
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, VOL. 39,2743-2767 (1996) 

COMPUTATIONAL STRATEGIES FOR ITERATIVE 
SOLUTIONS OF LARGE FEM APPLICATIONS 

EMPLOYING VOXEL DATA 

B. VAN RIETBERGEN, H. WEINANS A N D  R. HUISKES 

Biomechanics Section, lnstitute of Orthopaedics, University of Nijmegen, The Netherlands 

B. J. W. POLMAN 

Department of Mathematics, University of Nijmegen, The Netherlands 

SUMMARY 
FE-models for structural solid mechanics analyses can be readily generated from computer images via 
a ‘voxel conversion’ method, whereby voxels in a two- or three-dimensional computer image are directly 
translated to elements in a FE-model. The fact that all elements thus generated are the same creates the 
possibilities for fast solution algorithms that can compensate for a large number of elements. The solving 
methods described in this paper are based on an iterative solving algorithm in combination with a unique- 
element Element-by-Element (EBE) or with a newly developed Row-by-Row (RBR) matrix-vector multipli- 
cation strategy. With these methods it is possible to solve FE-models on the order of lo5 3-D brick elements 
on a workstation and on the order of lo6 elements on a Cray computer. 

The methods are demonstrated for the Boussinesq problem and for FE-models that represent a porous 
trabecular bone structure. The results show that the RBR method can be 3.2 times faster than the EBE 
method. It was concluded that the voxel conversion method in combination with these solving methods not 
only provides a powerful tool to analyse structures that can not be analysed in another way, but also that 
this approach can be competitive with traditional meshing and solving techniques. 

KEY WORDS: structural mechanics; voxel conversion; large FEM applications; iterative solving; element-by-element; 
row-by-row 

INTRODUCTION 

In the last decade, FE-methods have developed into the direction of universal tools for all kinds of 
linear and non-linear structures. Sophisticated element formulations in combination with im- 
proved meshing methods, using CAD information that can be directly fed to FE pre-processor 
codes, have made it possible to mesh every construction that can be manufactured. The challenge 
in the development of automatic mesh generators has always been to create methods which 
provide user-friendliness on the one hand, and cost-effective meshes on the other, while maintain- 
ing adequate mesh refinement for FE accuracy. This has generally resulted in methods which 
create non-uniform mesh density, using refinement where it matters, but saving elements where it 
does not. If however, the number of elements became irrelevant, with, for example, as many 
elements in a cross section of the FE-model as the number of pixels on a computer monitor, it 
would be possible to use a regular pattern of equally sized cubic elements, and still describe the 
geometry of the structure as accurate as it is represented on the monitor. The two- or three- 
dimensional data set displayed on the monitor can then be directly translated to a FE-model by 

CCC 0029-598 11961162743-25 
0 1996 by John Wiley & Sons, Ltd. 

Received 21 April 1994 
Revised 4 October 1995 



2744 B. VAN RIETBERGEN ET AL. 

converting voxels to equally sized brick elements. Compared to traditional meshing methods, this 
‘voxel conversion’ method is far more simple and faster, providing maximal user friendliness while 
reducing the matter of accuracy to one single parameter, the (one-dimensional) size of the base 
elements. The fact that all elements thus generated have the same shape, size and orientation 
creates the possibilities for fast solution procedures, which can compensate for the large number 
of elements required in such an approach. In this paper, two of such methods, one based on an 
element-by-element algorithm, the other on a newly developed ‘row-by-row’ algorithm, are 
explained. With these methods, the approach outlined here is indeed possible for data sets on the 
order of 105-106 voxels. 

The new methods discussed here were born out of necessity. In the field of modelling biological 
structures, problems still arise when constructing even a simple FE-mesh. The irregular shape of 
biological tissues and their orthotropic material properties make it very difficult to create models 
that can describe these materials reasonably well. Trabecular bone is such a biological tissue that, 
due to its load carrying abilities, is of great mechanical interest. It is a porous material with an 
extremely irregular internal architecture made of ‘struts’ and ‘plates’. This spongy-like internal 
geometry determines the quality of the bone in terms of mechanical strength and stiffness. 
A precise description of the architecture and its mechanical consequence is fundamental for the 
study of the behaviour of bone. Biological processes in bone and bone failure depend on the local 
mechanical conditions. Hence, in order to study these processes, it is important to evaluate the 
stresses and strains at the microstructural or tissue level of bone. However, a detailed evaluation 
of tissue stresses and strains has been inhibited for two reasons. First, the irregularity of the 
trabecular structures makes it very difficult to create a geometrically accurate FE-model. Second, 
to obtain both relevant tissue and apparent properties a reasonably large region of trabecular 
bone must be represented in detail. Such a model must be built of a great number of elements, 
thus making the solving of the resulting FE-problem very expensive, if possible at all. Recently, 
methods have been described to generate three-dimensional voxel data sets that can describe 
the trabecular structure at the microscopic level in detail.’.2 Such data sets in combination 
with the voxel conversion method have been successfully used to overcome the mesh 
generation p r ~ b l e m . ~ - ~  However, the large number of elements generated by the voxel conver- 
sion method has restricted the application of this method to small pieces of bone (up to 2.3 mm 
cubes). 

The aim of the present study was to develop numerical methods that fully explore the unique 
element concept, thus enabling the use of the voxel conversion FE-method to study a piece of 
trabecular bone that is large enough to allow for proper continuum assumptions.’ 

In the following paragraphs, it is demonstrated first how large such a FE-model is in terms of 
number of elements and nodes. Based on these two parameters, a fractal dimension is introduced 
that is very convenient for estimating the accuracy of the FE-mesh and the computational needs 
for solving the FE-problem. To solve the resulting large scale FE-problems, the Preconditioned 
Conjugate Gradient methodss9 is used. The limiting factor with this procedure is the calculation 
of the global stiffness matrix-vector product. It is shown first that the actual assembly of the total 
stiffness matrix is not desirable. Two alternative solution strategies that do not require this 
assembly are demonstrated. In the first method a unique-element approach of the element by 
element technique is used. Although this concept was recognized before,”-12 the practical 
applications of this approach were always limited since, as yet, few FE-model are built of unique 
elements. The second method makes use of a newly developed ‘row-by-row’ algorithm that allows 
a very fast assembly of a row of the matrix when needed for the multiplication. The computational 
requirements and performance of both methods are demonstrated for the well-known Boussinesq 
problem and for FE-models representing a cube of trabecular bone digitized with different voxel 



COMPUTATIONAL STRATEGIES FOR ITERATIVE SOLUTIONS OF LARGE FEM APPLICATIONS 2745 

resolutions. Computational results are presented for a Cray YMP computer and for a commonly 
used engineering workstation (Silicon Graphics Iris Indigo). 

Although the present study focusses on the 3-D trabecular bone models, the method can be 
advantageous to study any porous, irregular, or even homogenous structure, for which voxel data 
can be obtained. 

THE VOXEL CONVERSION METHOD 

Construction of digitized meshes of a trabecular bone specimen 

The 3-D Serial Reconstruction technique’ was used to determine a detailed description of the 
trabecular geometry. This method makes use of a microtome and a video camera to obtain 
images of sequential, thin slices of bone. After digitization of the images, a set of voxel information 
is created. A voxel in the digitized data set can represent either bone or interstitial fluid. From this 
data set a FE-model can be created by converting each voxel that represents bone to an equally 
sized three-dimensional eight-node brick element and assigning global node numbers to the 
elements (Appendix I). The resolution for digitization should be chosen relative to the size of 
typical structures. For trabecular bone the typical structures are the trabeculae which are 
approximately 100 pm in thickness. To create a data set that has on average 2 x 2 voxels in a cross 
section of the typical structures, a resolution of at least 50 pm is required. 

