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1 IntroductionLike many other optimization methods, interior point methods are iterative in nature. That is, givenan interior non-optimal solution, an interior point method would produce a sequence of improvingsolutions iteratively. Hence, an important question is: How can we get hold of an interior solutionto activate the method? A similar question can be asked when one applies the simplex methodto solve linear programming problems, because the simplex method assumes the availability of afeasible basic solution to start with. In that case, a common practice is to introduce an auxiliaryproblem for which a feasible basic solution is known and by solving the auxiliary problem, one caneither conclude infeasibility, or indeed obtain a basic feasible solution of the original problem asdesired. This is the well-known two-phase approach for the simplex method. A disadvantage ofthe two-phase approach is that in the feasibility phase, the objective function does not play anyrole, and consequently the feasible solution obtained may be far from any optimum. A remedy inthis respect, is the so-called big M method, which is basically a penalty approach trying to drivethe infeasible elements out of the basis as soon as possible. Nevertheless, the big M method workspretty much the same as the two-phase method, since it gives an absolute priority to the feasibilityover the objective value.The situation for the interior point methods is di�erent. Not so long after the regular interiorpoint methods for linear programming received intensive investigation, quest on the initializationissue led to the development of the so-called infeasible interior point methods; see Mizuno [14] fora survey. An infeasible interior point method starts with a possibly infeasible interior solution,and the iterates move towards an optimal solution of the original problem, if it exists, while reduc-ing the feasibility residuals and the duality gap simultaneously. This technique was implementedin the highly successful interior point code OB1 of Lustig, Marsten and Shanno [12, 13] on theNetlib test problems [3]. However, when the original problem is either infeasible or unbounded,then infeasible interior point methods can have di�culty detecting these abnormalities. Later, analternative, known as self-dual embedding, was introduced by Ye, Todd and Mizuno [30]. With thenew technique, the original problem is nicely embedded together with its dual problem in a largersystem. By solving the embedded system, the original problem is solved completely in the sensethat if the problem is solvable, then an optimal solution is provided; if the problem is infeasible,then a Farkas type dual certi�cate is found; if the problem is unbounded, then an in�nite-improvingdirection is established. So the new technique makes it a lot easier to detect infeasibility; see Xu,Hung and Ye [28]. Moreover, the embedded system has a trivial initial interior feasible solution andits intrinsic size is precisely the same as the original problem. All these nice properties make clearthat a usual path-following interior point method, in combination with the self-dual embeddingtechnique, solves linear programming problems satisfactory.1



What remained as a point of research was to extend the self-dual embedding technique to solveoptimization problems beyond the class of linear programming. Ye [29] showed that indeed thetechnique is also suitable for monotone LCPs. On one hand, this case is simpler than the linearprogramming case, since there are only two possible outcomes: either a complementary solution,or a certi�cate that no such solution exists. In particular, there is no distinction between primaland dual infeasibility. On the other hand, there is a nasty case here that requires two phases, viz. ifthe set of complementary solutions is unbounded and the so{called q{value is negative. This casecannot occur in linear programming, since the q{value of the associated complementarity systemsis then known to be zero.Another natural extension of linear programming is conic convex programming as discussed byNesterov and Nemirovski [16]. A very important example of conic programming is semide�niteprogramming which has been the center of recent research activities in the interior point community.Several groups of authors independently extended the self-dual embedding technique to semide�niteprogramming, viz. Potra and Sheng [20], De Klerk, Roos and Terlaky [6], Luo, Sturm and Zhang [10]and Nesterov, Todd and Ye [19]. The latter two papers concern the more general case of conic convexprogramming, each with a di�erent emphasis.Nesterov, Todd and Ye [19] analyzed the application of logarithmically homogeneous barrier tech-niques to self-dual embeddings and considered the associated complexity issues. Luo, Sturm andZhang [10] were concerned with a general duality theory for conic problems and with the questionhow to determine the status of the original problem from the sequence of iterates solving the self-dual embedding system. Report [10] was lengthy and covered two virtually separate topics. Tomake our results more accessible, we decide to split the main contents of [10] into two reports. The�rst one, [11], is completely devoted to duality theory. The second one is the current paper. In thispart we will exclusively deal with the self-dual embedding techniques applied to the framework ofconic programming. It turns out that a general conic programming problem may have subtle prop-erties that a linear programming problem can never have. For example, it is possible that a conicprogramming problem with a �nite optimal value does not have an attainable optimal solution, oran infeasible problem may become feasible by an in�nitesimal change on the problem data. Thegoal of this paper is to discuss the self-dual embedding technique for conic problems in general, andthe detection of the status of a given conic problem by means of solving the self-dual embeddingsystem with a path-following interior point method in particular.The organization of the paper is as follows. Section 2 presents a general introduction to conicconvex programming problems. Sections 3 and 4 discuss schemes of self-dual embedding. Section 5discusses how a weakly centered sequence can be used to solve a pure self-dual problem. In Section 7,the so-called self-dual embedding technique is discussed extensively. Various examples are givento illustrate how solutions/certi�cates for the original problem can be deduced from a weakly2



centered sequence for the embedded self-dual system. Discussions thus far depend crucially on theavailability of a weakly centered sequence. The existence of such a sequence is shown in Section 8.Finally, we conclude the paper in Section 9.2 PreliminariesWe consider the conic convex program in the following form:(P) p� = inffcTx j x 2 (b+A) \ Kgwith its standard dual optimization program(D) d� = inffbTz j z 2 (c+A?) \ K�g;where K � <n is a convex cone, A is a linear subspace of <n and b and c are given vectors in A?and A respectively. The cone K� is the dual cone associated with K, which is de�ned asK� := fz 2 <n j xTz � 0 8x 2 Kg:We assume that the convex cone K is closed, solid ( int K 6= ;) and pointed (K \ �K = f0g).This assumption obviously holds true for the linear programming case, in which we deal with thenonnegative orthant K = K� = <n, and the semide�nite programming case, in which we deal withthe cone of positive semide�nite matrices K = K� = fX j X � 0g. We remark that our assumptionson K imply that the dual cone K� is also closed, solid and pointed.When we solve (P), we intend to �nd an optimal solution and its optimality certi�cate if suchones exist, and if not, we shall prove the fact that no optimal solution exists also by a certi�cate.Solutions of (D) play the role of certi�cates. For primal optimality a dual optimal solution isa certi�cate, and for primal infeasibility a Farkas type dual direction is a certi�cate. Therefore,the primal problem (P) and its dual (D) are closely linked, and are often being solved together.This interpretation of duality is well known for linear programming, and is widely used in variousalgorithmic approaches.The homogeneous self{dual model of Goldman and Tucker combines primal solutions and bothtypes of dual solutions in a single model. Unfortunately, the homogeneous self{dual model does notonly include certi�ed solutions. In particular, the origin is trivially a solution to any homogeneousself{dual model. So, not all solutions to the homogeneous self{dual model are of interest.But, if a solution to the homogenous self{dual model is strictly complementary, then it does consistof a certi�ed solution, except for one case. The exceptional case is due to the primal{dual symmetry:3



the strictly complementary solution may yield a Farkas{type proof of dual infeasibility, in whichcase we have still to decide whether the primal is infeasible or unbounded.The main reason why we can use the nice properties of the self{dual model is that almost allalgorithms in the class of interior point methods converge to a strictly complementary solution,provided that such a solution exists. This useful property of interior point methods was made clearin G�uler and Ye [5]. Unfortunately, the interior point method cannot be applied directly to thehomogeneous self{dual model, since this model admits no interior solutions. Therefore, Ye, Toddand Mizuno [30] embedded the homogeneous self{dual model into an extended self{dual programwhich has one extra variable and constraint, and a trivial, perfectly centered interior solution.In this paper we will extend the homogenous self{dual model and its embedding to include the conicprograms (P) and (D). Much remains the same as in the linear porgramming case. Complicationsarise in the boundary cases. To be speci�c, we consider (P) for instance. We call (P) infeasibleif the set (b + A) \ K is empty. Still, in that case there are two possibilities in general, namelydist(b+A;K) > 0 or dist(b+A;K) = 0. If dist(b+A;K) > 0 we call (P) strongly infeasible, andif dist(b +A;K) = 0 we call (P) weakly infeasible. Remark that weakly infeasibility is impossiblein linear programming.Note that if (P) is weakly infeasible then there exists x(1), x(2), ..., such thatdist(x(k); b+A) + dist(x(k);K)! 0:It is now interesting to introduce the subvalue p� de�ned asp� := lim�#0 infx fcTx j dist(x; b+A) + dist(x;K) < �g:If (P) is infeasible then obviously p� =1, but the subvalue p� may be �nite (or even �1) if it isonly weakly infeasible. Examples of such phenomena can be found in Section 6.1.The subvalue p� is closely related to the dual optimal value d� in the following way:d� = ( p� =1; if (D) infeasible and (P) strongly infeasible�p�; otherwise, (1)(see [11, 23]). Similarly, the dual subvalue d� can be de�ned.General conic duality relation resembles the linear programming case very well if Slater's conditionholds, i.e. if (b+A) \ int K 6= ;. Under Slater's condition we havep� = p� = �d�: (2)Moreover, if p� > �1 then the dual optimum is attained, and the set of dual optimal solutions isbounded. 4



