a different approach then the one traditionally
pursued in the literature, see e.g. Mariano and Sawa (1972), Phillips (1983) and Anderson
(1982). It also has a different functional form then for example the small sample density
in Mariano and Sawa (1972) which consists of a triple infinite sum while the small sample
density (36) consists of a single infinite sum. One reason for this is that the small sample
density constructed by Mariano and Sawa is the marginal density while (36) is the conditional
density of 3 given A. Another reason is that these small sample densities are constructed
using different approaches. The small sample density (36) results from an unique conditional
density that exploits the property of the liml estimator that it satisfies the foc while the
traditional approach constructs the small sample density from a closed form expression of the
liml estimator. Since we already discussed the construction of the small sample density (36) at
length, we now briefly discuss the traditional way of constructing the small sample density of
the liml estimator to show the differences and similarities with the unique conditional density
approach.

The liml estimator results from the characteristic polynomial (19), see Mariano and Sawa
(1972),

Y'Y —Y'X(X'X)'XY| = 0& (37)
I (YMxY +Y'X(X'X)"'X'Y) -Y'X(X'X)"'XY| = 0,
and is defined such that the eigenvector associated with the smallest root of (37) is equal to

a(l —B/)’ . When we assume independently normal distributed disturbances with mean zero
and identical covariance matrices, Y’ X (X’X) 1 X’Y has a noncentral Wishart distribution,
Y'MxY has a standard Wishart distribution and these random matrices are stochastically
independent. Since the liml estimator results from an eigenvector of (37), it satisfies the
relationship,

n(Y'MxY +Y'X(X'X)'X'Y) ( IB ) =Y'X(X'X)'X'Y ( 13 > : (38)

where 7 is the smallest root of (37). The small sample density of the liml estimator 3 can thus
be constructed from the joint density of (Y'X(X'X)™'X'Y,Y’MxY'), which is the product of
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their marginal densities since they are stochastically independent, as it is a function of these
(random) matrices, see Mariano and Sawa (1972). The notation of the liml estimator as a
k-class estimator, see e.g. Hausman (1983) and Phillips (1983),

B=(7y) " 9, (39)

where § = Ly1 + 1%T]X()(")()_lX’yl = 75 Mxy + X (X'X)~'X"y;, n is the smallest root of

(37), directly shows the functional relationship between 3 and (Y'X(X'X) 'X'Y,Y'MyY).
Note that 7 is also a function of (Y'X (X'X)™'X'Y,Y'MxY'). The small sample density of 3 can
now be constructed by performing a transformation of the random variables and integrating
out the remaining random variables besides 3, see Mariano and Sawa (1972) for details. In
Mariano and Sawa (1972), the resulting expression is given and it consists of a triple infinite
sum. Identical to the conditional density of 3 given A this expression has Cauchy tails such
that no finite moments besides the distribution exist. Anderson and Sawa (1979) constructed
the small sample density of an estimator, to which they refer as the limlk estimator, that
is closely related to the liml estimator and results by replacing Y'Y in the characteristic
polynomial (37) by the estimated reduced form covariance matrix Y'MxY. They show that
the small sample density of this limlk estimator is less complicated than the small sample
density of the liml estimator, as it consists of a double infinite sum, and approximates the
small sample density of the liml estimator often quite well, see Anderson et. al. (1983).

The liml estimator that results from the characteristic polynomial (37) is closely related to
the singular value decomposition used to construct the unique conditional density. This can
be shown by specifying (37) as,

)nY'Y _dX'Xd| = 0e
)nfm—é)’é — s
~ ! / ~
b Imyr ON e e o Iny 0 by
=) (M 3) ey e (g 3 ()] = oo
~ ~ ! /
D D Iy ON e e o Ln 0]
=) (5 ) (F 3) (0 ey e (55 5] = oo
DD 0 I'T 0
(b 0| .
Nim O 5\2 =
(40)

where & = (X'X)7'X'Y, © = (X'X)3d(Y'Y)™2,6 = (T I, ) ( I”Z)l 2 ) ( é) ) , see
1

(26). The liml estimator of 3, f3, results from the eigenvector associated with the smallest root
) ~
of (40) which is A . This eigenvector can be specified by al)’, where a is a nonzero scalar.

Because of the specification of D, (= (1 + 5/5)_%(1 —3/)), see (26) ,AB and & coincide. To
construct the unique conditional density, A is set equal to zero and O is thereifO{e set equal
to I'D. (II, B) is then solved from I'D in (32). So, to obtain the density of (II,3) from the
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conditional density of S) given that it has rank m — 1, we have to account for the variance and
cannot directly solve (f[, B) from O as in the construction of the density of (f[, B) based on
(37). This is natural as the © used there has an identity covariance matrix and (40) shows that
the liml estimator can be considered to result from imposing rank reduction on a devarianced
d. Note also that we solve (f[, B) from O in the conditional density using the covariance matrix
A which has a mean, according to its marginal density, equal to +E(Y'Y), and that Y'Y is
used in (40). The conditional density approach therefore does lead to the density of the liml
estimator and not of the limlk estimator.

Besides being different from a constructional point of view, the small sample densities (36)
and the one from Mariano and Sawa (1972) are also different in the sense that (36) is the
conditional density of 3 given A while the small sample density in Mariano and Sawa is the
marginal density. For two reasons is this difference not so important as it seems. First, the
marginal density of A is known and belongs to a standard class of density functions such that
we for example know that it concentrates quickly around its mean when sample size increases
and how to sample from it. Second, A is a nuisance parameter and the identification of 3 does
not depend on it. The conditional density is therefore not dramatically different for various
values of A like for example the conditional density of 3 given II that strongly differs over the
value of II as the identification of 8 depends on II.

