
Neural network analysis of varying trends in real exchangeratesJohan F. Kaashoek (kaashoek@few.eur.nl)Econometric Institute, Erasmus University Rotterdam, P.O. Box 1738, 3000 DRRotterdam, The NetherlandsHerman K. van Dijk (hkvdijk@few.eur.nl)Econometric Institute and Tinbergen Institute, Erasmus University Rotterdam,P.O.Box 1738, 3000 DR Rotterdam, The NetherlandsReport EI9915/A Econometric Institute RotterdamAbstract. In this paper neural networks are �tted to the real exchange rates ofseven industrialized countries. The size and topology of the used networks is found byreducing the size of the network through the use of multiple correlation coe�cients,principal component analysis of residuals and graphical analysis of network outputper hidden layer cell and input layer cell.1. IntroductionThe 
exibility of neural networks to handle complex patterns in thedata has lead to the di�usion and implementation of neural networkmodels in economics and econometrics; see e.g. Gallant and White(1988) and White (1989). In this paper we consider one type of neuralnetwork: a feed-forward 3-layer network with an input layer of I cells, ahidden layer with H cells and an output layer with O cells. We assumethat the neural network considered is an approximation of the datagenerating process: yt = F (yt�1; � � � ; yt�I) + �t; (1)where yt is a continuous real-valued variable, F is the data generatingfunction and �t represents an unknown noise term. Hence the dimensionO of the output layer is a priori given and equal to 1. The network willbe denoted as nn(I;H). An upper bound on the size of the input layerI is given by nonlinear data analysis (e.g. embedding dimension, seeTakens (1981)). A crucial point is the unknown size H of the hiddenlayer. A strategy to determine the size H needs to be chosen and thisstrategy can also be applied to determine the size of the input layer I,since the upper bound may be too large for practical applications.The 
exibility of a neural network makes that over�tting, i.e. �ttingthe noise process, and consequently bad prediction behaviour can easily



2 Johan F. Kaashoek and Herman K. van Dijkoccur; see Bishop (1995). In simple terms: given an unlimited numberof hidden layer cells H, the network output encompasses the spectrumof yt. In this paper, a three fold procedure in reducing the size of thenetwork is proposed. The basic idea is what is called by Theil (1971),in the context of linear regression, the incremental contribution of ex-planatory variables. That is, how much is the reduction of the explainedvariance of the dependent variable y when we exclude an explanatoryvariable. We apply this idea to neural networks by excluding hiddenlayer cells and/or input cells from the networks.Our starting point is a graphical comparison of network output andobserved data with only one cell excluded and with all other cellsincluded. Next, in order to get a quanti�cation of network performancewith one cell excluded, the reduced contribution is measured in termsof multiple correlation coe�cients. A variable with a low incrementalcontribution will be a candidate to be excluded from the model. Thirdly,we calculate the principal components of the set of residuals obtainedby omitting successively one network cell. The vector representing the�rst principal component, may reveal which cell can be excluded fromthe network. As a cell pruning method, this approach is similar to theone proposed by Mozer and Smolensky (1989). However, our approachhas the advantage that the quantities used are based on the outcomeof only one optimization procedure with all variables included. A moreelaborate exposure of the procedure mentioned above, can be found inKaashoek and van Dijk (1998).The particular network, which results from the cell-pruning proceduredescribed above, may be used for prediction. That is, by making use ofa simple recursive procedure, the network generates a data series, calledorbit. The generated orbit may indicate the presence of nonlinear trendsin the data. As such, our analysis may be considered as a �rst stepof exploratory data analysis to varying trends in long economic timeseries. As actual data we use the logarithm of monthly real exchangerates, against the dollar, of �ve industrialized countries for the period1957-1998.The paper is organized as follows. In the �rst part, the graphical anal-ysis, the incremental contribution of cells and the principal componentanalysis of residuals are explained in the context of a standard feedforward neural network.In the second part the procedures are applied to two examples. First,data are generated by a neural network ("a true neural network"),The second example concerns actual economic data: the logarithm ofreal exchange rate of the Yen against the dollar 1957-1998. Finally,



