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ABSTRACT

How to initialize an algorithm to solve an optimization problem is of great theoretical and practical
importance. In the simplex method for linear programming this issue is resolved by either the
two-phase approach or using the so-called big M technique. In the interior point method, there is
a more elegant way to deal with the initialization problem, viz. the self-dual embedding technique
proposed by Ye, Todd and Mizuno [30]. For linear programming this technique makes it possible
to identify an optimal solution or conclude the problem to be infeasible/unbounded by solving its
embedded self-dual problem. The embedded self-dual problem has a trivial initial solution and
has the same structure as the original problem. Hence, it eliminates the need to consider the
initialization problem at all. In this paper, we extend this approach to solve general conic convex
programming, including semidefinite programming. Since a nonlinear conic convex programming
problem may lack the so-called strict complementarity property, it causes difficulties in identifying
solutions for the original problem, based on solutions for the embedded self-dual system. We provide
numerous examples from semidefinite programming to illustrate various possibilities which have no

analogue in the linear programming case.
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1 Introduction

Like many other optimization methods, interior point methods are iterative in nature. That is, given
an interior non-optimal solution, an interior point method would produce a sequence of improving
solutions iteratively. Hence, an important question is: How can we get hold of an interior solution
to activate the method? A similar question can be asked when one applies the simplex method
to solve linear programming problems, because the simplex method assumes the availability of a
feasible basic solution to start with. In that case, a common practice is to introduce an auxiliary
problem for which a feasible basic solution is known and by solving the auxiliary problem, one can
either conclude infeasibility, or indeed obtain a basic feasible solution of the original problem as
desired. This is the well-known two-phase approach for the simplex method. A disadvantage of
the two-phase approach is that in the feasibility phase, the objective function does not play any
role, and consequently the feasible solution obtained may be far from any optimum. A remedy in
this respect, is the so-called big M method, which is basically a penalty approach trying to drive
the infeasible elements out of the basis as soon as possible. Nevertheless, the big M method works
pretty much the same as the two-phase method, since it gives an absolute priority to the feasibility

over the objective value.

The situation for the interior point methods is different. Not so long after the regular interior
point methods for linear programming received intensive investigation, quest on the initialization
issue led to the development of the so-called infeasible interior point methods; see Mizuno [14] for
a survey. An infeasible interior point method starts with a possibly infeasible interior solution,
and the iterates move towards an optimal solution of the original problem, if it exists, while reduc-
ing the feasibility residuals and the duality gap simultaneously. This technique was implemented
in the highly successful interior point code OB1 of Lustig, Marsten and Shanno [12, 13] on the
Netlib test problems [3]. However, when the original problem is either infeasible or unbounded,
then infeasible interior point methods can have difficulty detecting these abnormalities. Later, an
alternative, known as self-dual embedding, was introduced by Ye, Todd and Mizuno [30]. With the
new technique, the original problem is nicely embedded together with its dual problem in a larger
system. By solving the embedded system, the original problem is solved completely in the sense
that if the problem is solvable, then an optimal solution is provided; if the problem is infeasible,
then a Farkas type dual certificate is found; if the problem is unbounded, then an infinite-improving
direction is established. So the new technique makes it a lot easier to detect infeasibility; see Xu,
Hung and Ye [28]. Moreover, the embedded system has a trivial initial interior feasible solution and
its intrinsic size is precisely the same as the original problem. All these nice properties make clear
that a usual path-following interior point method, in combination with the self-dual embedding

technique, solves linear programming problems satisfactory.



What remained as a point of research was to extend the self-dual embedding technique to solve
optimization problems beyond the class of linear programming. Ye [29] showed that indeed the
technique is also suitable for monotone LCPs. On one hand, this case is simpler than the linear
programming case, since there are only two possible outcomes: either a complementary solution,
or a certificate that no such solution exists. In particular, there is no distinction between primal
and dual infeasibility. On the other hand, there is a nasty case here that requires two phases, viz. if
the set of complementary solutions is unbounded and the so—called g—value is negative. This case
cannot occur in linear programming, since the g—value of the associated complementarity systems

is then known to be zero.

Another natural extension of linear programming is conic convex programming as discussed by
Nesterov and Nemirovski [16]. A very important example of conic programming is semidefinite
programming which has been the center of recent research activities in the interior point community.
Several groups of authors independently extended the self-dual embedding technique to semidefinite
programming, viz. Potra and Sheng [20], De Klerk, Roos and Terlaky [6], Luo, Sturm and Zhang [10]
and Nesterov, Todd and Ye [19]. The latter two papers concern the more general case of conic convex

programming, each with a different emphasis.

Nesterov, Todd and Ye [19] analyzed the application of logarithmically homogeneous barrier tech-
niques to self-dual embeddings and considered the associated complexity issues. Luo, Sturm and
Zhang [10] were concerned with a general duality theory for conic problems and with the question
how to determine the status of the original problem from the sequence of iterates solving the self-
dual embedding system. Report [10] was lengthy and covered two virtually separate topics. To
make our results more accessible, we decide to split the main contents of [10] into two reports. The
first one, [11], is completely devoted to duality theory. The second one is the current paper. In this
part we will exclusively deal with the self-dual embedding techniques applied to the framework of
conic programming. It turns out that a general conic programming problem may have subtle prop-
erties that a linear programming problem can never have. For example, it is possible that a conic
programming problem with a finite optimal value does not have an attainable optimal solution, or
an infeasible problem may become feasible by an infinitesimal change on the problem data. The
goal of this paper is to discuss the self-dual embedding technique for conic problems in general, and
the detection of the status of a given conic problem by means of solving the self-dual embedding

system with a path-following interior point method in particular.

The organization of the paper is as follows. Section 2 presents a general introduction to conic
convex programming problems. Sections 3 and 4 discuss schemes of self-dual embedding. Section 5
discusses how a weakly centered sequence can be used to solve a pure self-dual problem. In Section 7,
the so-called self-dual embedding technique is discussed extensively. Various examples are given

to illustrate how solutions/certificates for the original problem can be deduced from a weakly



centered sequence for the embedded self-dual system. Discussions thus far depend crucially on the
availability of a weakly centered sequence. The existence of such a sequence is shown in Section 8.

Finally, we conclude the paper in Section 9.

2 Preliminaries

We counsider the conic convex program in the following form:
(P) p*=inf{c'z |z e (b+A)NK}
with its standard dual optimization program
(D) d* =inf{bTz|z€ (c+ A+)NK*},

where K C R" is a convex cone, A is a linear subspace of " and b and ¢ are given vectors in At

and A respectively. The cone K* is the dual cone associated with I, which is defined as
K :={zeR"|zT2>0Vz € K}.

We assume that the convex cone K is closed, solid (int £ # @) and pointed (KX N —K = {0}).
This assumption obviously holds true for the linear programming case, in which we deal with the
nonnegative orthant L = £* = R", and the semidefinite programming case, in which we deal with
the cone of positive semidefinite matrices I = K£* = {X | X = 0}. We remark that our assumptions

on K imply that the dual cone X* is also closed, solid and pointed.

When we solve (P), we intend to find an optimal solution and its optimality certificate if such
ones exist, and if not, we shall prove the fact that no optimal solution exists also by a certificate.
Solutions of (D) play the role of certificates. For primal optimality a dual optimal solution is
a certificate, and for primal infeasibility a Farkas type dual direction is a certificate. Therefore,
the primal problem (P) and its dual (D) are closely linked, and are often being solved together.
This interpretation of duality is well known for linear programming, and is widely used in various

algorithmic approaches.

The homogeneous self-dual model of Goldman and Tucker combines primal solutions and both
types of dual solutions in a single model. Unfortunately, the homogeneous self-dual model does not
only include certified solutions. In particular, the origin is trivially a solution to any homogeneous

self-dual model. So, not all solutions to the homogeneous self-dual model are of interest.

But, if a solution to the homogenous self-dual model is strictly complementary, then it does consist

of a certified solution, except for one case. The exceptional case is due to the primal-dual symmetry:



the strictly complementary solution may yield a Farkas—type proof of dual infeasibility, in which

case we have still to decide whether the primal is infeasible or unbounded.

