Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Therapy

Pharmacokinetic, pharmacodynamic and intracellular effects of PEG-asparaginase in newly diagnosed childhood acute lymphoblastic leukemia: results from a single agent window study

Abstract

L-asparaginase is an effective drug for treatment of children with acute lymphoblastic leukemia (ALL). The effectiveness is thought to result from depletion of asparagine in serum and cells. We investigated the clinical response in vivo of 1000 IU/m2 pegylated (PEG)-asparaginase and its pharmacokinetic, pharmacodynamic and intracellular effects in children with newly diagnosed ALL before start of combination chemotherapy. The in vivo window response was significantly related to immunophenotype and genotype: 26/38 common/pre B-ALL cases, especially those with hyperdiploidy and TELAML1 rearrangement, demonstrated a good clinical response compared to 8/17 T-ALL (P=0.01) and BCRABL-positive ALL (P=0.04). A poor in vivo clinical window response was related to in vitro resistance to L-asparaginase (P=0.02) and both were prognostic factors for long-term event-free survival (hazard ratio 6.4, P=0.004; hazard ratio 3.7, P=0.01). After administration of one in vivo dose of PEG-asparaginase no changes in apoptotic parameters or in intracellular levels of twenty amino acids in leukemic cells could be measured, in contradiction to the changes found after in vitro exposure. This may be explained by the rapid removal of apoptotic cells from the circulation in vivo. One additional dose of PEG-asparaginase upfront ALL treatment did not lead to other severe toxicities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Capizzi RL, Bertino JR, Skeel RT, Creasey WA, Zanes R, Olayon C et al. L-asparaginase: clinical, biochemical, pharmacological, and immunological studies. Ann Intern Med 1971; 74: 893–901.

    Article  CAS  PubMed  Google Scholar 

  2. Silverman LB, Gelber RD, Dalton VK, Asselin BL, Barr RD, Clavell LA et al. Improved outcome for children with acute lymphoblastic leukemia: results of Dana–Farber Consortium Protocol 91-01. Blood 2001; 97: 1211–1218.

    Article  CAS  PubMed  Google Scholar 

  3. Pieters R, Loonen AH, Huismans DR, Broekema GJ, Dirven MW, Heyenbrok MW et al. In vitro drug sensitivity of cells from children with leukemia using the MTT assay with improved culture conditions. Blood 1990; 76: 2327–2336.

    CAS  PubMed  Google Scholar 

  4. Yamada S, Hongo T, Okada S, Watanabe C, Fujii Y, Ohzeki T . Clinical relevance of in vitro chemoresistance in childhood acute myeloid leukemia. Leukemia 2001; 15: 1892–1897.

    Article  CAS  PubMed  Google Scholar 

  5. Janka-Schaub GE, Harms DO, den Boer ML, Veerman AJ, Pieters R . [In vitro drug resistance as independent prognostic factor in the study COALL-O5-92 Treatment of childhood acute lymphoblastic leukemia; two-tiered classification of treatments based on accepted risk criteria and drug sensitivity profiles in study COALL-06-97]. Klin Padiatr 1999; 211: 233–238.

    Article  CAS  PubMed  Google Scholar 

  6. Pieters R, Huismans DR, Loonen AH, Hahlen K, van der Does-van den Berg A, van Wering ER et al. Relation of cellular drug resistance to long-term clinical outcome in childhood acute lymphoblastic leukaemia. Lancet 1991; 338: 399–403.

    Article  CAS  PubMed  Google Scholar 

  7. Kaspers GJ, Veerman AJ, Pieters R, Van Zantwijk CH, Smets LA, Van Wering ER et al. In vitro cellular drug resistance and prognosis in newly diagnosed childhood acute lymphoblastic leukemia. Blood 1997; 90: 2723–2729.

    CAS  PubMed  Google Scholar 

  8. Den Boer ML, Harms DO, Pieters R, Kazemier KM, Gobel U, Korholz D et al. Patient stratification based on prednisolone-vincristine-asparaginase resistance profiles in children with acute lymphoblastic leukemia. J Clin Oncol 2003; 21: 3262–3268.

    Article  CAS  PubMed  Google Scholar 

  9. Asselin BL, Kreissman S, Coppola DJ, Bernal SD, Leavitt PR, Gelber RD et al. Prognostic significance of early response to a single dose of asparaginase in childhood acute lymphoblastic leukemia. J Pediatr Hematol Oncol 1999; 21: 6–12.

    Article  CAS  PubMed  Google Scholar 

  10. Ollenschlager G, Roth E, Linkesch W, Jansen S, Simmel A, Modder B . Asparaginase-induced derangements of glutamine metabolism: the pathogenetic basis for some drug-related side-effects. Eur J Clin Invest 1988; 18: 512–516.