Varying trends 3results on real exchange rates of four other industrialized countries arereported. 2. Network pruningThe functional form of the network used can be summarized as:y =h0 c+ d; (2)h =G(Ax+ b); (3)where h, c, b are H � 1 vectors, A is an H � I matrix and d and yare scalars. The vector function G = (g1; g2; � � � ; gH)0 has as typicalelement gh(x) = 11+e�x . We note that in the present paper the inputx is given as (yt�1; yt�2; � � � ; yt�I). Network output will be denoted as ŷ.As an example, consider a nn(1; 2) network. This neural network withone input cell and two hidden layer cells, has as functional form:yt = d+ c11 + e�a1yt�1�b1 + c21 + e�a2yt�1�b2 (4)In order to determine the parameters of the network we minimizethe sum of the squared di�erences of yt and ŷt, t = 1; � � � ; T . As anoptimization procedure we apply a two-step method as follows. First,the criterion function is adjusted by means of a linear regression of(~h1; ~h2; 1) on yt where ~hi = gi( ~Ax + ~b). A nonlinear optimization, i.e.the variable metric method of Davidon-Fletcher-Powell - see Press etal. (1988) - is applied to adjust the parameters A and b according tothe criterion function.2.1. Graphical analysisAn obvious way to look at neural network performance is to comparethe graphs of original output data (t; y(t)) and neural network estimates(t; ŷ(t)).Consider now the network (2) with hidden layer cell h left out; this isequivalent with putting ch equal to zero. All other parameters are leftthe same. Without this hidden layer cell h, the network produces anoutput called ŷ�h. The graphs of ft; ŷ�h(t)g are compared to the graphof ft; y(t)g and this comparison may give evidence of the contributionof hidden cell h in explaining the variance of y(t).



4 Johan F. Kaashoek and Herman K. van DijkIn a similar way the importance of input cells yt�1; � � � ; yt�I can beexamined. Let fŷ�i(t)g; i = 1; � � � ; I be neural network output withinclusion of all cells except input cell (variable) i (adjusted for meandi�erences). Then again, visual inspection of the graphs of ft; ytg) andft; ŷ�i(t)g may show evidence for in- or exclusion of input cell i.2.2. Incremental contributions of cellsA natural candidate for quanti�cation of the network performance isthe square of the correlation coe�cient of y and ŷR2 = (ŷ0y)2(y0y)(ŷ0ŷ) (5)where ŷ is the vector of network output points. Note that y and ŷ areadjusted for the mean.The network performance with only one cell deleted can be measuredin a similar way. For instance, if the contribution of hidden cell h is putto zero (ch = 0), then the network will produce an output ŷ�h witherrors e�h = y � ŷ�h (6)This reduced network can be measured by the square of the correlationcoe�cient R2�h between y and ŷ�h withR2�h = (ŷ0�hy)2(y0y)(ŷ0�hŷ�h) (7)where y and ŷ�h, are adjusted for the mean 1.Now the incremental contribution of cell h is given as the followingdi�erence: R2 �R2�h: (8)If the value in (8) is low for some h compared to all other values, thenthis cell is a candidate for exclusion from the network.1 Apart from consistency in the de�nition of multiple correlation coe�cients,which are de�ned in deviation of means, the inclusion of the constant d in thenetwork de�nition is motivated by the possibility to adjust easily network outputfŷ�h(t)g for di�erences in mean.



Varying trends 5Note that for a linear model with constant term (see e.g. equation (2)),the R2 of equation (5) equals toR2lin = 1� e0ey0y (9)with e = y � ŷ (10)Suppose the h-variable is left out, and the reduced linear model isestimated again with errors ê�h then the incremental contribution ofvariable h, is given as the di�erence between the (linear) correlationcoe�cients (see Theil (1971)); in formula:ê0�hê�h � e0ey0y : (11)The notation ê�h is used to emphasize that these residuals are the resultof an additional regression of the reduced linear model while the errorsgiven in equation (6), in the linear case, would be simply the resultof putting a parameter h to zero. Since equation (11) is based on re-estimating the model after exclusion of a variable, the decision to leaveout a network cell based on its low contribution measured by equa-tion (8) is conservative with respect to the one which is based on thevalue given in (11). However, this approach has the obvious advantagethat the quantities used are based on one nonlinear regression of a non-linear model with possible non-identi�ed parameters. Moreover, afterthe exclusion of a cell, optimization is prolonged with all parameters(except the one left out) equal to the results obtained in the foregoingoptimization round.The same procedure can be applied to reduce the number of input layercells. In this case, fŷ�i(t)g is network output, given network parametersestimates, without input cell i. The contribution of input cell i is put tozero (Ahi = 0; h = 1; � � �H), then the reduced network can be quanti�edby the square of the correlation coe�cient R2�i between y and ŷ�i withR2�i = (ŷ0�iy)2(y0y)(ŷ0�iŷ�i) (12)where y and ŷ�i are adjusted for the mean. The contribution of cell iis measured as R2 �R2�i: (13)



