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Abstract 

During the last two decades, many heuristic procedures for the joint replenishment problem have appeared in the literature. 
The only available optimal solution procedure was based on an enumerative approach and was computationally prohibitive. 
In this paper we present an alternative optimal approach based on global optimisation theory. By applying Lipschitz 
optimisation one can find a solution with an arbitrarily small deviation from an optimal value. An efficient procedure is 
presented which uses a dynamic Lipschitz constant and generates a solution in little time. The running time of this procedure 
grows only linearly in the number of items. © 1997 Elsevier Science B.V. 
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1. Introduction 

In an inventory system with multiple items, cost 
savings can be obtained when the replenishment of 
several items are coordinated. Each time an order is 
placed, a major ordering cost is incurred, independent 
of the number of items ordered. Furthermore, a mi- 
nor ordering cost is incurred whenever an item is in- 
cluded in a replenishment order. Joint replenishment 
of a group of items reduces the number of times that 
the major ordering cost is charged, and so this saves 
costs. In the deterministic joint replenishment problem 
it is assumed that the major ordering cost is charged at 
a basic cycle time and that the ordering cycle of each 
item is some integer multiple of this basic cycle. 

Over the last two decades, the joint replenishment 
problem has received much attention. An optimal solu- 
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tion approach was presented by Goyal [ 3 ]. However, 
this approach is based on enumeration and the running 
time of the procedure grows exponentially with the 
number of items. Furthermore, as Van Eijs [ 15] has 
pointed out, the lower bound on an optimal cycle time 
as used by Goyal [3] does not guarantee a global opti- 
mal solution; Van Eijs [ 15] proposes a modified lower 
bound which guarantees an optimal solution. However, 
the resulting algorithm often requires even more com- 
putation time than the procedure of Goyal [ 3 ], except 
for large values of the major ordering cost. The enu- 
meration approach by Goyal [3] and Van Eijs [ 15] is 
therefore only practical for few items. Klein and Ven- 
tura [ 12] consider the problem in discrete time, and 
they derive a lower and an upper bound on an optimal 
(discrete) cycle time. Subsequently, the authors apply 
enumeration on all intermediate discrete values be- 
tween these bounds. This method, however, does not 
guarantee an optimal solution, since the authors apply 
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the same wrong lower bound as Goyal [3 ]. Further- 
more, the enumeration causes the running time to be 
dependent on the discretisation; when a more refined 
discretisation is applied, the running time increases 
proportionally. 

Because of these enumeration problems, the atten- 
tion has been focused on heuristic procedures. We 
refer the reader to the review article by Goyal and 
Satir [6] for an overview of the many heuristic proce- 
dures that have appeared in the literature up to 1989. 
After that, Kaspi and Rosenblatt [ 11 ] proposed an ap- 
proach based on trying several values of the basic cy- 
cle time between a minimum and a maximum value, 
and then applying for each value a heuristic of Kaspi 
and Rosenblatt [ 10], which is a modified version of 
the algorithm of Silver [ 14]. The authors show in an 
extensive simulation experiment that their procedure 
outperforms all available heuristics. Later, Goyal and 
Deshmukh [ 5 ] proposed an improvement of the lower 
bound used by Kaspi and Rosenblatt [ 11 ]. The idea 
of trying multiple cycle times is arbitrary; indeed, how 
many values should be tried to obtain a good solu- 
tion? Hariga [8] proposed a heuristic based on a re- 
laxation of the problem. In Ben-Daya and Hariga [ 1 ] 
it is shown that the approach of Hariga [ 8 ] mostly out- 
performs the algorithm of Goyal and Deshmukh [5], 
though the differences are small. 

As can be understood from the above, research into 
heuristic procedures for the joint replenishment prob- 
lem has been a lively field and much improvement 
can hardly be expected. However, as with all heuris- 
tics, one cannot guarantee the quality of the generated 
solutions, however good the performance seems to be 
from simulation experiments. Consequently, a signifi- 
cant contribution to the rich literature on the problem 
can only come from a solution procedure that gener- 
ates a solution in little time and that guarantees the 
quality of  this solution. Therefore, we will not con- 
centrate on new heuristics for the joint replenishment 
problem. Instead, we will focus in this paper on the 
global optimisation of the problem and we will show 
that by using Lipschitz optimisation the problem can 
efficiently be solved to optimality. We present a so- 
lution procedure that generates in little time a solu- 
tion with an arbitrarily small deviation from an opti- 
mal value. The procedure requires a running time that 
grows only linearly in the number of items. 

This paper is organised as follows. In the next sec- 

tion we give the problem formulation and in Section 3 
we analyse the problem in more detail. Subsequently, 
in Section 4, we introduce a relaxation and present 
a solution procedure using Lipschitz optimisation. In 
Section 5 we present numerical results and in Sec- 
tion 6 we draw conclusions. 

