CONSTRUCTING FORMAL GROUPS III: APPLICATIONS TO COMPLEX COBORDISM AND BROWN-PETERSON COHOMOLOGY

Michiel HAZEWINKEL
Dept. Math. Econometric Institute, Erasmus University of Rotterdam, 50, Burg. Oudlaan, 3016 Rotterdam, The Netherlands

Communicated by F.J. Freyd
Received 26 September 1975

```
AMS Subj. Class.: Primary 14L05, 55B20, 55G25
universal formal group p-tyyical formal group
generators for MU_(pt) and BP (pt) Brown-Peterson cohomology operations
```


1. Introduction

In parts I and II, cf. [5], [6] and also [7], of this series of papers we constructed a universal p-typical one dimensional commutative formal group and a universal one dimensional commutative formal group. The extraordinary cohomology theories BP (Brown-Peterson cohomology) and MU (complex cobordism cohomology) are complex oriented and hence define one dimensional formal groups over BP_{*} ($p \mathrm{t}$) and $\mathrm{MU}_{*}(p t)$ respectively. Cf. [1]. These formal groups are respectively \boldsymbol{p}-typically universal and universal. Cf. [1], [3], [4] and [18]. Let μ_{BP} and μ_{MU} denote these formal groups. The iogarithms of the formal groups $\mu_{B P}$ and $\mu_{M U}$ are known, cf. [17], and have a very simple expression in terms of the cobordism classes of the complex projective spaces. Using the formulas for the logarithms of the universal formal groups of [5] and [6] one then obtains a free polynomial basis for $\mathrm{BP}_{*}(p \mathrm{t})$ and $M U_{*}(p t)$ in terms of the classes of the complex projective spaces. This is the subject matter of Sections 2, 3 below.

In [5] we also constructed a universal isomorphism between p-iypical formal groups. The associated map $\mathbb{Z}\left[V_{1}, V_{2}, \ldots\right] \rightarrow \mathbb{Z}\left[V_{1}, V_{2}, \ldots ; T_{1}, T_{2}, \ldots\right]$ (when localized at p) can be identified with the right unit map $\mu_{R}: B P_{*}(p t) \rightarrow B P_{*}(B P)$ of the Hopf algebra BP $_{*}(B P)$.

In Sections 4, 5 below, we use the universal isomorphism of [5] to obtain a recursive description of the homomorphism η_{R}. This description is useful in the calculation of various BP cohomology operations, cf. Sections 6, 7 below. To obtain this recursive description of η_{R} we need an isomorphism formula (Section 5 below) which is also useful in the theory of formal groups itself, cf. part III of [8].

Finally in Section 8, we use the universal isonorphism and the functional equation lemma of [5] to derive the main theorem of [20]. All formal groups in this paper will be commutative and one dimensional. Some of the results of this paper were announced in [7], [11].

Acknowledgements. Luilevicius [16] was the first to write down a formula similar to (3.1.3) and to prove that it gives generators for $\mathrm{BP}_{*}(p t)$ in the case $\dot{p}=2$.

Once one has the various universal p-typical formal groups (which are more or less canonical) they can be fitted together in various ways (all noncanonical). One way to do this is described in part II of [8] and gives the generators for $\mathrm{MU}_{*}(\mathrm{pt})$ described in [8, part II] and [7]. Subsequently Kozma [14] wrote down a different set of polynomial generators for $\mathrm{MU}_{*}(p t)$, which satisfy more elegant recursion formulas. These generat ors correspond to a different way of fitting the various universal p-typical formal groups together, which, however, does not generalize to more dimensional forr ial groups, but does generalize if one restricts attention to more dimensional curvilinear formal groups. Cf. the introduction of [6] and [12] for more details.

2. The formal groups of complex cobordism and Brown-Peterson cohomology

2.1. Complex oriented cohomology theories. Let h^{*} be a complex oriented cohomology theory (defined on finite CW cemplexes); and let $e^{h}(L)$ denote the Euler class in $h^{*}(X)$ of a complex line bundle L over X. Cf. [3, part I, §5], [1, part II, 82], or [19] for a definition of "complex oriented".
For complex line bundles L_{1}, L_{2} one has

$$
\begin{equation*}
e^{h}\left(L_{1} \otimes L_{2}\right)=\sum_{i, j} a_{i j} e^{h}\left(L_{1}\right)^{i} e^{h}\left(L_{2}\right)^{j} \tag{2.1.1}
\end{equation*}
$$

with $a_{i j} \in h_{*}(p t)$, and by naturality the coefficients $a_{i j}$ do not depend on L_{1} and L_{2}. So we have a well-defined formal power series

$$
\begin{equation*}
F(X, Y)=\sum a_{i j} X^{i} Y^{j} \tag{2.1.2}
\end{equation*}
$$

which in fact defines a (one dimensional commutative) formal group over $h_{*}(p t)$ by commutativity and associativity of tensor products and naturality of Euler classes.
2.2. The formal groups of MU and BP. Choose a prime number p. Let MU stand for the complex cobordism spectrum and BP for the Brown-Peterson spectrum associated to the prime number p. These theories are complex oriented. Let μ_{MU} and μ_{BP} be the associated formal groups. Cf. [1], [3], [19]. Let $\log _{\mathrm{MU}}$ and $\log _{\mathrm{BP}}$ be their logarithmic series, i.e.

$$
\begin{equation*}
\mu_{M U}(X, Y)=\log _{\operatorname{MU}}^{-1}\left(\log _{M U}(X)+\log _{M U}(Y)\right), \tag{2.2.1}
\end{equation*}
$$

$$
\begin{equation*}
\mu_{B P}(X, Y)=\log _{B P}^{-1}\left(\log _{B P}(X)+\log _{B P}(Y)\right) . \tag{2.2.2}
\end{equation*}
$$

One then has (Miščenko's theorem, cf. [17])

$$
\begin{align*}
& \log _{\mathrm{MU}}(X)=\sum_{n>0} m_{n} X^{n+1} \tag{2.2.3}\\
& \log _{\mathrm{BP}}(X)=\sum_{n>0} m_{p^{n-1}} X^{p^{n}}
\end{align*}
$$

with $m_{0}=1$ and $m_{n}=(n+1)^{-1}\left[\mathbf{C P}^{n}\right]$, where $\left[\mathbf{C P}^{n}\right]$ is the cobordism class of complex projective space of (complex) dimension n. Cf. [1], [3], [17], [18].

The formal group μ_{MU} is universal by a theorem of Quillen [18] and it follows immediately that μ_{BP} is \boldsymbol{p}-typically universal. Cf. also [3].
3.1. Generators for $\mathrm{BP}_{*}(p \mathrm{t})$. Choose a prime number p. Let $f_{v}(X)$ be the power series defined by formula (2.2.1) in [5] (cf. also [7]) and let $F_{V}(X, Y)=$ $f_{v}^{-1}\left(f_{v}(X)+f_{v}(Y)\right)$. According to Theorems 2.3 and 2.8 of [5] $F_{v}(X, Y)$ is a p-typically universal formal group over $\mathbf{Z}[V]=\mathbf{Z}\left[V_{1}, V_{2}, V_{3}, \ldots\right]$. Write

$$
\begin{equation*}
f_{v}(X)=\sum_{i=0}^{\infty} a_{i}(V) X^{p^{\prime}}, \quad a_{0}(V)=1 \tag{3.1.1}
\end{equation*}
$$

then we have according to formula (4.3.1) of [5]:

$$
\begin{equation*}
p a_{n}(V)=a_{n-1}(V) V_{1}^{p^{n-1}}+\ldots+a_{1}(V) V_{n-1}^{p}+V_{n} \tag{3.1.2}
\end{equation*}
$$

Because $F_{V}(X, Y)$ over $Z_{(p)}[V]$ and $\mu_{B P}(X, Y)$ over $\mathrm{BP}_{*}(p t)$ are both p-typically universal formal groups (for p-typical formal groups over $\mathbf{Z}_{(p)}$-algebras) there exist (cf. [5, Definition 2.4]) mutually inverse isomorphims $\phi: \mathbf{Z}_{(p)}[V] \rightarrow \mathrm{BP}_{*}(p t)$, $\psi: B_{*}(p t) \rightarrow \mathbf{Z}_{(p)}[V]$ such that ϕ applied to the coefficients of $f_{V}(X)$ gives the coefficients of $\mu_{\mathrm{BP}}(X)$. Applying ϕ to (3.1.2) and writing v_{i} for $\phi\left(V_{i}\right)$ we therefore find elements $v_{1}, v_{2}, v_{3}, \ldots$ of $\mathrm{BP}_{*}(p t)$ which constitute a free polynomial basis for $B P_{*}(p t)$ and which are related to the $m_{n}=(n+1)^{-1}\left[\mathrm{CP}^{n}\right]$ of (2.2.4) above by the relations

$$
\begin{equation*}
p l_{n}=l_{n-1} v_{1}^{\rho^{n-1}}+l_{n-2} v_{2}^{\rho^{n-2}}+\ldots+l_{1} v_{n-1}^{p}+v_{n} \tag{3.1.3}
\end{equation*}
$$

where we have written l_{n} for $m_{p^{n}-1}$.
3.2. Generators for $M U_{*}(p t)$. Let $f_{U}(X)$ be the power series defined by formulas (2.2.1) and (2.2.4) of [6], and let $F_{U}(X, Y)=f_{U}^{-1}\left(f_{U}(X)+f_{U}(Y)\right)$. According to Thecrems 2.3 and 2.4 of $[6] F_{U}(X, Y)$ is a universal formal group over $\mathbb{Z}[U]=$ $\mathbf{Z}\left[\boldsymbol{U}_{2}, \boldsymbol{U}_{3}, U_{4}, \ldots\right]$. Write

$$
\begin{equation*}
f_{U}(X)=\sum_{n=1}^{\infty} b_{n}(U) X^{n}, \quad b_{1}=1 \tag{3.2.1}
\end{equation*}
$$