For the present study, a 4.8 x 4.8 x 4.8 mm cube of trabecular bone was digitized in this way. 
A resolution of 40 pm was chosen in each direction, i.e.the total number of voxels in the data set 
N,,, equalled 1203 = 1 728 000. In this data set 530 571 voxels represented bone, thus the volume 
fraction of the bone equaled 530571/1203 = 0.31. After converting the bone voxels to elements, 
a FE-model with 530571 elements and 755432 nodes was created (Figure 1). 

Figure 1. The FE-model of a 4.8 mm cube of trabecular bone build of 530 571 three-dimensional brick elements of 40 jcm 



2746 B. VAN RIETBERGEN ET AL. 

Table I. Dimensions of the trabecular bone models 

~ ~~ ~ 

403 20098 42508 1.92 17.6 
603 68046 121010 217 19.8 
80’ 162580 259315 233 20.3 

1203 530571 755432 2.49 21.7 

The sequential images of the structure were remeshed with resolutions set to 60,80 and 120 pm. 
For the 4.8 mm cube, the number of voxels N,,, in the resulting data sets was 803, 603 and 403, 
respectively. The number of elements and nodes after conversion to FE-models are listed in 
Table I. 

Introduction of a fractal dimension to estimate the accuracy and numerical requirements of digitized 
meshes 

Hughes et al.” have introduced a new concept for the dimension of a mesh build of 
three-dimensional continuum elements, such that a long strip model is labelled as one-dimen- 
sional, a large plate model as two dimensional and a solid cube model as three dimensional. 

Depending on its purpose, there are a number of ways to define such a fractal dimension. In 
their study, Hughes et al. based the fractal dimension on the profile storage to hold the global 
stiffness matrix, such to differentiate when the EBE strategy is advantageous over a direct 
method. 

In the context of the algorithms proposed in this manuscript, this definition is not so relevant. 
Therefore, an alternative formulation for the fractal dimension of FE-models made of eight-node 
brick continuum elements is introduced, based on the ratio of the number of elements Nnel over 
the number of nodes Nnode in the model. For typical, infinite large, models that are to be 
classified as a zero-, one-, two- and three-dimensional models, this ratio is 1/8, 1/4, 1/2 and 1/1, 
respectively (Figure 2). Taking the ratio for the one-element model as the unit of measure E = 1/8, 
the ratio in these models can be written as Nncl/Nnode = NE, with N = 1, 2,4, and 8 respectively, 
or N = 2’, with f the dimensionality of the model. For known N, f can be calculated from 
f =  In(N)/ln(2). Using N = 1 / ~  x NneI/Nn,a, a general fractal dimension can be defined as: 

t 1) 
(8 Nnel/Nn,de) 

In 2 f =  

It should be noted that relation (1) gives the fractal dimension of the FE-model and not the fractal 
dimension of the geometrical structure. A FE-model representing a cube of limited size, i.e. a fully 
three-dimensional structure, will have a fractal dimension close to three, but not equal to three. 
With the present definition, only an infinitely large cube will have a fractal dimension of three, 
which basically means that in that case every element has a ‘perception’ of being in a three- 
dimensional configuration, since it has a neighbouring element at all its borders. This is for the 
accuracy of the model the optimal situation. If the dimension is small the accuracy is poor, since 
there are only few elements in typical parts of the structure. In this way, parameterf can be used to 
estimate the resolution and accuracy of FE-models. 

For the microstructural FE-models representing trabecular bone, a fractal dimension close to 
one indicates that the trabeculae are represented by strip-like structures with only one element in 



COMPUTATIONAL STRATEGIES FOR ITERATIVE SOLUTIONS OF LARGE FEM APPLICATIONS 2747 

f= 0 

lim f = 1 
N-- 

lim f - 2  
N, -- 

lim f = 3 
N,-- 

Figure 2. The fractal dimension calculated from equation ( 1 )  for four reference models 

N d -  (N+l)x9 
Nnel Nx4 

N d  = (N,+l )x(\+l )x3 

NneI - Nl xYx2 

lim f = 1.83 
N-- 

lim f - 2.42 
N, -- 

Figure 3. The fractal dimension for a strut-like structure with 4 elements in each cross-section, and for a plate-like 
structure with 2 element layers 

a cross section. It is clear that such FE-models can not represent the geometry of the trabeculae 
very well and produce poor results when loaded in bending. FE-models with a fractal dimension 
close to three give a very accurate representation of the trabecular structure, and accurate 
numerical results. However, such a model will have a large number of elements in the cross 
section of each trabecula, resulting in time consuming if not unsolvable FE-problems. It was 
stated before that an acceptable FE-model of a trabecular structure must have at  least 2 x 2 
elements in a trabecular cross-section. For trabecular structures with a strut-like architecture, this 
criterion can now be translated to the requirement that the fractal dimension of the FE-models 
must be greater than 1.83 (Figure 3). For constructions with a plate-like architecture a minimum 
fractal dimension of 2.42 can be calculated (Figure 3). 



2748 8. VAN RIETBERGEN ET AL. 

20- 

18 - 

18 - 

I 

0 0.5 1 1.5 2 2.5 

fractal dimension f 
I 

Figure 4. Relation between the fractal dimension and the average number of neighbor nodes for the reference models of 
Figures 2 and 3 and for the trabecular FE-models 

The fractal dimension of the FE-model can also be used to estimate the average number of 
neighbour nodes mneighb for the nodes in the FE-model. The average number of neighbour nodes 
multiplied with the number of degrees of freedom per node Ndof is an indication for the number of 
non-zero entries in a row of the global stiffness matrix for the FE-problem. For the models of 
Figure 2 the average number of neighbour nodes can easily be calculated. The minimum number 
is found for the FE-model with a fractal dimension of zero where each node has eight neighbour 
nodes (including itself) at the corners of the element. For the model with a fractal dimension of 
one each node has 12 neighbour nodes, for a fractal dimension of two there are 18 neighbour 
nodes, and in the maximum case, for a model with a fractal dimension of three, each node has 27 
neighbour nodes. Fitting a cubic function through these four data points gives the diagram of 
Figure 4. For other FE-models, the relation between fractal dimension and the average number of 
neighbour nodes can deviate somewhat from this line. To check for this, the average number of 
neighbour nodes is explicitly calculated for the FE-models of Figure 3 and for the trabecular 
models (Table I), and these data points are included in Figure 4. For the piece of trabecular bone 
with a plate-like architecture (Figure l), it was calculated that the fractal dimension should be 
greater than 2.42. The fractal dimensions for the trabecular bone models with different resolution 
are specified in Table I. It can be seen that this criterion is met only for the FE-model generated 
from 40 pm voxels (N,,, = 1203). Therefore, this model is considered as typical for a microstruc- 
tural FE-model of trabecular bone. In the following, computational requirements are demon- 
strated for this model. 