2. Problem formulation 

In the formulation of the joint replenishment prob- 
lem the following assumptions are made: 
1. The demand rate for each item is known and con- 

stant; 
2. Shortages are not allowed; 
3. The replenishment rate is infinite (zero lead time); 
4. There is an infinite horizon. 
Moreover, to discuss the joint replenishment problem, 
we introduce the following notation: 

S major ordering cost, 
si minor ordering cost of item i, 
n number of items, 
D i demand of item i per unit of  time, 
hi holding cost per unit of item i per unit of time, 
T basic cycle time, 
ki frequency of ordering item i. 

According to the above definitions it is clear that kiT 
is the cycle time of item i. 

Let now ~I~ i ( k i T )  denote the individual average costs 
of item i, when it is ordered each kiT time units. The 
average costs consist of the average (minor) ordering 
cost and the average holding cost of  item i and so we 
have 

s, 
~i( kiT) = ~iT + kiT" (1) 

Observe that the individual average cost function ~i  (") 
of item i is equal to the objective function of the simple 
economic order quantity model (see Porteus [ 13 ] ). In 
the formulation of the joint replenishment problem the 
objective is the minimisation of the total average costs. 
The total average costs are the sum of the average 
major ordering cost and the individual average costs 
of each item. 

In the literature two formulations of the joint re- 
plenishment problem have appeared. The first formu- 
lation takes into account the possibility of so-called 
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empty replenishment occasions, which occur when the 
smallest frequency ki is larger than one. For exam- 
ple, suppose that we have two items and that kl = 2 
and k2 = 3. If this happens, then two out of six re- 
plenishment occasions will not be used and so the av- 
erage major ordering cost equals 4S/6T if the basic 
cycle time is given by T. This implies that a correc- 
tion factor A(k) ,  k = (kl . . . . .  kn), has to be used. 
Based on the principle of inclusion and exclusion (see 
Grimaldi [7] ) the following expression for A(k) is 
given by Dagpunar [2]: 

n 
d ( k )  = Z ( - 1 ) / + 1  Z (lcm(ka~ . . . . .  kai))  -1, 

i=l {aC{ 1....,n}: lal=i} 

(2) 

where lcm(k,~ 1 . . . . .  k~ i) denotes the least common 
multiple of the integers k,, 1 . . . . .  k~,. By this observa- 
tion the joint replenishment problem with a correction 
factor is given by 

Z qbi(kiT): ki N, r 0 (Pc) inf ~ + E > . 
i=1 

Goyal [4] criticises the formulation of Dag- 
punar [2] and proposes to set the correction factor 
equal to one. In that case the joint replenishment 
problem without correction factor becomes 

~ 4 ~ i ( k f ) :  ki N, T >  0 (P )  inf ~ + E • 
i=1 

Both problems are mixed continuous-integer pro- 
gramming problems and in general such problems are 
difficult to solve. Moreover, since the correction factor 
is hard to evaluate for large values of n (evaluation of 
(2) requires O(2  n) time) and the objective function 
of (Pc) is not separable in the vector k, it follows that 
(Pc) is more difficult to solve than (P ) .  

In the literature very little attention is paid to prob- 
lem (Pc); the attention is primarily focused on prob- 
lem (P ) .  However, despite the fact that (P )  is easier 
to solve than (Pc), the optimal solution procedures 
for (P )  that are known till now involve enumera- 
tion, which -in continuous time- becomes computa- 
tionally prohibitive for a large number of items (see 
Goyal [3] and Van Eijs [ 15] ). In discrete time we do 
not have this problem, but then the enumeration takes 
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place among all discrete values between some bounds 
(see Klein and Ventura [ 12] ), which may yield other 
problems. Also in this paper we will focus on prob- 
lem (P ) ,  and we will show that by using Lipschitz 
optimisation the problem can efficiently be solved to 
optimality. Moreover, we will present some results for 
problem (Pc). The optimal solution of (P )  obtained 
after Lipschitz optimisation can also be used as a fea- 
sible solution of (Pc). Furthermore, we will show that 
the solution of a relaxation of problem ( P )  yields a 
lower bound on the optimal objective value of prob- 
lem (Pc), so that we can decide whether this feasible 
solution is good enough. In Section 5 we will show by 
numerical experiments that the gap between the lower 
bound and the generated feasible solution is usually 
quite small. To start our analysis, we will first consider 
problem (P)  in more detail. 

3. Analysis of problem (P) 

To simplify the objective function of problem (P ) ,  
observe that (P )  is equivalent to 

n } 
inf< ~S + Z inf{~i(kiT): ki E I~} . 
r>o( T i=1 

(3) 

Introduce now the functions gi(') given by 

gi(t) := inf{~i(kit): ki E N}, (4) 

and observe that (3) (and consequently (P )  ) can be 
written as 

n / 
(P)  i n f ~ S + Z g i ( T )  . 

7>0l T i=1 

Denote by v (P )  the optimal objective value of (P )  
and by T(P)  an optimal T. We will first show that the 
functions gi(') can be evaluated easily. 