The main reason why we can use the nice properties of the self-dual model is that almost all
algorithms in the class of interior point methods converge to a strictly complementary solution,
provided that such a solution exists. This useful property of interior point methods was made clear
in Giiler and Ye [5]. Unfortunately, the interior point method cannot be applied directly to the
homogeneous self-dual model, since this model admits no interior solutions. Therefore, Ye, Todd
and Mizuno [30] embedded the homogeneous self-dual model into an extended self-dual program

which has one extra variable and constraint, and a trivial, perfectly centered interior solution.

In this paper we will extend the homogenous self-dual model and its embedding to include the conic
programs (P) and (D). Much remains the same as in the linear porgramming case. Complications
arise in the boundary cases. To be specific, we consider (P) for instance. We call (P) infeasible
if the set (b + .A) N K is empty. Still, in that case there are two possibilities in general, namely
dist(b+ A, K) > 0 or dist(b+ A, K) =0. If dist(b+ A, K) > 0 we call (P) strongly infeasible, and
if dist(b+ A, K) = 0 we call (P) weakly infeasible. Remark that weakly infeasibility is impossible

in linear programming.
Note that if (P) is weakly infeasible then there exists (1), z(2), .. such that

dist(z®), b + A) 4+ dist(z*), K) — 0.

It is now interesting to introduce the subvalue p~ defined as

p = lifgigf{ch | dist(z,b+ A) + dist(z, ) < €}.

If (P) is infeasible then obviously p* = oo, but the subvalue p— may be finite (or even —oo) if it is

only weakly infeasible. Examples of such phenomena can be found in Section 6.1.
The subvalue p~ is closely related to the dual optimal value d* in the following way:

I { p~ =o0, if (D) infeasible and (P) strongly infeasible

—p, otherwise,
(see [11, 23]). Similarly, the dual subvalue d~ can be defined.

General conic duality relation resembles the linear programming case very well if Slater’s condition
holds, i.e. if (b+ .A) N int K # (). Under Slater’s condition we have

*

Moreover, if p* > —oo then the dual optimum is attained, and the set of dual optimal solutions is
bounded.



The above discussed duality provides a means to certify optimality. Farkas—type duality provides a
means to certify infeasibility. A Farkas—type dual solution, which we usually call a dual improving
direction, is a vector z € A+ N K* with b7z < 0. Such a solution exists if and only if the primal is

strongly infeasible.

Notice however that there exists no dual improving direction if (P) is only weakly infeasible. So,
how can we certify infeasibility if (P) is only weakly infeasible? For this, we need the concept of a

dual improving direction sequence, which is a sequence 21 23 such that

limsupbTz®) <0, lim (dist(z*), A1) + dist(z¥), £*)) = 0.

k—o0 k—o0

Programs that have interior solutions, i.e. (b+.A) N int I # (), are said to be strongly feasible. We
have already remarked that if (P) is strongly feasible, then p* = p~. It is possible to certify that
a problem is not strongly feasible, by using yet another type of dual solutions: nonzero dual lower
level directions. A nonzero dual lower level direction is by definition a vector 0 # z € A+ NK* such
that bT2 < 0. Such directions exist if and only if (P) has no interior feasible solutions [11, 23].

For later use, we list here two general rules for dualizing cones. First, for any convex cone K C "
and invertible matrix M € R™*" it holds that

(M'K)* = M~'K¥, (3)
see [11, 23]. Second, for two convex cones K; and Ko, it holds that

KinK; = (K +K)" (4)

The well known bipolar theorem povides a dual characterization of closed convex cones, viz.
K={zxe®R"|zTy>0vyecK}.
Similarly, the interior of a solid convex cone is characterized by

int K ={z € R" |2y >0V0 £y e K*}. (5)

3 Self-Duality

Self-duality has been defined by Duffin [2] for conic convex programs that are formulated in the
so—called symmetric form. More recently, Ye, Todd and Mizuno [30] formulated a linear program
in a different form, and argued that their program is self-dual since “the dual of the problem is
equivalent to the primal”. Below, we propose a definition of self-duality that does not depend on

the specific form in which the program is formulated.



Definition 1 A conic convex program CP(b,c, A, K) is I self-dual if I is a symmetric permutation
matriz such that
c=1Ib, At =1IA, £ = IIK.

If, in addition, b = ¢ = 0, then the program is said to be homogeneous.

Notice from the above definition that a self-dual program is indeed its own dual, after a simple
reordering of the variables. More precisely, if CP(b, ¢, A, K) is a II self-dual conic convex program,
then

b+ A) =c+ AL, 1K =K,

so that z € R™ is primal feasible if and only if IIz is dual feasible, and, using the symmetry of II,
cl =0T,

so that the primal objective value ¢’z is identical to the dual objective value b' (Ilz) for all z € R™.
Notice also that * = IIK implies that I is closed; self-dual conic convex programs are therefore

always closed.

Remark 1 The requirement that II is symmetric, i.e. II = 117, is natural. Namely, for any
permutation matriz 11, there holds IIT = II~'. From the relation A+ = ILA, it therefore follows
using (3) that

A = AT = (I"TIA)T = T (ITA)F =174,
i.e. HA =TITA and similarly, TLA+ = IITAL. Hence, the relation A+ = I1A already implies some

symmetry.
Below are two elementary results for self-dual conic convex programs.

Lemma 1 Let A be a linear subspace of R* such that A+ = ILA for some symmetric permutation
matriz I1. Then
IPy = P, 01, TIP41 = Pyll

Proof. Since II is a symmetric permutation matrix, we know that IIA+ = I12A4 = A. Hence, the
orthogonal decomposition

t=y+z ycA zeAt

is equivalent to
[z =1y + 11z, Iye A Iz e A



From the above decompositions, it follows for arbitrary x that 1IIP4x = Ily and P4 llz = Iy

respectively. O

Lemma 2 Let CP(b,c, A, K) be a Il self-dual program where K is a solid convex cone. Then

1
yTPAlly = yTPALHy = EyTHy >0 for all y € int K.

Proof. Let y € int K, then
[y € IT int £ = int IIK = int £F,

where in the first identity, we used the fact that II is an invertible matrix. Since K* is pointed,
and 0 # Ily € int K*, it follows from (5) that

0<y' My =y "TIPyy+y TP Ly.
Using now Lemma 1 and the symmetricity of II, the lemma, follows. O

The properties of self-dual conic convex programs result in a particularly nice form of weak—duality:

Theorem 1 If CP(b,c, A, K) is a Il self-dual conic convex program, then
1
Ty = ixTHac >0

forallz € (b+ A)NK.

Proof. Since z —be A, Ilz —c € A and bLc, we have
0=(z—b)"(Ilz —¢) = 2"z — bz — 'z = 2Tz — 2¢" 2.

Moreover, 2 'TIz > 0 because = € K and Iz € K*. O

If * is a solution to a II self-dual program CP(b,c, A,K) and (z*)'Ilz* = 0, then z* is called a
self-complementary solution. It follows from Theorem 1 that if x* is a self-complementary solution,

then it is also an optimal solution.

As before, we denote the optimal value and the subvalue of the conic convex program CP(b, ¢, A, K)

by p* and p~, respectively. That is,

p*i= igf{ch |z e b+ A)NK}, p = lifgigf{ch |z € K, dist(z,b+ .A) < €}.

7



If CP(b, ¢, A, K) is self-dual, then
pm=-p, (6)
as follows from (1). Since p* > p—, we know that the optimal value p* is nonnegative, and

the subvalue p~ is non-positive. This implies in particular that a self-dual program cannot be

unbounded.

4 Self-Dual Embedding

There are basically two different types of dual variables involved in closed conic convex program-
ming, viz.

e Dual feasible solutions, and

e Nonzero dual directions.
The former yield lower bounds on the optimal value, and the latter concern the feasibility of the
problem. The homogeneous self-dual embedding, to be discussed in Section 4.1, combines both
types of dual variables into a single self-dual program. In Section 4.2, we will treat the extended

self-dual model, which is a strongly feasible self-dual model for which the optimal solution set

corresponds to feasible solutions of the homogeneous self-dual model.