Then if we specify the coefficients $n\left(i_{1}, \ldots, i_{s}\right)$ occurring in the definition of $f_{U}(X)$ according to [6, Section 7] we have the foilowing recursion formula:

$$
\begin{equation*}
\nu(n) b_{n}(U)=\dot{U}_{n}+\sum_{\substack{d, n \\ d \sim 1, n}} \frac{\mu(n, d) \nu(n)}{\nu(d)} b_{n / d}(U) U_{d}^{n / d} \tag{3.2.2}
\end{equation*}
$$

where the integers $\nu(n)$ and $\mu(n, d)$ are defined as follows:

$$
\begin{equation*}
\nu(n)=1 \text { if } n \text { is not a power of a prime number } \tag{3.2.3}
\end{equation*}
$$

$$
\nu\left(p^{\prime}\right)=p \text { for all prime numbers } p \text { and } r \in \mathbb{N}=\{1,2,3, \ldots\}
$$

$$
\begin{equation*}
\mu(n, d)=\prod_{p \mid n} c(p, d) \tag{3.2.4}
\end{equation*}
$$

where the product is defined over all prime numbers p dividing n and the $c(p, d)$ are integers which can be chosen arbitrarily subject to

$$
c(p, d)=1 \quad \text { if } p(d)=1, p
$$

$$
c(p, d) \equiv\left\{\begin{array}{ll}
1 & \bmod p \tag{3.2.5}\\
0 & \bmod q
\end{array} \text { if } \nu(d)=q \neq p\right.
$$

More precisely: first one chooses $c(p, d) \in \mathbf{Z}$ for all prime numbers p and $d \in \mathbf{N}$ such that (3.2.5) holds: then one constructs $f_{U}(X)$ and $F_{U}(X, Y)$ according to the formulas (7.1.2), (7.1.3), (2.2.1), (2.2.4) and (2.2.7) of [6]; the result is then a universal formal group $F_{U}(X, Y)$ over $\mathbb{Z}[U]$ with logarithm $f_{U}(X)$ satisfying (3.2.2) with $\nu(n)$ and $\mu(n, d)$ given by (3.2.3) and (3.2.4). Different choices for the $c(p, d)$ result in different universal formal groups $F_{U}(X, Y)$. Because $F_{U}(X, Y)$ over $Z[U]$ and $\mu_{\mathrm{MU}}(X, Y)$ over $M U_{*}(p t)$ are both universal formal groups there are mutually inverse isomorphisms $\phi: \mathbf{Z}[U] \rightarrow \mathrm{MU}_{*}(p t), \psi: \mathrm{MU}_{*}(p t) \rightarrow \mathbf{Z}[U]$ such that ϕ applied to the coefficients of $f_{U}(X)$ gives the coefficients of $\mu_{M U}(X)$. Applying ϕ to (3.2.2) and writing $u_{i}, i=1,2, \ldots$ for $\phi\left(U_{i}\right)$ we find elements u_{2}, u_{3}, \ldots in $\mathrm{MU}_{*}(p t)$ which constitute a free polynomial basis for $M U_{*}(p t)$ and which are related to the $m_{n}=(n+1)^{-1}\left[C^{n}\right]$ by the formula

$$
\begin{equation*}
\nu(n) m_{n-1}=u_{n}+\sum_{\substack{d \neq n \\ d \neq 1, n}} \frac{\mu(n, d) \nu(n)}{\nu(d)} m_{(n / d)-1} u_{d}^{n / d} \tag{3.2.6}
\end{equation*}
$$

These are the same generators as those written down by Kozma [14]. Note that the factor $\nu(d)^{-1} \mu(n, d) \nu(n)$ is always an integer.

If one uses instead of the universal formal group $F_{U}(X, Y)$ of [6], the universal formal group $H_{U}(X, Y)$ over $\mathbb{Z}[U]$ of [6] then, reasoning in exactly the same way, one finds generators \bar{u}_{i} in $\mathrm{MU}_{*}(p \mathrm{t})$ which are related to the m_{n} by the formula

$$
\begin{equation*}
\nu(n) m_{n-1}=\bar{u}_{n}+\sum_{i=1}^{\infty}(-1)^{i} \sum^{(i)} \frac{\mu\left(n, d_{1}\right) \nu(n)}{\nu\left(d_{1}\right)} m_{d-1} \bar{u}_{d_{1}}^{d} \bar{u}_{d_{i}-1}^{d d_{1}} \ldots \bar{u}_{d_{1}}^{d d_{1} \ldots \alpha_{2}} \tag{3.2.7}
\end{equation*}
$$

where $\Sigma^{(i)}$ is the sum over all sequences $\left(d, d_{i}, d_{i-1}, \ldots, d_{1}\right)$ such that $d, d_{i}, \ldots, d_{1} \in \mathbb{N}$, $d_{i} \neq 1, n ; d_{i}>1$ and not a power of a prime number for $j=2, \ldots, i$ and $d d_{i} \ldots d_{1}=$ n. These are the generators given in [7] and [8, part II].
3.3. Remark. BP is a direct summand of $\mathbf{M U Z} \mathbf{Z}_{(p)}$. If we identify $u_{p^{\prime}}$ with v_{1} formula (3.2.6) (or formula (3.2.7) for that matter) reduces to formula (3.1.3) if \boldsymbol{n} is a power of p. It follows that the v_{i} are integral, i.e. they live in $\mathrm{MU}_{*}(p \mathrm{t})$, not just in $\mathrm{MUZ}_{(p) *}(p \mathrm{t})$. This is also proved in [2].

4. Isomorphisms of p-typical formal groups and $\eta_{\mathrm{R}}: \mathrm{BP}_{\boldsymbol{*}}(p \mathrm{t}) \rightarrow \mathrm{BP}_{*}(\mathrm{BP})$

4.1. Universal strict isomorphisms of \boldsymbol{p}-typical formal groups. In [5] we also constructed a universal strict isomorphism

$$
\begin{equation*}
\alpha_{V, T}(X): F_{V}(X, Y) \rightarrow F_{V, T}(X, Y) \tag{4.1.1}
\end{equation*}
$$

for \boldsymbol{p}-typical formal groups over characteristic zero rings or $\mathbf{Z}_{(p)}$-algebras. Here $F_{V, T}(X, Y)$ is a p-typical formal group over $\mathbf{Z}[V ; T]=\mathbf{Z}\left[V_{1}, V_{2}, \ldots ; T_{1}, T_{2}, \ldots\right]$ and the logarithm $f_{V, T}(X)$ of $F_{V, T}(X, Y)$ satisfies

$$
\begin{align*}
& f_{V, T}(X)=\sum_{i=0}^{\infty} a_{i}(V, T) X^{p^{\prime}}, \tag{4.1.2}\\
& a_{i}(V, T)=a_{i}(V)+a_{i-1}(V) T_{1}^{p-1}+\ldots+a_{1}(V) T_{n-1}^{p}+T_{n} \tag{4.1.3}
\end{align*}
$$

cf. formula (4.3.2) of [5].
Let $I: \mathbf{Z}_{(p)}$-Alg \rightarrow Sets be the functor which associates to every $\mathbf{Z}_{(p)}$-algebra A the set of all triples ($F(X, Y), \alpha(X), G(X, Y)$) where $F(X, Y)$ and $G(X, Y)$ are p-typical formai groups over A and $\alpha(X)$ is a strict isomorphism form $F(X, Y)$ to $G(X, Y)$. If we restrict attention to $\mathbf{Z}_{(\rho)}$-algebras theorem 2.12 of [5] says

4.2. Theorem. The $\mathbf{Z}_{(\rho)}$-algebra $\mathbf{Z}_{(P)}[V, T]$ represents the functor I.

The isomorphism $\mathbf{Z}_{(p)}-\mathrm{Alg}\left(\mathbf{Z}_{(p)}[V, T], A\right) \underset{\boldsymbol{Z}}{ }(A)$ looks as follows. Let $\phi: \mathbf{Z}_{(\rho)}[V, T] \rightarrow A$ be a $\mathbf{Z}_{(\rho)}$-algebra homomorphism. Let $v_{i}=\phi\left(V_{i}\right), t_{i}=\phi\left(T_{i}\right)$, $i=1,2, \ldots$ then the triple associated to ϕ is $\left(F_{v}(X, Y), \alpha_{v, t}(X), F_{v, t}(X, Y)\right)$.
4.3. The homomorphism $V_{i} \mapsto \bar{V}_{i}, F_{V, T}(X, Y)$ is a p-typical formal group over $\mathrm{Z}[V ; T]$. By the universality of $F_{V}(X, Y)$ there are therefore unique polynomials $\bar{V}_{i} \in \mathbf{Z}[V ; T]$ such that $F_{V, T}(X, Y)=F_{\bar{v}}(X, Y)$. Note that the \bar{V}_{i} have their coefficients in \mathbf{Z} not just in $\mathbf{Z}_{(p)}$.
We have just defined a homomorphism

$$
\begin{equation*}
\nu_{\mathrm{R}}: \mathbb{Z}[V] \rightarrow \mathbb{Z}[V ; T], \quad V_{i} \leftrightarrow \bar{V}_{i} . \tag{4.3.1}
\end{equation*}
$$

A more functorial way of looking at this homomorphism is as follows. Let $F: \mathbf{Z}_{(\rho)}$ - $-\operatorname{llg} \rightarrow$ Sets be the functor which associates to a $\mathbf{Z}_{(p)}$-algebra A the set of all p-typical formal groups over A. Then F is represented by $\mathbb{Z}_{(\rho)}[V]$, (by the universality of $F_{V}(X, Y)$). There are two natural functor morphims $I \rightarrow F$, viz.