It is not difficult to verify that for each i E 
{1 . . . . .  n} and k E N the function t -+ @i(kt) on 
(0, e~) satisfies: 
• t ~ @i(kt) is strictly convex; 
• t ~ ~ i (k t )  has a minimum for t = xT/k  with x T 

given by: 

. / 2si 
X i WhiD i " (5) 
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~i(X~) 

1 

I I I 

x~/3 x*/2 x; 
Time 

Fig. 1. An example of the function t --* qbi(kt) for k = 1,2, 3. The thin lines are the graphs of the functions q~i(t), ~ i (2 t ) ,  ~ i (3 t ) .  The 
(bold) graph of gi(') is the lower envelope of the functions t ---+ ~i(kt), k E N. 

• t --* @i(kt) is strictly decreasing on (O,x~/k) and 
strictly increasing on (x*/k,  cx~). 
In Fig. 1 the function t ~ c19i(kt) for different val- 

ues of the integer k is plotted. It is easy to verify 
that the intersection point of the functions tP i ( k t )  and 
crpi((k-+- 1 ) t )  is given by ( 2 s i / h i D i k ( k +  1 ) )  1/2. 

Define for k = 0, 1 . . . .  the value T/(k) given by 

[ 2si if  k= 1,2,.  
Ti (k) := V h i D i k ( k  + 1) "" (6) 

c~ i f k = O ,  

and introduce for k E N the interval Ii (k) := 
[T/(k),Tt(k-l)). Then clearly by (5) and (6) it fol- 

lows for every k E N that x~/k belongs t o  I (k) and by 
this observation it is easy to verify that the optimal ki 

in inf{cPi(kit): ki E N} is given by k if t belongs 
to / i f) .  Using this, an easy explicit formula for the 
optimal solution k i ( t )  as a function of t can be found, 
which is presented in the next lemma. Although the 
derivation of this formula is almost trivial, we could 
not find such an explicit formula in the literature. 

Lemma 1. An optimal value ki( t) E N given a value 
of  t > 0 is given by 

F j8s i l  
ki(t) = - ½ + ½  l + hiDit2 I ,  (7) 

with [.] denoting the upper-entier function. 

Proof. As observed, given a value of t > 0, an opti- 
mal value of k E N is such that T/(k) ~< t < T/(k-l) . 
Equivalently, using (6),  the value of k must satisfy 

2si 
hiDik( k + 1 ) <~ t 

and 

2si 
t < h i D i ( k -  1)k" 

Inequality (8) is equivalent to 

k 2 + k 2s------L-/ /> 0 
hiDi t  2 

and since k must be positive we obtain 

(8) 

(9) 

• /  8si (10) 
k >>. -½ + ½ 1 + hiDit------- ~. 

Analogously, working out (9) yields that 

1 ~/ 8si 
0 < k < ½ + 1 + hiDit-------- ~ ,  (11) 

and combining (10) and ( 11 ) implies 

8si 

hiDi t2 " 

(12) 
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v(e) - 

I 

T(P) 
Time 

Fig. 2. An example of the objective function of problem (P);  there are many local minima. 

Since the square roots in these two inequalities are 
equal, the two expressions differ exactly 1 from each 
other, implying that either one integer is between them 
or that they are both integer. In either case, taking the 
upper entier of the expression in the left-hand side 
yields the integer k satisfying (12). Consequently, 
given a value of t, a corresponding optimal value ki ( t )  
is given by (7),  which completes the proof. [] 

By Lemma 1 it now follows that the functions g i ( ' )  

defined in (4) are given by 

gi( t) = ~ i (  ki( t ) t ) ,  (13) 

and consequently the optimisation problem (P)  re- 
duces to 

n 

i n f f S  -4- ~--~ ~ i ( k i ( T ) T )  . 
T>O~ T i=1 

In Fig. 2 an example of the objective function of 
problem (P)  is given. This objective function has 
in general multiple local minima and so (P )  is 
a global-optimisation problem. In the following 
section we show that when the integrality con- 
straints in (P)  are relaxed, a convex-programming 
problem is obtained, which can be solved analyti- 
cally. Using this optimal solution, we subsequently 
determine a feasible solution of (P ) ,  and since 
the relaxation yields a lower bound on the opti- 
mal objective value v ( P ) ,  we can decide whether 

this feasible solution is good enough. If it is not 
good enough, we apply a global-optimisation pro- 
cedure to identify in little time a solution to (P )  
with a corresponding objective value that has 
an arbitrarily small deviation from the optimal 
value v( P ). 

Such a global-optimisation procedure will not be 
obtained with respect to problem (Pc),  which is 
in general much more difficult to solve than prob- 
lem (P ) ,  because of the correction factor A ( k ) .  It 
can be shown that for some values of T there are no 
empty replenishments, in which case the correction 
factor is equal to one, in the report version of this 
paper [16] the authors show that A ( k ( T ) )  = 1 for 
T /> mini{((S-4-si) /hiDi)l /2}.  Consequently, for 
these values of T the objective functions of the prob- 
lems (P )  and (Pc) are equal. However, we could 
not prove a nice result for values of T smaller than 
m i n i { ( ( S + s i ) / h i D i )  1/2} and the authors believe that, 
given such a T, there does not exist an easy analytical 
formula for the optimal value k i (T) ,  i = 1 . . . . .  n. 
Therefore, solving (Pc) to optimality in a reasonable 
time using a global-optimisation procedure seems 
impossible and the only thing one can hope for is 
a fast procedure that generates a feasible solution 
and at the same time yields an upper bound on the 
deviation from the optimal objective value v(Pc)  of 
(Pc)- Such a procedure will be discussed in the next 
section. 
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4. Solving problem (P) 

In this section we develop a solution procedure for 
problem ( P ) .  To this end we consider first a relax- 
ation. 

