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Abstract

To analyze the intertemporal interaction between the stock and bond market re-
turns, we allow the conditional covariance matrix to vary over time according to
a multivariate GARCH model similar to Bollerslev, Engle and Wooldridge (1988).
We extend the model such that it allows for asymmetric effects on conditional
variances and covariances. Using weekly U.S. stock and bond market data, we
find strong evidence of conditional heteroskedasticity in the covariance between
stock and bond market returns. The results indicate that not only variances, but
also covariances respond asymmetrically to return shocks. Regardless of the bond
market shocks, bad news in the stock market is typically followed by a higher con-
ditional covariance than good news. We find that volatility timing strategies for
dynamic asset allocation significantly outperform passive strategies. Even when
short-sale restrictions are present and transaction costs are high, the economic
value of dynamic trading strategies is larger than that of a passive strategy. More-
over, the symmetric volatility timing strategy is outperformed by its asymmetric

counterpart.

Keywords: Multivariate GARCH, Stock and Bond Market Interaction, Time-
Varying Volatility, Asymmetric Effects, Impact of News.

JEL classification codes: G12, C22.



1 Introduction

The modeling of conditional volatilities of asset returns, as well as the covariances
between returns, is of considerable importance for the pricing of financial securi-
ties, and (co)variances are key inputs to asset allocation and risk management in
financial institutions. Consequently, accurate models and forecasts of conditional
covariances are crucial. However, while there is a vast amount of literature on
modeling returns and volatility, these are often restricted as they either examine
the stock market or the bond market separately.! Little attention has been paid
to the interaction between the two markets. Only since the last decade finan-
cial economists have begun to model these temporal dependencies. For example,
Breen, Glosten and Jagannathan (1989) show that there is a negative relation be-
tween short term interest rates and future stock index returns, and Schwert (1989)
documents that U.S. stock and bond returns and volatilities move together. A
recent study by Fleming, Kirby and Ostdiek (1998) examines volatility interac-
tion of stock, bond and money markets using a stochastic volatility model. Al-
though they find a strong link in volatility between the three markets, they do not
consider the conditional covariance between the stock and bond market returns.
Studies that explicitly consider time-varying conditional covariances, using mul-
tivariate GARCH models, include Bollerslev, Engle and Wooldridge (1988), Ng
(1991), Turtle, Buse and Korkie (1994), and De Santis and Gerard (1997). While
these studies lay emphasis on allowing the conditional mean equation to depend on
the conditional covariance terms, they do not explicitly examine the interactions
between the stock and bond market.

The purpose of our study is to analyze the intertemporal interactions of stock
and bond returns. To this end we allow the conditional covariance matrix of stock
and bond market returns to vary over time, according to a multivariate GARCH-
in-mean model similar to Bollerslev, Engle and Wooldridge (1988). We extend
their model by allowing for asymmetric effects of return shocks on the conditional

covariance between stock and bond returns.

!Some examples of stock market studies include Breen, Glosten and Jagannathan (1989),
Campbell and Hentschel (1992), Engle and Ng (1993), Glosten, Jagannathan and Runkle (1993)
and Kroner and Ng (1998). Literature on the modeling of bond returns include Engle, Lilien
and Roberts (1987), Engle, Ng and Rothschild (1990), Fama and French (1995) and Duffie and
Singleton (1997).



Although it is often recognized that variances and covariances of returns change
over time (see, e.g., French, Schwert and Stambaugh, 1987, and Schwert, 1989)
their determinants are not yet well identified and documented. Among the econo-
metric volatility models, the family of GARCH models, as introduced by Engle
(1982) and generalized by Bollerslev (1986), seems to be the most fruitful. For
an extensive literature overview we refer to Bollerslev, Chou and Kroner (1992)
and Bollerslev, Engle and Nelson (1994). GARCH models are able to capture the
phenomenon that volatilities of asset returns are clustered over time. Univariate
GARCH models have appeared to be quite successful in predicting volatility. A
drawback of standard GARCH models is that the arrival of “good” and “bad” news
in the market (unexpected positive and negative returns, respectively) are assumed
to have a symmetric impact on volatility, while typically unexpected decreases in
prices tend to rise the predictable volatility more than unexpected increases of sim-
ilar magnitude. This asymmetric effect of shocks in the second moment of stock
returns is a well-known phenomenon in financial modeling. Recent studies have
shown that more accurate volatility predictions can be obtained when asymmet-
ric responses of volatility to news are taken into account. While many different
extensions of the model have been suggested (for an excellent overview see Engle
and Ng, 1993, or Bollerslev, Engle and Nelson, 1994), particularly nice extensions
are the exponential GARCH, introduced by Nelson (1991), and the Glosten, Ja-
gannathan and Runkle (1993) model. Empirical studies show that these models,
which allow for the possibility that positive and negative shocks in returns affect
volatility differently, work very well in practice.