A nice feature of the unique conditional density approach is that we straightforwardly
obtain the analytical expression of the joint density of (B I, A) (34) without the involvement
of the noncentral Wishart density. This density is only involved in the integration over II to
obtain the joint density of (B , ]\) As the traditional approach for constructing the small sample
density uses the noncentral Wishart density from the outset, see previous discussion, the joint
density of (B,f[,f\) is more complicated to construct using that approach. Furthermore,
given that we have the joint density of (B, 11, A) we can analyze its properties directly or by
sampling from it. In this way, we can compute and analyze the marginal densities also in case
of more than two endogenous variables. To sample from the joint density, we can use Sampling
Algorithms like Metropolis-Hastings sampling, see e.g. Metropolis et. al. (1953) and Hastings
(1970), and Importance Sampling, see e.g. Kloek and van Dijk (1978) and Geweke (1989),
which thus enable us to compute the small sample density of the liml estimator also in case of
more than two endogenous variables. We therefore donot have to rely on complicated analytical
integration procedures in order to construct these densities. These simulation algorithms are
primarily used in Bayesian statistics but since the joint density of (3,11, A) (34) is identical to
the posterior of the parameters of an instrumental variable regression model using a Jeffreys’
prior, see Kleibergen and Zivot (1998), these simulation techniques can as well be used to
compute and analyze the marginal densities of the liml estimator. In Kleibergen and van Dijk
(1998) and Kleibergen and Paap (1998), these simulation algorithms are used to simulate from
these kind of posteriors to obtain the marginal posteriors of the parameters of instrumental
variable regression and cointegration models.
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3.4.3 Convergence of Small Sample Distribution to Limiting Distribution

The small sample density of 6 given A,

peBA) A+ (Audz - F) A, (Audz - F)| (41)
2 J
oo Az + (A12A521 - 6) AT, (A12A2—21 - ﬁ/) 115,01l
=

can be used to analyze the limiting distributions of 3 for different values of II. Below we
discuss three different cases, Il = 0, Il = Yo/ VT, where U is a fixed full rank matrix,
and Il is a fixed nonzero full rank matrix, that cover the main possibilities. Note that most
other cases can be considered as combinations of these and that the assumption of normally
distributed disturbances is made in order to construct (41). The results are therefore less
general then the ones obtained elsewhere in the literature, see e.g. Phillips (1989) and Staiger
and Stock (1997), but since the convergence properties result straightforwardly from the small
sample density, they show the convergence issues at specific values of Ilj in a rather illustrative
way.

[Ty = 0 : is known as the case of total nonidentification. It implies that the conditional density
of 3 given A (41) is a Cauchy density and remains that regardless of the sample size.
The liml estimator B thus has a Cauchy distribution regardless of the sample size and
converges to a random variable with a Cauchy distribution when the sample size T goes
to infinity, see also Phillips (1989).

Il,= ¥y /v/T: is known as the case of weak identification, see e.g. Nelson and Startz (1990),
Staiger and Stock (1997), and Zivot, Nelson and Startz (1998), and implies that the
value of IIy decreases with sample size. It functionalizes the in practice often observed
combination of a large sample size and small but significant ”t -values” of 3, see for ex-
ample Angrist and Krueger (1991). This results since, similar to the previous case, the
limiting and small sample distribution are identical and as the small sample distribution
is nonnormal, it can easily generate ”t-values” which seem significant when one mistak-
enly uses normal critical values but are nonsignificant when one uses the correct ones.
The similarity of the limiting and small sample distribution results because Sy = X' X
and plim7_ (X%X) = (o is a fixed full rank matrix, such that,

. . . o\’ Uy
lim (II,SeIly) = lim (IT, X' XTI,) = p lim ((—) X'X (—)) 42
pT1—>oo ( 00 0) pT1—>oo ( 0 0) pT—>oo \/T ﬁ ( )

X'X
o (4(32)0)

= UQo Y.
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I15,SpI1y thus remains a finite constant when the sample size goes to infinity. The con-
tinuous mapping theoren, see Billingsley (1986), then implies that

p Jim p,(BIA) (43)

o p lim [AQ‘; + (Rhz - 5) Aty (Awdg - 5) o

T—o0

X
~ ~ ~ [N ~ A ~l J
o ([ |85+ (R - 3) Aty (Audzt - 5)| plimroe (S0
§=0 2 |Ay + (A/A\12/A\2721 - B/) Al (A12A521 - AI)
T(5(k+2j + 1))>H
I (5(k + 27))
X ]\_21 + (1112]\2_21 - B) /A\1_11.2 (A12A2_21 - B)
. , o L J
Mg + (R = 30) Aty (Al = 5)| HoQols

which shows that the small sample and limiting distributions are identical, what also
holds for the previous case. So, B remains a random variable when sample size increases
and does thus not converge to the fixed constant 3. Staiger and Stock (1997) analyzed
this case without the normality assumption on the disturbances. Their focus is also
esspecially on testing and we therefore discuss the testing implications in a later section.

II, fixed full rank: implies that IT{,SoIl; converges to infinity when sample size increases.
To illustrate the convergence of the small sample distribution we now use the joint small
sample density of (3,11, A) (34),

A A A N 1 N N 1 N N L(k—m+1 1
pe(B,ILA) |A|72(Tf/€+2m) ’HIS()H 2 BA-1 5 (k—m-+1) |So|§(m71)

exp {—%tr (A‘l (TQO + (1B — HOBO) So (ﬂB - HOBO)))} :
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Since Sy = X'X and plimr_, (X'—X) = (p is a fixed full rank matrix, it follows from
the continuous mapping theorem, see Billingsley (1986), that,

3 (k—m+1)

p Jim p(3,ILA) o p lim {IAI 2 (T=ktam) AT B [Sol2 ™1 (44)

T—o0

exp {—%tr ([\—1 (TQO n (ﬂB . HOBO)/ So (fIB - HOBO))>H

We can now divide Sy by T and multiply I1B — IIyBy by /T without affecting the joint
density,