The above discussed duality provides a means to certify optimality. Farkas{type duality provides ameans to certify infeasibility. A Farkas{type dual solution, which we usually call a dual improvingdirection, is a vector z 2 A? \ K� with bTz < 0. Such a solution exists if and only if the primal isstrongly infeasible.Notice however that there exists no dual improving direction if (P) is only weakly infeasible. So,how can we certify infeasibility if (P) is only weakly infeasible? For this, we need the concept of adual improving direction sequence, which is a sequence z(1); z(2); : : : such thatlim supk!1 bTz(k) < 0; limk!1( dist(z(k);A?) + dist(z(k);K�)) = 0:Programs that have interior solutions, i.e. (b+A)\ int K 6= ;, are said to be strongly feasible. Wehave already remarked that if (P) is strongly feasible, then p� = p�. It is possible to certify thata problem is not strongly feasible, by using yet another type of dual solutions: nonzero dual lowerlevel directions. A nonzero dual lower level direction is by de�nition a vector 0 6= z 2 A?\K� suchthat bTz � 0. Such directions exist if and only if (P) has no interior feasible solutions [11, 23].For later use, we list here two general rules for dualizing cones. First, for any convex cone K � <nand invertible matrix M 2 <n�n, it holds that(MTK)� =M�1K�; (3)see [11, 23]. Second, for two convex cones K1 and K2, it holds thatK�1 \ K�2 = (K1 +K2)�: (4)The well known bipolar theorem povides a dual characterization of closed convex cones, viz.K = fx 2 <n j xTy � 0 8y 2 K�g:Similarly, the interior of a solid convex cone is characterized byint K = fx 2 <n j xTy > 0 80 6= y 2 K�g: (5)3 Self{DualitySelf{duality has been defined by Du�in [2] for conic convex programs that are formulated in theso{called symmetric form. More recently, Ye, Todd and Mizuno [30] formulated a linear programin a di�erent form, and argued that their program is self{dual since \the dual of the problem isequivalent to the primal". Below, we propose a definition of self{duality that does not depend onthe specific form in which the program is formulated.5



De�nition 1 A conic convex program CP(b; c;A;K) is � self{dual if � is a symmetric permutationmatrix such that c = �b; A? = �A; K� = �K:If, in addition, b = c = 0, then the program is said to be homogeneous.Notice from the above definition that a self{dual program is indeed its own dual, after a simplereordering of the variables. More precisely, if CP(b; c;A;K) is a � self{dual conic convex program,then �(b+A) = c+A?; �K = K�;so that x 2 <n is primal feasible if and only if �x is dual feasible, and, using the symmetry of �,cT = bT�;so that the primal objective value cTx is identical to the dual objective value bT(�x) for all x 2 <n.Notice also that K� = �K implies that K is closed; self{dual conic convex programs are thereforealways closed.Remark 1 The requirement that � is symmetric, i.e. � = �T, is natural. Namely, for anypermutation matrix �, there holds �T = ��1. From the relation A? = �A, it therefore followsusing (3) that �A = A? = (�T�A)? = ��1(�A)? = �TA;i.e. �A = �TA and similarly, �A? = �TA?. Hence, the relation A? = �A already implies somesymmetry.Below are two elementary results for self{dual conic convex programs.Lemma 1 Let A be a linear subspace of <n such that A? = �A for some symmetric permutationmatrix �. Then �PA = PA?�; �PA? = PA�:Proof. Since � is a symmetric permutation matrix, we know that �A? = �2A = A. Hence, theorthogonal decomposition x = y + z; y 2 A; z 2 A?is equivalent to �x = �y +�z; �y 2 A?; �z 2 A:6



From the above decompositions, it follows for arbitrary x that �PAx = �y and PA?�x = �yrespectively. 2Lemma 2 Let CP(b; c;A;K) be a � self{dual program where K is a solid convex cone. ThenyTPA�y = yTPA?�y = 12yT�y > 0 for all y 2 int K:Proof. Let y 2 int K, then �y 2 � int K = int �K = int K�;where in the first identity, we used the fact that � is an invertible matrix. Since K� is pointed,and 0 6= �y 2 int K�, it follows from (5) that0 < yT�y = yT�PAy + yT�PA?y:Using now Lemma 1 and the symmetricity of �, the lemma follows. 2The properties of self{dual conic convex programs result in a particularly nice form of weak{duality:Theorem 1 If CP(b; c;A;K) is a � self{dual conic convex program, thencTx = 12xT�x � 0for all x 2 (b+A) \ K.Proof. Since x� b 2 A, �x� c 2 A? and b?c, we have0 = (x� b)T(�x� c) = xT�x� bT�x� cTx = xT�x� 2cTx:Moreover, xT�x � 0 because x 2 K and �x 2 K�. 2If x� is a solution to a � self{dual program CP(b; c;A;K) and (x�)T�x� = 0, then x� is called aself{complementary solution. It follows from Theorem 1 that if x� is a self{complementary solution,then it is also an optimal solution.As before, we denote the optimal value and the subvalue of the conic convex program CP(b; c;A;K)by p� and p�, respectively. That is,p� := infx fcTx j x 2 (b+A) \ Kg; p� := lim�#0 infx fcTx j x 2 K; dist(x; b+A) < �g:7



If CP(b; c;A;K) is self{dual, then p� = �p�; (6)as follows from (1). Since p� � p�, we know that the optimal value p� is nonnegative, andthe subvalue p� is non-positive. This implies in particular that a self{dual program cannot beunbounded.4 Self{Dual EmbeddingThere are basically two di�erent types of dual variables involved in closed conic convex program-ming, viz.� Dual feasible solutions, and� Nonzero dual directions.The former yield lower bounds on the optimal value, and the latter concern the feasibility of theproblem. The homogeneous self{dual embedding, to be discussed in Section 4.1, combines bothtypes of dual variables into a single self{dual program. In Section 4.2, we will treat the extendedself{dual model, which is a strongly feasible self{dual model for which the optimal solution setcorresponds to feasible solutions of the homogeneous self{dual model.4.1 The Homogeneous Self{Dual ModelConsider a �SD self{dual program (SD),(SD) infxSDfcTSDxSD j xSD 2 (bSD +ASD) \ KSDg;i.e. (SD) is the conic convex program CP(bSD; cSD;ASD;KSD). We assume that KSD is solid. Theoptimal value of (SD) is denoted by p�SD. We introduce an invertible matrix M(bSD; cSD),M(bSD; cSD) := 2664 I bSD 00 1 0�cTSD 0 1 3775 ;and we let AH := M(bSD; cSD)(ASD �<� f0g); KH := KSD �<+ �<+:Applying (3), we have A?H =M(bSD; cSD)�T(A?SD � f0g � <);8



where M(bSD; cSD)�T = 2664 I 0 cSD�bTSD 1 00 0 1 3775 :Using the self{duality of (SD), it follows that CP(0; 0;AH;KH) is a homogeneous �H self{dualprogram with �H = 2664 �SD 0 00 0 10 1 0 3775 :This type of homogeneous self{dual program was proposed by Goldman and Tucker [4, 26] in thecontext of linear programming. The convex cone AH \ KH consists of those solutions (xSD; x0; z0)for which (H) 8>>><>>>: xSD 2 (x0bSD +ASD) \ KSD;x0 � 0;z0 = �cTSDxSD � 0:The concepts of complementary solution, improving direction and nonzero lower level direction for(SD) can be characterized in terms of the homogeneous program (0; 0;AH;KH) as follows:� xSD is a self{complementary solution to (SD) if and only if(xSD; 1; 0) 2 AH \ KH:� xSD is an improving direction for (SD) if and only if(xSD; 0; z0) 2 AH \ KH for some z0 > 0:� xSD is a nonzero lower level direction for (SD) if and only if(xSD; 0; z0) 2 AH \ KH n f0g for some z0 � 0:With the above observation, it is straightforward to prove the following theorem.Theorem 2 If (xSD; x0; z0) 2 AH \KH, thenxTSD�SDxSD = 0; x0z0 = 0:Moreover, if (xSD; x0; z0) 2 AH \ KH n f0g and (SD) is strongly feasible, then x0 > 0 and xSD=x0is a self{complementary solution of (SD). 9