While there is a large body of literature on the asymmetric volatility phenom-
enon in univariate ARCH models, there exists only few studies on the asymmetric
effects in multivariate models, and surprisingly little attention has been paid to
the asymmetric effects in the covariance between stock and bond market returns.
As a portfolio manager’s optimal portfolio depends on the predicted covariance
between assets, relaxing the symmetric specification, may lead to superior invest-
ment choices. Other examples of applications in finance can be found in the field
of risk management and derivative pricing. One of the few examples that imposes
asymmetric effects in multivariate models is Kroner and Ng (1998). They use data
on large and small firms to compare four popular multivariate GARCH models.

Another example is Braun, Nelson and Sunier (1995), who estimate a bivariate



exponential GARCH model with asymmetries in stock return betas for different
sectors. However, this latter study does not explicitly consider asymmetries in
covariances. Moreover, in order to examine asymmetries between different asset
classes, their method is not very suitable. Because these effects on covariances
between stock and bond returns in a multivariate GARCH model appear to be
neglected in the literature, this paper is a first step towards filling this gap. To
model the asymmetric effects on conditional covariances we develop a new ap-
proach by extending the Glosten, Jagannathan and Runkle (1993) specification to
a multivariate setting. We use weekly data from 1987 to 1999 to examine the in-
tertemporal interaction between the returns on the Standard and Poor’s 500 index,
and the returns on a short and long term bond.

The remainder of this paper is organized as follows. In Section 2 we describe
the multivariate model which enables us to analyze time-varying covariances. In
Section 3, the model is extended to capture asymmetric effects on the variances
and covariances, so that we can apply it to asset market data on a short and long
term bond and a stock index. Section 4 presents the data and empirical results
on exploiting the model to study the time-varying covariances and their asymmet-
ric properties. In Section 5 we evaluate the economic significance of asymmetric
volatility timing using a dynamic allocation strategy. Conclusions are offered in

the final section.

2 A Multivariate Approach to Modeling Time-

Varying Covariances

In financial literature, the relationship between risk and expected returns on assets
is well-reported. Most studies use the covariance between the return of an asset and
one or more other factors as a measure of risk. A general stochastic discount factor
model measures risk by the covariance between the asset’s return and the stochastic
discount factor. Especially in cross-sectional analysis the relationship between risk
and expected return is well-documented and overwhelming empirical evidence is
available (see, e.g., Fama and French, 1992, and Roll and Ross, 1994). There is a
general consensus that investors require a higher expected return from holding a

relatively riskier asset. Another branch of studies, that has recently received much



attention in the literature, examines the intertemporal relationship between risk
and expected return. A natural way of examining the dynamics of the conditional
second moments is to consider a univariate GARCH-in-mean model (see, e.g.,
Engle, Lilien and Robins, 1987, French, Schwert and Stambaugh, 1987, Bollerslev,
Engle and Wooldridge, 1988, and De Santis and Gerard, 1997). This way the
conditional variance is allowed to influence the conditional mean, resulting in a
time-varying risk premium. Empirical studies report mixed results regarding the
relation between the market risk premium and time-varying market volatility.? To
obtain a measure of risk in the multivariate case, we need to model the conditional
covariances. As theory does not say anything about the way to model this, a
natural way to fill this gap is to model the volatility by a multivariate GARCH
process. This way we can easily examine the conditional covariance structure and
interactions between the stock and bond market.

Starting from a general asset pricing model, the well-known result that expected
excess return on an asset depends on the covariance between a stochastic discount
factor and the return on this asset is obtained. Consider the general asset pricing
model, which can be obtained by a no-arbitrage condition (see, e.g., Harisson and
Kreps, 1979):

Ek{7n¢+1r@t+1} =1, (1)
where E;{.} denotes the expectation operator, conditional on information at time
t, myy1 denotes the stochastic discount factor and ;1 the return on an asset ¢
(=1,...,N). Equation (1) holds for any asset. An expression for the conditional
expected excess return on an asset at time ¢ + 1 can be obtained by rewriting (1)
as:

E{riat = —rrenCovdmeiy, riga}, (2)

where r{;, | denotes the return on asset ¢ in excess of the riskfree return. We hereby
assume that a riskfree return, denoted by 7,1, exists. Consequently, the general
asset pricing model implies that the expected excess return on asset i (the risk
premium) depends on the covariance between the stochastic discount factor and

the return on the asset.

2Often a positive relation is found between the risk and the expected risk premium on an asset
(see, e.g., French, Schwert and Stambaugh, 1987, and Campbell and Hentschel, 1992). However,
sometimes a negative sign is found (e.g. Glosten, Jagannathan and Runkle, 1993, and Nelson,
1991).