THE FE-APPROACH, A STORAGE AND OPERATION COUNT 

The preconditioned conjugate gradient method to solve the FE-problems 

The displacement formulation of the FE-method results in the following set of linear equations: 



COMPUTATIONAL STRATEGIES FOR ITERATIVE SOLUTIONS OF LARGE FEM APPLICATIONS 2749 

xo= 0 

ro= b, 

I 

I dj= zj., + Old,-,  (except: d,= 4)  (e) 

$1 5 . 1  a]= - 
d,rAd, 

xj= xi., + ajd, 

r,= 'j., - a , A 4  

I 

(9 

Figure 5. The Preconditioned Conjugate Gradient scheme (taken from Reference 9) 

with K the global stiffness matrix, u the unknown displacement vector, and f the external force 
vector. The order N,,  of the problem equals 

Neq = Ndof N n o d e  (3) 

with Nnode the number of nodes in the mesh and Ndof the number of degrees of freedom for each 
node. In the 3-D situation there are three degrees of freedom for each nodal point: Ndof = 3. 
Matrix K defines the stiffness relations between the degrees of freedom; it is positive definite, 
symmetric, and very sparse. The bandwidth of K is determined by the maximum difference in the 
node numbers of an element multiplied with the number of degrees of freedom at each node. For 
a FE-model created from a cubic voxel data set with N voxels on each side of the cube, the 
bandwidth of matrix K is in the order Ndof x N x N .  For large models with N = 120 or more, this 
bandwidth in combination with the order of the matrix inhibits the use of direct solving methods 
that require filling the band of K. Instead, an iterative solving method can be used. The 
Preconditioned Conjugate Gradient (PCG) method has been described as an effective method to 
solve equation (2).8.'3*'2*9 A scheme of the PCG-method as used in the present code, taken from 
Strang,' is shown in Figure 5 .  Diagonal scaling was used as a preconditioner. For this, the 
preconditioning matrix M is replaced by the diagonal a of the global stiffness matrix K. Solving 
the set of equations at (c) in the scheme can then be done by multiplying the right-hand side vector 
by the inverse of a. The total storage requirements for the PCG solving method include the 
storage of matrix K and five vectors of order N,,  that are needed during the PCG solving process: 
the estimated displacement vector x, a residue vector r, a pseudo-residue vector z, a direction 
vector d, and the diagonal a of matrix K. The right-hand-side of equation (2) contains relatively 
few non-zero entries and can be stored in compact form by storing only the position and value of 
the non-zero components. The global stiffness matrix is needed only once per iteration for the 
matrix-vector multiplication at step (f) in the scheme. The result is stored in vector z, to be used 
again in step (h). It is shown in the following paragraph that the explicit assembly and storage of 
K is not desirable for large problems, not even when using a sparse matrix storage scheme. Two 



2750 B. VAN RIETBERGEN ET AL.  

alternative algorithms are demonstrated, one based on element-by-element techniques, the other 
on a newly developed row-by-row technique. Both methods enable the matrix-vector multiplica- 
tion without storing the global stiffness matrix. As the matrix vector product calculation involves 
the biggest part of all multiplications needed in each iterative increment, the actual number of 
multiplications for this operation largely determines the incremental cpu-time. Therefore, the 
number of multiplications is calculated explicitly for the assembly method and for the two 
alternative methods. 

Storage and operation count for the assembly method 

As matrix K is very sparse, it is favourable to use a compact storage technique that only stores 
the non-zero matrix entries and the location of these.14*15 The number of non-zero matrix entries 
in a row of the matrix can be determined from the number of neighbour nodes for the node 
associated with that row. At row i of matrix K there are N d o f  x Nncighb,n matrix entries, with 
Nneighb,n the number of neighbours of node n that corresponds to row i .  The total number of 
matrix entries in K can be estimated from N d o f  x mneighb x Neq, with mneighb the average number of 
neighbour nodes, which can be estimated from the fractal dimension of the FE-model, as shown 
in Figure 4 .  As the matrix is symmetric, Ndof x mneighb x Ne,/2 real numbers must be stored to 
hold matrix K. Another (Ndof x mr.eighb + 1) x Neq/2 integers must be stored to reconstruct the 
location of each term in the m a t r i ~ . ' ~ . '  Using equation (3) the total memory requirements to 
store matrix K and the five iteration vectors in the 3-D situation (MEMASS) can be expressed as 
a function of the number of nodes in the FE-model: 

MEMAS = [9 X mneighb X N n o d e / 2  -k 15 X Nnode] words Of real (4) 
and 

[(3 x mneighb + 1) x 3 x N n & / 2 ]  words of integer 

For the matrix-vector product calculation, each matrix component is to be multiplied with the 
corresponding vector component. The total number of multiplications (MULA,,) thus equals the 
number of matrix entries: 

M U L A S S  = 9 mneighb Nnode (5 )  

For the typical trabecular bone model with a fractal dimension of 2.49, the average number of 
neighbour nodes was Nneighb = 2 1 . 7  and the number of nodes Nnode = 755 4 3 2 .  From equation (4) 
it can be calculated that for solving this FE-problem when storing the assembled matrix K, one 
needs to store 85 Mword of reals and another 75 Mword of integers. Presently, only large 
supercomputers are equipped with enough core memory to hold this. 

The unique-element implementation of the element by element matrix-vector algorithm 

With the EBE method, the global stiffness matrix K is not assembled, but instead, the vectors 
are disassembled for each element."* 3 9  ' The matrix-vector multiplication then takes place at 
the element level by multiplying the element stiffness matrix with the corresponding disassembled 
vectors. For FE-models created from voxel data, this approach is very favourable because, as all 
elements are identical in size and have the same orientation and material properties, all element 
stiffness matrices are the same. Thus, only one element stiffness matrix has to be stored (300 
words). This reduction even applies when each element would have a different Young's modulus, 



COMPUTATIONAL STRATEGIES FOR ITERATIVE SOLUTIONS OF LARGE FEM APPLICATIONS 275 1 

Figure 6. Definition of the four offset nodes at the x = xmin element face, used to define the element connectivity for the 
EBE method 

because the isotropic element stiffness matrix is a linear function of this modulus. For the 
assembly and disassembly of the vectors, an element localization matrix must be stored, which 
defines the mapping of the 24 degrees of freedom for each element to the global degree of freedom 
numbers. As the local and global degree of freedom numbers can be derived from the node 
numbers, it is sufficient to store an array that defines the mapping of the eight element node 
numbers to the global node numbers. By using a consequent numbering scheme in the construc- 
tion, with node numbers increasing with increasing x-co-ordinate, the storage requirements can 
be further reduced by storing only the ‘offset node numbers’ at the x = xmin face of each element 
(Figure 6) .  Thus, for the construction of the element localization matrix 4 x Nnel words of integer 
have to be stored. Including the five iteration vectors for the Preconditioned Conjugate Gradient 
method, the total storage requirements for 3-D problems can be estimated from: 

MEMEBE = [15 x Nnodc]  words of real and [4 x Nnel] words of integer (6) 

The reduction in memory requirements compared to the assembly method can be demonstrated 
for the typical FE-model where, instead of 85 Mword real and 75 Mword integer storage, for the 
EBE method only 11 Mword real and 2.1 Mword integer storage is needed. For computers that 
use 8 byte storage for (double) real variables and 4 byte storage for integer variables, the memory 
requirements expressed in bytes is 

MEMEBE = 120 X Nnode + 16 X Nnel (byte) (7) 

The Cray computer uses 8 byte storage for both real and integer variables. For this computer 

(MEMEBE)Cray = l20 Nnode + 32 Nnel  (byte) (8) 

The number of multiplications for the EBE matrix-vector calculation is determined by the 
number of elements only. For each 3-D eight-node brick element, the 24 rows of the element 
stiffness matrix are to be multiplied with the 24 components of the disassembled vector. The total 
number of multiplications is thus 

MULEBE = 24 x 24 x Nnel (9) 

In general, the number of multiplications for the EBE method is larger than for the assembly 
method. The actual increase in the number of multiplications compared to the assembly method 
is a function of the number of elements to the number of nodes ratio, and thus of the fractal 
dimension of the FE-model. For models with a fractal dimension close to three, the number of 
elements approaches the number of nodes and the average number of neighbour nodes ap- 
proaches Nneighb = 27, the number of multiplications for the assembly method is then by good 



2752 9. VAN RIETBERGEN ET AL. 

case 1 

case 2 

case 15 

I 

case 255 

Figure 7. Four of the 255 possible cases 

approximation (equation (5)) MULASS = 9 x 27 x N,,,, and for the EBE method MULEBE 
= 24 x 24 x Nnel. The increase in multiplications for the EBE method over the assembly method, 
represented by the ratio MULEBE over MULASS, is then 2.37. For models with a fractal dimension 
less than three, this ratio is less: 1.77 for models with a fractal dimension of two, and 1.33 for 
a fractal dimension of one. 