~

p Jim pe(3,11,) (45)

2(_ +)

x p lim [|A| 3(T- ’“+2m)’HXXH’ ’BA 1B | X7 X |2(m=)

T—o0

o [ (1700010 (4 (18- ()
(/7 (15 -))]

Since TIB = (113 11 ) and MyBy = ( oBy Iy ), I = Iy and 3 = B, (B = By)
such that, because of the continuous mapping theorem,

p lim p, (5,11, A) (46)
L(k-

+1) 1
BOA lB/ ‘X/X|§(m71)

T—o0

o« p lim {\A| 3(T—k+2m) [T/ X7 XTI, |2

P [_%tr (AlTQO+A1 (VT (Mo~ ) T1-T0, ))'(
(VT (15— ) T1-T1, )))H

By performing a transformation of the random variables from /3 to v/T (B — fy), and I
o VT(I1 —Iy), with jacobian |J((3,11), (VT (B — B,), VT (Il — I1y)))| = T~ z(B+D(m=1),
we then obtain that

p:,lglgop(ﬁ(g - 50)7 ﬁ(ﬁ - HO)? A) (47>
o< p lim po((3,1)(VT (5 — o), VT (I ~ ), A)
‘J((Ba ﬂ)a (ﬁ(@ - ﬂo)a ﬁ(ﬁ - HO)))

" (X;X) -
exp[—dor (34700 A0 (VE (- - ) (5
(VT (13- p) T1-11)))]].

which shows that

X'X
T

|
: L(h-mt1) | X7 X 307

T

‘A‘f%(TflerQm) BOA 1B’

x lim
p T—o0

VT(B—By) = n(0,w112(ITHQoILy) ™), (48)
VI -T,) = n(0,Q® Q)
/A\ = 0.
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The limiting distributions in (48) are constructed under the assumption of normality
of the disturbances. In the next section, we derive the same result also using the con-
cept of an unique conditional density under the less stringent assumption that the least
squares estimator of the encompassing unrestricted reduced form has a normal limiting
distribution. The limiting distributions in (48) also accord with the ones discussed in
the literature, see e.g. Hausman (1983).

The above results show that all convergence issues of the liml estimator can directly be
shown using the small sample density. The small sample density is thus a convenient tool
using which all convergence issues can be illustrated.

3.4.4 Small Sample Density versus Sampling Density

To show the validity of the concept of an unique conditional density and its applicability for
constructing the small sample density, we compare the resulting small sample density with
the sampling density for specific parameter values. We therefore sampled one million datasets
from the model,

N = Bys+el, (49)
Y2 = XmH+ vy

where y1, yo : T'x 1, X : T x k, (g1 v2) ~n(0,2® Ir); X ~n(0,I; ® Ir), T =100, 7 : k x 1,

1 0.99
T=(m.m), m=..=m,=0 =1 %= ( 099 1

(k,m1) and compared the obtained sampling density with the conditional density of 3 given A
(36) with A= Q+ LBwX'XrB,B= (8 1),2= (e B )X(e B').This value of
A equals the mean of the marginal density of A and since T is quite large the marginal density
is concentrated around its mean. Note that X is fixed over the datasets, and we also use it in
the conditional density p,(3|A), such that we only sample (g, v5) one million times (it is not
necessary to perform so many simulations but in this way we obtain an accurate and smooth
sampling density).

The model from which we simulate has strong endogeneity as p = 0.99 and Q5 wa; = 2.
Furthermore, when we increase k, we only add superfluous instruments to the model because
the elements of 7 associated with these additional instruments are equal to zero. In this way
we can analyze the sensitivity with respect to including too many instruments. We selected
these parameter values to have highly nonnormal small sample and sampling densities. A
coinciding small sample and sampling density at these extreme parameter values is therefore a
strong indication of the correctness of the small sample density and thus of the appropriateness
of the concept of an unique conditional density.

In figure 1, the small sample and sampling densities in case of total nonidentification,
m1 = 0, are shown and they are indistinguishable. We only show the exact identified case
because increasing the degree of overidentification does not affect the small sample or sampling
density at all (as was to be expected from (36)). Figure 2 shows the case of weak identification,
w1 = 0.1, for K = 1 (exactly identified) and & = 5 (4 degrees of overidentification). The
densities are again very similar and it is hard to distinguish them. The same holds for figures
3 and 4 where we show small sample and sampling densities for the properly identified case,
w1 = 0, with & = 1, 5 (figure 3) and k = 20 (figure 4). For all cases, the small sample and
sampling densities are hard to distinguish from one another which is, given the extreme values

) ; for a few different values of
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Figure 1: Exact small sample density (-) and sampling density (- -), m; = 0.

of the parameters of the data generating process, strong evidence in support of the construction
of small sample densities using the concept of an unique conditional density and of this concept
itself. Note also the peculiarity in the densities in case of weak identification which are equal
to zero in § = 2 (= Qywsy) at which point the mode in case of no identification is located.

An interesting phenomenon, that is apparent from all figures, for which the approach using
the unique conditional density gives a straightforward explanation is the relative insensitivity
of the small sample and sampling densities to adding superfluous instruments. The unique
conditional density approach namely shows that the small sample density of the liml estima-
tor results from imposing rank reduction on the ”¢-values” of the least squares estimator of
the encompassing linear model, see (24). The ”¢-values” of the superfluous instruments are
nonsignificant and close to zero. The rank reduction is imposed by restricting the smallest
singular value of the ”¢-values” parameter matrix to zero and thus discarding its eigenvector.
Since the ”t-values” of the superfluous instruments are nonsignificant, they will be associated
with the smallest singular value and its eigenvector thus has nonzero elements at the positions
of the superfluous instruments. When we thus restrict the smallest singular value to zero and
discard its eigenvector, we essentially remove the superfluous instruments. As a consequence,
the small sample density of the liml estimator is relatively insensitive to adding superfluous
instruments. The small sample densities of other instrumental variable estimators, like for
example two stage least squares, are quite sensitive to adding superfluous instruments though,
see e.g. Phillips (1983) and Kleibergen and Zivot (1998).