4.1 The Homogeneous Self-Dual Model

Consider a IIgp self-dual program (SD),

(SD) infyg, {edpesp | 2sp € (bsp + Asp) N Kspl,

i.e. (SD) is the conic convex program CP(bgsp, csp, Asp, Lsp). We assume that Kgp is solid. The
optimal value of (SD) is denoted by p&p. We introduce an invertible matrix M (bsp, csp),

I bsp 0
M(bsp,csp) := 0 1 0,
—cdp 0 1

and we let
Ay = M(bSD,CSD)(ASD x R x {0}), Ku := Ksp X §R+ X §R+.

Applying (3), we have
Ajf = M (bsp, esp) ™ (Adp x {0} x R),



where

I 0 CSD
M(bSD, CSD)fT = _bg‘D 1 0
0 0 1

Using the self-duality of (SD), it follows that CP(0,0,. Ay, ) is a homogeneous Iy self-dual

program with

IIsp 0 O
IIg = 0 01
0 10

This type of homogeneous self-dual program was proposed by Goldman and Tucker [4, 26] in the
context of linear programming. The convex cone Ay N Ky consists of those solutions (zgp, o, 20)

for which
zsp € (xobsp + Asp) N Ksp,

(H) Zo Z Oa

20 = —chng > 0.

The concepts of complementary solution, improving direction and nonzero lower level direction for

(SD) can be characterized in terms of the homogeneous program (0,0, Ay, Kp) as follows:

e zgsp is a self-complementary solution to (SD) if and only if
(eTSD; 1, 0) e Ag N Ky.
e zgsp is an improving direction for (SD) if and only if

(zsp, 0, 29) € Ag N Ky for some zy > 0.
e zsp is a nonzero lower level direction for (SD) if and only if
(zsp,0,20) € Ag N Ky \ {0} for some zy > 0.

With the above observation, it is straightforward to prove the following theorem.

Theorem 2 If (xgp, o, 20) € AgN Ky, then
zpllgprsp =0, mpzo = 0.

Moreover, if (xsp, zo,20) € AuN Ky \ {0} and (SD) is strongly feasible, then xo > 0 and xgp/x

is a self-complementary solution of (SD).



Remark 2 It follows from Theorem 2 that if
(xsp,0,20) € AgN Ky \ {0},

then (SD) is not strongly feasible, i.e. it is either weakly feasible, or weakly infeasible, or strongly
infeasible. However, if it is strongly infeasible, then it must have an improving direction 'y, and

(z'sp, 0, —cg:Dx(gD) e AgNKy.

Remark 3 Ewven if (SD) is not strongly feasible, it may have a self-complementary solution xgsp,
in which case (xgp,1,0) € AgNKy.

4.2 The Extended Self-Dual Model

Given a IlIgp self-dual program (SD), we have constructed a Il homogeneous self-dual model
(0,0, A, Kx), generalizing the Goldman—Tucker [4] model to conic convex programming. We will
now add a normalization constraint to the model, and we will make the program strongly dual. This
results in an extension of Ye, Todd and Mizuno’s self-dual formulation [30] for linear programming,

to the context of conic convex programming.

Choose ¢ € int Ky, and let
LTP_AHHHL

p = 5

P,
H A 2

By construction, g is solid, and we can apply Lemma 2 to conclude that p is a well defined
positive quantity. Define

bg = p Payllue, cp:= pPAﬁL, (7)

and notice from Lemma 1 that
cg = llgbg. (8)

Since cg is simply a permutation of by and p > 0, we have

1belly = lleelly > 0.

Using the definitions of ¢g and p, and then applying Lemma 2, we further have

[bull3 _ llell3

T
- - 2 T - L HH[;
= = PPy o3 = " Pay e = —1.

2

We shall now study the conic convex program CP(bg, cg, Ag, Ki), where
Ag := (Ag N Ker byy) + Img cg.

10



Just as in the homogeneous self-dual model, we partition the decision variable as
TE = ($SD7 Zo, ZO)?
with zgp € Kgp, 29 € R+ and zp € Ry. Introducing an auxiliary variable

Yo = LQ CETE, (10)
el

we can reformulate CP(bg, ¢, Ag, Ky) as follows:

min (LTHHL/2) Yo
s.it. xg —yor € An
(8) ’ :
bgze = ||bell;
TR € ’CH, Yo € R.

To see this, remark that by definition of cg,
g — Yoo € Ay <= xE—%cEEAH.

Since obviously,

bprg = ||bgll3 <= =g —bg € Ker by,
we obtain from the above two relations and the fact that by € Ay, cg € Aﬁ, that
TE — Yot € AH7

LEE—bE E.AE e T 9
bgze = |bel;

From the relation zyx € yot + An, we obtain
LTHH <PAﬁ$E> = LTHH (y()PAﬁL> = %LTHHL,

where we used Lemma 2 in the last identity. Using the definition of by, it thus follows that

Combining this with (9), we obtain an alternative form for the normalization constraint of (E), viz.
1
bExE = ||bE||% < LTHHmE = %LTHHL (11)

It is obvious from (11) that the lower level sets of (E) are bounded. Moreover, it is now easily
verified that ¢ € (bg + Ag) N int Ky, i.e. ¢ is an interior solution, which can serve as an initial
solution in interior point methods (remark that we can choose any ¢ € int Ky). The feasible
solutions zy of (E) for which yy = 0 correspond to those solutions of the homogeneous model (H)
that are normalized by the constraint JTgzy = LTHHL/ 2. The normalization guarantees that if

yo = 0, then zg is a nonzero direction of the homogeneous model (H).

11



Theorem 3 The conic convex program CP(bg,cg, Ag,Kg) has the following properties:

1. It is self-dual,

2. It has an interior solution, viz. 1 € (by + Ag) N int Ky, and hence

3. It has a self-complementary solution,

4. Any self-complementary solution is a nonzero direction of CP(0,0, Ay, Kg), and

5. For any nonzero direction x g of the homogeneous program CP(0,0, Ay, Ky), there exists o > 0

such that axsp is a self-complementary solution for CP(bg,cg, Ap, Kp).

Proof.

1. It is already known from (8) that cp = IIybg. Moreover, Kf; = Iy, since CP(0,0, An, L)
is self-dual. It remains to show that A = IIyAg. To this end, we remark using (4) that
A = [ (A N Ker bt) + Img ci ]J_
(Ag N Ker i)t N Ker ¢
= (Ajf + Imgbg) N Ker ¢
(

Aif 0 Ker ¢f) + Img bg,

where we used bg_Lcg in the last identity. Using (8) and the fact that Aj = g Ag, it follows
that Af = My Ag.

2. Using (11), it is easily verified that the solution zg = ¢, yo = 1 satisfies all the constraints of

(E).

3. The self-dual program CP(bg,cg, Ag, i) has a self-complementary solution because it is
strongly feasible, see (2).

4. Let zg be a self-complementary solution of (E). By definition, this means that
0 = oglluze = 2 el vo-

Consequently, yo = 0 and zg € Ag N Kg. Moreover, zg # 0 due to the normalization

constraint (11).

12



5. Let zg € Ag N Ky \ {0}. Since Il € int Kfj, we obtain using (5) that
LTHH:EE > 0,

so that
T

T
s TR € [bE + (Ag N Ker bE)] N Ky.

a

Remark from Theorem 2 and Theorem 3 that if (SD) is strongly feasible and (x,zo,zp) is an
optimal solution of (E), then z/z¢ is a self-complementary solution of (SD). Using the interior
point method [16], we can thus obtain an optimal solution to (SD) by solving the artificial program
(E), for which we can choose an initial feasible solution ¢ € int sp. We will see in the next
section that even if (SD) is not strongly feasible (in which case it may not be solvable), it is still a
good idea to solve the embedding (E), if the solution method generates a so—called weakly centered

sequence.