Remark 2 It follows from Theorem 2 that if(xSD; 0; z0) 2 AH \ KH n f0g;then (SD) is not strongly feasible, i.e. it is either weakly feasible, or weakly infeasible, or stronglyinfeasible. However, if it is strongly infeasible, then it must have an improving direction x0SD and(x0SD; 0;�cTSDx0SD) 2 AH \ KH.Remark 3 Even if (SD) is not strongly feasible, it may have a self{complementary solution xSD,in which case (xSD; 1; 0) 2 AH \KH.4.2 The Extended Self{Dual ModelGiven a �SD self{dual program (SD), we have constructed a �H homogeneous self{dual model(0; 0;AH;KH), generalizing the Goldman{Tucker [4] model to conic convex programming. We willnow add a normalization constraint to the model, and we will make the program strongly dual. Thisresults in an extension of Ye, Todd and Mizuno's self{dual formulation [30] for linear programming,to the context of conic convex programming.Choose � 2 int KH, and let � := �TPAH�H�



PA?H�



22 :By construction, KH is solid, and we can apply Lemma 2 to conclude that � is a well definedpositive quantity. Define bE := �PAH�H�; cE := �PA?H�; (7)and notice from Lemma 1 that cE = �HbE: (8)Since cE is simply a permutation of bE and � > 0, we havekbEk2 = kcEk2 > 0:Using the definitions of cE and �, and then applying Lemma 2, we further havekbEk22� = kcEk22� = �kPA?H�k22 = �TPAH�H� = �T�H�2 : (9)We shall now study the conic convex program CP(bE; cE;AE;KH), whereAE := (AH \ Ker bTE) + Img cE:10



Just as in the homogeneous self{dual model, we partition the decision variable asxE = (xSD; x0; z0);with xSD 2 KSD, x0 2 <+ and z0 2 <+. Introducing an auxiliary variabley0 := �kcEk22 cTExE; (10)we can reformulate CP(bE; cE;AE;KH) as follows:(E) min ��T�H�=2� y0s:t: xE � y0� 2 AHbTExE = kbEk22xE 2 KH; y0 2 <:To see this, remark that by definition of cE,xE � y0� 2 AH () xE � y0� cE 2 AH:Since obviously, bTExE = kbEk22 () xE � bE 2 Ker bTE;we obtain from the above two relations and the fact that bE 2 AH, cE 2 A?H, thatxE � bE 2 AE () 8<: xE � y0� 2 AH;bTExE = kbEk22From the relation xE 2 y0�+AH, we obtain�T�H �PA?HxE� = �T�H �y0PA?H�� = y02 �T�H�;where we used Lemma 2 in the last identity. Using the definition of bE, it thus follows thatbTExE� = �T�HxE � y02 �T�H�:Combining this with (9), we obtain an alternative form for the normalization constraint of (E), viz.bTExE = kbEk22 () �T�HxE = 1 + y02 �T�H�: (11)It is obvious from (11) that the lower level sets of (E) are bounded. Moreover, it is now easilyverified that � 2 (bE + AE) \ int KH, i.e. � is an interior solution, which can serve as an initialsolution in interior point methods (remark that we can choose any � 2 int KH). The feasiblesolutions xE of (E) for which y0 = 0 correspond to those solutions of the homogeneous model (H)that are normalized by the constraint �T�HxE = �T�H�=2. The normalization guarantees that ify0 = 0, then xE is a nonzero direction of the homogeneous model (H).11



Theorem 3 The conic convex program CP(bE; cE;AE;KH) has the following properties:1. It is self{dual,2. It has an interior solution, viz. � 2 (bE +AE) \ int KH, and hence3. It has a self{complementary solution,4. Any self{complementary solution is a nonzero direction of CP(0; 0;AH;KH), and5. For any nonzero direction xE of the homogeneous program CP(0; 0;AH;KH), there exists � > 0such that �xSD is a self{complementary solution for CP(bE; cE;AE;KH).Proof.1. It is already known from (8) that cE = �HbE. Moreover, K�H = �HKH, since CP(0; 0;AH;KH)is self{dual. It remains to show that A?E = �HAE. To this end, we remark using (4) thatA?E = h (AH \ Ker bTE) + Img cE i?= (AH \ Ker bTE)? \ Ker cTE= (A?H + Img bE) \ Ker cTE= (A?H \ Ker cTE) + Img bE;where we used bE?cE in the last identity. Using (8) and the fact that A?H = �HAH, it followsthat A?E = �HAE.2. Using (11), it is easily verified that the solution xE = �, y0 = 1 satisfies all the constraints of(E).3. The self{dual program CP(bE; cE;AE;KH) has a self{complementary solution because it isstrongly feasible, see (2).4. Let xE be a self-complementary solution of (E). By definition, this means that0 = xTE�HxE = 2 kcEk22 y0:Consequently, y0 = 0 and xE 2 AH \ KH. Moreover, xE 6= 0 due to the normalizationconstraint (11).
12



5. Let xE 2 AH \ KH n f0g. Since �H� 2 int K�H, we obtain using (5) that�T�HxE > 0;so that �T�H��T�HxExE 2 hbE + (AH \ Ker bTE)i \ KH: 2Remark from Theorem 2 and Theorem 3 that if (SD) is strongly feasible and (x; x0; z0) is anoptimal solution of (E), then x=x0 is a self{complementary solution of (SD). Using the interiorpoint method [16], we can thus obtain an optimal solution to (SD) by solving the artificial program(E), for which we can choose an initial feasible solution � 2 int KSD. We will see in the nextsection that even if (SD) is not strongly feasible (in which case it may not be solvable), it is still agood idea to solve the embedding (E), if the solution method generates a so{called weakly centeredsequence.5 Weakly Centered SequencesUp to now, we did not use the special structure of the homogeneous program (H) in our study of theextended self{dual program (E). In this section however, we will focus on the full structure of (E),and we partition the decision variable as xE = (xSD; x0; z0), just like we did in the homogeneousmodel previously. Similarly, we write�T = h uTSD; u0; v0 i :Throughout this section, we make the following assumption:Assumption 1 The cone KSD is solid, i.e. int KSD 6= ;.Since � 2 int KH = ( int KSD)�<++ �<++, there holdsuSD 2 int KSD; u0 > 0; v0 > 0:We can now formulate the model (E) as follows:min (�T�H�=2)y0s.t. xSD � y0uSD 2 (x0 � y0u0)bSD +ASD (12)z0 � y0v0 = �cTSD(xSD � y0uSD) (13)�T�HxE = (1 + y0)�T�H�=2 (14)xSD 2 KSD; x0 2 <+; z0 2 <+; y0 2 <:13