To obtain a relationship that can be used empirically, we assume that asset
prices can be described by a simple one-factor CAPM, introduced by Sharpe (1964)
and Lintner (1965). Consequently, the risk will be measured by the covariance
between the asset’s return and the market return. This is obtained by imposing

the following structure for the stochastic discount factor:

Mip1 =N+ Urmest, (3)

where 7, ; is the return on the market portfolio at time ¢, and n > 0 and ¢ < 0.
As Bollerslev, Engle and Wooldridge (1988) show, in order to test the validity of
the CAPM, it is important that r, ;11 not only includes a stock market index.
Therefore, we assume that the return on the market portfolio can be mimicked by
the returns on N asset classes. Thus, the market portfolio is a weighted average
of N asset classes: rp,; = Z;\Ll wjr;¢, With the weights (w;; > 0) summing up
to 1. A similar assumption is made by Frankel (1985) and Bollerslev, Engle and
Wooldridge (1988). Under these assumptions, we can rewrite (2) such that the

expected excess return on asset ¢ is a function of its risk (cf. Merton, 1980):

N
Ed{r{in} = ACou{d wjinrjeen, i}

j=1
N
=AY w0y, (4)
=1
with 045,11 = Cov{rjii1,7mi4+1}, and X = —rp 19 (> 0), interpreted as the

market price of risk*, which is assumed to be constant over time.” If A = 0 in
(4), the expected risk premium is unrelated to the predictable level of volatility
of the market. We expect to find a positive relationship between the expected
risk premium and the conditional volatility. Note that this framework allows for
time-varying implicit beta of assets. It is easily seen from (4) that after imposing

a CAPM structure, the expected excess return is proportional to the systematic

3As long as E{rum 11} > Tfit1-

4Note that A\ does not vary over i.

5Tt is possible to allow for time-varying market price of risk by assuming that the price of risk
depends linear on a set of instruments, like a January dummy, the dividend yield, the change in

the term premium and the change in a 1-month Treasury bill return (see De Santis and Gerard,
1997). We abstract from this extension.



risk of an asset, as measured by the covariance between the asset’s return and
the market return. Because we made the additional assumption that the market
return can be mimicked by N returns, the covariance is decomposed into a sum of
N covariances.

Following Bollerslev, Engle and Wooldridge (1988), we include asset-specific
intercepts into the regression equation. This allows the conditional mean excess
returns to be unconstrained in the estimation procedure. The regression model we
take into consideration - which enables us to test the importance of the influence
of past returns on current levels of returns - now becomes (for i =1, ..., N):

N

e
Titt1 = My +A g Wjt+10ijt+1 T Eit41, (5)
J=1

where ¢; ;1 represents the unexpected excess return on asset i, i.e. 7,1 —E{rf, 1 };
it represents the “news” corresponding to asset ¢ that is arrived in the correspond-
ing market. Under the condition that o;; .41 is time-varying, (5) implies that the
risk premium will be time-varying as well for A # 0. The one-factor CAPM implies
that risk is solely measured by the covariance between the asset’s return and the
return of the market portfolio. Conditional on the extra assumptions we made, we
can test the CAPM relationship by testing whether p, = 0, for each 7. Next, we
describe how the conditional covariances evolve over time.

The CAPM does not indicate how risk evolves over time. We model the time-
varying covariances in (5) by a multivariate GARCH process. While the GARCH
specification does not follow from any economic theory, it is well-known that it pro-
vides a good approximation to the heteroskedasticity typically found in financial
time-series data. The most widely used volatility predicting model for financial
series is the GARCH(1,1) parameterization, and we will restrict our attention to
this particular specification since it has been shown to be a parsimonious repre-
sentation of conditional variance that adequately fits many financial time-series.

The formula for the univariate case is:
o} =7+ ae; + fo;, (6)

with 07, , = E{¢},,}. Usually nonnegativity restrictions on the three unknown
parameters are used to guarantee that the predicted variance is nonnegative.
While the majority of the GARCH literature focuses on the univariate prop-

erties, there now appears a vast amount of literature that considers multivariate

6



extensions.® The GARCH(1,1) in (6) can be generalized to a multivariate setting
as follows (see, e.g., Bollerslev, Engle and Wooldridge, 1988). The matrix ¥,
containing the conditional covariances, is assumed to follow a simple multivariate

GARCH(1,1) model, which can be compactly written in vector form as:
vech(X;11) = ¢ + Avech(e;e}) + Bvech(%,), (7)

where vech denotes the operator which stacks columns of the lower triangle (those
elements on and below the main diagonal) of a N x N symmetric matrix as an
N(N +1)/2 x 1 vector.” Further, €, denotes the vector of error terms at time
t. The vector ¢ has dimension N(N + 1)/2 x 1, and matrices A and B have
dimension N(N+1)/2 x N(N+1)/2. While this model is a natural extension of the
univariate GARCH model and is easy to understand, there are two major problems
in estimating this model. The first problem concerns the number of parameters to
be estimated and the second problem concerns the positive-definiteness constraints
to be imposed on the conditional covariance matrix.