$$
\begin{array}{ll}
I(A) \rightarrow F(A), & (F(X, Y), \alpha(X), G(X, Y)) \mapsto F(X, Y) \\
I(A) \rightarrow F(A), & (F(X, Y), \alpha(X), G(X, Y)) \mapsto G(X, Y) \tag{4.3.3}
\end{array}
$$

and because $Z_{(p)}[V ; T]$ represents I and $Z_{(p)}[V]$ represents F we obtain two $\mathbf{Z}_{(p)}$-algebra homomorphisms $\mathbf{Z}_{(p)}[V] \rightarrow \mathbf{Z}_{(p)}[V, T]$. The homomorphism induced by (4.3.2) is the natural inclusion $\mathbb{Z}_{(p)}[V] \rightarrow \mathbb{Z}_{(p)}[V, T]$ and the homomorphism induced by (4.3.3) is the localization in p of (4.3.1).
4.4. The Hopf-algebra $\mathrm{BP}_{*}(\mathrm{BP})$. By Theorem 16.1 of [1, part II] we know that $\mathrm{BP}_{\boldsymbol{*}}(\mathrm{BP})=\mathrm{BP}_{*}(p \mathrm{t})\left[t_{1}, t_{2}, \ldots\right]=\mathbf{Z}_{(p)}\left[v_{1}, v_{2}, \ldots ; t_{1}, t_{2}, \ldots\right]$. It follows that $\mathrm{BP}_{*}(\mathrm{BP})$ represents the functor I. This fact can be uced to account for the Hopf-algebra structure of $\mathrm{BP}_{*}(\mathrm{BP})$ by using various functor morphisms like (4.3.2) and (4.3.3) above. This was done in [15]. The structure of $B P_{*}(B P)$ as a left module over $B P_{*}(p t)$ is then given by the natural inclusion $\mathrm{BP}_{*}(p \mathrm{t}) \hookrightarrow \mathrm{BP}_{*}(p \mathrm{t})\left[t_{1}, t_{2}, \ldots\right]$ and the structure of $\mathrm{BP}_{\boldsymbol{*}}\left(\mathrm{BP}_{j /}^{\prime}\right.$ as a right module over $\mathrm{BP}_{\boldsymbol{*}}(p t)$ is given by a homomorphism $\eta_{\mathrm{R}}: \mathrm{BP}_{\boldsymbol{*}}(p \mathrm{t}) \rightarrow \mathrm{BP}_{*}(\mathrm{BP})$ which is the localization in p of ν_{R} in (4.3.1) above if we identify $\mathrm{BP}_{*}(p t)$ with $\mathbf{Z}_{(p)}[V]$ and $\mathrm{BP}_{*}(\mathrm{BP})$ with $\mathbf{Z}_{(p)}[V ; T]$ by means of $v_{i} \leftrightarrow V_{i}$, $t_{i} \leftrightarrow T_{i}$, where the v_{i} are the generators defined in 3.1 above. Alternatively we can appeal again to Theorem 16.1 of [1, part II] where it is shown that $\boldsymbol{\eta}_{\mathbf{R}} \otimes \mathbf{Q}$ is given by

$$
\begin{equation*}
l_{n} \mapsto \sum_{i=0}^{n} l_{i} t_{n-i}^{p^{1}} \tag{4.4.1}
\end{equation*}
$$

where again $l_{n}=m_{p^{n-1}}$. Because $F_{V_{, ~}}(X, Y)=F_{\bar{v}}(X, Y)$ and because of formula (4.1.3) this also shows that $\eta_{\mathrm{R}}=\nu_{\mathrm{R}} \otimes \mathbf{Z}_{(p)}$. (If $\phi: \mathbf{Z}_{(p)}[V] \rightarrow B P_{*}(p t)$ is the isomorphism $V_{i} \mapsto v_{i}$, then $\phi\left(a_{i}(V)\right)=l_{i}$ by (3.1.2) and (3.1.3), hence the right hand side of (4.1.3) becomes the right hand side of (4.4.1) under $\phi: \mathbf{Z}_{(p)}[V ; T] \xrightarrow{\sim} B P_{*}(B P)$, $\left.V_{i} \mapsto v_{i}, T_{i} \mapsto t_{i}, i=1,2, \ldots.\right)$

5. The isomorphism formula

The next thing we want to do is to give a recursion formula for the polynomials \bar{V}_{i}, and hence aiso a recursive description of $\eta_{\mathrm{R}}: B P_{*}(p \mathrm{t}) \rightarrow \mathrm{BP}_{*}(\mathrm{BP})$. To do so we first need a formula relating the \bar{V}_{i} and the V_{i} which is also useful in its own right, especially when discussing reductions and liftings of formal groups and isomorphisms of formal groups. Cf [8, parts III and V].
5.1. Let $a_{i}=a_{i}(V)$ be defined by (3.1.2) and write \bar{a}_{i} for $a_{i}(V, T)$, cf. (4.1.3). Then we have $f_{V}(X)=\sum a_{i} X^{P^{\prime}}$ and $f_{V, T}(X)=\sum \bar{a}_{i} X^{P^{i}}$ and because $f_{V, T}(X)=f_{V}(X)$, the \bar{a}_{i} are given by the same formula (3.1.2) with bars over all the symbols occurring. I.e.

$$
\begin{equation*}
p \bar{a}_{n}=\bar{a}_{n-1} \bar{V}_{1}^{p^{n-1}}+\ldots+\bar{a}_{1} \bar{V}_{n-1}^{p}+\bar{V}_{n} \tag{5.1.1}
\end{equation*}
$$

In addition we define

$$
\begin{equation*}
Z_{i j}^{(r)}=\left(V_{i}^{p} T_{j}^{p^{r+1}}-T_{j}^{p^{\prime}} V_{i}^{p^{\prime+1}}\right) . \tag{5.1.2}
\end{equation*}
$$

5.2. Proposition.

$$
\begin{equation*}
p \bar{a}_{n}=\sum_{i=1}^{n} \bar{a}_{n-i} V_{i}^{p^{n-1}}+\sum_{i, j \geq 1, i+j<n} a_{n-i-j} Z_{i, j}^{(n-i-j)}+p T_{n} \tag{5.2.1}
\end{equation*}
$$

Proof. Using (4.1.3), (3.1.2) and (5.1.1) we have

$$
\begin{aligned}
p \bar{a}_{n}= & p a_{n}+\sum_{i=1}^{n} n a_{n-i} T_{i}^{p-1} \\
= & \sum_{i=1}^{n-1} a_{n-i} V_{i}^{p n-i}+V_{n}+\sum_{i=1}^{n-1} \sum_{j=1}^{n-i} a_{n-i-j} V_{j}^{p^{n-1}-1} T_{i}^{p n-1}+p T_{n} \\
= & \sum_{i=1}^{n-1} \bar{a}_{n-i} V_{i}^{p n-1}-\sum_{i=1}^{n-1} \sum_{j=1}^{n-i} a_{n-i-j} T_{j}^{p^{n-i-1}} V_{i}^{p n-1}+V_{n} \\
& +\sum_{i=1}^{n-1} \sum_{j=1}^{n-i} a_{n-i-j} V_{j}^{p n-1-1} T_{i}^{p n-1}+p T_{n} \\
= & \sum_{i=1}^{n} \bar{a}_{n-i} V_{i}^{p^{n-1}}+\sum_{i, j \geq 1, i+j<n} a_{n-i-j}\left(V_{j}^{p^{n-1-1}} T_{i}^{p^{n-1}}-T_{j}^{p^{n-i-1}} V_{i}^{p^{n-1}}\right)+p T_{n} \\
= & \sum_{i=1}^{n} \bar{a}_{n-i} V_{i}^{p^{n-1}}+\sum_{i, j=1, i+j \leqslant n} a_{n-i-j} Z_{i j}^{(n-i-j)}+p T_{n} .
\end{aligned}
$$

(Note that $Z_{i j}+Z_{j i}=\left(V_{i} T_{j}^{p^{\prime}}-T_{i} V_{j}^{p}\right)+\left(V_{j} T_{i}^{p^{\prime}}-T_{i} V_{i}^{p^{i}}\right)$ and similarly for $Z_{i j}^{(i)}$.)

5.3. Proposition.

$$
\bar{V}_{n}=V_{n}+p T_{n}+\sum_{k=1}^{n-1} a_{n-k}\left\{\left(V_{k}^{p n-k}-\bar{V}_{k}^{p-k}\right)+\sum_{\substack{i+j=k \\ i, j \geq 1}}\left(V_{i}^{p^{n-k}} T_{j}^{p-1}-T_{j}^{p n-k} \bar{V}_{i}^{p^{n-1}}\right)\right\}
$$

$$
\begin{equation*}
+\sum_{\substack{i+j=n \\ i, j \geq 1}}\left(V_{i} T_{j}^{p^{\prime}}-T_{j} \bar{V}_{i}^{p^{\prime}}\right) . \tag{5.3.1}
\end{equation*}
$$

Proof. This follows directly by substituting in (5.2.1) and (5.1.1) $\bar{a}_{n-i}=$ $\sum_{j=0}^{n-i} a_{n-i-j} T_{j}^{p-i-j}$, where $T_{0}=1$.
5.4. Remark. Formula (5.3.1) can be used to give an inductive proof that the \bar{V}_{n} are polynomials with integral coefficients in the $V_{1}, \ldots, V_{n} ; T_{1}, \ldots, T_{n}$. Indeed, we know that, cf. [5],

$$
\begin{equation*}
a_{n-k}=\sum_{i=1}^{n-k} p^{-1} V_{1} a_{n-k-1}^{\left(p^{\prime}\right)} \tag{5.4.1}
\end{equation*}
$$

and assuming that $\bar{V}_{i}, i=1, \ldots, n-1$ is integral we also have that for all $s \in \mathbb{N}$

$$
\begin{equation*}
\bar{V}_{i}^{p+c} \equiv\left(\bar{V}_{i}^{\left(p^{\prime}\right)}\right)^{p^{\prime}} \bmod p^{i+1} \tag{5.4.2}
\end{equation*}
$$