4.1. A relaxation for  problem ( P ) 

By relaxing the constraints ki G N by ki >/ 1, we 
obtain the following relaxation (R) of problem (P) :  

(R) inf + ~i(kiT): ki >/ 1, T >  0 . 
i=1 

Denote by v(R)  the optimal objective value of (R) 
and by T(R)  the optimal T. (Below we will show that 
a T(R)  exists and that it is unique.) Since (R) is a 
relaxation of ( P ) it clearly follows that v (P )  ~> v (R). 

A similar relaxation was presented by Hariga [ 8] 
and to write down an analytical formula for the optimal 
solution T(R)  of (R),  the author analysed the nec- 
essary Karush-Kuhn-Tucker conditions for a global 
minimum. However, by making use of the separabil- 
ity of the objective function of (R) in the vector k = 
(kl . . . . .  kn), a much easier proof of the validity of 
the formula for T(R)  can be obtained. 

To start with the analysis of (R) we observe that 
(R) is equivalent to 

inf,.  S + ~ n  } 
z~ol T _ _  g~lO ( T )  , 

i=1 

where g~R)(t) := inf{q~i(kit): ki >/ I}. Since the 
function ~ i ( ' )  is strictly decreasing on (O,x*) and 
strictly increasing on (x*, o~) it follows that 

g}R)(t) = ~ qbi(X;) i f t  ~< x 7 (14) 

( ~i( t )  if t ~> x~. 

By the definition of ~0i(-) (see (1))  and using the 
fact that ~i(') has a unique minimum x T given by 
(5),  we obtain the result that the function g}R)(.) is 
continuously differentiable with derivative 

0 ~ i f t  <~x~ 
d g !  n) (t) = - s i  . 
dt ' + if t ~> Xi .  

Since the derivative of g}R)(.) is nonnegative, con- 
tinuous and increasing on (0, ~ ) ,  if follows that 

g}R) (.) is convex, increasing, and continuously dif- 
ferentiable on (0, c~). Consequently, by the strict 
convexity and continuous differentiability of the func- 
tion t --* Sit  on (0, c~), the objective function h(.)  
of (R), given by h ( t)  = S/t + ~ ~=1 g~ R) (t) ,  is strictly 
convex and continuously differentiable on (0, c~). 
Because limtToo h(t)  = cx~ and limd0 h(t) = cxz this 
implies that there exists a unique optimal solution 
T(R)  C (0, cx~) and this value is the unique solution 
of the equation h~ ( t) := dh( t) /dt  = O. 

To derive an analytical expression fo r  T(R) ,  we 
first assume without loss of generality that x T ~< x~ ~< 
• .. ~< x n. Under this assumption, the strictly increas- 
ing derivative h~(.) of the function h( .)  is given by 

- S  . 
t-- 5- if t ~< x 1 

El=l hiDi S + El=l si 
2 t 2 

h'( t)  = ifx~" ~< t ~< xt+ 1, 
l <<. l <~ n - 1  

E i n l  hiDi S + T i  nl si 
2 t 2 

if t/> x~. 

(15) 

It follows from (15) that ht(x~) = - S / ( x ~ )  2 < 0 
and soi* :=max{1 <<. i <<. n: ht(xT) < 0} exists. 
If i* < n, we obtain t * h (xi.+l) >1 O, and so by the 
strict convexity of h( .)  the optimal T(R) belongs to 
the interval [xi*., xi*+l ]. Analogously, if i* = n, we 
have T(R)  E [x~,, c~). By setting the derivative of 
h( . )  (see (15) ) to zero, we now obtain the following 
result. 

Lemma 2. Assume without loss of  generality that 
x~' ~< x~ ~< . . .  ~< x~. / f i *  := max{1 ~< i ~< 
n: h'(xT) < 0}, then the optimal solution T(R)  of  
( R) is given by 

[ 2(S + EI-*-I si) 
T(R)  

~i*l  hiDi (16) 

We already observed that v(R) <<. v(P) ,  since (R) 
is a relaxation of (P ) .  In the next lemma we prove that 
also v(R) <~ v(P¢), so that by solving problem (R) 
we also have a lower bound on the optimal objective 
value of problem (Pc). 
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L e m m a  3. It follows that v( P) >1 v( Pc) ~ v( R). 