The row by row matrix-vector algorithm 

Another alternative for the full assembly and storage of matrix K is the assembly and storage of 
entries in K only when needed for the matrix-vector multiplication. The row-by-row algorithm is 
an algorithm in this category that assembles a row of matrix K every time when it is needed for the 
multiplication. The row assembly can be done very efficiently by using the fact that only a limited 
number of row configurations are possible in the global matrix K. These row configurations can 
be determined on beforehand by analysing all possible neighbour-node configurations for a node 
in the model. In the voxel-grid situation, each node is surrounded by eight voxels that represent 
either bone or void space. Thus, after conversion of the bone voxels to elements in the FE-model, 
there are 2* = 256 possible environments for a node in the mesh. The case in which there is no 
element at  all can be excluded, leaving 255 cases of interest (Figure 7). Each case can be uniquely 
defined from the numbering scheme as shown in Table 11. The case number of each node can be 
determined during the preprocessing stage by checking for neighbouring elements (Appendix 11). 
Each case results in a specific set of matrix entries at the Ndof matrix rows that correspond to the 
node. The configuration of these rows can be pre-assembled for each nodal case. By creating 
a subroutine library that contains the pre-assembled cases, the matrix entries in a row of the 
matrix can be found easily if the ‘case number’ of the node is known. To assemble a row of the 
global stiffness matrix, the location of each term must be determined. For this a nodal localization 
matrix is used which defines the mapping of the degrees of freedom numbers of the base cube of 
Figure 8 to the global degree of freedom numbers. As the degree of freedom numbers can be 



COMPUTATIONAL STRATEGIES FOR ITERATIVE SOLUTIONS OF LARGE FEM APPLICATIONS 2753 

Table 11. Numbering scheme for the 255 cases 

Element 

Casenumber 1 2 3 4 5 6 7 8 

1 x o o o o o o o  
2 0 x 0 0 0 0 0 0  
3 x x o o o o o o  

255 x x x x x x x x  

x = element 
0 = no element 

25 26 27 

off set 
nodes- 

Figure 8. Definition of the offset nodes at the x = xmin face of the basic cube used to define the nodal connectivity for the 
RBR method 

derived from the node numbers, it is sufficient to store an array that defines the mapping of the 
26 node numbers surrounding the central node of the base-cube of Figure 8 relative to the 
global node numbers. This requires the storage of 26 integers per node number. Using the 
consequent numbering scheme mentioned before, with node numbers increasing with increasing 
x-co-ordinate, the storage requirements can be further reduced by storing only the global node 
numbers of nine ‘offset node numbers’ at  the x = xmin face of the base-cube of Figure 8 for each 
nodal point. The node numbers of the midnodes of the cube and of the nodes at  the plane 
x = x,,, can be derived from the offset numbers by adding one or two, respectively, to the 
corresponding offset number. Using this numbering scheme, Nn& x 9 integer words are needed 
to store the nodal offset numbers (Appendices 111 and IV). 

The steps involved for using the RBR matrix-vector multiplication are summarized in Figure 9. 
Including the five iteration vectors the total storage requirements for this method in the 3-D 

situation can be written as a function of the number of nodes: 

MEMRBR = [ l S  x Nnode] words of real and [9 x Nnde] words of integer (10) 



2754 8. VAN RIETBERGEN ET AL. 

Preprocessing 

1) Read voxel grid, store in 3-D array ielgr: 
ielgr(ij,k)= 1 if bone voxel 
ielgr(i,j,k)= 0 if void 

2) Conversion of voxels tot elements; 
Calculation of node numbers in FE-model 

Determine case number of each node according 
to Table I1 (App. 11). 

Determine offset numbers for each node accor- 
ding to Fig& sort per case and write to file 

(APP. 1) 

3) 

4) 

(APP. 111) 

Solving 

5) 

6 )  
Iterative PCG loop 

7) Calculate matrix-vector product Row-By-Row 

Read offset numbers, convert to offset dof 

Calculate unique terms in the stiffness matrix 
(APP. IV) 

(APP. V) 

Figure 9. Overview of the steps involved with the RBR solving strategy 

The memory requirements in bytes for computers that use 8 byte storage for (double) real 
variables and 4 byte storage for integer variables can be determined as 

and for the Cray computer with 8 byte storage for both real and integer variables: 

An advantage of the row-by-row method is the reduced number of multiplications compared to 
the assembly method, due to symmetries in the case configurations. Assembly methods require 
the multiplication of all matrix entries that are assembled in a row of the matrix. For the RBR 
method however, the zero entries due to symmetries can be removed from the case libraries, 
thereby saving the cost of multiplying with zero entries during the matrix-vector multiplication. 
The number of symmetries N,,, for the three matrix rows that correspond to a node in the 
construction can be determined from its case number, as each case has its specific number of 
symmetries. As the distribution of the case numbers is a function of the fractal dimension, the 
number of symmetries can also be expressed as a function of the fractal dimension. The graph 
of Figure 10 shows the average number of symmetries per node for the reference models of 
Figures 2 and 3 as a function of their fractal dimension. It can be seen from this graph that the 
reduction in multiplications due to symmetries is a function of the fractal dimension. For the 
trabecular bone models the actual number of symmetries was explicitly calculated from the 
case-number distribution; these data points are also included in Figure 10. The average number of 



COMPUTATIONAL STRATEGIES FOR ITERATIVE SOLUTIONS OF LARGE FEM APPLICATIONS 2755 

fractal dimension f 

Figure 10. The average number of symmetries Nrym as a function of the fractal dimension of the FE-model 

symmetries per node for a trabecular bone model is less than that for a reference model with the 
same fractal dimension, because of the more ‘jagged’ boundaries in the trabecular models. Hence, 
the values found for the reference models represent the upper boundaries for the number of 
symmetries. 

The actual number of multiplications for the RBR matrix-vector calculation can now be 
determined from the relation: 

For models with a fractal dimension of three, assembly methods require the multiplication of 
9 x Nneighb = 243 matrix entries for each node in the FE-model, of which Nsym = 90 zero entries. 
Thus, using the RBR method, the number of multiplications can be reduced by 37 per cent 
compared to the assembly method. For FE-models with a fractal dimension of two, 44 of the 162 
matrix entries are zero, reducing the cpu-time by 27 per cent and for FE-models with a fractal 
dimension of one a 15 per cent reduction is obtained. 

For the RBR-method, the actual matrix-vector product calculation is reduced to a nodal-case- 
dependent subroutine call (Appendix IV). To avoid a case-subroutine call for each node, all nodes 
of the same case are grouped and processed together in the corresponding subroutine. The 
multiplications in each case subroutine can be performed in a vectorized manner, with a vector 
length that equals the number of nodes for that case. 