6 Johan F. Kaashoek and Herman K. van DijkThe relative value of incremental contributions in R2 can be used inevaluating whether an input cell can be omitted or not.2.3. Principal components analysis of network residualsFor the hidden layer cells we de�ne the matrix:E�H = (e�1; e�2; � � � ; e�H); (14)with e�h; h = 1; � � � ;H de�ned in equation (6). A principal componentanalysis on the matrix E�H , i.e. the calculation of the orthonormaleigenvectors and eigenvalues of the symmetric matrix E0�HE�H , willgive the principal components of E�H . The �rst principal component,corresponding to the maximal eigenvalue, will have maximal variancesince the amount of variance of each principal component is propor-tional to the corresponding eigenvalue; see e.g Malinvaud (1970) andTheil (1971). Hence the �rst component or better, the eigenvector vmaxat largest eigenvalue �max of E0�HE�H , de�nes the linear combinationof elements e�h with the largest variance. Otherwise stated: the vectorvmax gives the worst case combination with respect to omitting cells.And moreover, the elements of this vector vmax reveal which variablemay be omitted: the cell with index h for which the correspondingelement in the �rst principal component is minimal in absolute sense,may be excluded: its exclusion of the model does not contribute verymuch to the worst case!Whether a decision for exclusion and/or inclusion can be based on thefactors (=eigenvector) of the �rst principal component only, will dependon the relative weight of this component. Again by the above statement,the relative importance of each component is proportional to the cor-responding eigenvalue. Hence, the weight wk of the kth component isgiven as the relative magnitude of the corresponding eigenvalue �k:wk = �k= HXk=1 �k: (15)Similar, for the input layer cells, we de�ne the matrix:E�I = (e�1; e�2; � � � ; e�I); (16)where e�i; i = 1; � � � ; I are de�ned ase�i = y � ŷ�i: (17)



Varying trends 7Again, the �rst principal component of EI may give evidence whichinput layer cell can be excluded. Of course, economic and time-seriesanalysis may have a stronger impact on the exclusion decision than inthe case of hidden layer cells.3. An example of a true neural networkWe start with an example which illustrates the pruning method ex-plained above.The data used in this section are generated by a two dimensional model:y2;t = y1;t�1y1;t = F1(y1;t�1; y2;t�1): (18)with F1 is the function R2 ! R given by a nn(2; 2) neural network.The observed data, denoted as NN0202, are only one dimensional:fy1;tg � yt; the length of the data is 500.Applying the procedures as explained above - see section 2- the origi-nal (true) neural network is to be found again starting with a neuralnetwork with 4 inputs (yt�1; yt�2; yt�3; yt�4), and 6 hidden layer cells.The result of an optimization are reported in Table I.Table I. Incremental contribution in R2 and principal componentsNetwork (4; 6) on Data: NN0202Network total result: R2 = 0:9999Cell excluded: -H1 -H2 -H3 -H4 -H5 -H6R2inc 0.0000 0.1764 0.5934 0.0912 0.0045 0.0112Eigenvector at �rst principal component of E0�HE�H (weight = 70:30%)Cell excluded: -H1 -H2 -H3 -H4 -H5 -H6�0.0000 0.5001 �0.8647 �0.0198 0.0685 �0.0153Cell excluded: -yt�4 -yt�3 -yt�2 -yt�1R2inc 0.0000 0.0000 0.9579 0.9934Cell excluded: -yt�4 -yt�3 -yt�2 -yt�1Eigenvector at �rst principal component of E0�IE�I (weight = 92:19%)�0.0000 0.0001 �0.6923 �0.7200With respect to hidden layer cells, comparing the incremental contri-butions and the eigenvectors of E0�HE�H , hidden layer cell 1 and 5



8 Johan F. Kaashoek and Herman K. van Dijkmay be excluded also. Moreover, it is obvious that input cells 1 withyt�4, and 2 with yt�3, can be excluded. This gives a network with 2inputs and 4 hidden layer cells. In Table II the results of an furtheroptimization run are reported.Table II. Incremental contribution in R2 and principal componentsNetwork (2; 4) on Data: NN0202Network total result: R2 = 0:9999Cell excluded: -H1 -H2 -H3 -H4R2inc 0.5592 0.9565 0.0678 0.0635Eigenvector at �rst principal component of E0�HE�H (weight = 93:58%)Cell excluded: -H1 -H2 -H3 -H40.6753 �0.7374 �0.0281 �0.0265Cell excluded: -yt�2 -yt�1R2inc 0.9860 0.9948Eigenvector at �rst principal component of E0�IE�I (weight = 92:80%)Cell excluded: -yt�2 -yt�10.7300 �0.6800Table II shows that hidden layer cells 3 and 4 can be excluded now; seee.g. the remarkable pattern in the eigenvectors of E0�HE�H . Hence theoriginal size of the true neural network is "reconstructed" indeed.