Remark from (10) and Theorem 1 that(�T�H�=2)y0 = cTExE = x0z0 + (xT�SDx)=2: (15)In the sequel, we will analyze the behavior of weakly centered sequences for (E); the existence ofsuch sequences will be demonstrated in Section 7.De�nition 2 A sequence x(k)E = (x(k)SD; x(k)0 ; z(k)0 ) 2 (bE+AE)\KH, k = 1; 2; : : :, is weakly centeredif and only if there exists some constant ! 2 (0; 1) such thatx(k)0 z(k)0 � !cTEx(k)E > 0 for all k = 1; 2; : : : ; (16)and limk!1 cTEx(k)E = 0.Condition (16) is also known as the minimal centrality condition [25]. This condition holds true forall path{following algorithms, and for some potential reduction methods. In particular, Nesterovand Todd [18] developed a framework of primal{dual interior point algorithms for solving self{scaled conic convex programming, which is a subclass of conic convex programming that includeslinear programming and semidefinite programming, among others. All their algorithms generate asequence of weakly centered iterates. We remark here that if (SD) is a linear (semidefinite, self{scaled) programming problem, then (E) is also a linear (semidefinite, self{scaled) programmingproblem, since KH = KSD �<+ �<+.Since cTExE = (�T�H�=2)y0, see (9) and (10), it follows by definition that weakly centered sequencessatisfy x(k)0 z(k)0 � !(�T�H�=2)y(k)0 > 0 for all k = 1; 2; : : : :This immediately implies the following result.Lemma 3 Let x(1)E ; x(2)E ; : : : be a weakly centered sequence, thenlimk!1 y(k)0x(k)0 = 0 () limk!1 z(k)0 = 0;and limk!1 y(k)0z(k)0 = 0 () limk!1x(k)0 = 0:The lemma below shows a crucial property of weakly centered sequences: the components x(k)0 andz(k)0 avoid the boundary of the cone <+ essentially as much as possible.14



Lemma 4 Let xE = (x; x0; z0) 2 (bE + AE) \ KH and ! 2 (0; 1) be such that x0z0 � !cTExE > 0.For any x0E = (x0; x00; z00) 2 (bE +AE) \ KH there holdsx0 � !1 + (cTEx0E=cTExE)x00and z0 � !1 + (cTEx0E=cTExE)z00:Proof. Because x0E � xE 2 AE and �H(x0E � xE) 2 A?E , there holds0 = (x0E � xE)T�H(x0E � xE)= (x0E)T�Hx0E + xTE�HxE � 2xTE�Hx0E= 2cTE(x0E + xE)� 2xT�x0 � 2(x0z00 + z00x0): (17)Since x 2 K and �x0 2 K�, we have xT�x0 � 0. We thus obtain from (17) thatcTE(x0E + xE) � x0z00 + z0x00 (18)The lemma follows by multiplying (18) with x0=cTE(x0E + xE) and z0=cTE(x0E + xE) respectively. 2The argumentation that is used in the proof of Lemma 4 is due to G�uler and Ye [5].Theorem 4 below shows why weakly centered sequences are so interesting in the context of self{dualembeddings. Namely, if we can generate a weakly centered sequence for (E) then we can also solve(SD), whenever it has a complementary solution or an improving direction. In other cases, (SD)must be either weakly feasible or weakly infeasible, and we can generate a sequence of solutionsfor (SD), for which the amount of constraint violation converges to zero and the correspondingobjective values are in the limit contained in the interval [p�SD; p�SD].Theorem 4 Let x(k)E = (x(k); x(k)0 ; z(k)0 ), k = 1; 2; : : :, be a weakly centered sequence for (E). Thereholds1. lim infk!1 x(k)0 > 0 if and only if (SD) has a self{complementary solution. Moreover, if (SD)has a self{complementary solution then x(k)SD=x(k)0 , k = 1; 2; : : : is a bounded sequence andtherefore it has a cluster point x(1)SD . Any such cluster point x(1)SD is a self{complementarysolution of (SD).2. lim infk!1 z(k)0 > 0 if and only if (SD) is strongly infeasible. Moreover, if (SD) is stronglyinfeasible, then x(k)SD=z(k)0 , k = 1; 2; : : : is a bounded sequence and therefore it has a clusterpoint x(1)SD . Any such cluster pointx(1)SD is an improving direction of (SD). 15



3. If limk!1 z(k)0 = 0, then x(k)SD=x(k)0 is a sequence in KSD for whichlimk!1 dist(x(k)SDx(k)0 ; bSD +ASD) = 0; limk!1 cTSDx(k)SD + z(k)0x(k)0 = 0 � p�SD:4. If limk!1 z(k)0 =x(k)0 = 1, then (SD) is infeasible, and x(k)SD=z(k)0 is an improving directionsequence in KSD, viz. limk!1 dist(x(k)SDz(k)0 ;ASD) = 0; limk!1 cTSDx(k)SDz(k)0 = �1:Proof.1. Observe from Theorem 3 and the discussion in Section 4.1 we can conclude that (SD) hasa self{complementary solution if and only if (E) has an optimal solution (x�SD; x�0; 0) withx�0 > 0. From Lemma 4, we know that if (E) has an optimal solution (x�SD; x�0; 0) with x�0 > 0,then lim infk!1 x(k)0 � !x�0 > 0:The converse is also true, because the sequence (x(k)SD; x(k)0 ; z(k)0 ) is bounded (and hence it hasa cluster point, which must be an optimal solution to (E)).2. Similarly, (SD) is strongly infeasible if and only if the embedding (E) has an optimal solution(x�SD; 0; z�0) with z�0 > 0, which is equivalent with the relationlim infk!1 z(k)0 � !z�0 > 0:3. Suppose that limk!1 z(k)0 = 0, so that, using Lemma 3,limk!1 y(k)0x(k)0 = 0:Combining this with (12)-(13), we obtainlimk!1 dist(x(k)SDx(k)0 ; bSD +ASD) = 0; limk!1 cTSDx(k)SD + z(k)0x(k)0 = 0:4. Suppose that limk!1 z(k)0 =x(k)0 =1. Then x(k)0 ! 0 so that using Lemma 3,limk!1 y(k)0z(k)0 = 0:16



Combining this with (12)-(13), we obtainlimk!1 dist(x(k)SDz(k)0 ;ASD) = 0; limk!1 cTSDx(k)SDz(k)0 = �1:By definition, x(k)SD=z(k)0 is then an improving direction sequence, which implies that (SD) isinfeasible (see the discussion on Farkas{type duality in Section 2). 2Theorem 5 Let x(k)E = (x(k); x(k)0 ; z(k)0 ), k = 1; 2; : : :, be a weakly centered sequence for (E). Thereholds p�SD � lim supk!1 z(k)0x(k)0 :Proof. It is known from Theorem 4 that lim infk!1 z(k)0 > 0 if (SD) is strongly infeasible. Usinge.g. Lemma 3, it follows that lim infk!1 x(k)0 = 0, and hencep�SD = limk!1 z(k)0x(k)0 =1:Now suppose that (SD) is not strongly infeasible, or equivalently, lim infk!1 z(k)0 = 0. For thiscase, we know from Theorem 4 that x(k)SD=x(k)0 is a sequence in KSD, withlimk!1 dist(x(k)SDx(k)0 ; bSD +A) = 0:Therefore, we have the following inequality for the subvalue p�SD of (SD):p�SD � lim infk!1 cTSDx(k)SDx(k)0 = � lim supk!1 z(k)0x(k)0 :Using (6), the theorem follows. 2Remark 4 It follows from Theorem 5 that if lim supk!1(z(k)0 =x(k)0 ) =1, then (SD) is infeasible.Remark 5 Theorem 5 also shows that if there is no duality gap, i.e. p�SD = 0, thenlimk!1(z(k)0 =x(k)0 ) = 0:17