    Article  CAS  PubMed  Google Scholar 

  11. Broome JD . -asparaginase: discovery and development as a tumor-inhibitory agent. Cancer Treat Rep 1981; 65 (Suppl 4): 111–114.

    CAS  PubMed  Google Scholar 

  12. Miller HK, Salser JS, Balis ME . Amino acid levels following L-asparagine amidohydrolase (EC.3.5.1.1) therapy. Cancer Res 1969; 29: 183–187.

    CAS  PubMed  Google Scholar 

  13. Muller HJ, Boos J . Use of L-asparaginase in childhood ALL. Crit Rev Oncol Hematol 1998; 28: 97–113.

    Article  CAS  PubMed  Google Scholar 

  14. Bussolati O, Belletti S, Uggeri J, Gatti R, Orlandini G, Dall’Asta V et al. Characterization of apoptotic phenomena induced by treatment with L-asparaginase in NIH3T3 cells. Exp Cell Res 1995; 220: 283–291.

    Article  CAS  PubMed  Google Scholar 

  15. Andrulis IL, Argonza R, Cairney AE . Molecular and genetic characterization of human cell lines resistant to L-asparaginase and albizziin. Somat Cell Mol Genet 1990; 16: 59–65.

    Article  CAS  PubMed  Google Scholar 

  16. Jousse C, Averous J, Bruhat A, Carraro V, Mordier S, Fafournoux P . Amino acids as regulators of gene expression: molecular mechanisms. Biochem Biophys Res Commun 2004; 313: 447–452.

    Article  CAS  PubMed  Google Scholar 

  17. Appel IM, den Boer ML, Meijerink JP, Veerman AJ, Reniers NC, Pieters R . Up-regulation of asparagine synthetase expression is not linked to the clinical response L-asparaginase in pediatric acute lymphoblastic leukemia. Blood 2006; 107: 4244–4249.

    Article  CAS  PubMed  Google Scholar 

  18. Holleman A, Cheok MH, den Boer ML, Yang W, Veerman AJ, Kazemier KM et al. Gene-expression patterns in drug-resistant acute lymphoblastic leukemia cells and response to treatment. N Engl J Med 2004; 351: 533–542.

    Article  CAS  PubMed  Google Scholar 

  19. Holleman A, den Boer ML, Kazemier KM, Janka-Schaub GE, Pieters R . Resistance to different classes of drugs is associated with impaired apoptosis in childhood acute lymphoblastic leukemia. Blood 2003; 102: 4541–4546.

    Article  CAS  PubMed  Google Scholar 

  20. Veerman AJ, Hahlen K, Kamps WA, Van Leeuwen EF, De Vaan GA, Solbu G et al. High cure rate with a moderately intensive treatment regimen in non-high-risk childhood acute lymphoblastic leukemia. Results of protocol ALL VI from the Dutch Childhood Leukemia Study Group. J Clin Oncol 1996; 14: 911–918.

    Article  CAS  PubMed  Google Scholar 

  21. Muller HJ, Loning L, Horn A, Schwabe D, Gunkel M, Schrappe M et al. Pegylated asparaginase (Oncaspar) in children with ALL: drug monitoring in reinduction according to the ALL/NHL-BFM 95 protocols. Br J Haematol 2000; 110: 379–384.

    Article  CAS  PubMed  Google Scholar 

  22. Yoshimoto T, Nishimura H, Saito Y, Sakurai K, Kamisaki Y, Wada H et al. Characterization of polyethylene glycol-modified L-asparaginase from Escherichia coli and its application to therapy of leukemia. Jpn J Cancer Res 1986; 77: 1264–1270.

    CAS  PubMed  Google Scholar 

  23. Slater RM, Smeets DF, Hagemeijer A, De Jong B, Beverstock CG, Geraedts JP et al. Update of the cytogenetic study of childhood non-high-risk acute lymphocytic leukemia at diagnosis in protocol VI of the Dutch Childhood Leukemia Study Group. Haematol Blood Transfus 1990; 33: 169–173.

    CAS  PubMed  Google Scholar 

  24. Kaspers GJ, Veerman AJ, Pieters R, Broekema GJ, Huismans DR, Kazemier KM et al. Mononuclear cells contaminating acute lymphoblastic leukaemic samples tested for cellular drug resistance using the methyl-thiazol-tetrazolium assay. Br J Cancer 1994; 70: 1047–1052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Schrappe M, Reiter A, Zimmermann M, Harbott J, Ludwig WD, Henze G et al. Long-term results of four consecutive trials in childhood ALL performed by the ALL-BFM study group from 1981 to 1995. Berlin-Frankfurt-Munster. Leukemia 2000; 14: 2205–2222.