Varying trends 94. Varying trends in real exchange ratesThe data used in this section are the logarithm of Yen-US dollar realexchange rates, period January 1957 to March 1998, denoted as JPUS.These data are the extended data of Schotman and van Dijk (1991)who �tted a subset of the same data to a linear auto-regressive modelof order one, AR1for the period 1973 � 1988. The data are shown in�gure 1.
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10 Johan F. Kaashoek and Herman K. van DijkTable III. Incremental contribution in R2 and �rst principal componentNetwork (5; 10) on Data: JPUSNetwork total result: R2 = 0:9965Cell excluded: -H1 -H2 -H3 -H4 -H5R2inc 0.9192 0.0763 0.0000 0.0001 0.0833Cell excluded: -H6 -H7 -H8 -H9 -H10R2inc 0.0300 0.0258 0.0892 0.0000 0.0063Eigenvector at �rst principal component of E0�HE�H (weight = 93:72%)Cell excluded: -H1 -H2 -H3 -H4 -H5�0.3919 �0.0683 �0.0047 0.0195 �0.2444Cell excluded: -H6 -H7 -H8 -H9 -H10�0.6730 0.3501 0.1671 0.0134 0.4218Table IV. Incremental contribution in R2 and �rst principal componentNetwork (5; 8) on Data: JPUSNetwork total result: R2 = 0:9967Cell excluded: -H1 -H2 -H3 -H4 -H5R2inc 0.62452 0.9187 0.9706 0.0066 0.8405Cell excluded: -H6 -H7 -H8R2inc 0.4708 0.4945 0.0033Eigenvector at �rst principal component of E0�HE�H (weight = 86:30%)Cell excluded: -H1 -H2 -H3 -H4 -H5�0.5030 �0.3241 �0.0657 0.0039 �0.0083Cell excluded: -H6 -H7 -H80.02536 0.7980 0.0092Although all input variables, except yt�1 have a rather low contribution(not reported here), only reduction of hidden layer cells is applied atthis stage. So, optimization is continued after removing hidden layer cell3 and 9. In Table IV the results are summarized. Again, only resultson hidden layer cells are reported.
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Figure 2. JPUS data and nn(5; 8) network output (thick dots) without hidden layercell 1, 2, 3, 4, 5, 6, 7 and 8 respectively.
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Figure 3. JPUS data and nn(5; 8) network output (thick dots) without input layercell 2, 2, 4, 5, and 6 respectively (input cell 1 represents constant term).Table IV, and �gure (4) show that, at least, hidden cells 4 and 8 arecandidates for exclusion.First hidden cells 4 and 8 are excluded (based on low factors in theprincipal component of E0�HE�H and after an additional optimization,still three more hidden layer cells could be excluded so �nally a networkwith only 3 hidden layer cells was obtained. The results are reportedin Table V.



Varying trends 13Table V. Incremental contribution in R2 and �rst principal componentNetwork (5; 3) on Data: JPUSNetwork total result: R2 = 0:9965Cell excluded: -H1 -H2 -H3R2inc 0.8233 0.9960 0.9159Eigenvector at �rst principal component of E0�HE�H (weight = 93:37%)Cell excluded: -H1 -H2 -H3�0.7074 0.0243 0.7064Cell excluded: -I1 (yt�5) -I2 (yt�4) -I3 (yt�3) -I4 (yt�2) -I5 (yt�1)R2inc 0.0197 0.2584 0.9070 0.0003 0.9012Eigenvector at �rst principal component of E0�IE�I (weight = 95:35%)Cell excluded: -I1 (yt�5) -I2 (yt�4) -I3 (yt�3) -I4 (yt�2) -I5 (yt�1)�0.0011 0.0203 0.9858 �0.0082 0.1663Now all hidden layer cells have a rather large contribution. The secondhidden layer cell (H2) has a small factor in the �rst principal com-ponent, however, in the second principal component (with a weightof 6:58%, the second cell has a factor equal to 0:9997, so there isno reason to exclude cell H2. However, the graphs of network outputwith exclusion of one hidden layer cell respectively, show a remarkablepattern: it seems that the contribution of cell H1 and cell H3 arebased on only very limited input values. Above all, the output of thosecells seems to be symmetric; see �gure (4) which shows the graphsof network output minus one hidden layer cell (compared to actualdata) and �gure (5) which shows the graphs of network output basedon only one hidden layer cell each. Based on those graphs a furtherreduction is applied resulting in a network with only one hidden layercell. After optimization the network performance can be summarizedby R2 = 0:9962 which hardly di�ers from the one with 3 hidden layercells.
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Figure 4. nn(5; 3) network output without one hidden layer cell (H1, H2 and H3respectively) compared with actual data.
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Figure 5. nn(5; 3) network output of only one hidden layer cell (H1, H2 and H3respectively ) compared with actual data.