Obviously a disadvantage of the multivariate approach is that the number of
parameters to be estimated in the GARCH equation increases rapidly (for example,
with NV = 3 there are 78 parameters to be estimated), which limits the number of
assets that can be included. In order to reduce the number of parameters to be
estimated, it is advisable to impose some restrictions on A and B, without lowering
the explanatory power of the model significantly. Following Bollerslev, Engle and
Wooldridge (1988), we assume that matrices A and B are diagonal. Thus, (7) can

be written, after conveniently rearranging the parameter indices, as:
Tiji1 = Vi + Qij€igein + Bij0ijt, (8)

1,7 = 1,..., N. For N = 3 this reduces the number of parameters to 18. Note
that the univariate GARCH(1,1), defined in (6), is still nested in specification (8).
Bollerslev, Engle and Wooldridge (1988) use this multivariate GARCH model to
estimate the trade-off in variance among three assets: a stock index, a bond and

a Treasury bill.

6Some examples include Harvey (1989), Bollerslev (1990), Bodurtha and Mark (1991), Ng
(1991), Ng, Engle and Rothschild (1992), Braun, Nelson and Sunier (1995), Engle and Kroner
(1995), Nijman and Sentana (1996), De Santis and Gerard (1997) and Kroner and Ng (1998).

"The multivariate model in (7) is sometimes called the VECH model.



In the univariate GARCH(1,1) the restrictions on the parameter to ensure
that the variance is nonnegative are quite obvious. However, to guarantee in a
multivariate setting that the conditional covariance matrix is positive definite is less
straightforward. Although Bollerslev, Engle and Wooldridge (1988) do not impose
any restrictions on the parameters, the covariance matrix may become nonpositive
definite during the estimation procedure. If this happens, the estimated covariance
matrix cannot be inverted, and the maximum likelihood method fails to compute
an optimum. To circumvent this problem, Engle and Kroner (1995) suggest the use
of the so-called BEKK model. The attractive feature of the BEKK specification is
that it allows the conditional covariances to change sign over time while the positive
definiteness of the conditional covariance matrix is guaranteed.® A drawback of the
BEKK model is that the number of parameters increases rapidly when the number
of assets increase and that the parameters cannot be easily interpreted. Moreover,
the extension towards asymmetric models is not straightforward. GARCH models
include the constant correlation model® of Bollerslev (1990) and the factor ARCH
(FARCH) model of Engle, Ng and Rothschild (1990), which is a special case of
the BEKK model. Compared to the VECH model, most of these models assume a
very restrictive structure on the covariances, which makes them not suitable for our
application. Moreover, the VECH model has the advantage that it allows cross-
product terms of the negative shocks to determine the covariance. Considering
all of the above, we opt to generalize the VECH model, and estimate the model
using constrained maximum likelihood to ensure positive definiteness. In the next
section we introduce asymmetric effects in conditional covariances. First, we briefly
describe the univariate asymmetric models and then proceed by generalizing these

models into a multivariate setting.

8More specifically, the BEKK model is given by
Et+1 =C+ A/BEtE,‘éAB —+ B/BEtBB,

where C' is an N x N symmetric positive definite matrix, and the matrices Ag and Bg have
dimension N x N. Given that the matrix of constants is positive definite, the predicted conditional
covariance matrix of returns will be positive definite because the second and third element in the

BEKK model are expressed in quadratic terms.

%A major objection of this specification is that simultaneous shocks of opposite signs to two

assets increase their conditional covariance.



3 Introducing Asymmetric Effects in Multivari-

ate GARCH Models

GARCH models are quite successful in practice: they capture many stylized facts,
such as volatility clustering and thick tailed returns. However, since the condi-
tional variance is a function of the magnitudes of the lagged error terms and not
their signs, GARCH models are not capable to capture the so-called leverage ef-
fect. This asymmetric volatility phenomenon, first noted by Black (1976), refers
to the tendency that good and bad news in returns have a different impact on
conditional volatility in stock markets. More specifically, bad news is followed by
larger volatility than good news. The rationale of this phenomenon, according
to Black (1976), is that a lower stock price increases the debt-equity ratio of a
company (i.e. the financial leverage of the firm increases) and this again increases
the risk of holding stocks of this company. Because firms have many fixed costs, a
decrease in prices has a bigger impact on volatility than an increase in prices. It is
however not likely that the large response of stock volatility can be explained by
leverage alone (see Black, 1976). This is empirically supported by Christie (1982)
and Schwert (1989).

Several recent papers put forward alternative explanations. Campbell and
Hentschel (1992) and Bekaert and Wu (2000), e.g., use a volatility feedback ap-
proach. This implies that changes in volatility affect the level of required stock
returns. Campbell and Hentschel show that volatility feedback explanation is able
to explain the asymmetries in volatilities. An alternative interpretation is provided
by a psychological explanation: the following-the-herd effect. That is, during a
stock market crash, investors might pay less attention to the fundamentals, and
sell their stocks when (they think that) other investors are selling stocks. This
leads to a relatively high volatility when bad news arrives in the market. This idea
is very similar to a result in a recent study by Veronesi (1999), who shows, using
a rational equilibrium asset pricing model, where the drift of fundamentals shifts
between two unobservable states, that stock prices overreact to bad news in good
times and underreact to good news in bad times. Veronesi (1999) shows that this
model is able to explain the asymmetric effect in stock returns.