Finaily $p^{\prime} a_{i}$ is a polynomial with integral coefficients so that we have in $\mathbf{Q}[V ; T]$

$$
\begin{aligned}
& \bar{V}_{n}=V_{n}+p T_{n}+\sum_{\substack{i j=n \\
i j>1}}\left(V_{i} T_{i}^{p^{\prime}}-T_{i} \bar{V}_{i}^{p^{\prime}}\right) \\
& +\sum_{k=1}^{n-1} a_{n-k}\left\{\left(V_{k}^{p_{k}^{n-k}}-\bar{V}_{k}^{p^{n-k}}\right)+\sum_{\substack{i+j=k \\
k, j=1}}\left(V_{i}^{p^{n-k}} T_{j}^{p^{n-k}}-T_{j}^{p^{n-k}} \bar{V}_{i}^{p^{n-1}}\right)\right\} \\
& =\sum_{k=1}^{n-1} \sum_{i=1}^{n-k} \frac{V_{1}}{p} a_{n-k-1}^{(p)}\left\{\left(V_{k}^{p^{n-k}}-\bar{V}_{k}^{p n-k}\right)+\sum_{\substack{i+i=k \\
i, j=1}}\left(V_{i}^{p n-k} T_{j}^{p n-1}-T_{j}^{p^{n-k}} \bar{V}_{i}^{p^{n-1}}\right)\right\} \\
& \equiv \sum_{i=1}^{n-1} \frac{V_{1}}{p} \sum_{k=1}^{n-1-1} a_{n=1, i-k}^{y_{n}^{\prime}, t-k}\left\{\left(V_{k}^{p^{\prime}}\right)^{p^{n-1-k}}-\left(\bar{V}_{k}^{\left(p^{\prime}\right)}\right)^{p^{n-1-k}}+\right. \\
& \left.+\sum_{\substack{i+j=k \\
i, j=1}}\left(\left(V_{i}^{p^{\prime}}\right)^{p^{n-1-k}}\left(T_{i}^{p^{\prime}}\right)^{p-1-1}-\left(T_{j}^{p^{\prime}}\right)^{p^{n-1-k}}\left(\bar{V}_{i}^{\left(p^{\prime}\right)}\right)^{p^{p-1-1}}\right)\right\} \\
& \left.+\sum_{i=1}^{n-1} \frac{V_{1}}{p}\left\{\bar{V}_{n-1}^{\left.p^{l}\right)}-\bar{V}_{n-l}^{\left(p^{l}\right)}+\sum_{i+j=n-1}\left(V_{i}^{p^{\prime}}\left(T_{j}^{p^{\prime}}\right)^{p^{\prime}}-T_{j}^{p^{\prime}\left(\overline{(},\left(p^{l}\right)\right.}\right)^{p^{\prime}}\right)\right\} \\
& =\sum_{i=1}^{n-1} \frac{V_{l}}{p}\left(-p T^{p^{2}}\right) \equiv 0
\end{aligned}
$$

where all congruences are modulo 1 in $\mathbf{Q}[V ; T]$. (Two polynomials in $\mathbf{Q}[V ; T]$ are $\equiv \bmod 1$ if their difference is in $\mathbb{Z}[V ; T]$.) This proves the integrality of the \bar{V}_{n}, $n=1,2,3, \ldots$.

6. A generalization of the main lemma of Johnson and Wilson [13]

6.1. BP cohomology operations. The stable cohomology operations of BP cohomology can be described as $\mathrm{BP}_{*}(p t)$-homomorphisms $\mathrm{BP}_{*}(\mathrm{BP}) \rightarrow \mathrm{BP}_{*}(p t)$, where $\mathrm{BP}_{\boldsymbol{*}}(\mathrm{BP})$ is seen as a left module over $\mathrm{BP}_{\boldsymbol{*}}(p t)$. Cf . [1] and also 4.3 and 4.4 above. To find out what a cohomology operation r does with elements of $B P_{*}(p t)$, compose r with the right unit map $\eta_{\mathrm{R}}: \mathrm{BP}_{*}(p \mathrm{t}) \rightarrow \mathrm{BP} \mathrm{P}_{*}(\mathrm{BP})$. Let $E=\left(e_{1}, e_{2}, \ldots\right)$ be a sequence of $\geqslant 0$ integers of which only finitely many are nonzero. The cohomology operation r_{E} is defined as: coefficient of t^{E} in $x \in B P_{*}(B P)=$ $\mathrm{BP}_{*}(p \mathrm{t})\left[t_{1}, t_{2}, \ldots\right]$. Thus $r_{E}\left(v_{n}\right)=$ coefficient of t^{E} in \bar{v}_{n}, where \bar{v}_{n} is obtained from \bar{V}_{n} by replacing V_{i} with v_{i} and T_{i} with $t_{i}, i=1, \ldots, n$.
Assign to an exponent sequence $E=\left(e_{1}, e_{2}, \ldots\right)$ the weight $\|E\|=$ $e_{1}(p-1)+e_{2}\left(p^{2}-1\right)+\ldots$ and to v_{i} the weight $p^{i}-1$. We then have

$$
\begin{equation*}
\eta_{\mathrm{R}}\left(v_{n}\right)==\bar{v}_{n}=\sum_{\|E\| \leq p^{n}-1} r_{E}\left(v_{n}\right) t^{E} \tag{6.1.1}
\end{equation*}
$$

where $r_{E}\left(v_{n}\right)$ is homogencous of weight $p^{n}-1-\|E\|$.

In [13] Johnson and Wilson calculate $r_{E}\left(v_{n}\right)$ modulo $\left(p, v_{1}, \ldots, v_{1-1}\right)$ for $\|E\| \geqslant$ $p^{n}-p^{\prime},([13$, Lemma 1.7] (sometimes known as the Budweiser lemma)).

As a first application of the recursion formula (5.3.1) we shall calculate in this section $r_{E}\left(v_{n}\right)$ modulo ($\left.p^{p+1}, v_{1}, \ldots, v_{1-1}\right)$ for all E with $\|E\| \geqslant p^{n}-p^{\prime}$.
6.2. Extension of the main lemma. Write Δ_{i} for the exponent sequence $(0,0, \ldots, 0,1,0, \ldots)$ with the 1 in the i-th place. We also write $\Delta_{0}=(0,0, \ldots)$ and $\left\|\Delta_{0}\right\|=0$. Scalar multiplication and addition of exponent sequences are defined component-wise. The result now is

Lemma. (i) For $n \geqslant 3$ and $2 \leqslant l \leqslant n-1$ we have
(a) $r_{E}\left(v_{n}\right) \equiv 0 \bmod \left(p^{p+1}, v_{1}, \ldots, v_{1-1}\right)$ if $p^{n}-p^{1-1}>\|E\| \geqslant p^{n}-p^{t}$ and E not equal to $p^{\prime} \Delta_{n-t}$ or $\Delta_{1}+(p-1) \Delta_{n-1}+p^{\prime} \Delta_{n-1-1}$,
(b) $r_{E}\left(v_{n}\right) \equiv v_{1} \bmod \left(p^{p+1}, v_{1}, \ldots, v_{l-1}\right)$ if $E=p^{t} \Delta_{n-l}$,
(c) $r_{E}\left(v_{n}\right) \equiv-p^{p} v_{1} \bmod \left(p^{p+1}, v_{1}, \ldots, v_{l-1}\right)$ if $E=\Delta_{1}+(p-1) \Delta_{n-1}+p^{1} \Delta_{n-t-1}$.
(ii) For $n \geqslant 3$ (and $l=0$) we have
(a) $r_{E}\left(v_{n}\right) \equiv 0 \bmod \left(p^{p+2}\right)$ if $\|E\| \geqslant p^{n}-1$ and E not equal to Δ_{n} or $\Delta_{1}+p \Delta_{n-1}$,
(b) $r_{E}\left(v_{n}\right)=p$ if $E=\Delta_{n}$,
(c) $r_{E}\left(v_{n}\right) \equiv-p^{p} \bmod \left(p^{p+2}\right)$ if $E=p \Delta_{n-1}+\Delta_{1}$.
(iii) For $n \geqslant 3$ (and $l=1$) we have
(a) $r_{E}\left(v_{n}\right) \equiv 0 \bmod \left(p^{p+1}\right)$ if $p^{n}-1>\|E\| \geqslant p^{n}-p$ and E not equal to $p \Delta_{n-1}$ or $\Delta_{1}+(p-1) \Delta_{n-1}+p \Delta_{n-2}$,
(b) $r_{E}\left(v_{n}\right) \equiv v_{1}\left(1-p^{p-1}\right) \bmod \left(p^{p+1}\right)$ if $E=p \Delta_{n-1}$,
(c) $r_{E}\left(v_{n}\right) \equiv-p^{p} v_{1} \bmod \left(p^{p+1}\right)$ if $E=\Delta_{1}+(p-1) \Delta_{n-1}+p \Delta_{n-2}$.
(iv) For $n=1$ we have

$$
r_{\Delta_{1}}\left(v_{1}\right)=p .
$$

(v) For $n=2$ we have
(a) $r_{E}\left(v_{2}\right)=0$ if $\|E\| \geqslant p^{2}-p$ and E not equal to $\Delta_{2}, p \Delta_{1},(p+i) \Delta_{1}$,
(b) $r_{E}\left(v_{2}\right)=p$ if $E=\Delta_{2}$,
(c) $r_{E}\left(v_{2}\right)=-p^{p}$ if $E=(p+1) \Delta_{1}$,
(d) $r_{E}\left(v_{2}\right)=\left(1-p^{p-1}-p^{p}\right) v_{1}$ if $E=p \Delta_{i}$.

The proof of this lemma goes in several steps.
6.3. Proof of Lemma 6.2. (iv) and (v). We have

$$
\begin{equation*}
\bar{v}_{1}=v_{1}+p t_{1}, \tag{6.3.1}
\end{equation*}
$$

$$
\begin{equation*}
\bar{v}_{2}=-p^{-1}\left(v_{1}+p t_{1}\right)\left(v_{1}+p t_{1}\right)^{p}+p^{-1} v_{1} v_{1}^{p}+v_{2}+v_{1} t_{1}^{p}+p t_{2} . \tag{6.3.2}
\end{equation*}
$$

Parts (iv) and (v) of Lemma 6.2 follow immediately from this.
6.4. Proof of Lemma 6.2. (iii). We prove by induction that for $n \geqslant 2$

$$
\begin{equation*}
\bar{v}_{n} \equiv v_{n}+p t_{n}-p^{p} t_{1} t_{n-1}^{p} \bmod \left(p^{p+2}, v_{1}, \ldots, v_{n-1}\right) . \tag{6.4.1}
\end{equation*}
$$

Formula (6.3.2) takes care of the case $n=2$. Now suppose that $n \geqslant 3$. Because $a_{n-k} \equiv 0 \bmod \left(v_{1}, \ldots, v_{n-i}\right)$ for $k=1, \ldots, n-1$ we see from (5.3.1) that

$$
\bar{v}_{n} \equiv v_{n}+p t_{n}-\sum_{i=1}^{n-1} t_{i} \bar{v}_{n-i}^{p_{i}^{\prime}} .
$$

Now by induction we can assume that $\bar{v}_{n-j} \equiv p t_{n-j}-p^{p} t_{1} t_{n-j-1}^{p}$ $\bmod \left(p^{p+2}, v_{1}, \ldots, v_{n-1}\right)$ for $j=1, \ldots, n-2$ and $\bar{v}_{1} \equiv p t_{1} \bmod \left(p^{p \times 2}, v_{1}, \ldots, v_{n-1}\right)$. Formula (6.4.1) now follows directly.