3.4.5 Small Sample Testing

The small sample density of the liml estimator (36) does not belong to a standard class of
densities nor does the joint density of (3,11, A) (34). The joint density of (3,11, A) can also
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Figure 2: m = 0.1, k£ = 1: Exact (-) and sampling density (- -); & = 5 : exact (-.) and
sampling density (..)
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Figure 3: m; = 1, k = 1: Exact (-) and sampling density (- -); k = 5 : exact (-.) and sampling
density (..)
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Figure 4: m =1, k = 20: Exact (-) and sampling density (- -)

not be factorized such that the marginal or conditional density given A of the "t-value” of B,

NI

~ ~ ~ ~ 1

F= (0SM1) (B = By) AT (50)
can be constructed analytically. This results as the dependence of B on IT is more complicated
than presumed by the relationship underlying the "t-value” (50). The factorization is not
possible because of the term |BA~'B’| \ (k=m+1) in the joint density (34) and consequently
the transformation of (3,11, A) to (7,11, A) leads to a joint density of (7, IT, A) for which we
cannot construct the marginal and conditional density of # given A analytically. The density
of 7 can thus only be assessed numerically. The small sample distribution of ”¢” and Wald
statistics testing hypotheses on 3 are therefore nonstandard and standard critical values are
only asymptotically valid when Il is a fixed full rank matrix. In case of weak instruments,
where Iy = ¥/ VT, see section 3.4.3, the asymptotic distribution of B is identical to the small
sample distribution and in that case the asymptotic distribution of the ”¢-statistic” is thus
also nonstandard, see e.g. Staiger and Stock (1997), Wang and Zivot (1998) and Zivot et. al.
(1998).

Instead of testing using the "t¢-statistic” 7 (50), we can also conduct inference directly
using the small sample density of B The density of B is less complicated than the density of
7 and for example in case that m = 2, an analytical expression of the joint density of (B A)
exists which can be used to compute the marginal density, see sections 3.4.1-3.4.4. So, to
conduct inference on 3 it can be more convenient to use the small sample density of ﬁ itself
than to use the small sample density of its "t-value”. The small sample density of ﬁ (36)
involves unobserved parameters, which are such that when we replace these by estimates from
the data, i.e. 2 + %B'W’X’XWB by %Y’Y and IIyBy by ®, that the small sample density is
equivalent to the posterior of § using the Jeffreys’ prior, see Kleibergen and Zivot (1998).
Note that when T is large, the approximation of Q+ 7 B'7w’X'X7B by Y'Y is quite accurate
and harmless but one has to be careful in the specification of I1yBj.
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Likelihood ratio and score statistics can also be used to test hypotheses. The small sample
distribution of the score statistic can also be constructed using the concept of an unique
conditional density, see Kleibergen (1998). For reasons of space we donot elaborate on that
here.

4 Limiting Distribution of LIML

When we donot know the distribution of the disturbances V, we can still use the foc (3) to
conduct statistical inference on the liml estimators by using the limiting distribution of the
least squares estimator P,

\/T((:A[)—(I)()) :>7’L(0,Qo®50_1)7 (51)
where Sy = plimy_. (LTX) , ®o = 1l By, such that

VT (é . @0) = (0,1, @ ), (52)

R 1. 1 P 1 1
with © = S§PQ, %, O = S;PQ, 2 = S;IoBoSY, 2, and the foc (20). (20) can also be
expressed as

M {ﬁ ((auezg?(;ii(ny) '(Qﬁvﬂ)) vee (VT (6 =€) = VT (FD - &) ) ‘(ﬂﬁ»fm} :(52)

such that since /T (é) — @0> converges to a random variable x, which is distributed as

n(0, I, ® Ix), and (53) holds for all realizations of this random variable z, it imposes the
restriction,

lim [VT (6-69) VT (fD-6)] = 0 (54)

T—o0o
7lim \/T(f‘f)—@o) = x,
on z. Just identical to (24), (54) is a reduced rank restriction as it implies that the rank
of the £ x m (random) matrix x is m — 1. Using the conditional density of z given that
rank(z) = m—1 and assuming that I has full rank, we show in appendix B that the limiting
distributions of the liml estimators (3, 1I) that result from the conditional density are

VT (H . HO) = n(0,0 ® Sy, (55)
\/T (B - BO) = n(O, J011.2 (HBSOH())il),

Wil Wi2
war oo

WhereQ0= ( ),wu : 1><1,w12,w'21 : 1><(m—1),§222:(m—l)x(m—l),wu_gz

-1 -1 011 012 . ;.
W11 —w128dos Wa1 = 0112 = 011—012095 T21, 2o = < Oo1 Yoy ) o112 1X1, 01, 0 1 1x(m—1),

Y99 1 (m—1)x (m—1), and are thus identical to the limiting distributions discussed elsewhere
in the literature, see e.g. Hausman (1983), which are, however, derived using a completely
different approach. This again shows the applicability of the unique conditional densities.
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5 Conclusions

We developed a novel approach for constructing small sample and limiting distributions of
maximum likelihood estimators that is based on the property of the maximum likelihood
estimator that it satisfies the first order condition and the concept of an unique conditional
density. We applied this approach to construct the small sample and limiting distribution of
the limited information maximum likelihood estimator. The resulting expressions are identical
to resp. the sampling density and the expression stated elsewhere in the literature and thus
proof the validity of the concept of an unique conditional density and the limiting and small
sample distributions that result from it.