Test problems for a performance study of the EBE and RBR solution method 

The EBE and the RBR method are demonstrated for two groups of problems. The first group 
represents a set of three dimensional Boussinesq  problem^;'^.'^ a half-space with a unit point 
load. The number of elements in the Boussinesq cube was chosen equal to the number of voxels in 
the trabecular bone models: 403, 603, 803, and 1203, resulting in FE-models with 64000 to 
1728000 elements (Table 111). The second group consists of the four trabecular bone models 
digitized with different resolutions. For these models a uniform unit displacement in the 



2156 B. VAN RIETBERGEN ET AL.  

Table 111. Dimensions of the Boussinesq problems 

403 64 000 68921 2.89 
603 288 000 226981 2.93 
803 512000 531441 2.95 

1203 1 728 000 1771561 2.96 

z-direction was applied to the top face of the cube. At the bottom face the displacements in the 
z-direction were constrained. All other faces of the cube were unconstrained. In all models the 
material properties were linear elastic and isotropic with a Young's modulus of 1000 MPa and 
a Poisson's ratio of 0.3. 

The iterative process was terminated as soon as the norm of the residual vector over the norm 
of the reaction force vector was less than 1 x 

For the Boussinesq problems, the norm of the reaction force equals the norm of the externally 
applied load: IF,,,,) = 1.0. For the trabecular bone models the reaction force vector was 
calculated at increment 1,2,4,8, 16, . . . . The norm of the last update of the reaction force vector 
was used to test criterion (14) at the next increments. All problems were solved using one 
processor of a Cray YMP/4 computer with 64 Mword of memory. To demonstrate the perfor- 
mance of both methods on other computers, the problems also ran on an engineering Risc 
workstation (Silicon Graphics Iris Indigo with Mips R4000 processor, 48 Mbyte core memory 
and 1 Mbyte cache). All problems ran 'in-core'. The number of iterations and the total cpu-time 
on each platform was recorded. 

NUMERICAL RESULTS FOR THE EBE AND THE RBR SOLUTION METHOD 

Storage requirements 

The storage requirements for both the EBE and for the RBR method (equations (6) and (10)) 
can be expressed as a function of the number of elements only, if the fractal dimension of the 
FE-model is known. For a FE-model with a fractal dimension close to three (such as the 
Boussinesq problem), it can be calculated from equations (l), (8), and (12) that the RBR method 
needs 26.3 per cent more workspace than the EBE-method on the Cray computer. On the 
workstation, 14.7 per cent more workspace is needed. For a fractal dimension close to two (such 
as the trabecular models), 41 per cent more workspace is needed for the RBR method compared 
to the EBE method on the Cray, and 22 per cent more on the workstation. The relation between 
the number of elements and the core memory needed on the Cray computer for the EBE and for 
the RBR methods is shown by three lines in Figure 11 for models with a fractal dimension of one, 
two and three. 

The actual storage requirements as listed in Tables IV and V include the storage of additional 
problem-size dependent, but relatively small vectors for prescribed and suppressed displacements 
and for the prescribed load. It does not include the storage of the code itself (approximately 



COMPUTATIONAL STRATEGIES FOR ITERATIVE SOLUTIONS OF LARGE FEM APPLICATIONS 2757 

Table IV. Memory requirements for the 3-D Boussinesq 
problems 

Cray YMP Risc Workstation 
EBE RBR EBE RBR 

N",, (Mbyte) (Mbyte) (Mbyte) (Mbyte) 

403 10.36 13.27 9.32 10.77 
603 34.24 43.67 30.74 35.45 
803 80.32 102.20 - - 

1203 268.24 34049 - - 

Table V. Memory requirements for the trabecular 
bone models 

Cray YMP Risc workstation 

EBE RBR EBE RBR 
N,,, (Mbyte) (Mbyte) (Mbyte) (Mbyte) 

403 5.77 8.18 5.44 664 
603 1674 23.27 1564 18.90 
803 36.39 49.85 33.76 40.50 

1203 10776 14517 - - 

1 Mbyte for the EBE code and 2 Mbyte for the RBR code). The data points of Tables IV and 
V are also included in Figure 11 .  

Computational time 

The number of multiplications for the different matrix-vector product calculation (equations (S) ,  
(9) and (13)) can also be expressed as a function of the number of elements in the FE-model, if the 
fractal dimension of the model is known. The number of multiplications per element for the 
reference models when using the EBE, the assembly and the RBR method is shown in Figure 12 
as a function of the fractal dimension. For a FE-model with a fractal dimension close to three 
(such as the Boussinesq problem), it follows that the EBE method needs 3.76 times more 
multiplications than the RBR method. For models with a fractal dimension close to two, 2.43 
times more multiplications are needed. The number of multiplications per element was explicitly 
calculated for the trabecular models, these data points are included in the graph of Figure 12. 

From the actual cpu-time per iteration for the Boussinesq problems shown in Table VI it can 
be seen that the speed increase for the RBR over the EBE method on the Cray computer is a little 
bit less than calculated from equations (9) and (13): a factor of 3.0 for the model with N,,, = 403 to 
3.22 for the model with N,,, = 1203. This is due to the additional gather and scatter operations 
and vector-vector multiplications in each iterative increment which are not included in equations 
(9) and (13). For the trabecular bone models, speed-up factors of 1.85 for the model with 
N,,, = 403 to 2-37 for the model with N,,, = 1203 were found (Table VII). The speed-up factor on 
the workstation is somewhat less: approximately 2.5 for the Boussinesq problems to 1.5 for the 



2758 B. VAN RIETBERGEN ET AL. 

RBR 
MEM (Mbyte) 

lo00 

100 

10 

Figure 11. Total core memory needed on a Cray computer to solve the Boussinesq problems (0) and the trabecular 
problems ( + ). Results for the EBE method are shown on top, for the RBR method on the bottom 

trabecular models. This indicates that the cache-hit rate for the RBR-algorithm is less than for the 
EBE algorithm. The total cpu-time to solve the trabecular bone models on both the Cray and the 
workstation is shown in Figure 13. It can be seen that the largest model can be solved in 
approximately 1 h on the Cray computer when using the RBR algorithm. 

DISCUSSION 

The present study has demonstrated that it is possible to solve 3-D FE-models with in the order 
of 105-106 unique elements. Such solving methods in combination with the ‘voxel conversion’ 



COMPUTATIONAL STRATEGIES FOR ITERATIVE SOLUTIONS OF LARGE FEM APPLICATIONS 2759 

- # multiplications per element 

t Trab.baremodals 

0 0.5 1.0 1.5 2.0 2.5 3.0 
fractal dimension f 

Figure 12. The average number of multiplications per element as a function of the ..actal dimension a 
the EBE, the ASS and for the RBR method 

Table VI. Cpu-time per iteration needed to solve the 
Boussinesq problems 

Cray YMP Risc Workstation 

EBE RBR EBE RBR 
N v o x  N i t e r  (s) (4 (4 (4 

403 241 0,284 0.095 6.10 2.43 
603 350 0956 0.320 20.48 8.00 
803 456 2.263 0.751 - - 

1203 653 7.860 2.439 - - 

Table VII. Cpu-time per iteration needed to solve the 
Trabecular bone problems 

Cray YMP Risc Workstation 

EBE RBR EBE RBR 
N v o x  Niter (s) (s) (4 (s) 

403 1299 0.092 0-064 2.16 1.58 
603 2161 0.311 0.168 6.84 4.68 
803 2673 0.779 0.347 16.11 10.04 

1203 4295 2.351 0991 - - 

he FE-model for 

method provide a powerful FE-tool to analyse structures that cannot be analysed in another way. 
This approach can also be competitive with traditional meshing and solving methods to analyse 
structures for which voxel data can be obtained in a relative easy way (from, for example, video, 
Magnetic Resonance Imaging (MRI), or Computed Tomography (CT) images). l6 



2760 B. VAN RIETBERGEN ET AL. 

s8c 
1 oo.oO0 

10,Ooo 

1 hour 

100 

10 
10,Ooo loo,o0o 1 ,ooo,o0O 

N”d 

Figure 13. The total cpu-time for a Cray-YMP computer and for a workstation to solve the FE-problems for the 
trabecular bone models when using the EBE method or the RBR method 