Part (ii) of Lemma 6.2 follows from (6.4.1) because of (6.1.1).
6.5. Proof of Lemma 6.2 (i) and (iii). Now let $n \geqslant 3$ and $1 \leqslant l \leqslant n-1$ and let E be an exponent sequenc such that $\|E\| \geqslant p^{n}-p^{i}$. If Q is any polynomial in v_{1}, v_{2}, \ldots; t_{1}, t_{2}, \ldots we let $c_{E}!()$ denote the coefficient of t^{E} in $Q ; c_{E}(Q)$ is then a polynomial in $v_{1}, v_{2} \ldots$. We have

$$
\begin{equation*}
r_{E}\left(v_{n}\right)=c_{E}\left(\bar{v}_{n}\right) \tag{6.5.1}
\end{equation*}
$$

and $c_{E}\left(\bar{v}_{n}\right)$ is homogeneous of weight $p^{n}-1-\|E\| \leqslant p^{\prime}-1$, where v_{i} has weight $\boldsymbol{p}^{\boldsymbol{j}}-1$. In particular this means that $\boldsymbol{c}_{E}\left(\bar{v}_{n}\right)$ cannot involve any v_{i} with $i>l$ and that the only terms of $\boldsymbol{c}_{E}\left(\bar{v}_{n}\right)$ involving v_{l} are of the form $d v_{l}$ with $d \in \mathbf{Z}$. Now

$$
\begin{equation*}
a_{n-k}=\sum_{s=1}^{n-k} p^{-1} v_{s} a_{n-k-s .}^{\left(p^{n}\right)} \tag{6.5.2}
\end{equation*}
$$

Substituting this in (5.3.1) and using the remarks just made we obtain, because $a_{n-k-1} \equiv 0 \bmod \left(v_{1}, v_{2}, \ldots\right)$ if $n>k+l$, that

$$
\begin{equation*}
+c_{E}\left(v \cdot t_{n-1}^{p_{n}^{\prime}}-\sum_{j=1}^{n-1} t i_{n}^{p_{n-j}^{\prime}}\right) \tag{6.5.3}
\end{equation*}
$$

where the congruence is $\bmod \left(v_{1}, \ldots, v_{l-1}\right)$. Now by (6.4.1)

$$
\begin{align*}
& \bar{v}_{i^{p+1}} \equiv 0 \bmod \left(v_{1}, \ldots, v_{i}, p^{p+2}\right) \quad \text { if } l \geqslant 1, i \geqslant 1, \\
& \bar{v}_{n-1}^{p} \equiv 0 \bmod \left(v_{1}, \ldots, v_{n-l}, p^{p+2}\right) \quad \text { if } l \geqslant 2, \tag{6.5.4}\\
& \bar{v}_{n-1}^{p} \equiv p^{p} t_{n-l}^{p} \bmod \left(v_{1}, \ldots, v_{n-l}, p^{p+2}\right) .
\end{align*}
$$

It follows from (6.5.3), (6.5.4) and the fact that $c_{E}\left(\bar{v}_{n}\right)$ is homogeneous of weight $\leqslant p^{\prime}-1$ that

$$
\begin{equation*}
c_{E}\left(\bar{v}_{n}\right) \equiv c_{E}\left(p t_{n}-p^{p-1} v_{1} t_{n-1}^{p}+v_{1} t_{n-1}^{p}-\sum_{j=1}^{n-1} t_{j} \bar{v}_{n-1}^{p}\right) \quad \text { if } l=1 \tag{6.5.5}
\end{equation*}
$$

where the congruence is $\bmod \left(p^{p+1}\right)$ (and $\|E\| \geqslant p^{n}-p$), and

$$
\begin{equation*}
c_{E}\left(\bar{v}_{n}\right) \equiv c_{E}\left(p t_{n}+v_{i} t_{n-1}^{p_{1}^{\prime}}-\sum_{j=1}^{n-1} t_{j} \bar{v}_{n-i}^{\prime}\right) \quad \text { if } 2 \leqslant l \leqslant n-1 \tag{6.5.6}
\end{equation*}
$$

where the congruence is $\bmod \left(p^{p+1}, v_{1}, \ldots, v_{l-1}\right)\left(\right.$ and $\left.\|E\| \geqslant p^{n}-p^{\prime}\right)$. It remains to calculate $c_{E}\left(t_{j} \dot{v}_{n-1}^{p_{1}^{\prime}}\right)$ for $j=1, \ldots, n-1$. We distinguish three cases: A) $j>n-l$; B) $j=\boldsymbol{n}-\boldsymbol{l}$; C) $j>\boldsymbol{n}-\boldsymbol{l}$.
6.6. Case A. Calculation of $\boldsymbol{c}_{\boldsymbol{E}}\left(\boldsymbol{t}_{1} \bar{v}_{n-j}^{p}\right)$ for $\boldsymbol{j}>\boldsymbol{n}-\boldsymbol{l}$. In this case we have $\boldsymbol{n}-\boldsymbol{j}<\boldsymbol{l}$ and hence by (6.4.1) that $\bar{v}_{n-j} \equiv p t_{n-1}-p^{p} t_{1} t_{n-1} \bmod \left(v_{1}, \ldots, v_{l-1}, p^{p+2}\right)$ and as $l \leqslant$ $n-1, j>n-l$, it follows that

$$
\begin{equation*}
c_{E}\left(t_{j} \bar{v}_{n-i}^{p}\right) \equiv 0 \bmod \left(p^{p+1}, v_{1}, \ldots, v_{l-1}\right) \quad \text { if } j>i-l . \tag{6.6.1}
\end{equation*}
$$

6.7. Case B. Calculation of $c_{E}\left(t_{a-i}, \bar{v}^{p-1}\right)$. In this case we have by (6.4.1) that $\bar{v}_{1} \equiv v_{1}+p t_{1}-p^{p} t_{1} t_{1-1}^{p} \bmod \left(v_{1}, \ldots, v_{1-1}, p^{p+2}\right)$. Because $\|E\| \geqslant p^{n}-p^{t}$ and v_{l} has weight $\boldsymbol{p}^{\boldsymbol{1}}-1$ it follows that

$$
\begin{align*}
c_{E}\left(t_{n-i} \bar{v}_{l}^{p-1}\right) \equiv & c_{E}\left(t_{n-1}\left(p t_{1}-p^{p} t_{1} t_{1-1}^{p}\right)^{p n-1}\right) \\
& +c_{E}\left(t_{n-1} p^{n-1} v_{l}\left(p t_{1}-p^{p} t_{1} t_{1-1}^{p}\right)^{p-1-1}\right) \tag{6.7.1}
\end{align*}
$$

And we see that

$$
\begin{equation*}
c_{E}\left(t_{n-l} \bar{v}_{l}^{p-1}\right) \equiv 0 \bmod \left(p^{p+1}, v_{1}, \ldots, v_{l-1}\right) \quad \text { if } n-l \geqslant 2 . \tag{6.7.2}
\end{equation*}
$$

And for $l=n-1$ we have

$$
\begin{align*}
& c_{E}\left(t_{1} \bar{v}_{n-1}^{p}\right) \equiv p^{p} \bmod \left(p^{p+1}, v_{1}, \ldots, v_{n-2}\right) \quad \text { if } E=\Delta_{1}+p \Delta_{n-1} \tag{6.7.3}\\
& c_{E}\left(t_{1} \bar{v}_{n-1}^{p}\right) \equiv 0 \bmod \left(p^{p+1}, v_{1}, \ldots, v_{n-2}\right) \quad \text { if } E \neq \Delta_{1}+p \Delta_{n-1} .
\end{align*}
$$

6.8. Case C. Calculation of $c_{E}\left(t, \bar{v}_{n-i}^{\prime \prime}\right)$ for $1 \leqslant j<n-l$. To deal with these terms we use induction. We have

$$
\begin{equation*}
c_{E}\left(t_{j} \bar{v}_{n-i}^{p}\right)=c_{E-\Delta,}\left(\bar{v}_{n-j}^{p^{\prime}}\right) \tag{6.8.1}
\end{equation*}
$$

Write

$$
\begin{equation*}
\bar{v}_{n-j}=\sum_{\|F\|\left\langle p^{n-1-1}\right.} r_{F}\left(v_{n-j}\right) t^{F} . \tag{6.8.2}
\end{equation*}
$$

We then have

$$
\begin{equation*}
\bar{v}_{n-i}^{p l}=\sum\binom{p^{\prime}}{s_{1} \ldots s_{m}} r_{F_{1}}\left(v_{n-i}\right)^{s_{1}} \ldots r_{F_{m}}\left(v_{n-i}\right)^{s^{m} t^{s}, F_{1}+\ldots+s_{m} F_{m}} \tag{6.8.3}
\end{equation*}
$$

where F_{1}, \ldots, F_{m} is the set of all exponent sequences of weight $\leqslant p^{n-i}-1$ and the sum is over all $\left(s_{1}, \ldots, s_{m}\right)$ such that $s_{1}+\ldots+s_{m}=p^{\prime}, s_{r} \in \mathbb{N} \cup\{0\}$. The only terms of (6.8.3) which can contribute to $c_{E-\alpha_{1}}\left(\bar{v}_{n-i}^{\prime \prime}\right)$ are those with $\left\|s_{1} F_{1}+\ldots+s_{m} F_{m}\right\|=$ $\left\|E-\Delta_{j}\right\| \geqslant p^{n}-p^{i}-p^{j}+1$. This means that there must be at least one F_{i} with $\left\|F_{i}\right\|>p^{n-j}-p^{\prime}$, for which $s_{i} \neq 0$. Indeed if all F_{i} with $s_{i} \neq 0$ were of weight $\leqslant p^{n-i}-p^{\prime}$ then we would have $\left\|s_{1} F_{1}+\ldots+s_{m} F_{m}\right\| \leqslant p^{\prime}\left(p^{n-1}-p^{t}\right)=p^{n}-p^{t+j}<$ $p^{n}-p^{\prime}-p^{\prime}+1$ because $l \geqslant 1, j \geqslant 1$. We can therefore assume that $\left\|F_{1}\right\| \geqslant$
$p^{n-i}-p^{\prime}+1$. By induction (with respect to n) we have that $r_{F_{1}}\left(v_{n-i}\right) \equiv$ $0 \bmod \left(p^{p+1}, v_{1}, \ldots, v_{1-1}\right)$ except in the following cases:

Case $\mathbb{C}_{1}: n-j \equiv 3, F_{1}=\Delta_{n-j}$,
Case $C_{2}: n-j \geqslant 3, F_{1}=p \Delta_{n-j-1}+\Delta_{1}$,
Case $C_{3}: n-j=2, F_{1}=\Delta_{2}$,
Case $C_{4}: n-j=2, F_{1}=(p+1) \Delta_{1}$.
In cases C_{2} and C_{4} we have $r_{F_{1}}\left(v_{n-j}\right) \equiv 0 \bmod p^{p}$. And it follows that $\bar{v}_{n-i}^{p} \equiv$ $0 \bmod \left(p^{p+1}\right)$ in these cases because either $s_{1}>1$ or $s_{1}=1$ and then the binomial coefficient is divisible by p.