    Article  CAS  PubMed  Google Scholar 

  26. Lanvers C, Vieira Pinheiro JP, Hempel G, Wuerthwein G, Boos J . Analytical validation of a microplate reader-based method for the therapeutic drug monitoring of L-asparaginase in human serum. Anal Biochem 2002; 309: 117–126.

    Article  CAS  PubMed  Google Scholar 

  27. Lenda K, Svenneby G . Rapid high-performance liquid chromatographic determination of amino acids in synaptosomal extracts. J Chromatogr 1980; 198: 516–519.

    Article  CAS  PubMed  Google Scholar 

  28. Appel IM, Pinheiro JP, den Boer ML, Lanvers C, Reniers NC, Boos J et al. Lack of asparagine depletion in the cerebrospinal fluid after one intravenous dose of PEG-asparaginase: a window study at initial diagnosis of childhood ALL. Leukemia 2003; 17: 2254–2256.

    Article  CAS  PubMed  Google Scholar 

  29. Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD et al. Measurement of protein using bicinchoninic acid. Anal Biochem 1985; 150: 76–85.

    Article  CAS  PubMed  Google Scholar 

  30. Appel IM, Hop WC, Pieters R . Changes in hypercoagulability by asparaginase: a randomized study between two asparaginases. Blood Coagul Fibrinolysis 2006; 17: 139–146.

    Article  CAS  PubMed  Google Scholar 

  31. Monagle P, Barnes C, Ignjatovic V, Furmedge J, Newall F, Chan A et al. Developmental haemostasis. Impact for clinical haemostasis laboratories. Thromb Haemost 2006; 95: 362–372.

    Article  CAS  PubMed  Google Scholar 

  32. Flanders MM, Phansalkar AR, Crist RA, Roberts WL, Rodgers GM . Pediatric reference intervals for uncommon bleeding and thrombotic disorders. J Pediatr 2006; 149: 275–277.

    Article  PubMed  Google Scholar 

  33. Ries M, Klinge J, Rauch R . Age-related reference values for activation markers of the coagulation and fibrinolytic systems in children. Thromb Res 1997; 85: 341–344.

    Article  CAS  PubMed  Google Scholar 

  34. Pieters R, den Boer ML, Durian M, Janka G, Schmiegelow K, Kaspers GJ et al. Relation between age, immunophenotype and in vitro drug resistance in 395 children with acute lymphoblastic leukemia—implications for treatment of infants. Leukemia 1998; 12: 1344–1348.

    Article  CAS  PubMed  Google Scholar 

  35. Appel IM, Hop WCJ, van Kessel-Bakvis C, Stigter R, Pieters R . Age-related changes by asparaginase on coagulation and fibrinolysis in childhood acute lymphoblastic leukemia. Thromb Haemost August 2008.

  36. Stahnke K, Fulda S, Friesen C, Strauss G, Debatin KM . Activation of apoptosis pathways in peripheral blood lymphocytes by in vivo chemotherapy. Blood 2001; 98: 3066–3073.

    Article  CAS  PubMed  Google Scholar 

  37. Durrieu F, Belloc F, Lacoste L, Dumain P, Chabrol J, Dachary-Prigent J et al. Caspase activation is an early event in anthracycline-induced apoptosis and allows detection of apoptotic cells before they are ingested by phagocytes. Exp Cell Res 1998; 240: 165–175.

    Article  CAS  PubMed  Google Scholar 

  38. Boos J, Werber G, Ahlke E, Schulze-Westhoff P, Nowak-Gottl U, Wurthwein G et al. Monitoring of asparaginase activity and asparagine levels in children on different asparaginase preparations. Eur J Cancer 1996; 32A: 1544–1550.

    Article  CAS  PubMed  Google Scholar 

  39. Franek F, Fismolova I, Eckschlager T . Antiapoptotic and proapoptotic action of various amino acids and analogs in starving MOLT-4 cells. Arch Biochem Biophys 2002; 398: 141–146.

    Article  CAS  PubMed  Google Scholar 

  40. Simpson NH, Singh RP, Perani A, Goldenzon C, Al-Rubeai M . In hybridoma cultures, deprivation of any single amino acid leads to apoptotic death, which is suppressed by the expression of the bcl-2 gene. Biotechnol Bioeng 1998; 59: 90–98.