Among financial economists there has not reached a consensus yet about the

explanation of the asymmetric volatility phenomenon, and is a hot topic nowadays



in financial economics. While the leverage argument can only partly explain the
asymmetric nature of the volatility response to return shocks, in this paper we use
the leverage effect as a synonymous for the asymmetric effect in (co)variances. We
do not concentrate on the rationale behind this phenomenon. Instead we focus on
estimating the importance of asymmetric effects in conditional covariances.

Numerous studies have shown that introducing a certain asymmetry in GARCH
models to capture the leverage effects in conditional volatility, can substantially
improve univariate models. These models are often referred to as leverage or
asymmetric volatility models. One of the most successful asymmetric specification
in univariate models is Nelson’s (1991) EGARCH (which stands for Exponential
GARCH), in which a logarithmic transformation is applied. This guarantees that
variances are non-negative. A generalization of EGARCH is however inconvenient
in a multivariate setting, because this would imply that all covariances between
returns are positive. Nevertheless, Braun, Nelson and Sunier (1992) use a bivari-
ate EGARCH model estimate the variances of the market portfolio and a second
asset. To estimate the conditional beta between the market portfolio and a sec-
ond asset they use a different specification without logarithms. This specification,
which is not a very natural extension, seems less appropriate to model asymmetric
covariances.

To allow for asymmetric effects in conditional covariances, a more appropri-
ate approach is to extend the model of Glosten, Jagannathan and Runkle (1993)
(GJR henceforth) to the multivariate case.!Y For the univariate case, a GARCH

specification with GJR asymmetric volatility effects can be written as:
ory =+ aig’ + asl,g’ + Boi, (9)

where I, denotes a dummy (or indicator) variable which is equal to 1 if e; < 0 (and
zero otherwise), in other words the dummy is 1 if “bad” news arrives at the market,
and zero in case of “good” news. Hence we expect s to be positive if the leverage
effect holds. Engle and Ng (1993) found that the GJR specification outperforms
other asymmetric models (including EGARCH), using Japanese stock market data.
Similarly, Hagerud (1997) finds empirical evidence that among several asymmetric

univariate GARCH models, the GJR is one of the few specifications that is superior

10 An additional advantage of GJR over EGARCH is that the former has an easier interpreta-

tion.
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Figure 1: Typical News Impact Curve with and without Asymmetric Effects
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for modeling the dynamics of the conditional variance of Nordic stock returns.

Introducing asymmetry in the multivariate GARCH model is not as straightfor-
ward as in the univariate case. Before considering asymmetries in the covariances,
it is helpful to look at the so-called news impact curve, introduced by Engle and Ng
(1993), which relates past return shocks to current volatility. This curve answers
the question how past return shocks affect the conditional volatility, holding the
past conditional variances constant at the unconditional sample mean. In Figure
1 we see a typical news impact curve for a symmetric and asymmetric univariate
GARCH(1,1) model as in (9). From this figure one can easily see the impact of
unexpected shocks on the conditional variance according to the GARCH model.
While in a standard GARCH model (i.e. with ay = 0) this curve is symmetric (the
solid line), the curve becomes asymmetric when allowing for leverage effects (the
dashed line). So while both curves are centered at £, = 0, the asymmetric news
impact curve predicts that a negative return shock will lead to a higher subsequent
volatility than a positive return shock of the same magnitude.

Next, we introduce a multivariate generalization of the news impact curve.
Note that this implies two major changes. First, we consider covariances instead
of variances. Second, the generalization of the news impact curve involves two

shocks instead of only one. Instead of a curve, we will refer to this 3-dimensional

11



plot as a news impact surface. This plot shows how past shocks in asset ¢ and j
(i # j) affect the predicted covariance, holding past covariances constant at their
unconditional sample mean levels. For illustrative purposes, Figure 2 presents a
symmetric covariance surface against past return shocks on two assets, according
to the Bollerslev, Engle and Wooldridge (1988) specification (formula (8)). Like in
the news impact curve, we clearly see a symmetric pattern in the surface. The sur-
face is symmetric if Cov{r; 1, 7j0411Zs; €54, €50} = Cov{ripr, 71| Ze; —€5 4, —€54)
and Cov{r; i1, 71111 Te; —€5 4, €50} = Cov{ripir, 1| Tis €54, —€5 4}, where €f, de-
notes a given positive return shock in asset i. The interpretation of Figure 2 goes
as follows. In the symmetric case, a return shock in asset ¢ and j in the same
direction (both positive or negative) has an identical impact on the conditional co-
variance. For example, a shock in the stock market return of 5% and a shock
in the bond market return of 1% has exactly the same impact on the condi-
tional covariance as the opposite shocks, i.e. —5% on the stock market return
and —1% on the bond market return. Even more, the order of magnitude of
the absolute value of the covariance (in excess of the shock-independent constant)
for shocks of either (5%, 5%), (5%, —5%), (—5%,5%), or (—5%, —5%), for exam-
ple, are identical. However, there are good reasons to believe that there are also
asymmetric effects in conditional covariances. In formula, the surface is asym-
metric if Cov{rii1, 70011654650 # Cov{rir, Tjuv1|Ze; —€fy, —€5,} and/or
if Cov{ritir, i1l —€5p,€50) # Covirinyr, e |Tis €y, +€5, ) Below we will
show mathematically that if leverage effects in volatility exist, they also affect
covariances.