As our novel approach differs from the traditional one it can sometimes be more or less
convenient to apply than the traditional one. The construction of the small sample and
limiting distribution of the limited information maximum likelihood estimator already show
this as it is fairly complicated to obtain the limiting distribution using the novel approach
compared to the traditional one but the construction of the small sample distribution could
be considered as less complicated. An advantage is there that the joint density of all elements
of the maximum likelihood estimator is obtained straightforwardly and doesnot involve the
noncentral Wishart density which is only needed to integrate out specific parameters. It is
therefore interesting to see for which models the unique conditional density approach allows
us to construct the small sample distribution of the maximum likelihood estimator and also
how it can be used to construct exact test statistics. Both areas are topics for further research.
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Appendix

A. Small Sample Distribution LIML estimator

The small sample density of the liml estimator B is constructed in four steps:

1. Construct joint small sample density of t—values least squares estimator and covariance
matrix estimator.

2. Construct conditional density of ¢-values given that they have reduced rank.

3. Solve for the liml estimator from the ¢-values under reduced rank and construct the joint
conditional density of (3, II) given the covariance matrix estimator.

4. Integrate out IT to obtain small sample density of the liml estimator B given covariance
matrix estimator.

In the following we discuss each of the four different steps:

1. To construct the small sample density of the LIML estimator of j, B , we use that the
OLS estimator, ® = (X'X)~' X'Y, is distributed as,

(i) ~ n((I)(), QO ® Sal),
where @y = IoBy, Bo = ( By Im-1 ), S0 =X'X.
The covariance matrix estimator §) = ﬁY’ MxY is distributed as,

Q~ W(EQ0, T — k),

and is stochastically independent of d. The expectation of this random variable is %QO.
Because of the expressions of the conditional densities it is convenient to define the random
variable A = QyQ271Q),

A~ iW(TQ0, T — k),

since Q™' ~ W (TQy !, T — k), which has expectation =, and the density function of
A reads,

k

p(A) \A\*%(T*Hmﬂ) exp [—%tr ([A\lTQ())} :

Nf=

and A is also stochastically independent of ®. The ¢-values of ® are defined by 6= SOE@QS ,
and are distributed as,

é ~ n(@Oa Im ® I/c)a

i 1
where Oy = S5 P2 >. The density function of these t-values therefore reads,

p0) xexp |5 ((6-e0) (600} ) |
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2. To construct the conditional density of the t-values given that they have reduced rank,

we specify © as,
O=TD+T,\D,,
where I': k x (m —1), D: (m —1) xm, D = (5 I 1 ),Sz(k—m—kl)xl,andf‘lf‘z(),
f:lf L= Teomyn, D Lf)’ =0, D Lﬁl = 1, which results from a Singi‘ulAar value deCO{nposition of
©. The density of the liml estimators results from the density of (I', §) given that A = 0, which
is proportional to the conditional density of the "t-values” given that they have reduced rank,
pr(ra 6|Q) (S8 p(@|Q)|rank @) m—1
X P(@(F 5 )‘)|Q |,\ 0|J @7 (T, 6, M) 5ol

x ?g ® I > exp ——tr ((f‘ﬁ - @0>/ (fb - @0)>]
~ e 3 (In 1 ® I) — (53 M) : exp [—%tr ((fD - q)o)/ (fD — (I)o))}
o [P o 88 e [ (FD - 0) (00 - 00) )]

where 7 indicates that the density is not the marginal density but the conditional density
given that A = 0.

3. The liml estimators can be solved from I'D by using an estimator for the unknown
covariance matrix €)g. This estimator is also a random variable and needs to have a mean
proportional to () to be suitable. Instead of { we use A as estimator /random variable to
represent () as it leads to a more convenient expression of the small sample density of the
liml estimator. Because of the rank reduction imposed on ©, we can exactly solve for the liml
estimators from I'D |

P = §ITIBA % = SITIBA, ( (mz)‘l BA, Iy ),
where A=3 = ( JANERVAY ) with Ay a m x 1 vector and Ay a m X (m — 1) matrix such that
6= (Bs) "' BA, and T = S3IBA,.
To construct the Jacobian of the transformation from (f‘, 5) to (fI,B), J ((f‘, 5), (ﬂ,B)),
6= (BA;)"'BA, T = S(]%f[BAg, we use the following results:

Dl _ (o (5n,)”)
dvec () dvec ()

_ (A’lé’ R ]mfl) ((BA2>_1/ ® (3A2>_1> (A @ Iy 1) %

- (Agel @ (BA:) 1) - (A’IB’ (BA2)1' Nper @ (BAa) 1)
~ ~ Y A -1
= (All (]m - B (BAQ) A;) e ® (BAQ) > )

Grecl) (A’ B®S )
OJvec(11)’ ? 7

O ol
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where e, is the first m dimensional unity vector. Because ai”:cc(%, = 0, the Jacobian ’J ((f‘, 5), (f[, B)) ’

then becomes

(0. (1.8))] = g::cc(g/

dvec(D)

~

Jvec(I1)’

-1

(a5 53 ) )

(m—1)

— |a (Im _B (BAQ) - A’2> e ® (BAQ)

A (Im - B (Ba,) o AQ) e

1 |SO|%(m—1)

R k—
BAQ)

The joint density of (II, 3) then reads,
p(LAIA) o p (DL B,A), 8(11, 5,4)) |7 ((,8), (11, 5)),

L(k—m
% ) 5 (k—m-+1)

I+ (B T BAALB (B o

exp Htr (f\l (115~ 1,3, 5o (115 - HOBO))}

5 (k—m+1)

X ‘A;B/ﬂ/SOﬂBAQ

S0, (0.3)
sull|” [BAALE + BAN B

exp Htr (A (116 — 11,5, 50 (115 - HOBO))]

1(k—m+1)

x |BA,| ™
HGU)
x |BA2|_(k_m)
7 (0.8). (11.5)) | exp Hm« (A (115 - 1,3, 50 (115 - nogo))} |

since As Al + A1A] = A=1 and BA, is a square matrix.
An A12 N A N

N A A 0 1 x 1; Aoy, A, —1) x 1;

Aoy A ) 11 ; Aor, App 2 (m )

[\22 : (m — 1) X (m — 1), /A\H.Q = [\11 — /A\12/A\2_21/A\21, and that

| Ale, AB
I\ ALe, ALBY

= (&1 do) (e B)|[= (A Ay)[=IA[?