5 Weakly Centered Sequences

Up to now, we did not use the special structure of the homogeneous program (H) in our study of the
extended self-dual program (E). In this section however, we will focus on the full structure of (E),
and we partition the decision variable as g = (zsp, %o, 20), just like we did in the homogeneous

model previously. Similarly, we write

T _ T
L _[USDa Uo, UO:|'

Throughout this section, we make the following assumption:
Assumption 1 The cone Kgp is solid, i.e. int Kgp # 0.

Since ¢ € int Ky = (int Ksp) x R4 x Ry, there holds
usp € int Ksp, wup >0, vy >0.
We can now formulate the model (E) as follows:

min (¢ TTye/2)yo

s.t.  osp — yousp € (ro — Youo)bsp + Asp (12)
20 — Yovo = —c3p(Tsp — Yousp) (13)
YT gzg = (14 yo)e T ge/2 (14)

zsp € Ksp, zo € Ry, z0 € Ry, yo € N.

13



Remark from (10) and Theorem 1 that
(M Ige/2)yo = chzr = zoz0 + (z ' spz) /2. (15)

In the sequel, we will analyze the behavior of weakly centered sequences for (E); the existence of

such sequences will be demonstrated in Section 7.

Definition 2 A sequence x%c) = (x(slg,xgk),zék)) € (bpg+Ap)NKpg, k=1,2,..., is weakly centered

if and only if there exists some constant w € (0,1) such that

x(()k)z(()k) > wch%c) >0 foralk=12,..., (16)

and limy_, o ch%g) =0.

Condition (16) is also known as the minimal centrality condition [25]. This condition holds true for
all path—following algorithms, and for some potential reduction methods. In particular, Nesterov
and Todd [18] developed a framework of primal-dual interior point algorithms for solving self-
scaled conic convex programming, which is a subclass of conic convex programming that includes
linear programming and semidefinite programming, among others. All their algorithms generate a
sequence of weakly centered iterates. We remark here that if (SD) is a linear (semidefinite, self-
scaled) programming problem, then (E) is also a linear (semidefinite, self-scaled) programming

problem, since Ky = Ksp X Ry x Ry.

Since cprg = (¢1e/2)yo, see (9) and (10), it follows by definition that weakly centered sequences
satisfy
x(()k)z(()k) > w(LTHHb/2)y(()k) >0forallk=1,2,....

This immediately implies the following result.

(1) .(2)

Lemma 3 Let ", xy’,... be a weakly centered sequence, then
y(k) k
limo—k:0<:> limz(())ZO,
k—o0 xé ) k—o0
and
y(k) k
lim 22 =0 < 1lim z{¥ = 0.
k—o0 z(()k) k—o0

(k)

The lemma below shows a crucial property of weakly centered sequences: the components z;’ and

(k)

2y~ avoid the boundary of the cone Jt; essentially as much as possible.
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Lemma 4 Let zp = (7,70,20) € (bp +Ag) N Ky and w € (0,1) be such that zozy > wekrp > 0.
For any z', = (2!, (), 2()) € (b + Ag) N Ky there holds
w !

To > T
"7 1+ (cpap/chen)

and
w !

20 > 20-
T 1+ (cfap/chun)

Proof. Because z, — zp € Ag and (2 — zp) € .AJE‘, there holds

0 = (2 —2p) Tg(zl — 2p)
= (LE;E)THH.’E;E + .TEHH.TE - 2$EHH.’EE

= 2ch(z + xp) — 22 Tz’ — 2(xozh + zhxo). (17)
Since z € K and Iz’ € £*, we have 2 IIz' > 0. We thus obtain from (17) that
e (2 + TE) > oz + 20T (18)
The lemma follows by multiplying (18) with zy/cf (2} + zg) and zo/cf (7} + 7)) respectively. O
The argumentation that is used in the proof of Lemma 4 is due to Giiler and Ye [5].

Theorem 4 below shows why weakly centered sequences are so interesting in the context of self-dual
embeddings. Namely, if we can generate a weakly centered sequence for (E) then we can also solve
(SD), whenever it has a complementary solution or an improving direction. In other cases, (SD)
must be either weakly feasible or weakly infeasible, and we can generate a sequence of solutions
for (SD), for which the amount of constraint violation converges to zero and the corresponding

objective values are in the limit contained in the interval [pgn, pSp]-

Theorem 4 Let x%c) = (x(k),xgk), z(()k)), k=1,2,..., be a weakly centered sequence for (E). There
holds

1. liminf,_, o x[()k) > 0 if and only if (SD) has a self-complementary solution. Moreover, if (SD)

has a self-complementary solution then acg%/x[(]k), k =1,2,... is a bounded sequence and

) (c0)

therefore it has a cluster point xgog . Any such cluster point xSOB s a self-complementary

solution of (SD).

2. liminfy_, o z[()k) > 0 if and only if (SD) is strongly infeasible. Moreover, if (SD) is strongly

infeasible, then xg%/z(()k), k=1,2,... is a bounded sequence and therefore it has a cluster

)

point x(SODO .

xgos) is an improving direction of (SD).

Any such cluster point

15



(k)

3. If im0 2y~ =0, then xé’%/xé’c) s a sequence in Kgp for which

(k) v (k) (k)
lim dist(“52, bsp + Agp) =0, lim w _0<php.
k—o0 xO k—o0 xO

4. If limg_ o z(()k)/x(()k) = o0, then (SD) is infeasible, and xgg/zék) s an improving direction

sequence in Kgp, viz.

) L)
lim diSt(%,ASD) =0, lim SD(k)SD =1
k— o0 2y k—o0 2y

Proof.

1. Observe from Theorem 3 and the discussion in Section 4.1 we can conclude that (SD) has
a self-complementary solution if and only if (E) has an optimal solution (z§), z§,0) with
z§ > 0. From Lemma 4, we know that if (E) has an optimal solution (z&p, 2, 0) with z§ > 0,
then

lim infx[()k) > wzy > 0.
k—o0

(k) (k) (k)

The converse is also true, because the sequence (zgp,x ', 2y ) is bounded (and hence it has

a cluster point, which must be an optimal solution to (E)).

2. Similarly, (SD) is strongly infeasible if and only if the embedding (E) has an optimal solution

(zép, 0, z5) with z5 > 0, which is equivalent with the relation

lim infz[()k) > wzy > 0.
k—o0

3. Suppose that limy_, ., z[()k) = 0, so that, using Lemma 3,

Combining this with (12)-(13), we obtain

(k) T (k) (k)
k—o0 Ty k—o00 Ty

4. Suppose that limy_, z[()k)/x(()k) = oo. Then x[()k) — 0 so that using Lemma 3,

(k)



Combining this with (12)-(13), we obtain

(k) T (k)

lim dist(“52, Agp) =0, lim SDISD — g,
k—o0 2y k—o0 2y

By definition, x(slg / z(()k) is then an improving direction sequence, which implies that (SD) is

infeasible (see the discussion on Farkas—type duality in Section 2).

Theorem 5 Let x%g) = (x(k),x[(]k),z[(]k)), k=1,2,..., be a weakly centered sequence for (E). There

holds
4 (k)
* : 0
Psp > limsup ——.
k—o00 x(k)
0

Proof. It is known from Theorem 4 that lim infy_, z(()k) > 0 if (SD) is strongly infeasible. Using
e.g. Lemma 3, it follows that liminfy_, x[()k) = 0, and hence
k)

* : 0
= lim ——= = .
Psp k—o0 x(k)

Now suppose that (SD) is not strongly infeasible, or equivalently, liminfy ., z[()k) = 0. For this
case, we know from Theorem 4 that x(slg / x(()k) is a sequence in Kgp, with

)
lim dist(—2, bsp +.A) = 0.

k
k—00 xé )

Therefore, we have the following inequality for the subvalue pgp, of (SD):

Cnggg Z[()k)
pan < liminf = —limsup ——.
SD k—00 x(()k) k—00 x[(]k)
Using (6), the theorem follows. O

Remark 4 It follows from Theorem 5 that if lim supk_,oo(z(()k)/x[(]k)) = 00, then (SD) is infeasible.