The method is essentially a geometric linear FE-method; an incremental element-geometry 
update results in non-unique elements. However, materially non-linear analysis can be performed 
with the unique-element EBE strategy. With this method, a different (isotropic) Young’s modulus 
can be specified for each element at costs of storing one additional vector of length Nnel that holds 
the isotropic Young’s modulus for each element. The method then can be used as a subiteration 
technique for the solution of small deformation materially non-linear problems, whereby the 
materials remain linear during the solution step and the outside loop is an appropriate non-linear 
solving algorithm. In another study we have used this approach to simulate the non-linear 
process of adaptive bone remodelling.’ ’* Several other researchers have used similar non-linear 
techniques and FE-models in combination with standard solving techniques to solve optimiza- 
tion and adaptation  problem^.'^-^^ 

The present study was focussed on solving linear-elastic FE-models of trabecular bone 
structure, simply because, as stated in the introduction, there is no other way to solve FE- 
problems of such irregular structures of this size. The numerical results for the trabecular bone 
models demonstrate that the EBE and the RBR solution method can be used to solve these 
problems within reasonable limits of cpu-time and core memory. For the trabecular bone models 
investigated, the RBR method performs up to 2.37 times faster than the EBE method on the Cray 
computer, at a cost of using 35 per cent more core memory. An advantage of the EBE method is 
the fact that a different (isotropic) Young’s modulus can be specified for each element. This 
enables the specification of an element Young’s modulus based on the Houndsfield-unit number 
when using voxel data obtained from (micro-) CT scanning. For the RBR method the effect of 
different element material properties can be accounted for by separating the contribution of the 
geometry and the material properties to the matrix entries. The entries can then be constructed by 
multiplying the geometry factor with the material factor. However, the increased number of 
multiplications that are needed for this and the fact that no zero entries due to symmetries exist 
for arbitrary material properties will slow down the performance of this method. 

In general, the maximum size of the FE-problems that can be solved with the methods 
described in this paper is determined by a ‘hard limit’, i.e. the available core memory, and by 
a ‘soft limit’, the available cpu-time. On workstations, the ‘hard limit’ can be increased by using 
swap space at cost of using more computer time. For a workstation with 48 Mbyte of memory 



COMPUTATIONAL STRATEGIES FOR ITERATIVE SOLUTIONS OF LARGE FEM APPLICATIONS 2761 

available, the hard limit restricts the size of solvable FE-model to approximately 250 000 elements 
for the EBE or RBR method. In comparison, when the stiffness matrix is fully assembled and 
stored in compact form, the maximum size would be approximately 30000 elements. Using the 
EBE and RBR method on a Cray computer with 430 Mbyte of available memory, the size of the 
FE-models is limited to approximately 2 800 000 elements. 

The cpu time for solving the FE-problems is dependent on the number of elements on the one 
side and the number of iterations on the other. The cpu time per iteration can be easily estimated 
from the number of multiplications per increment (equations (9, (9) and (13)) and the performance 
of the computer. The number of iterations however is largely dependent on the architecture of the 
FE-model, and on the loading and boundary conditions for the model. For the solid Boussinesq 
cubes 653 iterative increments are needed to solve the largest model with over 1.7 million 
elements. For the largest trabecular bone model however, having 69 per cent less elements, 6.6 
times more iterations are needed with the same tolerance of convergence. Thus, an estimation of 
the total cpu time can be obtained only if the number of iterations can be estimated. It must be 
noted that a judicious use of the convergence criteria can reduce the number of iterations and still 
provide a sufficiently accurate answer. 

It is possible that the numerical results can be improved by the implementation of a more 
powerful preconditioning method than the diagonal scaling used in the present study. For the 
EBE solver, element-based preconditioners have been described that can substantially reduce the 
number of  iteration^,^^*'^*^^ but the reduction in total cpu-time was much less due to the 
additional matrix-vector multiplication at the preconditioning stage. The RBR solving method 
offers a better opportunity for preconditioning since with this method the global stiffness matrix 
is known ‘row-by-row’. Suitable preconditioners would be matrices which can be assembled in 
the same way as the global stiffness matrix, as used, for example, by the Successive Over 
Relaxation (SOR) method.’, The recurrences in the forward-backward substitution schemes 
with such preconditioners require an element blocking scheme to run in a vectorized way. For 
this a different data input scheme is needed and therefore such preconditioner methods are not 
discussed in this paper. 

One of the points to be discussed is the inaccuracy introduced by the jagged surfaces in 
digitized models when compared to the more-or-less smooth surfaces in traditional meshes. To 
assess the error associated with these surfaces, Hollister et a/.’ used a two-dimensional model of 
a void structure that was analysed using both a smooth and a digitized mesh. They found that the 
errors in the stiffness determination resulting from the digitization are less than 10 per cent for 
images with 50 pm cubic voxels, where typical structures are 100-200 pm in thickness. In an 
earlier study,24 we used a mesh convergence study to estimate the error in the apparent results 
and in the element stress and strain distribution for realistic three-dimensional trabecular bone 
structures. In that study it was found that the actual voxel size is not so important as long as the 
resulting FE-model can describe the trabecular structures (especially the volume fraction) reason- 
ably well. It was found also that for FE-models with an element size of 80pm or smaller, 
the maximum difference in histograms for the tissue stress and strain distribution was less than 
7 per cent when compared to histograms made from a 20 pm model. It should be noted that the 
errors in the actual tissue stress and strain at a specific boundary location may be much higher. 
On the other hand, the fact that all elements are cubic eliminates the errors found in FE-models 
that use distorted quadrilateral elements with poor aspect ratios. 

ACKNOWLEDGEMENTS 

This study was supported by The Netherlands Foundation for Research (NWO/Medical 
Sciences), and by the National Computer Facilities Foundation (NCF). 



2762 B. VAN RIETBERGEN ET AL. 

APPENDIX I 

Determination of node numbers in voxel grid 

The voxel data are stored in a three-dimensional array ielgr(i, j, k )  which is dimensioned such 
that it is one voxel larger on each side than the actual data set. For voxels that represent bone 
ielgr(i, j, k )  = 1, for voxels that represent void, ielgr(i, j, k )  = 0. A one-dimensional array inogr(i) 
maps the grid-node position to global node numbers in the FE-model. A two-stage algorithm is 
used for this. At the first stage bone voxels are searched and the eight grid-nodes that are 
connected to these elements are marked by setting the corresponding inogr entry to one. At the 
second stage the grid-nodes thus found are numbered sequentially. 

subroutine mesh(nxgr,nygr,nzgr,nnogr,nnode,nel. 
+ ielgr,inogr) 

C ' t  t * 
C 
c in: 
c nxgr,nygr,nzgr: dimension of the voxel data set 
c nnogr : number grid nodes = (nxgr+3)*(nygr+3)+(nzgr+3) 
c ielgr(i,j,k) : =1 fo r  bone voxel; =O fo r  void voxel 
c out: 
c nnode : number of global nodes 
c nel : number of elements 
c inogr(i) : maps grid node position to global node numbers 
C 
C' " * 

C'*"* 

10 

=**\.* 

40 
30 
20 

C'*"' 