Proof. Since for every vector k = (kl . . . . .  kn) E 
N n it holds that A(k)  <~ 1, the first inequality fol- 
lows immediately. To prove the second inequality, we 
observe that for every e > 0 there exists a vector 
(T~, kl (T~) . . . . .  kn(T~) ) satisfying 

( T ( R ) ,  1 . . . . .  1) is also an optimal solution of (Pc) 
and (P ) .  [] 

Observe that from (15) it follows that T ( R )  >~ 
n * tx  *a2V'n hiDi/2 - ~-]~i=1 si. xn if and only i f S  ~> ~ ~j z..,i=l 

Consequently, the condition T(R)  >>. x~, in Lemma 4 
is easy to check. 

v(Pc)/> 
n 

SA(k(Te))Tc + ~-~q~i(ki(Te)Te) - 8 

i=1 

sa(k(r~)) + }--~i ki(r~)a(k(r~))r~ 
T~ i=1 A(k(T~))  

Using a(k(T~))  >~ (mini{ki(T~)}) -1, we have 
ki(Te)A(k(Te))  /> 1 for every i, and consequently 

Sa(k(T~)) 
v( Pc) >~ 

T~ 

n {  (kiTe) ) 
+ ~ i n f  e i \ a ( k - - ~ ) )  : k i > l  - 

i=1 
n } 

~> inf~ -S + ~-'~inf{¢i(kiT): ki >~ 1} - e  
r>ol. T i=l 

= v ( R )  - e .  

Since e > 0 is arbitrary, the desired result follows. [] 

Once (R) is solved, we have an optimal T(R)  for 
(R).  Sometimes this T(R)  is also optimal for prob- 
lems (P )  and (Pc), as is shown by the following 
lemma. 

L e m m a  4. Assume without loss of generality that 
x~ <~ x~ < . . . .  <~ x*. I f  for the optimal T( R) 
of problem (R)  it holds that T (R)  >. x~, then 
( T ( R ) , 1 . . . . .  1) is an optimal solution of ( P ) and 
(Pc). 

Proof. Since T(R)  >~ x~ is an optimal solution 
of problem (R) it follows by (14) that the cor- 
responding scalars ki, i = 1 . . . . .  n, equal 1 and 
so ( T ( R ) ,  1 . . . . .  1) is also a feasible solution of 
problems (Pc) and (P ) .  Hence we obtain v(R)  = 
S IT(R)  + ~inl  ~ i ( T ( R ) )  >>- v (P) ,  yielding by 
Lemma 3 v(R)  = v(Pc) = v (P) ,  implying that 

Finding a Feasible Solution of  ( P ) and (Pc) 
Observe for T(R)  < x~ that T(R)  may not be 

an optimal solution of problems (P )  and (Pc). This 
is due to the fact that the values of ki correspond- 
ing with T(R)  (see (14) ) are not necessarily integer, 
and this implies that the optimal solution of (R) is in 
general not feasible for ( P )  and (Pc). However, the 
vector ( T ( R ) ,  kl ( T ( R )  ) . . . . .  kn(T(R)  )) ,  with the 
scalars ki(T( R) ), i = 1 . . . . .  n, obtained by substitu- 
tion of T(R)  in (7),  is a feasible solution of (P )  and 
(Pc). 

Let v(FP)  be the objective-function value of ( P )  
evaluated at this feasible solution. Then we have 

S 
n 

v(FP)  - + ~ g i ( T ( R ) )  
T (R)  i=1 

>~ v (P)  >1 v(Pc) >~ v(R) .  

Hence we can check the quality of the constructed 
feasible solution; if v (FP)  is close to v(R)  then we 
have found a feasible solution that is good enough for 
both (P )  and (Pc). 

If  it is not close enough, we will apply a fast global- 
optimisation procedure for solving ( P ) .  To this end, 
we need an interval that contains an optimal T ( P ) .  

4.2. Lower and upper bounds on T( P ) 

Goyal [3] states that an optimal value of T ( P )  is 
within the interval [mini x*, T(P1 ) ] ,  with T(P1) the 
optimal solution of the optimisation problem 

(Pl)  inf + ~ - ' ~ i ( T )  o 

T>0I. i=1 

Observe that T(P1 ) is the optimal value of T when all 
items are jointly replenished. It is easily verified that 

n 
/ ( S  -t- ~-'~i--1 Si) 

r ( P , )  = V " 
(17) 
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[ 

Ttow r ( R ) Tup 
Time 

Fig. 3. A lower bound Tlow and an upper bound Tup on an optimal T(P) are found where the objective function of relaxation (R) 
equals v(FP),  the value of the objective function of problem (P)  in T(R). 

However, the lower bound mini x~ is not correct for 
an optimal T ( P ) ,  as has also been pointed out by Van 
Eijs [15]. In this subsection we show that solving 
(R) yields both a lower and an upper bound on T ( P ) .  
The upper bound is often better than T(PI ), as will 
be shown by numerical experiments in Section 5. 

As in Section 4.1, let v(FP)  be the objective- 
function value of ( P )  in T(R) .  We will show that 
a lower and an upper bound on T ( P )  are given by 
the values of T where the objective function of (R) 
equals v(FP) .  This is established by the following 
lemma. 

Lemma 5. Let 7iow be the smallest and Tup be the 
largest T for  which the objective function of ( R) is 
equal to v(FP) .  Then Tlow ~< T ( P )  <~ Tup. 