1
2

II'S,I1|” |BA™'B’

In the following we use that A = (

]A;B’

Al (Im —B'(ALB) ! A;) e

since B = ( B A )
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The density p,(II, 3|A) then becomes,

% % (k—m+1)

BA'B
N N —17
A (Im y: (BAQ) A’z) er

exp {—%tr (Al (115~ 1,3, 5o (115 - HOB(]))}

%(lﬂfm

“ —(k—m)
BA, ]

p(IL BIA)

]ﬂfsoﬂ

(m—1)

o k—1 1
BAQ‘ |2

- RSN IO +1)
oc |A|*%(m*1)‘H’SOH2 BALB |Sp[3(m=D

exp {—%tr (Al (115 — 1,3, 5o (115 - HOB(]))} |

4. To construct the small sample density of B given A, we first decompose the trace
component of the conditional density p,(II, 5|A) as,

or (A (115~ 1) s (15 - o))

= tr (/A\_l (B/ﬂ/SOﬂB - (B/ﬂ/SOH()BO + BéHBS@ﬂB) + BE]HE]SOHOBO))

= tir (BA‘IB' (ﬂ - ‘Ifo)l So (ﬁ - WO))

o o o A ~N\N 1 ..
i ((A‘1 A (BA—lB') BA—1> B{)H{)SOHOBO> ,

o A A A\ 1 o o
where Uy = IIoByA~'B’ (BAle' ) . To obtain the conditional density of § given A, we
construct the integral of the joint density of IT and B over II,

2

pr(BIA) oc |A|7Em D TSI

1 . I T e AP
exp |—=tr [ [A'=A'B' (BA'B') BA ') BJI,S,I,B,
2 0++0

tf* exp [ ~gor (T -10) (T 1) )| a1
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Nl=

1 1
where T = S2TI (BAB)", T = SV, (BA1B)" = STl BoA B (BAB) *, since
1 1 1 1
|J(IL,T)| = \SO|_%(m_1) BAT'B o and ’f[’Sof[ ? = ’T"Ar *|BA=1B’| ” . The integral in the
above expression is a noncentral moment of a matrix normal random matrix. We construct
this expression for the case that T is a vector which implies that m = 2.

When T ~ n(Yo, Ix), it holds that w = TT ~ x2(k, i), where u = Y)Y, is the noncen-
trality parameter of the noncentral x? distribution and k the degrees of freedom parameter.
The density function of a noncentral x? reads, see Johnson and Kotz (1970) and Muirhead
(1982),

Py (W) =Y (M exp {—%IJJ] ) P2 (kr2j) (W),

1
i~ \

where p,2 (k125 (w) is the density function of a standard x? random variable with k+2j degrees

of freedom. Note that the weights, which correspond with a Poisson density, sum to one. The
1

expectation of w2 when w is x?(k + 2j) distributed reads,

T(L(k+2j+1))
L(3(k+25))

[NIE

1
Ee(k12j) [wQ} =2

The expectation of w? over the noncentral x? distribution therefore reads,

oo 1 \J
1 PIg 1 1
EXQ(I%N) |:wé:| — Z <(2j'> exp |:—§,U,‘|> Exz(k—i-Qj) [U}é:|

(G 172Dk +25+ 1)
- Z( jior {—2»&})2 Pk +25)

The integral needed to obtain the conditional density of B given A thus reads,

/ T exp Htr ((Y 1) (1 - ro)ﬂ it

-1

J
(%A—lB' (BA15) BA—lB()H()SOHOBO>

x~ Y -
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such that the conditional density of B given A reads,

po(BIA)

~3(m-1)

~

BA™'B’

~

1 . a (Bi-1a) L A
exp {—5157“ ((Al — AP (BA*B’) BA1> 36H650H030)]

§=0 !

N ik +2j
exp |—=A 1B (BA’lB/) BA™'BYIT, S, By 22 (2(1 TARY)
2 I(3(k+25))

A _E(m_l) 1 A—1 HA—1D %m
o exp —2t7“ AN Bl SollgBy ) | [BA B
1A > > A AR !
-1 -1 -1
i <§A B (BA B’) BA B()H()SOHOBO) DOk 425 1 1)
~ 7! T(5(k+25))
A2 1 1y A1 S I W SR
x exp | ~5tr (A BOHOSOHOBO) Ayl + (AlgA 1 @) AL, (AlgA 1 ﬁ)
A—11Dr 2 / J
i (BoA B) MoSollo |\ 1(L(k 425 +1))
= 2 (BA%B/) 3T (5 (k + 25))
. |—3(m-1) 1 1 , —3m
x exp —§t7‘ (A BT SOHOBO)

Ay + (A12A52 3 ) AT, (A12A2_2 —-p )
. o L o . 2 J

At + (Auhad — 0) Aily (R = 7') | ToSollg

2 A2_21 + (A12A521 — B/) /A\1_11.2 (1112[\2_21 - B/)
T($(k+2j+ 1)))}

JIT(5(k + 27))

o

2

§=0

since

BA'B’

= A5 + (AAs) — BYALL Ay — 3)),

and |Boh 1B = At + (Anhy — 55) Ay (A - 5)|.