50 

999 

dimension ielgr(O:nxgr+l,O:nygr+l,O:nzgr+l),inogr(nnogr) 

nncs= (nxgr+3)*(nygr+3) 

initialize array inogr 

do 10 k=l,nnogr 
inogr (k) = 0 

continue 

mark nodes in grid 

ne= 0 
do 20 iz=l,nzgr 

do 30 iy=l,nygr 
do 40 ix=l,nxgr 

if (ielgr(ix,iy,iz).eq.l) Then 
k= iz*nncs+iy*(nxgr+3)+ix+l 
ne= ne+l 
inogr (k ) =  1 
inogr(k+l ) =  1 
inogr (k+nxgr+3 = 1 
inogr(k+nxgr+4)= 1 
inogr (k + nncs)= 1 
inogr(k+l + nncs)= 1 
inogr(k+nxgr+3+ nncs)= 1 
inogr(k+nxgr+4+ nncs)= 1 

endi f 
continue 

continue 
continue 

number nodes sequentially 

node= 0 
do 50 k=l,nnogr 

if (inogr(k).ne.O) Then 

endif 
continue 
mode= node 

return 
end 

node= node+l 
inogr (k) = node 



COMPUTATIONAL STRATEGIES FOR ITERATIVE SOLUTIONS OF LARGE FEM APPLICATIONS 2763 

APPENDIX I1 

Calculation of case number for each node 

the FE-model. The cases are numbered in accordance with Table 11. 
The case number of each node is found by checking the element environment for each node in 

subroutine nodcases(nxgr,nygr,nzgr,nnogr,nnode, 
+ ielgr,inogr,ncase) 

c * * * * * '  
c in: 
c nxgr,nygr,nzgr: dimension of the voxel data set 
c nnogr : number of grid nodes= (~gr+3)*(nygr+3)*(nzgr+3) 
c nnode : number of global nodes 
c ielgr(i,j,kl : =1 for bone voxel; =O for void voxel 
c inogr(i) : maps grid node position to global node numbers 
c out: 
c ncaseci) : case number of node i 
C 
C*""* 

dimension ielgr(O:nxgr+l,O:nygr+l,O:nzgr+l), 
+ inogr(nnogr),ncase(nnode) 

nncs= (nxgr+31 (nygr+31 

c"** determine case 

do 70 iz=l,nzgr+l 
do 70 iy=l,nygr+l 

do 70 ix=l,nxgr+l 
k= iz8nncs+iy*(nxgr+3)+ix+l 
node= inogr(k) 
icase= 0 
if (node.ne.01 Then 

if (ielgr(ix-l,iy-l,iz-l).eq.1) 
if (ielgr(ix ,iy-l,iz-l).eq.1] 
if (ielgr(ix-l,iy ,iz-l) .eq.l) 
if (ielgr(ix .iy ,iz-lI.eq.ll 
if (ielgr(ix-l,iy-l,iz ).eq.l) 
if (ielgr(ix .iy-1,iz 1.eq.l) 
if (ielgr(ix-1,fy ,iz ).eq.l) 
if (ielgr(ix ,iy ,iz 1.eq.l) 
ncase(nodel= icase 

endif 
70 continue 

return 
end 

icase=icase+l 
icase=icase+2 
icase=icase+l 
icase=icase+8 
icase=icase+l6 
icase=icase+32 
icase=icase+64 
icase=icase+l28 



2764 B. VAN RIETBERGEN ET AL. 

APPENDIX 111 

Determination of nodal offset numbers per node, sort and write 

Nine offset node numbers, as defined in Figure 8, are calculated for each node in the FE-model. 
The global node number of the offset nodes is found from array inogr. For offset nodes that are 
not connected to an element, a value of - 1 is found. Output is written to a file. 

subroutine wrnodcon(inod,nel,nnode,nnogr, 
+ nxgr,nygr,nzgr,inogr,ncase) 

C * ’ * * * *  

c in: 
c inod : unit number of output file 
c nel : number of elements 
c nnode : number of global nodes 
c nnogr : number of grid nodes= (nxgr+))*(nygr+3)*(nzgr+3) 
c nxgr,nygr,nzgr: dimension of the voxel data set 
c inogr(i) : maps grid node position to global node numbers 
c ncase(i) : case number of node i 
c out: 
c a file of nnode lines that holds at each line a node number, the case 
c number and the nodal offset numbers for this node 

c * * * * * *  
C 

dimension inogr(nnogr),ncase(nnode) 
dimension noff (9) 

nncs= (nxgr+3) * (nygr+3) 

c**** group cases while writing 

do 10 icase=1,255 
do 10 k=l,nnogr 

node= inogr(k) 
if (node.ne.0) Then 

if (ncase(node).eq.icase) then 
noff(l)= inogr(k-nncs-nxgr-3)-1 
noff (2)= inogr(k-nncs 1-1 
noff(3)= inogr(k-nncs+nxgr+3)-1 
noff(4)= inogr(k- nxgr-3)-1 
noff(5)= inogr(k ) -1 
noff(6)= inogr(k+ nxgr+3)-1 
noff(7)= inogr(k+nncs-nxgr-3)-1 
noff(8)= inogr(k+nncs ) -1 
noff(9)= inogr(k+nncs+nxgr+3)-1 
write(inod.2010) node,ncase(node), (noff(j),j=1,9) 

endif 
endif 

10 continue 

2010 format(l2i8) 
return 
end 



COMPUTATIONAL STRATEGIES FOR ITERATIVE SOLUTIONS OF LARGE FEM APPLICATIONS 2765 

APPENDIX IV 

Read nodal offset and convert to dof oflset 

At the start of the solving procedure, the offset nodes are read from a file generated during the 
preprocessing stage and stored in array nos The offset node numbers in this array are then converted 
to the corresponding degree-of-freedom offset numbers needed with the matrix-vector multiplication. 

10 

20 

do 10 k=l,nnode 
read(indat.1010) node,ncase,(noff(j,k),j=1,9) 
nncas(ncase)= nncas(ncase)+l 

continue 

do 20 j=1,9 
do 20 i=l,nnode 

noff (j, i)= 3'noff (j,i)-2 
continue 

APPENDIX V 

Matrix-vector multiplication routines 

The actual matrix vector multiplication routine is reduced to a case-dependent subroutine call. 
Since the nodes are sorted per case, all nodes with the same case-number are processed together in 
the corresponding subroutine. 

subroutine matvec(n,nnode,x.b,st,noff.nncas) c * * * * * *  
c rbr matrix vector multiply 
c ax=b 
c in: 
C n : order of the vectors and matrix = 3+nnode 
c nnode : number of nodes 
c x(n) : multiplication vector 
c st(i) : holds the 129 unique entries in stiffness matrix a 
c noff(i,j) : array that holds the i'th offset degree-of-freedom 
C of node j 
c nncas(i) : holds the number of nodal points of case i 
c out: 
c b(:)* : result vector 
C"' 

implicit double precision(a-h,o-z) 
double precision x(n),b(n) 
dimension noff(9,nnode),nncas(255) 
double precision st(129) 

m= 0 
if (nncas( 1) .gt.O) call caseOOl(m,n,nnode,nncas( 1) ,noff,st,b,x) 
if(nncas( 2).gt.0) call case002(m,n,nnode,nncas( 2),noff,st,b,x) 
if(nncas( 31.gt.O) call case003(m,n,nnode,nncas( 3),noff,st,b,x) 

if(nncas(253).gt.O) call case253(m,n,nnode,nncas(253),noff,st,b,x) 
if(nncas(254).gt.O) call case254(m,n,nnode,nncas(254),noff,st,b,x) 
if(nncas(255).gt.O) call case255(m,n,nnode,nncas(255),noff,st,b,x~ 

return 
end 



2766 B. VAN RIETBERGEN ET AL. 

Following is an example of one of these case subroutines. Each routine consists of a loop over the 
number of nodes for this case. For each node three lines in the stiffness matrix associated with this 
node are assembled and multiplied with vector x. The entries in the stiffness matrix are ‘hard 
coded‘ in each subroutine by the indices of array st, their column position in the stiffness matrix is 
found from array no$ The number and value of the row entries as they appear in the rows of the 
stiffness matrix are different for each case subroutine. 