Proof. Since the objective function of (R) is strictly 
convex, we clearly have the result that Tlow ~< T(R)  <<. 
Tup. Consequently, for values o f T  < Tlow the objective 
function of (R) is larger than v(FP) .  Since (R) is 
a relaxation of ( P ) ,  the objective function of (P )  is 
also larger than v (FP)  for values of T < Tlow, so that 
Tlow is a lower bound on T ( P ) .  

The proof that T ( P )  <<. Tup is analogous. [] 

In Fig. 3 it is illustrated how the bounds Tlow and Tup 
are generated. Notice that the lower bound Tlow can 
be found by bisection on the interval (0, T(R)  ]. With 

respect to the upper bound Tup, it is easy to check 
whether it is better than T(PI)  given by (17). To 
this end, evaluate the objective function of (R) in 
T(P1 ) and check whether it is smaller than or equal 
to v(FP) .  If this is so, then T(PI)  is at least as 
good as Tup, otherwise Tup is better. In the latter case 
we can easily find Tup with a bisection on the inter- 
val [ T ( R ) , T ( P , ) ] .  

Let now T/ = Tlow and let Tu = min{Tup, T(P1)}  
be the smallest upper bound, then we have T ( P )  E 
[Tt,Tu]. Consequently, it is sufficient to apply a 
global-optimisation technique on the interval [T/, Tu] 
to find a value for T ( P ) .  

4.3. Lipschitz optimisation 

Efficient global-optimisation techniques exist when 
the objective function is Lipschitz. A univariate func- 
tion is said to be Lipschitz if for each pair x and y 
the absolute difference of the function values in these 
points is smaller than or equal to a constant (called 
the Lipschitz constant) multiplied by the absolute dis- 
tance between x and y. More formally: 

Definition 1. A function f ( . )  is said to be Lipschitz 
on the interval [a, b] with Lipschitz constant L, if 
for all x , y  E [a,b] it holds that I f (x )  - f ( y ) [  ~< 
L I x  - y l .  
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Since the objective function of (P)  is Lipschitz 
on the interval [TI, T,] (see the appendix), global- 
optimisation techniques can be applied to this interval 
to obtain a solution with a corresponding objective 
value that is arbitrarily close to the optimal objective 
value v (P )  (see the chapter on Lipschitz optimisation 
in Horst and Pardalos [9] ). In the appendix we derive 
a Lipschitz constant L for the objective function of 
(P )  on [Tt,Tu] . 

There are several Lipschitz-optimisation algorithms 
(see Horst and Pardalos [ 9 ] ). The simplest one, called 
the passive algorithm, evaluates the function to be 
minimised at the points a + e /L,  a + 3e/L,  a + 
5e /L  . . . . .  and takes that point at which the value of the 
function is minimal. The function value in this point 
does not differ more than e from the global minimal 
value in [ a, b]. The algorithm of Evtushenko is based 
on the passive algorithm, but takes the next step larger 
than 2e /L  if the current function value is larger than 
2e above the current best known value, which makes 
the algorithm faster than the passive algorithm. The 
best known value in this algorithm is initialised at the 
value v (FP)  that is found after solving the relaxation. 
For our problem this procedure can be improved, since 
the shape of the objective function of problem (P )  
is such that the Lipschitz constant is decreasing in T 
(this is shown in the appendix). Using this, we can 
extend the algorithm of Evtushenko to deal with a dy- 
namic Lipschitz constant; after each function evalua- 
tion (going from left to right) the Lipschitz constant 
is recomputed so that larger steps can be taken. Due 
to the easy formula for the Lipschitz constant, this re- 
computation is fast. 

There are many other Lipschitz-optimisation algo- 
rithms and these use more sophisticated techniques 
and may be faster than the algorithm of Evtushenko. 
However, we choose Evtushenko's algorithm (with a 
dynamic Lipschitz constant) because of its simplicity 
and because it is easy to implement. Furthermore, the 
resulting procedure is very fast; in the next section we 
show that even when a relative deviation of 0.001% is 
required, a solution is found in little time. 

Relation with the approach of  Kaspi and Rosenblatt 
Kaspi and Rosenblatt [ 11 ] have proposed an ap- 

proach in which the interval containing an optimal 
T ( P )  is divided into a number of equidistant values, 
on each of which the authors apply a heuristic of Kaspi 

and Rosenblatt [ 10] (which is a modified version of 
the algorithm of Silver [ 14 ] ). This idea of trying mul- 
tiple cycle times is arbitrary, since it is not clear how 
many values should be tried to obtain a good solution. 
Furthermore, taking equidistant values is not always 
efficient. 

In fact, our approach also tries multiple values of 
T, but it does so in an efficient way and a way that 
guarantees the quality of  the solution. The choice of 
a next value of T is efficient, because in the modi- 
fied algorithm of Evtushenko the length of the next 
step depends on the best known value of the objec- 
tive function, on the Lipschitz constant, and on the 
precision that is required. For example, when the cur- 
rent value of the objective function is above the best 
known (minimal) value, then a larger step can be 
taken since the function is Lipschitz and must first 
bridge the difference between the current value and 
the best known minimum, before it can possibly come 
below this minimum; furthermore, when the objective 
function is peaked, then the Lipschitz constant will be 
larger and hence smaller steps are taken to guarantee 
a good solution; finally, larger steps are taken when 
less precision is required. Moreover, the application 
of a dynamic Lipschitz constant makes it possible to 
choose a Lipschitz constant which is as small as pos- 
sible. 