If leverage effects exists in the variance of asset ¢ we have that
Var{rii1|Zy; —ei,} — Var{riz|Zi i} = 60 > 0, (10)

where €}, denotes a given positive shock in asset ¢ at time ¢, i.e. in the interval

(0,00). Using the definition of the squared correlation coefficient:

E. CO?)E{ri,t+1, Tjt41} (1)
Wi+l Vardr i} Vardrja}

we can write!!

*

Cov{risir, rjura|Ti; €5y, =25} — Cov™{rivr, e Tis €505, =

" For simplicity, we assume symmetric time-varying correlations.
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Figure 2: Typical Symmetric News Impact Surface
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Figure 3: Typical Asymmetric News Impact Surface
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p?j,t+lvar{ri,t+l|1’—t; Eiet0je — P?j,t+1va7’{7’j,t+1yzt; €5} 0is + pgj,tﬂéi,t&j’tv (12)
where €74,¢7, > 0, and p?j,t 41 > 0. If index 7 denotes the stock index and index j
a bond index, then 6, corresponds to the leverage effect in bond returns. As this
effect has not been documented before, we expect ¢, to be (close to) zero. It follows
from (10) that, in general, the right hand side of (12) will not be equal to zero. If §;,
equals zero, the right hand side of (12) reduces to pf; , ,,Var{r;41|Z;; €5, }6 ¢, which
will be a positive number. As the conditional covariances between stock and bond
returns are mostly positive numbers (see Figure 5), it follows from (12) that the
conditional covariance between two assets given two negative shocks will be larger
than given two positive shocks. More generally, if both stock and bond returns
exhibit leverage effects, (12) implies that the conditional covariance between these
assets responses asymmetrically to shocks, in such a way that the covariance will
be relatively higher after two negative shocks.

Furthermore it is interesting to examine whether Cov{r; 1,7 11|Z; —€5, €54}
is expected to be larger than Cov{r; 11, 7j411Zs; €74, —€5, }- The difference between
Cov*{ripi1, 71| Li; —e54, €50} and Cov*{rs 1, 7041|Zs; €54, —€5,} can be written
as p; 1 Var{rjua|T el Y oie — piipaVar{ria|Zi; 5,165, Let us consider the
case that index i refers to a stock index (exhibiting leverage effects) and index j to a
bond (without leverage effects). Then we expect that Cov?{r; 41, 7;11|Zi; —€F €5} —
Cov*{rissr,mje1lTi ey, —€5i b = Pl Var{rju|Ti €5, 16 > 0, such that the
conditional covariance is larger after a negative shock in the stock market and a
positive shock in the bond market than shocks of opposite signs.!? Thus, we ex-
pect asymmetric patterns in the covariance in various dimensions. Below we will
elaborate on this.

To relax the restrictive assumption of symmetric covariances, we introduce a

specification which is a generalization of (9):
Oijtrl = %-j+041ij€z',t€j,t+Oé2ijfai,t€i,tfaj,t€j,t+043ijfsi,t€i,t(1—Iaj,t)ffj,tﬂLﬁijUz’j,t, (13)

1,7 = 1,..., N. Similar to the univariate case, indicator variable I, . is equal to 1 if

k.t

ekt < 0 (and zero otherwise), k = i, j, such that the space can be partitioned into

four quadrants' in the {e;,¢;} plain. Let us partition this plane into: Q(+,+),

121f the bond market also exhibit leverage effects, the direction of the asymmetry is an empirical
issue.

13Gtrictly, we should not talk about quadrants in this setting, but octants.
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Q(+,—), Q(—,+), and Q(—, —), denoting the quadrant, corresponding to the signs

of (gi,¢5): a “+” for a positive and a “—” for a negative shock. In (13), I, ,

€i,t[sj,t5j,t
is nonzero for pairs of ¢;; and ¢;; in (—,—). This term assigns an asymmetric
covariance effect on shocks in the same direction (Q(+,+) vs. @(—,—)). On the
other hand, I., &;,(1—I.,,)e;; is nonzero for pairs in Q(—,+)."* This term assigns
an asymmetric covariance effect on shocks in the opposite direction (Q(+,—) vs.
Q(—,4+)). We will refer to these latter effects as “cross effects”. Counterintuitively,
Kroner and Ng (1998) present an asymmetric covariance model without including
this cross effect. Figure 3 represents a news impact surface for the asymmetric
case. We can clearly see that the responses in the same and opposite directions
do not yield identical covariances anymore. The news impact on the covariance in
Q(—,—) is larger than in the symmetric case, and the impact on the covariance in
Q(—,+) is also larger than in the symmetric case (cf. Figure 2).