    Article  CAS  PubMed  Google Scholar 

  41. Iwamoto S, Mihara K, Downing JR, Pui CH, Campana D . Mesenchymal cells regulate the response of acute lymphoblastic leukemia cells to asparaginase. J Clin Invest 2007; 117: 1049–1057.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Rotoli BM, Uggeri J, Dall’Asta V, Visigalli R, Barilli A, Gatti R et al. Inhibition of glutamine synthetase triggers apoptosis in asparaginase-resistant cells. Cell Physiol Biochem 2005; 15: 281–292.

    Article  CAS  PubMed  Google Scholar 

  43. Tardito S, Uggeri J, Bozzetti C, Bianchi MG, Rotoli BM, Franchi-Gazzola R et al. The inhibition of glutamine synthetase sensitizes human sarcoma cells to L-asparaginase. Cancer Chemother Pharmacol 2007; 60: 751–758.

    Article  CAS  PubMed  Google Scholar 

  44. Wagner A, Boos J . Unphysiological effects contributing to asparaginase toxicity in vitro. Am J Physiol 1998; 274 (4 Part 1): C1185–C1186.

    Article  CAS  PubMed  Google Scholar 

  45. Fine BM, Kaspers GJ, Ho M, Loonen AH, Boxer LM . A genome-wide view of the in vitro response to L-asparaginase in acute lymphoblastic leukemia. Cancer Res 2005; 65: 291–299.

    CAS  PubMed  Google Scholar 

  46. Newsholme EA, Crabtree B, Ardawi MS . Glutamine metabolism in lymphocytes: its biochemical, physiological and clinical importance. Q J Exp Physiol 1985; 70: 473–489.

    Article  CAS  PubMed  Google Scholar 

  47. Iiboshi Y, Papst PJ, Hunger SP, Terada N . -asparaginase inhibits the rapamycin-targeted signaling pathway. Biochem Biophys Res Commun 1999; 260: 534–539.

    Article  CAS  PubMed  Google Scholar 

  48. Wakayama K, Besa EC, Baskin SI . Changes in intracellular taurine content of human leukemic cells. Nagoya J Med Sci 1983; 45: 89–96.

    CAS  PubMed  Google Scholar 

  49. Chakrabarti R, Schuster SM . -asparaginase: perspectives on the mechanism of action and resistance. Int J Ped Hem/Oncol 1997; 4: 597–611.

    Google Scholar 

  50. Ryan WL, Sornson HC . Glycine inhibition of asparaginase. Science 1970; 167: 1512–1513.

    Article  CAS  PubMed  Google Scholar 

  51. Keefer JF, Moraga DA, Schuster SM . Comparison of glycine metabolism in mouse lymphoma cells either sensitive or resistant to L-asparaginase. Biochem Pharmacol 1985; 34: 559–565.

    Article  CAS  PubMed  Google Scholar 

  52. Sobin LH, Kidd JG . A metabolic difference between two lines of lymphoma 6c3hed cells in relation to asparagine. Proc Soc Exp Biol Med 1965; 119: 325–327.

    Article  CAS  PubMed  Google Scholar 

  53. Bushman JE, Palmieri D, Whinna HC, Church FC . Insight into the mechanism of asparaginase-induced depletion of antithrombin III in treatment of childhood acute lymphoblastic leukemia. Leuk Res 2000; 24: 559–565.

    Article  CAS  PubMed  Google Scholar 

  54. Reinert RB, Oberle LM, Wek SA, Bunpo P, Wang XP, Mileva I et al. Role of glutamine depletion in directing tissue-specific nutrient stress responses to L-asparaginase. J Biol Chem 2006; 281: 31222–31233.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I M Appel.

Additional information

Authorship

IMA designed and analyzed experiments and wrote the paper; KMK performed the research on the laboratory and analyzed the data; JB contributed vital tools for experiments on serum L-asparaginase activity and serum amino-acid analyses; CL performed experiments and contributed vital tools for experiments on serum L-asparaginase activity and serum amino-acid analyses; JH contributed vital tools for experiments on intracellular amino-acid analyses; AJPV is chairman of the DCOG-ALL-9 protocol; EvW contributed vital tools on behalf of the DCOG; MLdB designed and analyzed experiments and contributed to writing the paper; RP designed and analyzed experiments and contributed to writing the paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Appel, I., Kazemier, K., Boos, J. et al. Pharmacokinetic, pharmacodynamic and intracellular effects of PEG-asparaginase in newly diagnosed childhood acute lymphoblastic leukemia: results from a single agent window study. Leukemia 22, 1665–1679 (2008). https://doi.org/10.1038/leu.2008.165

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2008.165

Keywords

This article is cited by

Search

Quick links