Remark 5 Theorem &5 also shows that if there is no duality gap, i.e. p5p =0, then

(2 2y = 0.

lim
k—o0

17



6 The Primal-Dual Model

Up to now, we have only considered self-dual embeddings for self-dual programs. However, the
self-dual embedding technique is applicable to general closed conic convex programs, simply by
combining the original primal and dual programs into a single, self-dual program. To be more

specific, consider a closed conic convex program CP(b,c, A, ), and let
T T
bsp = [ bT, T ] , CsSp = [ ct, bt ] , (19)

and
Asp == Ax At Kgp := K x K*. (20)

The program (SD) is easily seen to be Ilgp self-dual, with

0 I
ITgp = .
w=[7 4]

If CP(b,c, A,K) is both primal and dual feasible, then (b,¢c, A, ) and (SD) are equivalent, as
follows from the weak duality relation for conic convex programming. Therefore, it is interesting to
study the self-dual embedding (E) of the above constructed self-dual model (SD). Since our basic
interest lies in the connection with the original program CP(b, ¢, A, K), we partition zsp and ugp

as follows:

T _ T T T _ T T
xSD—[.’I),Z :|, USD—[UP, 'U,d:|.

Since (SD) is self-dual, the results of Theorems 4 and 5 are applicable. However, if (SD) has
no self-complementary solution, it is not fully equivalent with the original conic convex program
CP(b,c, A, K). Below, we will therefore use the special structure of the primal-dual model, to
deduce as much information as possible for CP(b, ¢, A, K) and its dual.

Theorem 6 Consider a closed conic convex program CP(b,c, A, K) and let x%c), k=1,2,..., be a

weakly centered sequence for the self-dual embedding (E), where
CP(bsp, csp, Asp, Ksp)
is defined as in (19)-(20). Then

1. (8D) has a self-complementary solution if and only if lim supy,_, . x[(]k) > 0.

k)

2. (SD) is strongly infeasible if and only if lim supy,_, o z(() > 0.

18



k)

3. If limg_, o z(() =0 then
(k) T,.(k) (k)
lim dist(x—k,b—i— A) =0, limsup ¢z :ZO <p*
and )
T (k) T (k)
d*Z—liminf%Z—limsupc z Uj)‘zo
k— o0 T k—00 Ty

Proof. The cases of self-complementarity and strong infeasibility are known from Theorem 4.
If limy o0 z(()k) = 0 then neither (P) nor (D) is strongly infeasible, and it follows from (1) that
pt=—-d, p =-d. (21)

Moreover, we know from Theorem 4 that

] gk
klgglo dlst(m, b+ A) =0,

Lo
so that by definition of the subvalue,
T (k) b1 2(k)
p~ <liminf &2, 4 < liminf ——. (22)
k—o0 :E(k) k—o0 :E(k)
0 0
Moreover, using (13) and Lemma 3, it follows that
T,.(k) 4 pT (k) (k)
i &% + b0 2" + 2z _ o (23)
k—o0 $(k)
0
Combining (21)-(23), the theorem follows. O

Some remarks concerning Theorem 6 have to be made:

Remark 6 The case of self-complementarity was already known from Theorem 4, which also
states that self-complementarity will be demonstrated by a self-complementary solution, say xsp =

(x*,2*). It is obvious that (z*,z*) is then a complementary solution pair for (P) and (D).

Remark 7 Similarly, we know from Theorem 4 that strong infeasibility will be demonstrated by
an improving direction, say %y = (z*,2*). In this case, we have cTz* + bT2* < 0, so that either
clz* and b"2* are both negative, or exactly one of the quantities c’z* and b™z* is negative, say
cle* < 0 and bTz* > 0. In the former case, z* and z* demonstrate primal and dual strong
infeasibility respectively. In the latter case, it follows that (D) is strongly infeasible, but we do not

have complete information about (P): (P) can be either unbounded or infeasible.
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Remark that by definition, (P) is unbounded if and only if p* = —oo, and (D) is infeasible if and

only if d* = oco. The following is therefore a consequence of Theorem 6.

Corollary 1 If (P) is unbounded and (D) is weakly infeasible, then

T,.(k) (k)
lim z(()k) =0, lim s o —00.
0
Conversely, if
T,.(k) (k)
lim 2P =0, lim &5 R (24)
k—o0 0 k—o00 x(()k)

then (D) is weakly infeasible and either (P) is unbounded or p* > —d*.

Remark 8 If (P) is strongly feasible, then p* = —d*, see (2), and Corollary 1 characterizes the
case of primal unboundedness. In general however, we cannot conclude unboundedness from (24),

as is illustrated later in this chapter by Example 7.

There are still some cases that are not described by Theorem 6 and Corollary 1. Namely, it can

happen that

e p* is finite, and p* = —d*, but (P) is not solvable,
e p* and d* are finite, but p* +d* > 0,

e (P) is weakly feasible, but (D) is weakly infeasible,
e (P) and (D) are both weakly infeasible.

In all these remaining cases, we will obtain some partial information, based on the value of

)

lim supy,_, z(()k)/scgg .

Theorem 7 Consider a closed conic convex program CP(b,c, A, K) and let x%c), k=12,..., be
a weakly centered sequence for the self-dual embedding (E), where we use the primal-dual model

CP(bsp,csp, Asp, Ksp) as defined in (19)-(20). Suppose that limy_ .’I}[(]k) = limy_, o z[()k) =0 and

T,.(k) (k) T, (k) (k)
lim infw > —00, liminf bz 2
k—o0 $(k) k—o00 x(k)
0 0

Then

1. If limsupy,_, z(()k)/xgk) = 00, then (SD) is weakly infeasible, and p* # —d*. Hence, p*+d* =

k k . . . . .
o0. Moreover, xgg/zé ), k=1,2,..., is an improving direction sequence.
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2. If 0 < limsupy,_, z(()k)/xgk) < oo, then p* # —d* and neither (P) nor (D) is strongly feasi-

ble. Moreover,

x(’“)H > 0 for all sufficiently large k, and any cluster point of the sequence

x(k)/ Hx(k)H is a nonzero lower level direction, demonstrating the fact that (D) is not strongly
feasible.

3. If limsupy,_, z[()k)/x(()k) = 0, we have the following:

o Iflimg o0 Hx(k)H /[E[()k) = 00, then (D) is not strongly feasible. Moreover,

x(’“)H 1§ POS-
itive for all sufficiently large k, and any cluster point of the sequence x(k)/ Hx(k)H 15 a

nonzero lower level direction, demonstrating the fact that (D) is not strongly feasible.

e Otherwise, i.e. if liminfy_, Hx(k)H /x(()k) < 00, then (P) is solvable and weakly feasible.
(k)

Moreover, any cluster point of the sequence x(k)/xo is an optimal solution for (P) and

lim infy_, o cTz(k)/xgk) = —p*.

Proof.

1. It is already known from Theorem 4 that if limsup;,_, z(()k)/ xgk) = 00, then (SD) is weakly
infeasible, and x(slg / z(()k), k=1,2,...,is an improving direction sequence. Using Corollary 1,
we have p* > —oo and d* > —o0, and it follows that p* + d* = oo and p* # —d*.

2. We use that p* > —oo and d* > —oo to conclude from Theorem 5 that if

lim sup z(()k)/xgk) > 0,
k—o0
then p* +d* > 0. Together with (2), this implies that neither (P) nor (D) is strongly feasible.
Using Theorem 6, we know that the sequence z(*) / x[(]k) cannot have any cluster point. Namely,
if 2 is such a cluster point then z € (b+.4)NK and ¢’z < p*, a contradiction. Consequently,
limy, o0 Hx(k)H /xy = oo and we obtain from (12) that any cluster point z* of the sequence
z(k) / Hx(k)H is a nonzero direction, i.e. 0 # z* € AN K. Dividing (13) by z¢, and using

Lemma 3, we have

‘ T (k) Tk +z(()k)
lim sup = lim inf W < 00,
k—o0 x(() k=00 N
where the inequality is an assumption of the lemma. Since xgk) = o(||z®)]|), this inequality

implies that ¢'z* <0, i.e. * is a lower-level direction.