6 The Primal{Dual ModelUp to now, we have only considered self{dual embeddings for self{dual programs. However, theself{dual embedding technique is applicable to general closed conic convex programs, simply bycombining the original primal and dual programs into a single, self{dual program. To be morespecific, consider a closed conic convex program CP(b; c;A;K), and letbSD := h bT; cT iT ; cSD := h cT; bT iT ; (19)and ASD := A�A?; KSD := K �K�: (20)The program (SD) is easily seen to be �SD self{dual, with�SD = " 0 II 0 # :If CP(b; c;A;K) is both primal and dual feasible, then (b; c;A;K) and (SD) are equivalent, asfollows from the weak duality relation for conic convex programming. Therefore, it is interesting tostudy the self{dual embedding (E) of the above constructed self-dual model (SD). Since our basicinterest lies in the connection with the original program CP(b; c;A;K), we partition xSD and uSDas follows: xTSD = h xT; zT i ; uTSD = h uTp ; uTd i :Since (SD) is self{dual, the results of Theorems 4 and 5 are applicable. However, if (SD) hasno self{complementary solution, it is not fully equivalent with the original conic convex programCP(b; c;A;K). Below, we will therefore use the special structure of the primal{dual model, todeduce as much information as possible for CP(b; c;A;K) and its dual.Theorem 6 Consider a closed conic convex program CP(b; c;A;K) and let x(k)E , k = 1; 2; : : :, be aweakly centered sequence for the self{dual embedding (E), whereCP(bSD; cSD;ASD;KSD)is de�ned as in (19){(20). Then1. (SD) has a self{complementary solution if and only if lim supk!1 x(k)0 > 0.2. (SD) is strongly infeasible if and only if lim supk!1 z(k)0 > 0.
18



3. If limk!1 z(k)0 = 0 thenlimk!1 dist(x(k)x(k)0 ; b+A) = 0; lim supk!1 cTx(k) + z(k)0x(k)0 � p�and d� � � lim infk!1 cTx(k)x(k)0 � � lim supk!1 cTx(k) + z(k)0x(k)0 :Proof. The cases of self{complementarity and strong infeasibility are known from Theorem 4.If limk!1 z(k)0 = 0 then neither (P) nor (D) is strongly infeasible, and it follows from (1) thatp� = �d�; p� = �d�: (21)Moreover, we know from Theorem 4 thatlimk!1 dist(x(k)x(k)0 ; b+A) = 0;so that by definition of the subvalue,p� � lim infk!1 cTx(k)x(k)0 ; d� � lim infk!1 bTz(k)x(k)0 : (22)Moreover, using (13) and Lemma 3, it follows thatlimk!1 cTx(k) + bTz(k) + z(k)0x(k)0 = 0: (23)Combining (21){(23), the theorem follows. 2Some remarks concerning Theorem 6 have to be made:Remark 6 The case of self{complementarity was already known from Theorem 4, which alsostates that self{complementarity will be demonstrated by a self{complementary solution, say x�SD =(x�; z�). It is obvious that (x�; z�) is then a complementary solution pair for (P) and (D).Remark 7 Similarly, we know from Theorem 4 that strong infeasibility will be demonstrated byan improving direction, say x�SD = (x�; z�). In this case, we have cTx� + bTz� < 0, so that eithercTx� and bTz� are both negative, or exactly one of the quantities cTx� and bTz� is negative, saycTx� < 0 and bTz� � 0. In the former case, z� and x� demonstrate primal and dual stronginfeasibility respectively. In the latter case, it follows that (D) is strongly infeasible, but we do nothave complete information about (P): (P) can be either unbounded or infeasible.19



Remark that by definition, (P) is unbounded if and only if p� = �1, and (D) is infeasible if andonly if d� =1. The following is therefore a consequence of Theorem 6.Corollary 1 If (P) is unbounded and (D) is weakly infeasible, thenlimk!1 z(k)0 = 0; limk!1 cTx(k) + z(k)0x(k)0 = �1:Conversely, if limk!1 z(k)0 = 0; limk!1 cTx(k) + z(k)0x(k)0 = �1; (24)then (D) is weakly infeasible and either (P) is unbounded or p� > �d�.Remark 8 If (P) is strongly feasible, then p� = �d�, see (2), and Corollary 1 characterizes thecase of primal unboundedness. In general however, we cannot conclude unboundedness from (24),as is illustrated later in this chapter by Example 7.There are still some cases that are not described by Theorem 6 and Corollary 1. Namely, it canhappen that� p� is finite, and p� = �d�, but (P) is not solvable,� p� and d� are finite, but p� + d� > 0,� (P) is weakly feasible, but (D) is weakly infeasible,� (P) and (D) are both weakly infeasible.In all these remaining cases, we will obtain some partial information, based on the value oflim supk!1 z(k)0 =x(k)0 .Theorem 7 Consider a closed conic convex program CP(b; c;A;K) and let x(k)E , k = 1; 2; : : :, bea weakly centered sequence for the self{dual embedding (E), where we use the primal{dual modelCP(bSD; cSD;ASD;KSD) as de�ned in (19){(20). Suppose that limk!1 x(k)0 = limk!1 z(k)0 = 0 andlim infk!1 cTx(k) + z(k)0x(k)0 > �1; lim infk!1 bTz(k) + z(k)0x(k)0 > �1:Then1. If lim supk!1 z(k)0 =x(k)0 =1, then (SD) is weakly infeasible, and p� 6= �d�. Hence, p�+d� =1. Moreover, x(k)SD=z(k)0 , k = 1; 2; : : :, is an improving direction sequence.20



2. If 0 < lim supk!1 z(k)0 =x(k)0 < 1, then p� 6= �d� and neither (P) nor (D) is strongly feasi-ble. Moreover, 


x(k)


 > 0 for all su�ciently large k, and any cluster point of the sequencex(k)= 


x(k)


 is a nonzero lower level direction, demonstrating the fact that (D) is not stronglyfeasible.3. If lim supk!1 z(k)0 =x(k)0 = 0, we have the following:� If limk!1 


x(k)


 =x(k)0 = 1, then (D) is not strongly feasible. Moreover, 


x(k)


 is pos-itive for all su�ciently large k, and any cluster point of the sequence x(k)= 


x(k)


 is anonzero lower level direction, demonstrating the fact that (D) is not strongly feasible.� Otherwise, i.e. if lim infk!1 


x(k)


 =x(k)0 < 1, then (P) is solvable and weakly feasible.Moreover, any cluster point of the sequence x(k)=x(k)0 is an optimal solution for (P) andlim infk!1 cTz(k)=x(k)0 = �p�.Proof.1. It is already known from Theorem 4 that if lim supk!1 z(k)0 =x(k)0 = 1, then (SD) is weaklyinfeasible, and x(k)SD=z(k)0 , k = 1; 2; : : :, is an improving direction sequence. Using Corollary 1,we have p� > �1 and d� > �1, and it follows that p� + d� =1 and p� 6= �d�.2. We use that p� > �1 and d� > �1 to conclude from Theorem 5 that iflim supk!1 z(k)0 =x(k)0 > 0;then p�+d� > 0. Together with (2), this implies that neither (P) nor (D) is strongly feasible.Using Theorem 6, we know that the sequence x(k)=x(k)0 cannot have any cluster point. Namely,if x is such a cluster point then x 2 (b+A)\K and cTx < p�, a contradiction. Consequently,limk!1 


x(k)


 =x0 = 1 and we obtain from (12) that any cluster point x� of the sequencex(k)= 


x(k)


 is a nonzero direction, i.e. 0 6= x� 2 A \ K. Dividing (13) by x0, and usingLemma 3, we have lim supk!1 cTx(k)x(k)0 = � lim infk!1 bTz(k) + z(k)0x(k)0 <1;where the inequality is an assumption of the lemma. Since x(k)0 = o(kx(k)k), this inequalityimplies that cTx� � 0, i.e. x� is a lower{level direction.3. Suppose that lim supk!1 z(k)0 =x(k)0 = 0. The case that limk!1 


x(k)


 =x(k)0 = 1 is com-pletely analogous to the case 0 < lim supk!1 z(k)0 =x(k)0 < 1, which has been treated above.21



If lim infk!1 


x(k)


 =x(k)0 < 1, then the sequence x(k)=x(k)0 must have a cluster point,and it follows from Theorem 6 that such a cluster point is an optimal solution for (P).We also know from Theorem 6 that there is no complementary solution pair, and hencelimk!1 


z(k)