So we are left with the cases C_{1} and C_{3} where $F_{1}=\Delta_{n-j}$. Suppose that there is an $i \geqslant 2$ with $\left\|F_{i}\right\|>p^{n-i}-p^{\prime}, s_{i} \neq 0, F_{i} \neq \Delta_{n-j}$, then by the previous reasoning we find a contribution $\equiv 0 \bmod \left(\mathfrak{p a}^{p+1}, v_{1}, \ldots, v_{l-1}\right)$. The only terms

$$
\begin{equation*}
\left.\binom{\boldsymbol{p}^{j}}{s_{1} \ldots s_{m}} r_{F_{1}}^{(} v_{n-j}\right)^{s_{1}} \ldots r_{F_{m}}\left(v_{n-j}\right)^{s_{m}} \tag{6.8.4}
\end{equation*}
$$

which can contribute something $\mathcal{F} 0 \bmod \left(p^{p+1}, v_{1}, \ldots, v_{l-2}\right)$ are therefore of the form

$$
\begin{equation*}
F_{1}=\Delta_{n-i}, \quad\left\|F_{i}\right\| \leqslant p^{n-i}-p^{\prime} \quad \text { if } i \geqslant 2 \text { and } s_{i} \neq 0 . \tag{6.8.5}
\end{equation*}
$$

We then have

$$
\begin{equation*}
\left\|s_{1} F_{1}+\ldots+s_{m} F_{m}\right\| \leqslant s_{1}\left(p^{n-j}-1\right)+\left(p^{i}-s_{1}\right)\left(p^{n-j}-p^{\prime}\right) \tag{6.8.6}
\end{equation*}
$$

and we must have

$$
\begin{equation*}
\left\|s_{1} F_{1}+\ldots+s_{m} F_{m}\right\| \geqslant p^{n}-p^{i}-p^{i}+1 \tag{6.8.7}
\end{equation*}
$$

If $j \geqslant 2$ then $p^{i+j} \geqslant p^{i+1}+p^{i}+p^{j}-p$ for all $l \geqslant 1$ and it follows that (6.8.6) and (6.8.7) can simultaneously hold only if $s_{1} \geqslant p+1$. But then $r_{F_{1}}\left(v_{n-j}\right)^{s_{1}} \equiv 0 \bmod p^{p+1}$ so that we find no contributions $\not \equiv 0 \bmod \left(p^{p+1}, v_{1}, \ldots, v_{l-1}\right)$ of the form (6.8.4) if $j \geqslant 2$.

Now suppose that $j=1$, i.e. $F_{1}=\Delta_{n-1}$. Then we find from (6.8.6) and (6.8.7) that we. must have $s_{1} \geqslant p-1$. If $s_{1} \geqslant p+1$ then we again find something $\equiv 0 \bmod \left(p^{p+1}\right)$, so we are left with two subcases of C_{1} and C_{3} viz.

Case D: $j=1, F_{1}=\Delta_{n-1}, s_{1}=p$,
Case E: $j=1, F_{1}=\Delta_{n-1}, s_{1}=p-1$.
In case D we have $s_{1}+\ldots+s_{m}=p^{\prime}, s_{1}=p$, hence $s_{2}=\ldots=s_{m}=0$ and (6.8.4) gives a contribution

$$
\begin{equation*}
r_{\Delta_{n-1}}\left(v_{n-1}\right)^{p}=p^{p} \tag{6.8.8}
\end{equation*}
$$

to $c_{E-\Delta_{1}}\left(\bar{v}_{n-1}^{p}\right)$.
Now suppose we are in case E. Then (6.8.4) reduces to

$$
\begin{equation*}
p r_{\Delta_{n-1}}\left(v_{n-1}\right)^{p-1} r_{F}\left(v_{n-1}\right)=p^{p} r_{F}\left(v_{n-1}\right) \tag{6.8.9}
\end{equation*}
$$

for a certain exponent sequence F with $\|F\| \leqslant p^{n-1}-p^{\prime}$. On the other hand we must have $\left\|(p-1) \Delta_{n-1}+F\right\| \geqslant p^{n}-p^{\prime}-p+1$. It follows that we must have

$$
\begin{equation*}
\|F\|=p^{n-1}-p^{\prime} . \tag{6.8.10}
\end{equation*}
$$

But then by induction we know that $r_{F}\left(v_{n-1}\right) \equiv 0 \bmod \left(p^{p+1}, v_{1}, \ldots, v_{l-1}\right)$ except in the following cases:

$$
\begin{align*}
& r_{F}\left(v_{n-1}\right) \equiv v_{1} \bmod \left(p^{p+1}, v_{1}, \ldots, v_{l-1}\right) \quad \text { if } F=p^{t} \Delta_{n-1-1}, n \geqslant 4, \\
& r_{F}\left(v_{n-1}\right) \equiv-p^{p} v_{l} \bmod \left(p^{p+1}, v_{1}, \ldots, v_{l-1}\right) \tag{6.8.11}\\
& \text { if } F=\Delta_{1}+(p-1) \Delta_{n-2}+p^{\prime} \Delta_{n-2-l}, n \geqslant 4, \\
& \left.r_{F}\left(v_{2}\right)=\left(1-p^{p-1}-p^{p}\right) v_{1} \quad \text { if } n=3, F=p \Delta_{1} \text { (and, necessarily, } l=1\right) .
\end{align*}
$$

It follows that the only contribution $\not \equiv 0 \bmod \left(p^{p+1}, v_{1}, \ldots, v_{1-1}\right)$ of the form (6.8.9) is congruent to $p^{p} v_{i} \bmod \left(p^{p+1}, v_{1}, \ldots, v_{l-1}\right)$. We have now proved that
6.9. Lemma. Let $n \geqslant 3, \quad 1 \leqslant l \leqslant n-1, \quad\|E\| \geqslant p^{n}-p^{\prime}, \quad$ then $\quad c_{E}\left(t, \bar{v}_{n-i}^{p}\right) \equiv 0$ $\bmod \left(v_{1}, \ldots, v_{l-1}, p^{p+1}\right)$ except in the following eases:
(i) $j=1, l=n-1, E=\Delta_{1}+p \Delta_{n-1}, c_{E}\left(t_{1} \tilde{v}_{n-1}^{p}\right) \equiv p^{p}$,
(ii) $j=1, l<n-1, E=\Delta_{1}+p \Delta_{n-1}, c_{E}\left(t_{1} \bar{v}_{n-1}^{p}\right) \equiv p^{p}$,
(iii) $j=1, l<n-1, E=\Delta_{1}+(p-1) \Delta_{n-1}+p^{\prime} \Delta_{n-1-l}, c_{E}\left(t_{1} \bar{v}_{n-1}^{p}\right) \equiv p^{p} v_{1}$ where the congruences are all $\bmod \left(p^{p+1}, v_{1}, \ldots, v_{l-1}\right)$.
6.10. Proof of Lemma 6.2(i). Conclusion. According to (6.5.6) we have $\bmod \left(p^{p+1}, v_{1}, \ldots, v_{1-1}\right)$

$$
c_{E}\left(\bar{v}_{n}\right) \equiv c_{E}\left(p t_{n}+v_{l} t_{n-1}^{p_{1}^{\prime}}-\sum_{j=1}^{n-1} t_{j} \bar{v}_{n-j}^{p-j}\right) .
$$

Now let $p^{n}-p^{l-1}>\|E\| \geqslant p^{n}-p^{\prime}$. Then because $l \geqslant 2$ only case (iii) of Lemma 6.9 applies and we find that $c_{E}\left(\bar{v}_{n}\right) \equiv 0 \bmod \left(p^{p+1}, v_{1}, \ldots, v_{t-1}\right)$ except when $E=p^{\prime} \Delta_{n-1}$ or $E=\Delta_{1}+(p-1) \Delta_{n-1}+p^{i} \Delta_{n-1-1}$ and in these two cases $c_{E}\left(\bar{v}_{n}\right)$ is respectively congruent to v_{l} and $-p^{p} v_{l}$.
6.11. Proof of Lemma 6.2 (iii). Conclusion. According to (6.5.5) we have $\bmod \left(p^{p+1}\right)$

$$
c_{E}\left(\bar{v}_{n}\right) \equiv c_{E}\left(p t_{1}-p^{p-1} v_{1} t_{n-1}^{p}+v_{1} t_{n-1}^{p}-\sum_{j=1}^{n-1} t_{v_{n-1}}^{\bar{v}_{n-1}^{\prime}}\right) .
$$

Now let $p^{n}-1>\|E\| \geqslant p^{n}-p$. Then only case (iii) of Lemma 6.9 applies and we find that $\quad c_{E}\left(\bar{v}_{n}\right) \equiv 0 \bmod \left(p^{p+1}\right) \quad$ except when $E=p \Delta_{n-1} \quad$ or $\quad E=$ $\Delta_{1}+(p-1) \Delta_{n-1}+p \Delta_{n-2}$ and in these two cases $c_{E}\left(\bar{v}_{n}\right)$ is respectively congruent to $\left(1-p^{p-1}\right) v_{1}$ and $-p^{p} v_{1}$.
6.12. Lemma 6.2 is now completely proved. Note that cases (i) and (ii) of Lemma 6.9 deal with exponent sequences E with $\|E\|=p^{n}-1$, which are therefore covered by part (ii) of Lemma 6.2.