4.4. A solution procedure for  ( P)  

We can summarise the results in this section in the 
formulation of the following solution procedure for 
problem (P)  : 

1. Find the optimal T(R)  of problem (R) using (16). 
2. I f  T(R)  >1 x* then T ( P )  = T (R)  is optimal 

for (P)  and ki = 1, i = 1 . . . . .  n; stop. 
3. Otherwise, we first find a feasible solution for prob- 

lem (P )  by subst i tut ionofT(R) in (7).  I f  the cor- 
responding objective value v (FP)  is close enough 
to v(R) ,  then it is also close to v ( P )  and so we 
have a good solution; stop. 

4. If  the solution is not good enough, apply Lipschitz- 
optimisation with a dynamic Lipschitz constant on 
the interval [Tt,Tu] to find a value f o r T ( P )  and a 
corresponding objective value with arbitrarily small 
deviation from v ( P ) .  
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5. N u m e r i c a l  results  

In this section we will show by numerical experi- 
ments that the solution procedure for (P )  described in 
the previous section, using the modified algorithm of 
Evtushenko for the Lipschitz optimisation, generates 
a solution in little time. Furthermore, our experiments 
illustrate that the running time of the procedure grows 
approximately linearly in the number of items. The 
procedure is implemented in Borland Pascal version 
7.0 on a standard 486 66 MHz personal computer. 

Remember that the solution of problem (P )  can be 
used as a feasible solution of problem (Pc). By com- 
puting the difference between v(R) and v(P) in the 
numerical examples, we are by Lemma 3 able to say 
something about the deviation of the objective value 
corresponding to this feasible solution from the opti- 
mal value v(Pc). We will not further investigate prob- 
lem (Pc), since incorporation of the correction fac- 
tor A(k) in a solution procedure is too time consum- 
ing. 

In the numerical experiments we generated 2400 
problems as follows (the values are taken from Ben- 
Daya and Hariga [ 1 ] ): 
I. The demand Oi is taken randomly from [ 100, 

100000  ] ; 
2. The ordering cost si is taken randomly from 

[0.5,51; 
3. The holding cost hi is taken randomly from 

[0.2,3] ;  
4. The major ordering-cost values considered are S = 

5, 10, 15, 20; 
5. The number of items n = 5, 10, 15, 20, 25, 30. 
Hence there are 24 combinations of n and S and for 
each combination we generated 100 examples. 

The running time of the solution procedure depends 
on the number of items, on the set-up cost, and on the 
precision required. First, we will consider the influ- 
ence of the number of  items n and the set-up cost S, 
while the precision is kept fixed. We chose a rela- 
tive precision instead of an absolute precision, since 
the optimal objective values may differ considerably 
in the examples and a relative precision enables a fair 
comparison. To this end, we took an absolute preci- 
sion equal to ev (R). This implies that a solution gen- 
erated by the algorithm does not deviate more from 
v(P) than ev(R), and accordingly the relative devi- 
ation is smaller than or equal to (v(P) + ev(R) - 

Table l 
Average running time (sec) of the solution procedure as a function 
of n and S; e = 10 -5 

S n 

5 10 15 20 25 30 

5 0.14 0.30 0.48 0.64 0.70 0.87 
10 0.09 0.24 0.37 0.57 0.72 0.84 
15 0.10 0.23 0.36 0.48 0.69 0.78 
20 0.07 0.19 0.35 0.47 0.61 0.75 

Average 0.10 0.24 0.39 0.54 0.68 0.81 

v(P)) /v(P)  = ev(R)/v(P), which by Lemma 3 is 
smaller than or equal to ev(P)/v(P) = 6. We first 
took e equal to 10 .5 (i.e., e = 0.001%). In Table 1 
the average running time is given for the hundred ran- 
dom examples that were generated for each of the 24 
combinations of n and S. As can be seen from the ta- 
ble, the running time decreases in the set-up cost S. 
This is due to a steeper objective function for larger 
S; a larger S causes smaller upper bounds for T(P) 
and, as a result, smaller intervals on which Lipschitz 
optimisation has to be applied. Furthermore, it can be 
seen from the table that the running time increases 
linearly in the number n of items; from the last row 
in Table 1 it follows that the average running time in- 
creases with approximately 0.14 seconds when n in- 
creases with 5 items (starting with 0.I0 seconds for 
n = 5). The linear increment of speed is a nice result 
when it is considered that Lipschitz optimisation is an 
optimal solution procedure and that alternative opti- 
mal procedures in continuous time published so far in 
the literature involve only enumeration methods with 
exponentially growing running times. 