3. Suppose that limsup,_, ., z(()k)/xgk) = 0. The case that limy_,o Hx(k)H /x(()k) = oo is com-

pletely analogous to the case 0 < lim sup_, z(()k)/x(()k) < 00, which has been treated above.
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If liminfy_ . Hx(k)H /xgk) < oo, then the sequence x(k)/xgk) must have a cluster point,
and it follows from Theorem 6 that such a cluster point is an optimal solution for (P).
We also know from Theorem 6 that there is no complementary solution pair, and hence
limg 00 Hz(k)H /x(()k) = oo. We have already seen above that this implies that any cluster

point of z(*)/ Hz(k)H is a dual lower level direction, demonstrating weak feasibility of (P).

From (13) and limsup,,_, z(()k)/x(()k) =0, it follows that liminfy_, cTz(k)/xgk) = —p*.

a

Solving the self-dual embedding (E) is really equivalent to solving (P) if (P) is strongly feasible,

as the following theorem shows.

Theorem 8 Consider a closed conic convez program CP(b,c, A,K), and suppose that it is primal

strongly feasible. Let x%c), k=1,2,..., be a weakly centered sequence for the self-dual embedding

(E), where CP(bsp,csp, Asp,Ksp) is defined as in (19)-(20). Then CP(b,c, A,K) is

1. Solvable if and only if

liminfz{" > 0.
k—o00

Moreover, if (P) is solvable, then any cluster point of the (bounded) sequence

is a complementary solution pair. (Cf. Theorem 6.)

2. Unbounded and dual strongly infeasible if and only if
(k)

liminf 25" > 0.
k—o0

Moreover, if (D) is strongly infeasible then any cluster point of the (bounded) sequence
¢, 2@ s a primal improving direction, certifying the dual strong infeasibility. (Cf.
Theorem 6 and Remark 7.)

3. Unbounded and dual weakly infeasible if and only if

T,.(k) (k)
lim 2P =0, lim SR (25)
k—00 k—00 :E(()k)

Moreover, if (D) is weakly infeasible then x(k)/zék), k=1,2,...1s a primal improving direction
sequence, certifying the dual weak infeasibility. (Cf. Corollary 1.)
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4. Dual weakly feasible and not primal solvable, if and only if

lim 20 =0,  lim 2" /28 = 0.
k—o00 k—o00

Moreover, if (D) is feasible and (P) is not solvable, then
° z(k)/x[(]k), k=1,2,..., is a bounded sequence, and any cluster point of this sequence is a
dual optimal solution.

e Any cluster point of the sequence %)k =1,2,... is a nonzero lower level direction,

certifying that (D) is not strongly feasible.

° x(k)/x[()k), k=1,2,... 15 a sequence of approzimate primal solutions, with
T.(k) (k)
lim S0 =p*,  lim dist(T, b+ A) = 0.

(Cf. Theorem 7.)

Applying Theorem 6, Corollary 1 and Theorem 7, it is straightforward to prove Theorem 8.

Only slightly weaker results than those of Theorem 8 hold under the condition that p* = —d*,
without requiring primal strong feasibility. Such results are then applicable to Ramana’s regularized
semidefinite programs [21]. See De Klerk, Roos and Terlaky [7] for a discussion of the self-dual

embedding for regularized semidefinite programs.

6.1 Examples in Semidefinite Programming

Several primal-dual interior point algorithms have been extended from linear to semidefinite pro-
gramming, see [8, 9, 15, 17, 24, 23], among others. All these algorithms generate a sequence of

weakly centered iterates, so that all results of Section 6 are applicable.

We will illustrate the theory of weakly centered sequences for (E) with some semidefinite program-
ming problems, i.e. K = K" = H,. We continue with our convention that given a Hermitian
matrix Y € (™), the lower case symbol y denotes vecy Y, which is the coordinate vector of ¥
with respect to a fixed orthonormal basis of the real linear space H™) of Hermitian n x 7 matrices.
Letting n denote the dimension of H(™), i.e. n = A2, it follows that y € ®". The pair of primal and

dual semidefinite programming problems is
(P) inf{CeX | X €(B+A)NH,Y,

and
(D) inf{BeZ|Ze€ (C+A-)NH,}.
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: — T T T T
SIDCQ I S H we can choose « = u u u v as fOllOWSZ
++ D d» 0> 0

Up:Ud:I, UO:’U[]Zl.

With this choice, there holds

We obtain the following formulation of the extended self-dual model (E) from (12)-(14), by spe-
cializing it to semidefinite programming.
min (72 + 1)yp
st. X —yol € (xg—yo)B+ A
Z —yol € (v9 —y0)C + A*
20 —yo = —C o (X —yol) — Be(Z —yol)
tr X+ tr Z+xzo+20=14+y)(n+1)
X=0,Z2%0,29>0.20 >0, yp € R

Weakly centered sequences will now be parameterized by a continuous parameter € > 0 such that
lim =0.
i Yo(e)

We will only discuss those difficult cases where lim¢jo(zo(€) + 2zo(€)) = 0.

First, we consider a weakly infeasible problem.

Example 1 (Weakly infeasible) Let n =2 and

ol Al k=] )

The primal is weakly infeasible,

B =

p* = inf {$22

1
X:[O
T22

and the dual is strongly feasible and unbounded,

211 212

d* = inf {2Z12 Z =

tO}z—oo.

We construct a weakly centered sequence for 0 < e < 1/3 as follows:

2 —(2 22 3 _
X(e) = 3T + 6], Z(e):631+l3 (2€42¢7 4 3¢7) 6],

€ 62
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Figure 1: Example 1 Figure 2: Example 2
3 2 3 3
yo(e) =€, @ole) =€ +¢€’,  20(e) =€+
We see that

BeZ
limzo(e) = 0, lim 222E&*+20) __

€l0 €0 :ch(e)
which indeed implies that the dual is unbounded and the primal is weakly infeasible, see Theorem 8.

Finally, notice that

N

Jim 2206

a0 zo(e)

In order to be able to solve the self-dual embedding (E), we specialized the predictor-corrector
algorithm for semidefinite programming (with Nesterov—Todd type primal-dual directions [18, 17,
24]) to the special structure of (E). The plots below show the numerical results for the examples in

this section. The solid lines represent the primal objective values

CeXxk) COX(k)sz(()k)

xék) . y(()k) :E(()k) . y(()k)

whereas the dual objective values

Bez®)  Bez® 4 P

R

are represented by dashed lines. Recall from Theorem 6 that in the limit, (C'eX (¥) +z(()k)) / (chk) —y(()k))
and (B e Z®*) 4 zék))/ (x[(]k) - y[(]k)) provide lower bounds on p* and d* respectively.

The next example, which is from Vandenberghe and Boyd [27], gives a feasible problem, where

strong duality fails to hold.
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Example 2 (Weakly dual) Let n =3 and

0 1/3 0 0 —-1/3 0
B = 0 0 , C= 0 0 )
1/3 2/3

T —x33/2 zi3
A=¢X | X = 0 23 ;

x33

so that the primal is solvable and weakly feasible,

znn (1 —z33)/2 13

. 2 2 2
p* = inf 3933 ~ 3712 X = 0 T3 | =0 =3
33
and the dual is also solvable and weakly feasible,
0 z33—1 0
d* = inf 1z —i—gz Z = 33 0 | =0 _1
= 3#33 1 3212 = 222 = =3
233

Remark that p*+d* = 1 > 0 so that strong duality fails. A weakly centered sequence for 0 < e < 1/2

s given by
1 €¢/2 0 0 — 0
X(e) = ' T+ 0 0|, Ze=eT+ 3— (2e+4€?) 0 |,
0 0
yole) = €%, wole) = e+ €%, 2z(e) = e+ €
so that
lim 209 _ 1
€l0 1130(6)

which indeed implies that p* # —d*, see Theorem 7.

The third case is a problem where strong duality holds, but there exists no complementary solution
pair (see Vandenberghe and Boyd [27]).