 =x(k)0 = 1. We have already seen above that this implies that any clusterpoint of z(k)= 


z(k)


 is a dual lower level direction, demonstrating weak feasibility of (P).From (13) and lim supk!1 z(k)0 =x(k)0 = 0, it follows that lim infk!1 cTz(k)=x(k)0 = �p�. 2Solving the self{dual embedding (E) is really equivalent to solving (P) if (P) is strongly feasible,as the following theorem shows.Theorem 8 Consider a closed conic convex program CP(b; c;A;K), and suppose that it is primalstrongly feasible. Let x(k)E , k = 1; 2; : : :, be a weakly centered sequence for the self{dual embedding(E), where CP(bSD; cSD;ASD;KSD) is de�ned as in (19){(20). Then CP(b; c;A;K) is1. Solvable if and only if lim infk!1 x(k)0 > 0:Moreover, if (P) is solvable, then any cluster point of the (bounded) sequence((x(k)x(k)0 ; z(k)x(k)0 ) �����k = 1; 2; : : :) ;is a complementary solution pair. (Cf. Theorem 6.)2. Unbounded and dual strongly infeasible if and only iflim infk!1 z(k)0 > 0:Moreover, if (D) is strongly infeasible then any cluster point of the (bounded) sequencex(1); x(2); : : : is a primal improving direction, certifying the dual strong infeasibility. (Cf.Theorem 6 and Remark 7.)3. Unbounded and dual weakly infeasible if and only iflimk!1 z(k)0 = 0; limk!1 cTx(k) + z(k)0x(k)0 = �1: (25)Moreover, if (D) is weakly infeasible then x(k)=z(k)0 , k = 1; 2; : : : is a primal improving directionsequence, certifying the dual weak infeasibility. (Cf. Corollary 1.)22



4. Dual weakly feasible and not primal solvable, if and only iflimk!1x(k)0 = 0; limk!1 z(k)0 =x(k)0 = 0:Moreover, if (D) is feasible and (P) is not solvable, then� z(k)=x(k)0 , k = 1; 2; : : :, is a bounded sequence, and any cluster point of this sequence is adual optimal solution.� Any cluster point of the sequence x(k), k = 1; 2; : : : is a nonzero lower level direction,certifying that (D) is not strongly feasible.� x(k)=x(k)0 , k = 1; 2; : : : is a sequence of approximate primal solutions, withlimk!1 cTx(k)x(k)0 = p�; limk!1 dist(x(k)x(k)0 ; b+A) = 0:(Cf. Theorem 7.)Applying Theorem 6, Corollary 1 and Theorem 7, it is straightforward to prove Theorem 8.Only slightly weaker results than those of Theorem 8 hold under the condition that p� = �d�,without requiring primal strong feasibility. Such results are then applicable to Ramana's regularizedsemidefinite programs [21]. See De Klerk, Roos and Terlaky [7] for a discussion of the self{dualembedding for regularized semidefinite programs.6.1 Examples in Semidefinite ProgrammingSeveral primal-dual interior point algorithms have been extended from linear to semidefinite pro-gramming, see [8, 9, 15, 17, 24, 23], among others. All these algorithms generate a sequence ofweakly centered iterates, so that all results of Section 6 are applicable.We will illustrate the theory of weakly centered sequences for (E) with some semidefinite program-ming problems, i.e. K = K� = H+. We continue with our convention that given a Hermitianmatrix Y 2 H(n), the lower case symbol y denotes vecH Y , which is the coordinate vector of Ywith respect to a fixed orthonormal basis of the real linear space H(n) of Hermitian �n� �n matrices.Letting n denote the dimension of H(n), i.e. n = �n2, it follows that y 2 <n. The pair of primal anddual semidefinite programming problems is(P) inffC �X j X 2 (B +A) \H+g;and (D) inffB � Z j Z 2 (C +A?) \H+g:23



Since I 2 H++, we can choose � = h uTp ; uTd ; uT0 ; vT0 iT as follows:Up = Ud = I; u0 = v0 = 1:With this choice, there holds �T�H�2 = �n+ 1:We obtain the following formulation of the extended self{dual model (E) from (12){(14), by spe-cializing it to semidefinite programming.min (�n+ 1)y0s.t. X � y0I 2 (x0 � y0)B +AZ � y0I 2 (x0 � y0)C +A?z0 � y0 = �C � (X � y0I)�B � (Z � y0I)tr X + tr Z + x0 + z0 = (1 + y0)(�n+ 1)X � 0; Z � 0; x0 � 0: z0 � 0; y0 2 <:Weakly centered sequences will now be parameterized by a continuous parameter � > 0 such thatlim�#0 y0(�) = 0:We will only discuss those di�icult cases where lim�#0(x0(�) + z0(�)) = 0.First, we consider a weakly infeasible problem.Example 1 (Weakly infeasible) Let �n = 2 andB = " 0 10 # ; C = " 0 01 # ; A = (X �����X = " 0 0x22 #) :The primal is weakly infeasible,p� = inf (x22 ����� X = " 0 1x22 # � 0) =1and the dual is strongly feasible and unbounded,d� = inf (2z12 ����� Z = " z11 z121 # � 0) = �1:We construct a weakly centered sequence for 0 < � � 1=3 as follows:X(�) = �3I + " 0 �2� # ; Z(�) = �3I + " 3� (2�+ 2�2 + 3�3) ���2 # ;24
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Figure 2: Example 2y0(�) = �3; x0(�) = �2 + �3; z0(�) = �+ �3:We see that lim�#0 z0(�) = 0; lim�#0 B � Z(�) + z0(�)x0(�) = �1;which indeed implies that the dual is unbounded and the primal is weakly infeasible, see Theorem 8.Finally, notice that lim�#0 z0(�)x0(�) =1:In order to be able to solve the self{dual embedding (E), we specialized the predictor-correctoralgorithm for semidefinite programming (with Nesterov{Todd type primal{dual directions [18, 17,24]) to the special structure of (E). The plots below show the numerical results for the examples inthis section. The solid lines represent the primal objective valuesC �X(k)x(k)0 � y(k)0 ; C �X(k) + z(k)0x(k)0 � y(k)0 ;whereas the dual objective values B � Z(k)x(k)0 � y(k)0 ; B � Z(k) + z(k)0x(k)0 � y(k)0are represented by dashed lines. Recall from Theorem 6 that in the limit, (C�X(k)+z(k)0 )=(x(k)0 �y(k)0 )and (B � Z(k) + z(k)0 )=(x(k)0 � y(k)0 ) provide lower bounds on p� and d� respectively.The next example, which is from Vandenberghe and Boyd [27], gives a feasible problem, wherestrong duality fails to hold. 25



Example 2 (Weakly dual) Let �n = 3 andB = 2664 0 1=3 00 01=3 3775 ; C = 2664 0 �1=3 00 02=3 3775 ;A = 8>><>>:X �������� X = 2664 x11 �x33=2 x130 x23x33 37759>>=>>; ;so that the primal is solvable and weakly feasible,p� = inf8>><>>:23x33 � 23x12 �������� X = 2664 x11 (1� x33)=2 x130 x23x33 3775 � 09>>=>>; = 23and the dual is also solvable and weakly feasible,d� = inf8>><>>:13z33 + 23z12 �������� Z = 2664 0 z33 � 1 0z22 0z33 3775 � 09>>=>>; = 13 :Remark that p�+d� = 1 > 0 so that strong duality fails. A weakly centered sequence for 0 < � � 1=2is given by X(�) = �2I + 2664 1 �=2 00 00 3775 ; Z(�) = �2I + 2664 0 �� 03� (2�+ 4�2) 00 3775 ;y0(�) = �2; x0(�) = �+ �2; z0(�) = �+ �2so that lim�#0 z0(�)x0(�) = 1;which indeed implies that p� 6= �d�, see Theorem 7.The third case is a problem where strong duality holds, but there exists no complementary solutionpair (see Vandenberghe and Boyd [27]).Example 3 (Strongly dual) Let �n = 2 andB = " 0 01 # ; C = " 0 10 # ; A = (X ����� X = " 0 x120 #) ;26
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Figure 4: Example 4so that the primal is solvable and weakly feasible,p� = inf (2x12 ����� X = " 0 x121 # � 0) = 0and the dual is strongly feasible but not solvable,d� = inf (z22 ����� Z = " z11 1z22 # � 0) = 0:Notice that p� + d� = 0, but the dual has no optimal solution. A weakly centered sequence for0 < � � 1=3 isX(�) = �3I + " 0 ��2� # ; Z(�) = �3I + " 3� (2�+ 3�2 + 3�3) ��2 # ;y0(�) = �3; x0(�) = �+ �3; z0(�) = 2�2 + �3:Hence, lim�#0 x0(�) = 0; lim�#0 z0(�)x0(�) = 0;which indeed holds if and only if the primal is weakly feasible and the dual is not solvable, seeTheorem 8.So far, we have seen a weakly infeasible problem with lim�#0 z0(�)=x0(�) = 1, a feasible prob-lem with only weak duality and lim�#0 z0(�)=x0(�) 2 (0;1) and a strongly dual problem with27