7. The linear part of the Brown-Peterson cohomology operations map $\boldsymbol{\eta}_{\mathrm{R}}$

In this section we calculate $\eta_{\mathrm{R}}\left(v_{n}\right)$ modulo the ideal $\left(t_{1}, t_{2}, \ldots\right)^{2}$, or, equivalently, we calculate \bar{V}_{n} modulo $\left(T_{1}, T_{2}, \ldots\right)^{2}$.
7.1. We write B_{i} for the element $p^{\prime} a_{i}(V) \in Z\left[V_{1}, V_{2}, \ldots\right]$, where $a_{i}(V)$ is defined by (3.1.2). Let J denote the ideal $\left(T_{1}, T_{2}, \ldots\right)^{2}$ in $Z[V ; T]$.

Theorem. Modulo J we have

$$
\begin{equation*}
+\sum(-1)^{\prime}\left(B_{s_{1}} V_{n-s_{1}}^{p}\right)\left(B_{s_{2}}^{p_{2}} V_{n-s_{1}-s_{2}}^{p p_{2}-1}\right) \cdot \ldots \cdot\left(B_{s_{1}} V_{n-s_{1}}^{p p_{1}-1-1}-\ldots\right)\left(p T_{i}\right)+V_{n} \tag{7.1.1}
\end{equation*}
$$

where the first sum is over all sequences $\left(s_{1}, \ldots, s_{i}, i, j\right)$ such that $s_{k}, i, j \in \mathbf{N}$, $s_{1}+\ldots+s_{t}+i+j=n, t \in N \cup\{0\}$ and the second sum is over all sequences $\left(s_{1}, \ldots, s_{t}, i\right)$ such that $s_{k}, i \in N, s_{1}+\ldots+s_{t}+i=n, t \in \mathbb{N} \cup\{0\}$.

7.2. Example.

$$
\begin{aligned}
\bar{V}_{3} \equiv & B_{1} V_{2}^{p-1} T_{1} V_{1}^{p}-T_{1} V_{2}^{p}-T_{2} V_{1}^{p^{2}}+B_{1} V_{2}^{p-1} B_{1} V_{1}^{p-1}\left(p T_{1}\right) \\
& -B_{2} V_{1}^{p^{2}}\left(p T_{1}\right)-B_{1} V_{2}^{p-1}\left(p T_{2}\right)+p T_{3}+V_{3} .
\end{aligned}
$$

The proof of Theorem 7.1 uses the recursion formula (5.3.1). First two lemmas:

7.3. Lemma.

$$
\begin{equation*}
\bar{V}_{n} \equiv V_{n}+p T_{n}+\sum_{k=1}^{n-1} a_{n-k}(V)\left(V_{k}^{p n-k}-\bar{V}_{k}^{n-k}\right)+\sum_{j=1}^{n-1}-T_{j} \bar{V}_{n-j}^{p,} \tag{7.3.1}
\end{equation*}
$$

where the congruence is modulo $J=\left(T_{1}, T_{2}, \ldots\right)^{2}$.
This follows immediately from formula (5.3.1)
7.4. Lemma. Suppose that $\bar{V}_{k} \equiv V_{k}+\Sigma T_{i} C_{i}$ modulo J for certain $C_{i} \in \mathrm{Z}[V ; T]$. Then

$$
\begin{equation*}
\bar{V}_{k}^{p^{\prime}} \equiv V_{k}^{p^{\prime}}+p^{l} V_{k}^{p^{\prime}-1}\left(\sum T_{i} C_{i}\right) \bmod J . \tag{7.4.1}
\end{equation*}
$$

Proof. Obvious.
7.5. Proof of Theorem 7.1. Theorem 7.1 is proved by induction, the case $n=1$ being trivial. Given formula (7.1.1) for all $k<n$, we have that $\bar{V}_{k} \equiv$ $V_{k} \bmod \left(T_{1}, T_{2}, \ldots\right)$ so that we can apply Lemma 7.4. Substituting the result in (7.3.1) thin proves (7.1.1).
7.6. Let $b_{n} \in \mathrm{BP}_{*}(p t)$ be the image of B_{n} under $\mathbb{Z}\left[V_{1}, V_{2}, \ldots\right] \rightarrow \mathrm{BP}_{*}(p t), V_{i} \mapsto v_{i}$ where the v_{i} are the generators of $\mathrm{BP}_{*}(p t)$ determined by formula (3.1.3); i.e. $b_{n}=p^{n} l_{n}=\left[C^{p^{n-1}}\right]=\boldsymbol{p}^{n} m_{p^{n-1}}$. In view of 4.4 we obtain

7.7. Corollary. For $0<i<n$ we have

$$
\begin{align*}
& r_{s_{i}}\left(v_{n}\right)=\sum_{s_{1}+\ldots+s_{i}<n-i}(-1)^{c}\left(b_{s_{1}} v_{n-s_{1}}^{p_{1}^{2}-1}\right) \ldots\left(b_{s_{i}} p_{n-s_{1}-\ldots \ldots s_{1}}^{p_{i}^{\prime}-1}\right)\left(-v_{n-s_{1}-\ldots-s_{1}-1}^{p_{1}^{1}}\right) \\
& -v_{n-i}^{p_{1}^{\prime}}+p \sum_{s_{1}+\ldots+s_{1}=n-i}(-1)^{c}\left(b_{s_{1}} v_{n-s_{1}}^{p_{1}-1}\right) \ldots\left(b_{s_{1}} v_{n-s_{1}-\ldots-s_{1}}^{p_{1},-1}\right) \tag{7.7.1}
\end{align*}
$$

where the first sum is over all sequences $\left(s_{1}, \ldots, s_{t}\right)$ with $s_{k}, t \in N$ and $s_{1}+\ldots+s_{t}<$ $n-i$ and the second sum is over all sequences $\left(s_{1}, \ldots, s_{t}\right), s_{k} \in \mathbf{N}$, with $s_{1}+\ldots+s_{t}=$ $n-i$.
7.8. Let I denote the ideal of $\mathrm{Z}[V ; T]$ generated by the elements $p T_{i}, i=1,2, \ldots$; $T_{i} T_{j}, i, j=1,2, \ldots$. Now

$$
\begin{equation*}
B_{n} \equiv V_{1} V_{1}^{p} \ldots V_{1}^{p n-1} \bmod (p) . \tag{7.8.1}
\end{equation*}
$$

It follows that

7.9. Corollary. Modulo I we have

$$
\begin{equation*}
+V_{n}-T_{1} V_{n-1}^{p}-T_{2} V_{n-2}^{p_{2}^{2}}-\ldots-T_{n-1} V_{1}^{p n-1} \tag{7.9.1}
\end{equation*}
$$

where the sum is over all sequences $\left(s_{1}, \ldots, s_{k}, i, j\right)$ such that $s_{k}, i, j, t \in \mathbf{N}$ and $s_{1}+\ldots+s_{t}+i+j=n$.

This corollary can be used to give a noncohomological proof of the Lubin-Tate formal moduli theorem. Cf. [8, part V]. Warning: the starting formula (2.2.1) in [8, part V$]$ is not correct and should be replaced with (7.9.1) above; the proof of the. Lubin-Tate Theorem remains mutatis mutandis the same.
7.10. Corollary. For $0<\boldsymbol{i}<\boldsymbol{n}$ we have

$$
r_{A_{1}}\left(v_{n}\right) \equiv-v_{n-i}^{p_{i}^{\prime}} \bmod \left(p, v_{1}\right) .
$$

7.11. Corollary. For $0<i<n-1$ we have

$$
r_{\Lambda_{1}}\left(v_{n}\right) \equiv-v_{n-i}^{p_{1}^{4}}+v_{1} v_{n-i-1}^{p_{1}^{i}} v_{n-1}^{p-1} \bmod \left(p, v_{1}^{2}\right) .
$$

More generally let $r=\min (n-i-1, p)$, then we have

$$
\begin{aligned}
r_{\Delta_{1}}\left(v_{n}\right) \equiv & -v_{n-i}^{p t}+v_{1} v_{n-1}^{p-1} v_{n-i-1}^{p t}-v_{1}^{2} v_{n-1}^{p-1} v_{n-2}^{p-1} v_{n-i-2}^{p^{\prime}}+\ldots \\
& +(-1)^{r+1} v_{1}^{p} v_{n-1}^{p-1} \ldots v_{n-1}^{r-1} v_{n-i}^{p-} \bmod \left(p, v_{1}^{p+1}\right) .
\end{aligned}
$$