The asymmetric multivariate GARCH-in-mean specification, which allows for

asymmetric effects of shocks in the (co)variances, now becomes!?

N

e
Tiep1 = M T A § Wj 410441 T Eit1 (14)
=1

Tijirl = Vij T 01ij€iiChe+Qaigle, Cinle; €50+ azijle, i i(1—= 1, , )0+ B0, (15)

i,7 = 1,..., N. Joint model (14)-(15) provides an explicit model for the expected
returns on assets which depend on time-varying risk premia. Equation (14) will
be referred to as the mean equation and equation (15) as the covariance equation.

Note that for the variance (i = j), (15) becomes

U?,tﬂ = T aliig?,t + a%i[Ei,tg?,t + ﬁz’z’(f?,ta (16)
which is equivalent to the formula for the GJR specification for a single asset
given in (9). Thus, our model provides a generalization of the asymmetric GJR
model by allowing explicitly for asymmetric conditional covariance terms. On the
other hand, the joint model (14)-(15) is a natural extension of the GARCH-in-
mean model of Bollerslev, Engle and Wooldridge (1988). In the next section we

4Note that this quadrant is situated on the right side of each plot.

15This multivariate GARCH specification can be easily extended by adding exogenous variables

to the equation.
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will empirically examine whether the joint model (14)-(15) is able to explain the
return, volatility and covariance between a short term bond as implied by the 6-
month LIBOR rate, the long term bond (10 year), implied by swap rates, and the

return on the Standard and Poor’s 500 index.

4 Empirical Results

4.1 Data

In order to examine the asymmetric volatility in the stock and bond market, our
asset return data include the weekly excess returns on a stock index, a short and
a long term zero-coupon bond. These U.S. asset market data cover the period
April 8, 1987 - March 24, 1999 (624 observations), such that we can examine some
volatile periods (1987-1988, 1990 and 1998) and less volatile periods (1991-1995).
We assume that the return on the market portfolio can be mimicked by returns
on three assets: the return on a short term zero-coupon bond as implied by the
6-month LIBOR (London Interbank Offer Rate) (denoted by 7 ¢), the return on a
long term (10 year) zero-coupon bond (denoted by 72;), implied by swap rates, and
the return on the Standard and Poor’s 500 index (denoted by 73,). For reasons of
convenience, we will refer to these asset returns as the short (term) bond returns,
the long (term) bond return, and the stock index return. All returns were converted
to excess returns (denoted by r{,, r5,, and 75, respectively) using the riskfree rate
approximated by the 3-month LIBOR rates.

Using bond returns implied by LIBOR and swap rates, which are also used in
some recent papers; see, e.g., Duffie and Singleton (1997), Dai and Singleton (1999)
and Piazzesi (2000), may be more relevant than using government bond returns,
because most of the interest rate derivatives are priced using LIBOR and swap
rates. Moreover, these rates are minimally affected by credit risk because of their
special contractual netting features (see Duffie and Huang, 1996). To calculate
the one-period holding returns on the 6 month zero-coupon bond and the return
on the 10 year zero-coupon bond, we use (see, e.g. Campbell, Lo and MacKinlay,
1997, p.398):

b b
b . pn—l,t—i—l - pn,t 17
7an,t—i—l - b ) ( )
pn,t

where r,’;t 41 denotes the one-period holding return on an n-period bond at time
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t+ 1, and p’;%t denotes the price of a zero-coupon bond at time ¢, with time-to-
maturity n (weeks). Because we do not observe p,b%l,t 41 we follow, e.g., Campbell
and Shiller (1991) and approximate it by pf, ;.

Following Frankel (1985), we keep the market weights (w,;) constant over time,
and employ values that roughly correspond to the ones in Bollerslev, Engle and
Wooldridge (1988), namely 0.1, 0.1 and 0.8 respectively. A disadvantage of this
approach is that measurement errors are likely to be introduced into the model.
However, we expect these to be of minor importance, because the market portfolio
weights are relatively constant over time (see Bollerslev, Engle and Wooldridge,
1988). Moreover, using market capitalization data to approximate the weights is

not free of measurement errors either.

4.2 Estimation Results

In this section the estimation results of the temporal interaction between U.S. stock
and bond markets are presented. The relation between expected return and risk
is examined, and, in particular, we study the empirical significance of asymmetric
responses of conditional covariances to return shocks.

The mean and covariance equations are estimated by maximum likelihood,
which enables us to estimate the two non-linear processes jointly. In order to use
maximum likelihood we need to make distributional assumptions about the error
terms. If we assume that €,,1 ~ N(0,%;.1), the loglikelihood function (for the

sample 1,...,T) is given by

T T
1 1 1
00) = _ETN log 21 — 5 ;Zl log det (0) — 5 ;:1 g,(0)2,7(0)e(0), (18)

where 6 denotes the vector of unknown parameters, the N x 1 vector &,(@) contains
the error elements ¢,,(0) = rf, — p; — )\Zj.vzl Wi0ie, © = 1,..., N, and ¥,(0)
contains the covariance terms o0;;,(0), as defined in (15). The conditions under
which the maximum likelihood is consistent and asymptotically normal are derived
by Bollerslev and Wooldridge (1988).