32



As A is stochastically independent of é, the joint density of (B , A) thus becomes,

pr(B, A)
p(M)p.(BIA)
x |/AX|_% (T=ktm+1) oxp {—%tr (A_ITQO)]
- —i(m-1) 1 N N
T exp {—ﬁtr (A5 H{)SOHOB())} At + (e = B) Aty (Ruodg = )
, A NIt J

o0 Ay + (A12A2_2 ﬂo) ALl (/\12/\2_21 - ﬁ/> 115 Sollo

> : I

=0 2|Agd + (Anhad - B) Adly (Riod = )

T(3(k+2j+ 1)))}
T(5(k+25) /]’

such that

Ay + (A12]\ 2 — )IA11 2 (A12A22 - ﬂ/)

A A 1 o
pr(d) oo [ATEEEE e {‘5” (A <Tﬂo+BaﬂasoHoBo>)},

which shows that A ~ iW (T + By Sollg By, T — k +m — 1) and has thus changed because
of the rank reduction imposed on © and the dependence of (ﬂ , ) on A. Note that the mean
of this inverted-Wishart density is W(TQO + B{IISeIlgBy) ~ Q + TBOH{)SOHOBO and
that this density is centered close around its mean for reasonably large values of T' (T > 25). A
good approximation of the marginal density of 3 is therefore pT(B|A = Qo+ %B(’)H{)SOHOBO).
This is also the reason why we use A instead of € since the resulting marginal density of
Q) does not belong to a standard class while the density of A does such that we can use its
properties, like the mean as shown above.
When Iy = 0, the conditional density of B simplifies to,

1
—im

AlA ~ A~ A PNAARS A A ~l
pr(BIA) o< |Ay + (/\12]\2721 - ﬁ) Aty (/\12/\2721 - ﬂ)

which is a Cauchy density. Another simplification occurs when (3, = AEQI/A\Ql as in that case
the term ByA !B’ is equal to Az and p,(3|A) is a symmetric density then.

We note that the density p,(3|A) has a simpler functional form than the density derived
in Mariano and Sawa (1971), which involves a triplicate infinite series whereas the p,(3|A)

33



constructed above only involves a single infinite series. The density constructed by Mariano
and Sawa is the marginal density though while the density constructed above is the conditional
density given A. We do know the marginal density of A, however, such that we can use its
properties, like the fact that it quickly concentrates around its (known) mean when the number
of observations increases or how to simulate from it, to conduct marginal inference on §.

B. Limiting Distributions LIML estimator

The limiting distributions of the liml estimator result from,

ﬁ (f‘D - @0) = 'T|7'anl~c(m):mfla
.. 1., 1 1 1 ,
where © ~ n(0, I, ® I), I'D = SZIIBQ, 2, O = SF1oBoQ 2, So = plimr .o (57) . The
conditional density function of x given that rank(z) = m — 1, is obtained by specifying x as,
T =zw+ 2z A w,,
where z : kx(m—1), z; : kx(k—m+1), 22, = Ik mi1,2,2=0,w: (m—1)xm, w, : 1 xm,
w= ( A I, ) ;A (m—1) x 1, wiw' =1, ww' =0, such that z|,ank@)—m-1 = zw. This

conditional density then reads,

pr(ZaA) X p(x)|rank(m):m—1
X p(x(zaAa)‘))b:OL](x?(ZaAv)‘))‘A=0|

ww I, ARz >
o A ® 2 2z

1 Lkem 1
x |z'z|é | I + AA'|é(k ) exp {—§tr (lew'z'zw)] :

exp |:—%t7“ (Qolw/zlz’w):|

Since,

VT (6-6y) =

VTS (1B 0B, ) 0

VTsE (5 -Ts) (1-To) )0,* = (24 2) e
(13- (1))

VI (5 -08,) (TT=Tho) ) = 5y %200 ((w) Hwwr Lo ),

1 1

= Sy 22w &

where Q2 = ( wi; Qs ) ,wi:m x 1, Qo :m x (m —1). It thus holds that,

VT (f[ - HO) = So_%szg,
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and
(Hﬂ Hoﬂo) SgészQ(wQQ)ilwW1<:>
VI (11 (5= o) + (“ ) )
VT (5= o)
VT, (5 - 5,
VT (ﬁ—ﬁo) = (I,STlg) IS 2wy ((w€) ™ wwy — ) -

Sy 2 zwsly (ng)*1 ww, &

Q>
Q

Sy 2 2wl ((ng)_1 wwy — By) <

L

Sp 2w (W)™ wwy — By) &

Note that we use the property that Ily has full rank here. Similar to appendix A, we now
define I' = zw$y and ¢ = (ng)_1 wwy — B, such that

VT (T -10) = Sy 2T,
VT (B=5) = (0STo)™ WoS*rw,
and

“ (6t 8y Lot ).

The derivatives of this transformation read (we construct the inverse of the jacobian here),

Ovec() , _1y Ovec(w)
Ovec(A) = (w18 (w)") Ovec(A)’
— (wWjw' @ I, 1) ((ng)‘l’ ® (ng)‘l) (Q @ I 1) %
= (wier ® (W) ™) — (W2 (W) ™Y Dper ® (W) ™)
= (w’l (Im —w (wQQ)fll Q’Q) e1® (wQQ)fl)
dvec(I) Y
dvec(z) ((wh) @ 1)
and we note that
o (1w )] = [t )
= ‘(wl 92 )I( er w )‘
= ‘( wy D )‘ = |QO‘%7
such that
[J(T,), (2 )] = (W (I = w (wS22) Y D) €1 @ (w) )
| (wQ2)" e 1)

= w7 Q]2
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The joint density of (I",%) then reads,

pr(D,0) o< pr(2(T9), AT, ) | ((F) s (2, A))]