8. The functional equation lemma and multiplicative operations in BP* (BP)

As a final application of the universal isomorphism theorem 2.12 of [5] and the functional equation lemma 7.1 of [5] we reprove the main theorem of [20].
8.1. Choose a prime number p. Let $\sigma: \mathbf{Z}_{(p)}[V] \rightarrow \mathbf{Z}_{(p)}[V]$ be the ring homomorphism given by $V_{i} \mapsto V_{i}^{p}$, for $i=1,2, \ldots$ If $g(X)$ is a power series with coefficients in $Z_{(p)}[V]$ or $Q[V]$ then $g^{\sigma}(X)$ denotes the power series obtained by applying σ to the coefficients of $g(X)$. We also write a^{σ} for $\sigma(a)$ if $a \in Q[V]$. Part of the functional equation lemma 7.1 of [5] now says
8.2. Functional equation lemma. If $d(X)=X+d_{2} X^{2}+\ldots$ is a power series with $d_{i} \in \mathbf{Z}_{(p)}[V]$ anc ${ }_{j},(X)$ is the logarithm of the p-typically universal formal group $F_{v}(X, Y)$ of [5] and [7], then there are unique elements $e_{2}, e_{3}, \ldots \in \mathbf{Z}_{(p)}[V]$ such that

$$
\begin{equation*}
g(X)-\sum_{i=1}^{\infty} p^{-1} V_{i} g^{\sigma^{\prime}}\left(X^{p^{\prime}}\right)=X+\sum_{i=2}^{\infty} e_{i} X^{i} \tag{8.2.1}
\end{equation*}
$$

where $g(X)=f_{v}(d(X))$. Inversely given a power series $g(X)=X+\sum_{i=2}^{\infty} c_{i} X^{i}$, $c_{i} \in \mathbf{Q}[V]$ such that (8.2.1) holds for certain $e_{i} \in \mathbf{Z}_{(p)}[V]$, then there exists a unique power series $d(X)=X+d_{2} X^{2}+\ldots$ with $d_{i} \in Z_{(p)}[V]$ such that $g(X)=f_{V}(d(X))$.
8.3. Corollary. If $d(X)$ is such that $g(X)=X+\sum_{n=1}^{\infty} c_{p^{n}} X^{p^{n}}$, i.e. $c_{i}=0$ if i is not a power of p, then $e_{i}=0$ if i is not a power of p and writing s_{n} for $e_{p n}$ we have

$$
\begin{equation*}
c_{p^{n}}=\sum_{k=0}^{n} a_{n-k} s_{k}^{s^{n-k}} \tag{8.3.1}
\end{equation*}
$$

where a_{n} is the coefficient of $X^{p^{n}}$ in $f_{V}(X)$.
This follows immediately from (8.2.1) above because a_{n} satisfies

$$
\begin{equation*}
a_{n}=\sum_{k=1}^{n} p^{-1} V_{k} a_{n-k}^{\sigma^{k}} \text { and } a_{n}=\sum_{k=1}^{n-1} p^{-1} a_{n-k} V_{k}^{p-k} \tag{8.3.2}
\end{equation*}
$$

Let $\mathrm{BP}_{*}(p \mathrm{t})=\mathbf{Z}_{(p)}\left[v_{1}, v_{2}, \ldots\right]$, where the v_{i} are the free polynomial generators defined by formula (3.1.3) above. Define the homomorphism $\sigma: \mathrm{BP}_{*}(p t) \rightarrow \mathrm{BP}_{*}(p t)$ by $v_{i} \mapsto v_{i}$. Let $l_{i}=m_{p^{\prime}} \in \mathrm{BP}_{*}(p t) \otimes \mathrm{Q}$, cf. 3.1.
8.4. Theorem (Ravenel [20]). For every sequence of elements (r_{1}, r_{2}, \ldots) in $\mathrm{BP}_{*}(p t)$ there is a unique sequence of elements $\left(s_{1}, s_{2}, \ldots\right)$ in $\mathrm{BP}_{*}(p \mathrm{t})$ such that

$$
\begin{equation*}
\sum_{i=0}^{n} l_{n-i} i_{i}^{p^{n-1}}=\sum_{i=0}^{n} l_{n-i} s_{i}^{\sigma n-1} \tag{8.4.1}
\end{equation*}
$$

for every $n>0$. Inversely for every sequence $\left(s_{1}, s_{2}, \ldots\right)$ in $\mathrm{BP}_{*}(p \mathrm{t})$ there is a unique sequence $\left(r_{1}, r_{2}, \ldots\right)$ such that (8.3.1) holds for all $n>0$.

Proof. Identify $\mathbf{Z}_{(p)}[\boldsymbol{V}]$ with $\mathrm{BP}_{*}(p t)$ via $V_{i} \mapsto v_{1}$. The element a_{i} in $\mathbf{Q}[V]$ then corresponds with $l_{i} \in \mathrm{BP}_{*}(p t) \otimes \mathbf{Q}$. Take a sequence of elements $\left(r_{1}, r_{2}, \ldots\right)$ in $\mathrm{BP}_{*}(p t)$. Let $\phi: \mathrm{Z}_{(p)}[V ; T] \rightarrow \mathrm{BP}_{*}(p t)$ be the ring homomorphism defined by $V_{i} \mapsto \nu_{n} T_{i} \mapsto r_{i}$. Write $G(X, Y)=F_{i, T}^{*}(X, Y)$. Let $g(X)$ be the logarithm of $\boldsymbol{G}(X, Y)$, then, cf. (4.1.3)

$$
\begin{equation*}
g(X)=X+\sum_{n=1}^{\infty} c_{n} X^{p^{n}}, \quad c_{n}=\sum_{i=0}^{n} l_{n-i} r^{p-1} . \tag{8.4.2}
\end{equation*}
$$

The formal group $G\left(X_{\mathbf{r}}, \mathbf{Y}\right)$ is strictly isomorphic to $F_{0}(X, Y)=\mu_{\mathrm{BP}}(X, Y)$ over
 2.12] and 4.1 above. It follows that there is a power series $d(X)=X+d_{2} X^{2}+\ldots$ with $d_{i} \in B_{*}(p t)$ such that $g(X)=f_{v}\left(d(X)\right.$). (In faci $d^{-1}(X)=\alpha_{V, T}^{\phi}(X)$.) Now apply Corollary 8.3, to fiad s_{1} such that (8.4.1) holds.

Inversely given elem nts $\left(s_{1}, s_{2}, \ldots\right)$ in $\mathrm{BP}_{*}(p t)$, let $g(X)$ be the power series

$$
\begin{equation*}
g(X)=X+\sum_{n=1}^{\infty} \sum_{i=0}^{n} l_{n-1} s_{i}^{\sigma^{n-1}} \tag{8.4.3}
\end{equation*}
$$

then $g(X)$ satisfies a functional equation (8.2.1) and hence again by the functional equation lemma, there exists a power series $d(X)=X+d_{2} X^{2}+\ldots, d_{i} \in B P_{*}(p t)$ such that $g(X)=f_{V}\left(d\left(X^{*}\right)\right)$. It follows that $g(X)$ is the logarithm of a p-typical formal group $G(X, Y)$ which is strictly isomorphic over $B P_{*}(p t)$ to $F_{v}(X, Y)=$ $\mu_{\mathrm{BF}}(X, Y)$. By the universality of the triple ($\left.F_{V}(X, Y), \alpha_{V, T}(X), F_{V, T}(X, Y)\right)$ there is therefore a unique homomorphism $\psi: \mathrm{Z}_{(p)}[V ; T] \rightarrow \mathrm{BP}_{*}(p \mathrm{t}$), such that $\psi\left(V_{i}\right)=v_{i}$ and $f_{v, i}(X)=g(X)$. Let $r_{i}=\psi\left(T_{i}\right) \in B P_{*}(p t)$. Then because of (4.1.3)

$$
\begin{equation*}
g(X)=X+\sum_{n=1}^{\infty} \sum_{i=0}^{n} l_{n-i} r_{1}^{p-1} . \tag{8.4.4}
\end{equation*}
$$

This concludes the proof of the theorem.

References

$[1]$ J.F. Adams, Stable Homotopy and Generalised Homology (Univ. of Chicago Press, 1974).
[2] J.C. Alexander, On Liulevicius' and Hazewinkel's Generators for $\pi_{*}(B P)$, Preprint Univ. of Maryland.
[3] S. Araki, Typical Formal Groups in Complex Cobordism and K-theory (Kinokuniya Book-Store Cy, 1973).
[4] V.M. Bühstaber and S.P. Novikov, Formal Groups. Power Systems and Adams Operations, Mat. Sbornik 87 (1971) 81-118 (Russian).
[5] M. Hazewinkel, Constructing Formal Groups I: The Local one-dimensional Case, J. Pure Appl. Algebra 9 (i977) 131-149.
[6] M. Hazewinkel, Constructing Formal Groups II: The Global one-dimensional Case, J. Pure Appl. Algebra 9 (1977) 151-161.
[7] M. Hazewinkel, A Universal Formal Group and Complex Cobordism, Bull. Amer. Math. Soc. 81, 5 (1975) 930-933.
[8] M. Hazewinkel, Constructing Formal Groups I, II, III, IV, V, VI, Reports 7119, 7201, 7207, 7322, 7514, 7519, Econometric Inst., Erasmus Univ. Rotterdam (1971, 1972, 1973, 1975).
[9] M. Hazewinkel, On Operations in Brown-Peterson Cohomology, Report 7502, Econometric Inst., Erasmus Univ. Rotterdam (1975).
[10] M. Hazewinkel, The Linear Part of the Brown-Peterson Cohomology Operations Map $\mathrm{BP}_{*}(\mathrm{pt}) \rightarrow \mathrm{BP}_{\star}(\mathrm{BP})$, Report 7513, Econometric Inst., Erasmus Univ. Roterdam (1975).
[11] M. Hazewinkel, A Universal Isomorphism of p-typical Formal Groups and Operations in Brown-Peterson Cohomology, Indagationes Math. 38, 3 (1976) 195-199.
[12] M. Hazewinkel, On More Dimensional Universal Formal Groups, Report 7505, Econometric Inst., Erasmus Univ. Rotterdam (1975); to appear in Adv. Math.
[13] D.C. Johnson and W.S. Wilson, BP-Operations and Morava's Extraordinary K-theories, Math. Z. 144 (1975) 55-75.
[14] I. Kozma, Witt Vectors and Complex Cobordism, Topology 13, 4 (1974) 389-394.
[15] P.S. Landweber, BP (BP) and Typical Formal Groups, Osaka J. Math. 12 (1975) 357-363.
[16] A. Liulevicius, On the Algebra BP ${ }_{*}$ (BP), Lecture Notes in Mathematics 249 (Springer, 1972) pp. 47-52.
[17] S.P. Novikov, The Method of Algebraic Topology from the Viewpoint of Cobordism Theoriss, Lzv. Akad. Nauk. Ser. Mat. 31 (1967) 855-951 (Russian).
[18] D. Quillen, On the Formal Group Laws of Unoriented and Complex Cobordism Theory, Fuill. Amer. Math. Soc. 75 (1969) 1293-1298.
[19] D. Quillen, Elementary Proofs of Some Results of Cobordism Theory Using Steenrod Operations, Adv. Math. 7 (1971) 29-56.
[20] D.C. Ravenel, Multiplicative Operations in BP ${ }_{*}$ BP, Pac. J. Math. 57 (1975) 539-543.