lim�#0 z0(�)=x0(�) = 0. The reader may wonder whether the asymptotic behavior of the indicatorz0(�)=x0(�) completely characterizes the three cases that we consider. Unfortunately, this is notthe case, as the next example shows.Example 4 (Weakly infeasible) Let �n = 2, and considerB = " 0 10 # ; C = 0; A = (X ����� X = " 0 0x22 # � 0) :The primal is weakly infeasible,p� = inf (0 ����� X = " 0 1x22 # � 0) =1;and the dual is solvable and weakly feasible,d� = inf (2z12 ����� Z = " z11 z120 # � 0) = 0:We construct a weakly centered sequence for 0 < � � 1=3 asX(�) = �2I + " 0 �1 # ; Z(�) = �2I + " 2� 3(�+ �2) ��0 # ;y0(�) = �2; x0(�) = �+ �2; z0(�) = 2�+ �2:We see that lim�#0 z0(�)x0(�) = 2:The reader may still wonder whether we can distinguish weak infeasibility from strong duality.It appears somewhat di�icult indeed, to construct an example of an infeasible problem wherez0(�)=x0(�)! 0, but it does exist.Example 5 (Weakly infeasible) Let �n = 3 andB = 0; C = 2664 0 �1 00 00 3775 ; A = 8>><>>:X �������� X = 2664 x11 x12 x130 �x11=2x33 37759>>=>>; :The primal is solvable and weakly feasible,p� = inf8>><>>:�2x12 �������� X = 2664 x11 x12 x130 �x11=2x33 3775 � 09>>=>>; = 028
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Figure 6: Example 6and the dual is weakly infeasible,d� = inf8>><>>:0 �������� Z = 2664 z11 �1 0z22 z110 3775 � 09>>=>>; =1:We construct a weakly centered sequence for 0 < � � 1=3 byX(�) = �4I + 2664 �2 �3=2 00 ��2=21 3775 ;Z(�) = �4I + 2664 �2 �� 03� (�+ 2�2 + �3 + 4�4) �20 3775 ;y0(�) = �4; x0(�) = �+ �4; z0(�) = �3 + �4;so that lim�#0 z0(�)x0(�) = 0:After Example 5 there is little hope that feasibility with lack of strong duality would implylim sup�#0 z0(�)=x0(�) > 0. Indeed, we can construct a feasible problem with only weak dualitybut lim�#0 z0(�)=x0(�) = 0. 29



Example 6 (Weakly dual) Let �n = 4 andB = 2666664 0 1=3 0 00 0 00 01=3
3777775 ; C = 2666664 0 �1=3 0 00 0 00 02=3

3777775 ;
A = 8>>>>><>>>>>:X ����������� X = 2666664 x11 �x44=2 x13 x140 �x11=2 x24x33 x34x44

37777759>>>>>=>>>>>; :The primal is solvable and weakly feasible,p� = inf8>>>>><>>>>>:23x44 � 23x12 ����������� X = 2666664 x11 (1� x44)=2 x13 x140 �x11=2 x24x33 x34x44
3777775 � 09>>>>>=>>>>>; = 23 ;and the dual is also solvable and weakly feasible,d� = inf8>>>>><>>>>>:23z12 + 13z44 ����������� Z = 2666664 z11 z44 � 1 0 0z22 z11 00 0z44

3777775 � 09>>>>>=>>>>>; = 13 :Hence, p� + d� = 1 > 0, so that strong duality fails. Remark that the �rst three rows and columnsof this program are the same as in Example 5, with the additional constraintsx12 = 1� x442 � 12 ; z12 = z44 � 1 � �1:As a consequence, we can construct a weakly centered sequence that is very similar to the one inExample 5, viz. X(�) = �4I + 2666664 �2 �3=2 0 00 ��2=2 01 0�� �3
3777775 ;

Z(�) = �4I + 2666664 �2 �� 0 04� (2�+ 2�2 + 5�4) �2 00 00
3777775 ;30



lim sup�#0 z0(�)=x0(�)0 (0;1) 1p�SD =1 Example 5 Example 4 Example 1p�SD 2 (0;1) Example 6 Example 2 impossiblep�SD = 0 Example 3 impossible impossibleTable 1: Distinguishing the di�icult cases where x(k)0 + s(k)0 ! 0y0(�) = �4; x0(�) = �+ �4; z0(�) = �3 + �4;and lim�#0 z0(�)x0(�) = 0:Our results on the indicator lim sup�#0 z0(�)x0(�)are summarized in Table 1. The possible combinations in the table are illustrated by Examples 1{6.The impossibility of the remaining combinations follows from Theorem 5; see also Remark 4 andRemark 5.As promised in Remark 8, we will now give an example wherelim�#0 cTx(�) + s0(�)x0(�) = �1;but (P) is not unbounded. We consider this as an extremely nasty case, since it impliesbTs(�)=x0(�)!1even though d� = �p� <1.Example 7 We consider a semide�nite program, which has some similarity to Example 5, viz.p� = inf8>>>>>>><>>>>>>>:2x45
�������������
266666664 x11 �x55=2 x13x22 x110 1 x45x55

377777775 � 09>>>>>>>=>>>>>>>; = 0;for which the dual is weakly infeasible,d� = inf8>>>>>>><>>>>>>>:z44
�������������
266666664 z11 z55 00 �z11=2z33 z44 1z55

377777775 � 09>>>>>>>=>>>>>>>; =1:
31
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Figure 7: Example 7Notice however, that d� = 0. We construct a weakly centered sequence for small � byX(�) = �12I + 266666664 �6 ��3=2 03�O(�3) �6�12 �7 ��5�3
377777775 ;

Z(�) = �12I + 266666664 �6 �9 0�12 ��6=23�O(�3) �5 �7�9
377777775 ;y0(�) = �12; x0(�) = �7 + �12; z0(�) = �5 + �12:We have lim�#0 cTx(�) + z0(�)x0(�) = �2�5 + �5 + �12�7 + �12 = �1;but (P) is not unbounded. See Corollary 1 and Remark 8.7 Existence of Weakly Centered SequencesIn this section, we will prove the existence of a weakly centered sequence for (E), if we use theprimal{dual model CP(bSD; cSD;ASD;KSD) of Section 6. In fact, we will give a constructive proof32



using the theory of logarithmically homogeneous barriers, which has been developed by Nesterovand Nemirovsky [16].De�nition 3 Let K be a closed, solid and pointed convex cone. Then F : int K ! < is a �-logarithmically homogeneous barrier for K if F is a twice continuously di�erentiable convex functionon int K such that F (x(i))!1 for any sequence x(i) in int K, i = 1; 2; : : :, that converges to theboundary of K, and F (tx) = F (x)� � log t for all x 2 int K; t > 0; (26)where � � 1 is a �xed parameter.It is known that any closed, pointed and solid convex cone K is endowed with a logarithmicallyhomogeneous barrier, see Theorem 2.5.1 in [16]. Moreover, Proposition 2.3.5 in [16] states thatlogarithmically homogeneous barriers are strictly convex functions. Important special cases arethe n-logarithmically homogeneous barrier F (x) = �Pni=1 log xi for the cone K = <n+, and then-logarithmically homogeneous barrier F (X) = � log detX for the cone K = H(n)+ .Let F (x) be a �-logarithmically homogeneous barrier for K, and define its conjugate (or Legendre{Young{Fenchel transform) by F �(z) := supx2 int Kf(�z)Tx� F (x)g: (27)Notice that if z 62 K�, then (�z)Tx > 0 for some x 2 int K, which together with (26) impliesF �(z) = 1. In fact, Nesterov and Nemirovsky [16] showed that F �(z) is a �-logarithmicallyhomogeneous barrier for K� (see Theorem 2.4.4 therein). Hence, F �(z) < 1 if and only if z 2int K�. Moreover, the biconjugate F �� of F is again F , i.e. F (x) = F ��(x), see e.g. Rockafellar [22].Let x 2 int K. Using definition (27) and the first order optimality conditions for concave maxi-mization, it follows that F �(z) = (�z)Tx� F (x) if z = �rF (x);from which we obtain �rF (x) 2 int K�; (28)and rF �(z) = �x if z = �rF (x): (29)Using (26), it is straightforward to show thatrF (x=t) = trF (x) for all t > 0; (30)and rF (x)Tx = ��: (31)33