1 L(k—m 1
x \ng|_(k_m)|z'z|% |ww'|é(k ™ exp —Etr (Qolw’z'zw)}

o |wQa| T [ (we) TV TT () |2
%(k—m—i—l)

‘ng( (wQQ)_1 wwy Iy )Qal( (ng)_1 wwy Iy )/wQQ

exp [—%tr (Qfl (¥+086 Ima )IFT( Y+ By Ina ))}

5 (k—m+1)

x ‘F/Fﬁ b+ B0 In ) (U + By Imoa )I

tr (%" (480 Iny ) TT( 6+ By I ))}

W11 W12
war oo

We now use that g = ( ) , such that

!/

(Y+B80 Ln1 )% (¥+B0 Inr)
= 92_211 + (¥ = (o war — By)) wf11.21(¢ — (Qpwa — By))’
= Q) (Im—1 + (6 = 60)(8 — 80)' )2,
and that
tr (le (¥+B8y Im1 )TT(%+By Ina ))
— tr((¥+60 In1) 9" (¢+By In1)'TT)

(g (It + (6 — 60)'(8 — 60))02 T'T)
= t?"(([m,1 + (5 - 60)/(5 - 60))T/T)
= tr (YY) +tr ((6 —6) Y'Y (6 —&)),

1

_1 1 _
by performing another transformation of the variables to T = I'Q2,,*, § = Q50w %, 6o =
1 _1
Q3 (9521w21 - ﬂo) W1;’, such that

x ‘T’Tﬁ ’Im—l + (6 _ 60) (5 _ 60)/’%(k—m+1)

exp —% (tr (Y'T) + tr ((6 — 60)' Y'Y (6 — &)))

Using the results from section A, it then follows that

m

pe(8) o |1+ (8 — 60)' (6 — 60)| ™,
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because Y'Y has a Wishart distribution with k& degrees of freedom such that, using the Wishart
integration step,

/ | exp [_%tr(rfr(fml (85— 60) (6 — 50)’)} dr

1 —(m—1)— 1 / /
/ /2D e {—atr(r'r(fm_l + (6 — 60) (6 — o) )} Y'Y

It + (8 — 60) (86 — 60)'| 2"

1+ (5= o) (65— 80)] 2",

which is a Cauchy density with location §; and identity scale matrices. A Cauchy random
variable z. : (m — 1) x 1, of this type can be defined as, see Zellner (1971),

T, = xn(yi)fé + b9
or T, = (YéYn)_%xn + bo,

where z,, : (m — 1) x 1, Y, : (m—1) x (m —1), y, : 1 x 1, are all independent standard
normal random variables with mean zero and identity covariance matrices. In case of the
latter definition, the joint density of Y,, and z. reads,

p(ze, Yn) < |YY,, |2 exp —% [tr (YY) + tr (( —80) Y'Yy, (20 — 60))]

This definition is closely related to the joint density of (6, T) shown above. This shows that a
Cauchy random variable can also be defined as,

= (Z)Z0) 2w + b0,

where w: (m —1) x 1, Z, : k x (m — 1) is a standard normal random matrix with mean zero
and identity covariance matrix and the joint density of (w, Z,,) reads,

1 % (k—m+1)

p(w, Z,) ’1 +w' (Z) Z,)" w

1
exXp [_5 [tr (Z) Z,,) + tr (w'w)]} .
The joint density of =, and Z,, then reads,
(e, Zn) | 2707 |1+ (2, — 80)' (e — 60) 24"V

exp {—% [tr (Z,,Z,) + tr ((xc — 60)' 23,24 (zc — 60))]] ,

which is identical to the joint density of (6, T) shown above and thus leads to a marginal
density of x. which is Cauchy. So, when

P(Z)  exp Htr (Z;Znﬂ

and

p@dZ) < |ZyZa|? |1+ (2 — 60) (we — 50)’§(k*m+1)

exp [~ 17 (ae = o) 2,2 (2.~ ).
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then

_1lm

p(ze) o |1+ (zc — 60) (e — 60)| 2,

and vice versa. The marginal distribution of T is as a consequence standard normal with mean
zero and identity covariance matrix. The limiting behavior of the estimators now results as

VT (H _ HO) = Sy ITQZ, ~ (0, © Sy b),

VT (B=8) = (Solly)™ TS5 6w .

The random var1able HgSO T§222 ~ n(0,Q9 @ II{SpIly) and Y, (HE]SOHO)_% 52T =
(HOSOHO)" 1’[65’02 TQQQQQQ ~n(0, Im—1 ® In—1). We can now define ¢ as,

§=(YY,) 2z, + &,

where z,, ~ n(0, I,,_1), such that

H/ S T6w11 9 = (H S()H()) ((Y Y, ) xn + 60) w1§1.2'

So, conditional on Y,, 6 has a normal distribution with mean 6, and covariance matrix
(YY) ", 8|, ~ n(bo, (YY) ). Given Y,, the limiting behavior of 3 can thus be char-
acterized by,

1

. _1 _ 1
VT (B = BylYa) = (MySollo) ™2 Yo (80, (¥;¥a) )] i
The limiting behavior marginal with respect to Y,, is obtained by taking the expectation with

respect to the standard normal variable Y,,,

1

VI(B =) = By, (MSoll) * ¥, [n(so, (V1Y) )] wiro)

1
= "(EYn((HBSOHO)_% Y60w?; o,

wire By, (I, SoIly) "2 Y, Y7V, Y (IT, Sollo) ™
= n(O, W1i1.2 (HBSOH())il),

[SIE

))7

since Y,, is a square matrix, and because wq1.9 = 011.9, this expression can also be specified as
\/?(B — Bo) = n(0,011.2 (HBSOHO)A),

which is the well known expression for the limiting behavior of the liml estimator. Note that
when Iy = 0, 3 converges to a random variable, see section 3.4.3 and Phillips (1989).
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