Example 3 (Strongly dual) Let i =2 and

S PR )
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objective values
[

.
20 25
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Figure 3: Example 3 Figure 4: Example 4
so that the primal is solvable and weakly feasible,

p* :inf{leg X = [ 0z

and the dual is strongly feasible but not solvable,

Z:[le 1

d>k = inf Z992
222

tO}zO.

Notice that p* + d* = 0, but the dual has no optimal solution. A weakly centered sequence for
0<e<1/3is

0 —e

€

X(e) =T +

2
], Z(e) =T +

3— (2¢ +3e2+363) ¢ ]

yo(e) = €, mole) =€+ €,  zp(e) = 2% + €.
Hence,

limzo(e) =0, lim 20(€) =0
€0 €l0 :1:0(6)

which indeed holds if and only if the primal is weakly feasible and the dual is not solvable, see
Theorem §.

So far, we have seen a weakly infeasible problem with lim, o 2o(€)/zo(e) = oo, a feasible prob-

lem with only weak duality and limg2o(€)/zo(€) € (0,00) and a strongly dual problem with
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lime o z0(€)/xo(€) = 0. The reader may wonder whether the asymptotic behavior of the indicator
20(€)/xo(€e) completely characterizes the three cases that we consider. Unfortunately, this is not

the case, as the next example shows.

Example 4 (Weakly infeasible) Let n =2, and consider
B:[O 1], ¢=o, A:{X ‘X:[O 0
The primal is weakly infeasible,
p*:inf{O ‘X:lo :
x

and the dual is solvable and weakly feasible,

d* = inf {2Z12

Z11 212
7= [

We construct a weakly centered sequence for 0 < e <1/3 as

X(e) =1 + 0

0
il, Z(e) = 21 +

2 — 3(e + €2) —e]

yo(e) = €%, mo(e) =e+¢€, 2(e) =2+ ¢
We see that
lim 2(€)

=2
€l0 1130(6)

The reader may still wonder whether we can distinguish weak infeasibility from strong duality.
It appears somewhat difficult indeed, to construct an example of an infeasible problem where
20(€)/xo(e) — 0, but it does exist.

Example 5 (Weakly infeasible) Let n =3 and

0 -1 0 T11 T12 13
BZO, C = 0 0 y .A: X X = 0 —$11/2
0 33

The primal is solvable and weakly feasible,

Ti1 T2  T13
p*=inf{ -2z | X = 0 —z11/2 | =03=0

33
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Figure 5: Example 5 Figure 6: Example 6
and the dual is weakly infeasible,
Z11 -1 0
d*=infd0 | Z = Z92 211 =0 p =o0.
0

We construct a weakly centered sequence for 0 < e <1/3 by

e /2 0
X(e) = €1 + 0 —€/2 1,
1
€2 —€ 0
Z(e) = 'l + 3—(e+22+ +4et) € |,
0
yo(e) = €', wo(e) =e+e', z(e) =€+,
so that
lim 2L _
€l0 1130(6)

After Example 5 there is little hope that feasibility with lack of strong duality would imply
limsup, | 20(€)/zo(€) > 0. Indeed, we can construct a feasible problem with only weak duality
but lim g zo(€)/xo(€) = 0.
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Example 6 (Weakly dual) Let n =4 and

0 1/3 0 0 0 —1/3 0 0

. 00 0 | 4 0 0 0 |
0 0 0 0
1/3 2/3

0 — 2
A-dx | x= T11/2 T2
T33 T34
Ta4

The primal is solvable and weakly feasible,

z1n (1 —44)/2 13 T14

2 2 0 — 2 2
pt=inf{ —z4qy — —z19 | X = T/2 o =07 =,
3 3 33 T34 3

T44

and the dual is also solvable and weakly feasible,

Z11 R44 — 1 0 0
. 2 1 222 211 1
m 3212 + 3Z44 0 0 = 3

244

Hence, p* +d* =1 > 0, so that strong duality fails. Remark that the first three rows and columns

of this program are the same as in Example 5, with the additional constraints

1
T1g = §§7 z12 =244 — 1 2 —1.

As a consequence, we can construct a weakly centered sequence that is very similar to the one in

Example 5, viz.

e €2 0 0
0 —€2/2 0
X(e) = €T+ </ ;
1 0
€— €
€2 —€ 0 0
4—(2¢+2€6 +5et) € 0
2(6) = €M + (2¢ +2¢” + 5¢*) € ,
0 0
0
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lim Supe o z0(€) /zo(€)

0 (0, 00) 00
PSp = 00 Example 5 Example 4 Example 1
pép € (0,00) | Example 6 Example 2 impossible
psp =0 Example 3 impossible impossible
Table 1: Distinguishing the difficult cases where x(()k) + sgk) — 0

yo(e) =€, mole) =e+€', 2(e) =€ + ¢,

and

lim 29 _ g,

€l0 $0(6)
Our results on the indicator

-G

im sup
€l0 $0(6)

are summarized in Table 1. The possible combinations in the table are illustrated by Examples 1-6.
The impossibility of the remaining combinations follows from Theorem 5; see also Remark 4 and
Remark 5.

As promised in Remark 8, we will now give an example where

clz(e) + sole)
zo(€) B

but (P) is not unbounded. We consider this as an extremely nasty case, since it implies

lim
€l0

?

bls(e)/zo(e) = o0

even though d~ = —p* < .

Example 7 We consider a semidefinite program, which has some similarity to Example 5, viz.

T 3\

( [z —355/2 713
Z22 Z11
p* = inf { 2z45 0 =0 p =0,
1 x5
\ L Ts5 | J
for which the dual is weakly infeasible,
( [ z11 z55 0 W )
0 —z11/2
d* = inf < 244 233 =0 p =o0.
z44 1
\ L 255 | )
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Not unbounded
150 T

100+

50 -7

objective values
o

—50}

-100-

-150

. . . . . . .
0 5 10 15 20 25 30 35 40
iterations

Figure 7: Example 7

Notice however, that d= = 0. We construct a weakly centered sequence for small € by
[ 6 —€3/2 0 1
3-0() €
X(E) = 612I + 612 ,
7 b
- 63 -
[ 6 € 0 1
el? —e/2
Z(€) = €1 + 3—0(e) ;
e €
. 69 -
yo(e) = €2, zo(e) = € + €2, zp(e) = € + €'
We have
. cTx(e) +2(e) =260 4+ € + €2
lim = = —00,
el0 zo(€) €+ €l?

but (P) is not unbounded. See Corollary 1 and Remark 8.

7 Existence of Weakly Centered Sequences

In this section, we will prove the existence of a weakly centered sequence for (E), if we use the

primal-dual model CP(bsp, csp, Asp, Ksp) of Section 6. In fact, we will give a constructive proof
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using the theory of logarithmically homogeneous barriers, which has been developed by Nesterov

and Nemirovsky [16].

Definition 3 Let K be a closed, solid and pointed convexr cone. Then F : int X — R is a v-
logarithmically homogeneous barrier for IC if F' is a twice continuously differentiable convex function

on int IC such that F(x(i)) — 00 for any sequence ) in int K, i = 1,2,..., that converges to the

boundary of K, and
F(tx) = F(xz) —vlogt for all x € int K, t > 0, (26)

where v > 1 is a fized parameter.

It is known that any closed, pointed and solid convex cone K is endowed with a logarithmically
homogeneous barrier, see Theorem 2.5.1 in [16]. Moreover, Proposition 2.3.5 in [16] states that
logarithmically homogeneous barriers are strictly convex functions. Important special cases are
the n-logarithmically homogeneous barrier F(z) = — 31" logz; for the cone £ = R}, and the

n-logarithmically homogeneous barrier F(X) = —logdet X for the cone K = HT).