The running time also depends on the precision that 
is required. For less precision Lipschitz optimisation 
becomes much faster. In Table 2 the average running 
time as a function of the relative precision e and the 
number of items n are tabulated. Although the preci- 
sion e increases each time with a factor ten, the average 
running times increase only with a factor of approxi- 
mately five. As can be seen from the table, the solution 
procedure requires little time, even for 30 items and 
a precision of 0.001%. Observe that from this table it 
follows that the linearly increasing running time also 
holds for e = 0.1% and e = 0.01%. 
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Table 2 
Average running time (sec) of the solution procedure as a function 
of n and e 

e n Average 

5 10 15 20 25 30 

0.1% 0.00 0.00 0.00 0.02 0.05 0.06 0.02 
0.01% 0.00 0.05 0.07 0.10 0.13 0.16 0.09 
0.001% 0.10 0.24 0.39 0.54 0.68 0.81 0.46 

In the 2400 examples the gap ( v (P)  - v ( R )  ) / v ( R )  
was maximally only 1.611% and on average only 
0.608%. By Lemma 3 it follows that the gap 
(u(P)  - v( Pc) ) / v (  Pc) is even smaller, and this im- 
plies that an optimal solution of (P )  is on average 
a good feasible solution for problem (Pc). Conse- 
quently, to obtain a good solution of problem (Pc), it 
will often be sufficient to solve problem ( P ) ,  which 
takes little time as already shown. Only if the gap 
( v (P)  - v ( R ) ) / v ( R )  is not small enough, one can 
try to find a better solution of problem (Pc). How- 
ever, this implies the incorporation of the correction 
factor A(k),  which requires much computation time. 

Finally, the experiments also showed that the upper 
bound Tup introduced in Section 4 is mostly better 
than the upper bound T(PI ) introduced by Goyal [ 3 ]. 
From the 2400 numerical examples it turned out that in 
1725 cases (that is, in 72% of the examples) the upper 
bound Tup was smaller (and consequently better) than 
T(P1).  

6. Conclusions 

We presented a new optimal solution approach for 
the joint replenishment problem. Until now, the avail- 
able optimal solution approaches have involved enu- 
meration, which required exponentially growing run- 
ning times in the continuous-time case. We followed 
an alternative solution approach based on global opti- 
misation theory, and we were able to apply Lipschitz 
optimisation to obtain a solution with an arbitrarily 
small deviation from the optimal value. We presented 
a solution procedure using a dynamic Lipschitz con- 
stant, which generates a solution in little time. A very 
important characteristic of  the solution procedure is 
that the running time increases only linearly in the 
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number of items. Now that a fast optimal solution pro- 
cedure for the joint replenishment problem exists, with 
a linear time complexity, the development of (new) 
heuristics for the problem will be futile. 

Appendix A. Determination of Lipschitz constant 

We will prove here that the objective function of 
problem (P )  is Lipschitz on the interval [TI, Tu] and 
we will derive an easy expression for the Lipschitz 
constant L. 

It is obvious that if Li is a Lipschitz constant for the 
function gi (") (see (4) )  and Lo is a Lipschitz constant 
for S/T, then a Lipschitz constant L for the objective 
function of (P )  is given by 

n 

L = Lo + Z Li. (A.1) 
i=l 

For a differentiable function, a Lipschitz constant on 
some interval is given by the maximum of its deriva- 
tive in absolute value on this interval. Therefore, since 
the derivative of SIT equals - S I T  2, and I - S/T2I is 
maximal on [ Tt, Tu ] for T/, we have: 

Lo = S/T~. (A.2) 

A similar argument can be followed to obtain 
an expression for L i. The function gi( ' )  has maxi- 
mum slopes (in absolute value) in the intersection 
points T/{k), k E N (see (6 ) ) .  Although the func- 
tion gi( ')  is not differentiable in these intersection 
points, the left and right-hand derivatives exist. Be- 
cause of (13) it follows that the left-hand deriva- 
tive of gi( ')  in the intersection point T,5 k) is given 
by (k + 1)q~((k  + 1)T/~k)), whereas the right- 
hand derivative in this intersection point is given by 
k~(kTi~k)). It is easy to verify that 

(k + 1)@~((k + 1)T/(k) ) = -kq~(kTi ~k)) = lhiOi. 

That is, for all k C N the absolute values of both the left 
and right-hand derivative of gi (") in the intersection 
point T/~k) equal lhiDi, and so we obtain 

Li = l hiDi, i= 1 . . . . .  n. (A.3) 

Combining (A.1), (A.2) and (A.3) yields the fol- 
lowing expression for the Lipschitz constant L for the 
objective function of problem ( P )  on [Tt, Tu] : 
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S t/ 

L = Tt 2 + hiDi.  
i=1 

(A.4)  

Not ice  that the expression of  L depends  on ly  on the 
interval  [ Tt, T, ] by the value of  Tt, and that a larger T/ 
yields  a smal ler  L. Consequent ly ,  if  L1, L2 are the Lip- 
schitz constants  for the object ive funct ion of  ( P )  on 

the in tervals  [T1,Tu] and [T2,Tu] respectively, with 
7"1 <<, T2 <<, Tu, then L1 ~> L2. This proves the correct- 
ness of  app ly ing  a dyn a mi c  Lipschitz  cons tant  in the 
g loba l -op t imisa t ion  procedure  described in Sect ion 4. 
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