The loop starting at label 10 can be fully vectorized. Data dependencies with respect to array 
b cannot occur since each node has a unique offset degree-of-freedom number stored in nofl The 
compiler directive for the Cray Fortran compiler, prior to this loops, is needed to inform the 
compiler about this, thus taking care that the loop is vectorized. 

Note that the entries in noflcan be negative up to - 5 (in case a value of - 1 was assigned to 
an offset node, which is converted to an offset degree-of-freedom of - 5 as shown in Appendix 
IV). This implies that vector x must be dimensioned as x(  - 5 : n) in physical memory, with 
x( - 5 : 0) filled with zeros. Passed as a dummy argument to subroutines, x can be passed with 
a 6 position offset and dimensioned with length n. 

subroutine case001(m,n,nnode,nncas,noff,st,b,x) 
implicit double precision(a-h,o-z) 
dimension noff(9,nnode) 
double precision st(l29).b(n),x(n) 

+ 
+ 
+ 

+ 
+ 
+ 

+ 
+ 
+ 

+ 
+ 
+ 

+ 
+ 
+ 

+ 
+ 
4 

cdirS ivdep 
do 10 i=m+l,m+nncas 

b(noff(S,il+31= 
st( 43)*x(noff(l,i) 1 

+ st( 44)*x(noff(l,i)+l) 
+ st( 45)*x(noff(l,i)+2) 

10 continue 
m= m+nncas 
return 
end 

REFERENCES 

1. L. A. Feldkamp, S. A. Goldstein, A. M. Parfitt, G. Jesion and M. Kleerekoper, ’The direct examination of three 

2. A. Odgaard, K.  Andersen, F. Melsen and H. J. G. Gundersen, ‘A direct method for fast three-dimensional serial 
dimensional bone architecture in uitro by computed tomography’, J .  Bone Min. Res., 4, 3-1 1 (1989). 

reconstruction’, JMicroscopy, 159, 335-342 (1990). 



COMPUTATIONAL STRATEGIES FOR ITERATIVE SOLUTIONS OF LARGE FEM APPLICATIONS 2767 

3. A. A. Edidin, J. M. Dawson, M. Zhu and S. Chinchalkar, ‘Direct estimation of the modulus of cancellous bone using 
a variable-stiffness FE model’, in Transactions of the 39th Annual Meeting of the Orthopaedic Research Society, 
Chicago, IL, ORS, 1993. p. 589. 

4. D. P. Fyhrie, M. S. Hamid, R. F. Kuo and S. M. Lang, ‘Direct three-dimensional finite element analysis of human 
vertebral cancellous bone’, in Transactions of the 38th Annual Meeting of the Orthopuedic Research Society, Chicago, 
IL, ORS, 1992, p. 551. 

5. S. J. Hollister, J. M. Brennan and N. Kikuchi, Recent Advantages in Computer Methods in Biomechanics & biomedical 
Engineering, Books & Journals Int. LTD, Swansea, UK, 1992. 

6. S. J. Hollister and N. Kikuchi, ‘Direct analysis of trabecular bone stiffness and tissue level mechanics using an 
element-by-element homogenization method, in Transactions ofthe 38th Annual Meeting ofihe Orthopaedic Research 
Society, Chicago, IL, ORS, 1992, p. 559. 

7. T. P. Harrigan, M. Jasty, R. W. Mann and W. H. Harris, ‘Limitations of the continuum assumption in cancellous 
bone’, J .  Biomech., 21, 269-275 (1988). 

8. 0. Axelsson and V. A. Barker, Finite Element Solution of Boundary Value Problems, Theory and Computation, 
Academic Press, Orlando, FL, 1984. 

9. G. Strang, Introduction to Applied Mathematics, Wellesley-Cambridge Press, Wellesley, MA, 1986. 
10. R. T. Chapman and D. L. Cox, ‘A unique element storage implementation of the vectorized element by element 

preconditioned conjugate gradient algorithm’, in 1. d. Parsons and B. Nour-Omid (eds.), Iteratioe Equation Solversfor 
Structural Mechanics Problems, edited by ASME, New York, 1991, pp. 57-65. 

11 .  I. Fried, ‘A gradient computational procedure for the solution of large problems arising from the finite element 
discretization method‘, Int. j .  numer. methods eng., 2, 477-494 (1994). 

12. J. R. Hughes, R. M. Ferencz and J. 0. Hallquist, ‘Large-scale vectorized implicit calculations in solid mechanics on 
a cray X-MP/48 utilizing EBE preconditioned conjugate gradients’, Comput. Methods Appl. Mech. Eng., 61,215-248 
(1987). 

13. R. M. Ferencz, ‘Element-by-element preconditioning techniques for large-scale, vectorized finite element analysis in 
nonlinear solid and structural mechanics’, Dissertation, Division of Applied Mechanics, Stanford University and 
Methods Development Group, Palo Alto, 1989. 

14. S. Pissanetzky, Sparse Matrix Technology, Academic Press, London, 1984. 
15. M. Seager, ‘A slap for the masses’, Technical Report, UCRL-100267, Lawrence Livermore Nat. Laboratory, 1988. 
16. B. van Rietbergen, H. Weinans, R. Huiskes and B. J. W. Polman, ‘A fast solving method for large-scale FE-models 

generated from computer images, based on a row-by-row matrix-vector multiplication scheme’, Proc. ASMEICED, 

17. B. van Rietbergen, M.G. Mullender and R. Huiskes, ‘Differentiation to plate-like or strut-like architectures in 
trabecular bone as a result of mechanical loading’, Trans. ofthe 41. Annual Meeting ORS, 1995, p. 179. 

18. B. Van Rietbergen, M. G. Mullender and R. Huiskes, ‘A three dimensional for osteocyte-regulated remodeling 
simulation at the tissue level’, in J. Middleton, M. L. Jones and G. N. Pande (eds.), Computer Methods in Biomechanics 
& Biomedical Engineering, Gordon and Breach Publishers, 1996, pp 73-83. 

19. M. P. Bendsoe, A. R. Diaz, R. Lipton and J. E. Taylor, ‘Optimal design of material properties and material 
distribution for multiple loading conditions’, Int. j .  numer methods. eng., 38, I14!%1170 (1995). 

20. T. P. Harrigan, J. J. Hamilton, ‘Finite element simulation of adaptive bone remodelling: a stability criterion and a time 
stepping method’, Int. j. numer. methods eng., 36, 837-854 (1993). 

21. H. Weinans, R. Huiskes and H. J. Grootenboer, ‘The behavior of adaptive bone-remodeling simulation models’, 
J .  Biomech., 25, 1425-1441 (1992). 

22. A. L. G. A. Coutinho, J. L. D. Alves and N. F. F. Ebecken, ‘Conjugate gradient solution of finite element equations on 
the IBM 3090 vector computer utilizing polynomial preconditionings’, Comput. Methods. Appl. Mech. Eng., 84, 

23. J. M. Winget, ‘Solution algorithms for nonlinear transient heat conduction analysis employing element-by-element 

24. B. Van Rietbergen, H. Weinans, R. Huiskes and A. Odgaard, ‘A new method to determine trabecular bone elastic 

Vol. 6, pp. 1994, pp. 47-52. 

129-145 (1990). 

iterative strategies’, Comput. Methods. Appl. Mech. Eng., 52, 71 1-815 (1985). 

properties and loading using micro-mechanical finite-element models’, .I. Biomech., 28, 69-8 1 (1994) 