Let F'(z) be a v-logarithmically homogeneous barrier for K, and define its conjugate (or Legendre-

Young—Fenchel transform) by

F*(z) == sup {(—2)Tz— F(z)}. (27)

z€ int £

Notice that if z € K*, then (—z)'z > 0 for some z € int K, which together with (26) implies
F*(z) = oo. In fact, Nesterov and Nemirovsky [16] showed that F™*(z) is a v-logarithmically
homogeneous barrier for * (see Theorem 2.4.4 therein). Hence, F*(z) < oo if and only if z €
int IC*. Moreover, the biconjugate F** of F'is again F, i.e. F(z) = F**(x), see e.g. Rockafellar [22].

Let z € int K. Using definition (27) and the first order optimality conditions for concave maxi-

mization, it follows that
F*(2) = (=2)Yx — F(z) if z = =V F(z),

from which we obtain
—VF(x) € int ¥, (28)

and
VF*(z) = —x if z= —VF(x). (29)

Using (26), it is straightforward to show that
VF(z/t) =tVF(z) for all t > 0, (30)

and
VF(z)'z = —v. (31)
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The above properties of F' are also listed by Nesterov and Todd [17] and Nesterov, Todd and Ye [19].
Based on the barrier F', one can define a barrier path with parameter 1 > 0, see Theorem 9 below. In

the case of semidefinite programming, the central path is the barrier path for F'(z) = — log(det X).

Theorem 9 (barrier path) Let K be a convex cone that is closed, pointed and solid. Suppose that
CP(b,c, A, K) is a conic convex program that is primal and dual strongly feasible. Let F': int K — R

be a v-logarithmically homogeneous barrier for KC, and define
$u() = (=) 'z — pF (),
with pu > 0. Then there exists a unique vector z(u) € (b+ A) N int K such that
Bu(a(1)) = max{$(z) | = € (b+.4) 1 int K}.
Moreover, letting z(p) := —puVF(z(un)), there holds
w(w)T2(u) = v,  w(p) = —pVF*(2(n)),

and
2(p) = argmax{(—b) "z — pF*(2) | z € (c + AY) N int K*}.

Proof. First, notice that ¢,(-) is a concave function. Moreover, for all z € (b+ .A) N int K and

z € (c+ A%) N int K*, there holds
bu(z) =b"2 — 2T — pF(z) <b'2 + pF*(z/p).

Hence, ¢, () is bounded from above on (b + A) N int I, and since ¢, () is a strictly concave
function, it follows that ¢, () achieves a maximum, and the maximizer z(x) is unique. From the

first—order optimality conditions, we know that x(u) satisfies

Vu(z(p)) = —c — pVF(z(p)) € A

Letting z(u) := —puVF(z(u)), it follows from (28) that z(u) € (c + A%) N int K£*, and using
(29)-(30), we have

z(p) = =VE* (2(u)/p) = —uVEF*(z(n)),
so that
—b—uVF*(z(un)) € A.

The above relation shows that z(u) satisfies the optimality conditions for
max{(—b)"z — uF*(z) | z € (c + A") N int K*}.
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Finally, it follows from (31) that

2(p) ' (p) = —pVF(x(n) 2(p) = vp.

We now propose the following barrier for I x *,
Fsp(z,z) := F(z) + F*(2).

Using (26), we see that Fsp(z, z) is a 2v-logarithmically homogeneous barrier, and from definition
(27) and the fact that F(x) = F**(z), we obtain that

F§D(Z,$) = FSD(xaz)'
This leads to the following definition:
Definition 4 Let K be a solid convex cone such that K* = 11K for some symmetric permutation
matriz II. A v-logarithmically homogeneous barrier F : int K — R for K s II self-conjugate if

and only if
F*(Ilx) = F(x) for all z € int K.

For the extended self-dual model (E), we define
Fr(zsp, xo, 20) := Fsp(xsp) — log o — log 2y,

where Fsp is a (2v)-logarithmically homogeneous IIgp self-conjugate barrier for Ksp. It is easy
to verify that Fy is then a (2v+2)-logarithmically homogeneous Iy self-conjugate barrier for K.
Since (E) is strongly feasible (see Theorem 3), we can apply Theorem 9 to arrive at the following

result.

Theorem 10 Define
pu(zp) == (—cp) "'z — pFg(zp),

and let
zg(p) ;= argmax{¢,(zg) | zg € (bg+ Ag) N int Kg}.
Then )
wo(p)2o(p) = p = — HCEwE(u)

and lim, o cLrp(p) = 0.

35



Proof. From Theorem 9, we know that zp(u) is well defined, and

wp(p) ze(p) =2 + D,  zp(p) = —pVFs(z(p),

where zg(p) := —pVEFg(rg(p)). In addition, Theorem 9 tells us that zg(p) is the maximizer of the

function —blzp — pFy(28) = ¢, (Muzr) over all dual interior solutions zp, and therefore

vg(p) = uzp(p) = —plla Vg (zg (). (32)

Noticing that
VFg(ee) = | VEsp(osp)Ts —1/zo, —1/z | -
we obtain from (32) that
zo(p) = p/z0(1)-

Hence,
1 T 1

me(M) zp(p) = v+ ICEHCE(M),

zo(p)zo(p) = p =
where we used Theorem 1. O
Theorem 10 shows that {zg(u) | p > 0} is a weakly centered sequence for (E).

We have used the theory of logarithmically homogeneous barriers, to establish the existence of
weakly centered sequences for conic convex programming. In the special case of semidefinite pro-
gramming however, there is no need for this barrier argument. Namely, consider the primal-dual
path—following methods such as treated in e.g. [8, 9, 15, 17, 24, 23]. We may initialize these meth-
ods with a primal-dual pair (xg] ), z(EO)) that satisfies z(EO) = HHJU](EO ), i.e. the initial primal and dual
solutions are essentially the same. In particular, we may start with the identity solution, as ex-
plained in Section 6.1. It is then easily checked that all subsequent iterates (x(Ek ), Z(Ek)) also satisfy
such a property. Namely, primal-dual path—following algorithms generate iterates in a so—called

N (B)-neighborhood of the central path,

which by definition implies that

()2

224" 2 (1 )

This shows that iterative sequences in the N (5)-neighborhood are weakly centered with w =

(1=p)/(n+1).
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8 Conclusions

In this paper, we addressed questions such as how to solve a general conic convex program and
certify the solution(s) obtained. It turned out that a conic convex program can be in one or more
of the following states: 1) It is solvable; 2) It is weakly infeasible; 3) It is strongly infeasible; 4) It
is weakly feasible; and 5) It is strongly feasible. Certificates verifying a given state involve the dual
solutions. To get a complete picture about the problem, we need to solve a primal-dual embedded
system, for which we studied relevant properties. As a natural next step, we showed how the self-
dual embedding technique [30] for linear programming can be extended to this general case. By a
central path following method, we further proved that a weakly centered sequence for the self-dual
embedding system will be generated, which indeed provides much information about the solution
to the original problem. By various examples from semidefinite programming, we demonstrated
several intricate cases which can never occur in linear programming. We conclude from this study
that solving a general conic convex program requires substantially more effort and care than solving
a classical linear programming problem. Nevertheless, it is also clear from our study that the self-
dual embedding technique and the path—following methodology provide good tools for solving conic
convex programming problems, as long as an easy computable self-concordant barrier of the cone

is available.

We remark that similar techniques can be used to deal with the strict feasibility problem:
Find z € (b+ A) N int K. (33)

This includes the problem of finding a matrix satisfying a set of matrix inequalities strictly; such
problems arise in stability analysis for linear differential inclusions [1]. If we use an algorithm that
produces a maximally complementary solution, such as the path—following algorithm for semidefi-
nite programming [6], then the self-dual embedding technique can be applied directly on (P) with
¢ = 0, to solve the strict feasibility problem. But if the algorithm generates merely weakly centered

sequences, then we should apply the embedding technique to the following, auxiliary problem:
Find z,¢ such that x — ¢ € K and x — tb € A,

where ¢ is a given vector in the interior of IC. If (33) has a solution, then it is even possible to find
it in finite time (in the real number computational model). Otherwise, i.e. if (33) has no solution,

then we obtain in the limit a certificate z satisfying
T2<0,072=0,ze AL NK",

which indeed demonstrates infeasibility of (33).
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