Varying trends 15With respect to the input variables, the reduction to only one hiddencell has a remarkable e�ect on the importance of the input variables.While according to Table V, the variable yt�1 has a small factor in the�rst principal component (but a high contribution in R2), in the case ofonly hidden layer cell only just this variable yt�1 is important; all othervariables do hardly contribute! To visualize this e�ect, two �gures aresupplied: both �gures show graphs of network output minus the inputof one input cell but �gure (6) applies to the case of three hidden cellswhile in �gure (7) the number hidden layer cells is only 1.
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Figure 6. nn(5; 3) network output minus input of one input layer cell (I1 till I5)compared with actual data.So, in the case of only one hidden layer cell with only input cell I5active, one is tempted to reduce the number of input cells to 1, withvariable yt�1 as input. After optimization, such an one input- and onehidden layer cell nn(1; 1) network has a performance quanti�ed by R2 =0:9962, which is only slightly worse than the R2 for a nn(5; 3) network!This nn(1; 1) neural network has as functional form:yt = d+ c1 + e�ayt�1�b (19)



16 Johan F. Kaashoek and Herman K. van Dijkor written as switching model:yt = d(1 � F (yt�1)) + (c+ d)F (yt�1) (20)where F (y) = 11 + e�ay�b (21)(22)
0 100 200 300 400 500

0

0.5

1
nn − I(1)

0 100 200 300 400 500
0

0.5

1
nn − I(2)

0 100 200 300 400 500
0

0.5

1
nn − I(3)

0 100 200 300 400 500
0

0.5

1
nn − I(4)

0 100 200 300 400 500
0

0.5

1
nn − I(5)

Figure 7. nn(5; 1) network output minus input of one input layer cell (I1 till I5)compared with actual data.The small nn(1; 1) seems to work properly, so this type of neural net-work is used to �t 5 other US dollar real exchange rates: namely theCanadian dollar, the French franc, the UK pound, the German (west)mark and the Dutch guilder.



Varying trends 17
0 50 100 150 200 250 300 350 400 450 500

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

JP
U

S

Time index
0 50 100 150 200 250 300 350 400 450 500

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

C
A

U
S

Time index

0 50 100 150 200 250 300 350 400 450 500
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

F
R

U
S

Time index
0 50 100 150 200 250 300 350 400 450 500

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

U
K

U
S

Time index

0 50 100 150 200 250 300 350 400 450 500
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

W
G

U
S

Time index
0 50 100 150 200 250 300 350 400 450 500

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

N
L

U
S
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18 Johan F. Kaashoek and Herman K. van Dijksulting neural network orbit with the actual data are exposed.The results indicate that in all cases a nonlinear trend is a probablemodel. We conclude that our analysis can be interpreted as a �rst stepto a more detailed analysis of the parametric form of a time series modelfor real exchanges as for instance a threshold model; see Granger andTer�asvirta (1993). 5. SummaryIn this paper the number of parameters in a neural network is reducedby applying elementary procedures. The procedure calculates the in-cremental contribution of variables, in the case of neural networks: thehidden layer cells and input layer cells. Another descriptive measure,the principal component analysis of residuals with one cell omitted,con�rms the in- or exclusion reasoning based on incremental contribu-tions. The advantage of our proposed principal component procedureis that in one stroke, two quantities, i.e. the �rst and last principalcomponent, are obtained which both give evidence which cells can beexcluded. Those two quantities are supplemented by graphical analysisof network performance.Our empirical analysis shows substantial evidence on nonlinear trendsin the real exchange rates. As such, these results may give rise to thesearch for parsimonious models that give an adequate description ofthe observed data; see e.g. Granger and Ter�asvirta (1993).AcknowledgementsThe authors wish to thank Timo Ter�asvirta, Stockholm School of Eco-nomics, for helpful discussions.ReferencesBishop, C.M., Neural Networks for Pattern Recognition, Clarendon Press Oxford,1995.Gallant, A.R. & H. White, There exists a neural network that does not make avoid-able mistakes, in Proc. of the International Conference on Neural Networks, SanDiego, 1988 , IEEE Press, New York, 1989.Granger, C.W.J. & T. Ter�asvirta, Modelling Nonlinear Economic Relationships,Oxford University Press Inc., New York, 1993.
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