The above properties of F are also listed by Nesterov and Todd [17] and Nesterov, Todd and Ye [19].Based on the barrier F , one can define a barrier path with parameter � > 0, see Theorem 9 below. Inthe case of semidefinite programming, the central path is the barrier path for F (x) = � log(detX).Theorem 9 (barrier path) Let K be a convex cone that is closed, pointed and solid. Suppose thatCP(b; c;A;K) is a conic convex program that is primal and dual strongly feasible. Let F : int K ! <be a �-logarithmically homogeneous barrier for K, and de�ne��(x) := (�c)Tx� �F (x);with � > 0. Then there exists a unique vector x(�) 2 (b+A) \ int K such that��(x(�)) = maxf��(x) j x 2 (b+A) \ int Kg:Moreover, letting z(�) := ��rF (x(�)), there holdsx(�)Tz(�) = ��; x(�) = ��rF �(z(�));and z(�) = argmaxf(�b)Tz � �F �(z) j z 2 (c+A?) \ int K�g:Proof. First, notice that ��(�) is a concave function. Moreover, for all x 2 (b +A) \ int K andz 2 (c+A?) \ int K�, there holds��(x) = bTz � zTx� �F (x) � bTz + �F �(z=�):Hence, ��(x) is bounded from above on (b + A) \ int K, and since ��(�) is a strictly concavefunction, it follows that ��(�) achieves a maximum, and the maximizer x(�) is unique. From thefirst{order optimality conditions, we know that x(�) satisfiesr��(x(�)) = �c� �rF (x(�)) 2 A?:Letting z(�) := ��rF (x(�)), it follows from (28) that z(�) 2 (c + A?) \ int K�, and using(29){(30), we have x(�) = �rF �(z(�)=�) = ��rF �(z(�));so that �b� �rF �(z(�)) 2 A:The above relation shows that z(�) satisfies the optimality conditions formaxf(�b)Tz � �F �(z) j z 2 (c+A?) \ int K�g:34



Finally, it follows from (31) thatz(�)Tx(�) = ��rF (x(�))Tx(�) = ��: 2We now propose the following barrier for K �K�,FSD(x; z) := F (x) + F �(z):Using (26), we see that FSD(x; z) is a 2�{logarithmically homogeneous barrier, and from definition(27) and the fact that F (x) = F ��(x), we obtain thatF �SD(z; x) = FSD(x; z):This leads to the following definition:De�nition 4 Let K be a solid convex cone such that K� = �K for some symmetric permutationmatrix �. A �{logarithmically homogeneous barrier F : int K ! < for K is � self{conjugate ifand only if F �(�x) = F (x) for all x 2 int K:For the extended self{dual model (E), we defineFE(xSD; x0; z0) := FSD(xSD)� log x0 � log z0;where FSD is a (2�){logarithmically homogeneous �SD self{conjugate barrier for KSD. It is easyto verify that FE is then a (2�+2){logarithmically homogeneous �H self{conjugate barrier for KH.Since (E) is strongly feasible (see Theorem 3), we can apply Theorem 9 to arrive at the followingresult.Theorem 10 De�ne ��(xE) := (�cE)Tx� �FE(xE);and let xE(�) := argmaxf��(xE) j xE 2 (bE +AE) \ int KEg:Then x0(�)z0(�) = � = 1� + 1cTExE(�)and lim�#0 cTExE(�) = 0. 35



Proof. From Theorem 9, we know that xE(�) is well defined, andxE(�)TzE(�) = 2(� + 1)�; xE(�) = ��rF �E(zE(�));where zE(�) := ��rFE(xE(�)). In addition, Theorem 9 tells us that zE(�) is the maximizer of thefunction �bTEzE � �F �E(zE) = ��(�HzE) over all dual interior solutions zE, and thereforexE(�) = �HzE(�) = ���HrFE(xE(�)): (32)Noticing that rFE(xE) = h rFSD(xSD)T; �1=x0; �1=z0 iT ;we obtain from (32) that x0(�) = �=z0(�):Hence, x0(�)z0(�) = � = 12(� + 1)xE(�)TzE(�) = 1� + 1cTExE(�);where we used Theorem 1. 2Theorem 10 shows that fxE(�) j � > 0g is a weakly centered sequence for (E).We have used the theory of logarithmically homogeneous barriers, to establish the existence ofweakly centered sequences for conic convex programming. In the special case of semidefinite pro-gramming however, there is no need for this barrier argument. Namely, consider the primal{dualpath{following methods such as treated in e.g. [8, 9, 15, 17, 24, 23]. We may initialize these meth-ods with a primal{dual pair (x(0)E ; z(0)E ) that satisfies z(0)E = �Hx(0)E , i.e. the initial primal and dualsolutions are essentially the same. In particular, we may start with the identity solution, as ex-plained in Section 6.1. It is then easily checked that all subsequent iterates (x(k)E ; z(k)E ) also satisfysuch a property. Namely, primal{dual path{following algorithms generate iterates in a so{calledN�1(�){neighborhood of the central path,which by de�nition implies that x(k)0 z(k)0 � (1� �)(x(k)E )Tz(k)E2n+ 2 :This shows that iterative sequences in the N�1(�){neighborhood are weakly centered with ! =(1� �)=(n+ 1).
36



8 ConclusionsIn this paper, we addressed questions such as how to solve a general conic convex program andcertify the solution(s) obtained. It turned out that a conic convex program can be in one or moreof the following states: 1) It is solvable; 2) It is weakly infeasible; 3) It is strongly infeasible; 4) Itis weakly feasible; and 5) It is strongly feasible. Certi�cates verifying a given state involve the dualsolutions. To get a complete picture about the problem, we need to solve a primal{dual embeddedsystem, for which we studied relevant properties. As a natural next step, we showed how the self{dual embedding technique [30] for linear programming can be extended to this general case. By acentral path following method, we further proved that a weakly centered sequence for the self{dualembedding system will be generated, which indeed provides much information about the solutionto the original problem. By various examples from semide�nite programming, we demonstratedseveral intricate cases which can never occur in linear programming. We conclude from this studythat solving a general conic convex program requires substantially more e�ort and care than solvinga classical linear programming problem. Nevertheless, it is also clear from our study that the self{dual embedding technique and the path{following methodology provide good tools for solving conicconvex programming problems, as long as an easy computable self{concordant barrier of the coneis available.We remark that similar techniques can be used to deal with the strict feasibility problem:Find x 2 (b+A) \ int K: (33)This includes the problem of �nding a matrix satisfying a set of matrix inequalities strictly; suchproblems arise in stability analysis for linear di�erential inclusions [1]. If we use an algorithm thatproduces a maximally complementary solution, such as the path{following algorithm for semide�-nite programming [6], then the self-dual embedding technique can be applied directly on (P) withc = 0, to solve the strict feasibility problem. But if the algorithm generates merely weakly centeredsequences, then we should apply the embedding technique to the following, auxiliary problem:Find x; t such that x� � 2 K and x� tb 2 A;where � is a given vector in the interior of K. If (33) has a solution, then it is even possible to �ndit in �nite time (in the real number computational model). Otherwise, i.e. if (33) has no solution,then we obtain in the limit a certi�cate z satisfying�Tz < 0; bTz = 0; z 2 A? \ K�;which indeed demonstrates infeasibility of (33). 37
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