The estimates are obtained by numerical methods using the Berndt, Hall, Hall
and Haussman (1974) (BHHH) optimization algorithm. Without any restrictions,
the multivariate VECH model is likely to produce nonpositive definite matrices, so

that the maximum likelihood method fails to compute an optimum. To guarantee
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positive definiteness of the conditional covariance matrix, we use the constrained
maximum likelihood optimization procedure of GAUSS and impose that the small-
est eigenvalue of each covariance matrix has to be positive during estimation. The
large number of parameters to be estimated combined with the fact that the model
is highly nonlinear, complicates estimation of the system. In order to improve con-
vergence, starting values that are sufficiently close to the optimum are crucial.
We use starting values based on unconditional sample statistics and preliminary
estimates of univariate GARCH models.

The estimation results of joint model (14)-(15) are given in Table 1. The first
column in this table (Model 1) refers to the Bollerslev, Engle and Wooldridge
(1988) model (BEW model in shorthand notation), i.e. model (14)-(15) without
asymmetric terms in the (co)variance equations. The second column of Table 1
presents the results of the asymmetric covariance model.

As Model 1 is nested in Model 2, we can easily test one against the other
using the likelihood ratio test. The results clearly suggest that asymmetric effects
are important in modeling the conditional covariances between stock and bond
market returns. The likelihood ratio test statistic is 147.68, and with the degrees of
freedom being equal to 9, the null hypothesis is soundly rejected at the conventional
significance levels. This suggests that the model specification with asymmetric
effects in covariances is superior to the BEW model. Consequently, economic
interpretations are mainly concentrated upon this specification.

There are a number of compelling observations to be made concerning these
estimation results, and subsequently we schedule our comments in the following
order: first, the mean equation (Subsection 4.2.1), second, the dynamics in the
covariance structure (Subsection 4.2.2), the asymmetric effects in the variances
(Subsection 4.2.3), and finally, the asymmetric effects in the covariances (Subsec-
tion 4.2.4).

4.2.1 Mean Equation

While Bollerslev, Engle and Wooldridge (1988) conclude that the market price
of risk is high and significant (0.499 with a standard error of 0.160), we do not
find such a high value. An important difference between Bollerslev, Engle and
Wooldridge (1988) and the approach in this paper is that they use quarterly data

from 1959 to 1984, whereas we use (more recent) weekly data. While there is a
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Table 1: Estimates of Multivariate GARCH Model

This table reports the maximum likelihood estimation results of the model

N
e —
Tiip1 = M TA E W)t 410 35,041 T Ei,e41
j=1
Tijarlr = Vij T uig€incie + oijle, ginle, €50 + azigle, gii(1— 1, )eje + B0t

where indicator variable I, , equals 1 if ex; < 0 (and zero otherwise), k = i,j. The
index ¢ = 1 refers to the short term zero-coupon bond, ¢ = 2 to the long term zero-
coupon bond, and ¢ = 3 to the stock index. The estimated asymptotic standard errors
are reported in parentheses. All statistics presented refer to the period April 8, 1987 -

March 24, 1999 (T = 624).

Explanatory (Model 1) (Model 2)
Variables Estimate Std. Error Estimate Std. Error
Mean Equations
Consty -0.1047* (0.0017) -0.1045* (0.0015)
Consty 0.0000 (0.0005) -0.0154* (0.0015)
Consts 0.1262 (0.0742) 0.1224 (0.1000)
Z;.V:l W, t41085,64+1 0.0036 (0.0425) 0.0063 (0.0979)
Covariance Equations
Consty1(x100) 0.0101 (0.0153) 0.0074%* (0.0016)
Consta 0.0045* (0.0015) 0.0035* (0.0011)
Constag 1.7062* (0.2750) 1.8820* (0.1490)
Constsy 0.0106 (0.0093) 0.0016 (0.0013)
Constsy 0.5716 (0.4580) 0.5718* (0.2037)
Constss 0.0602* (0.0236) 0.3636* (0.0948)
sf)t 0.1406* (0.0218) 0.1111* (0.0266)
€1,t€2,t 0.0448* (0.0132) 0.0294* (0.0096)
egyt 0.1342* (0.0240) 0.0748* (0.0307)
€3,tE1,¢ -0.0463 (0.0407) -0.0798* (0.0360)
€3,t€2,¢ -0.0339 (0.0228) 0.0832* (0.0402)
3.1 0.0645* (0.0151) 0.0319 (0.0389)
I, , sit - - 0.0565 (0.0349)
I, e2.4l:, €1 - - 0.0325* (0.0171)
Igz,tes%’t - - 0.1959* (0.0555)
I, e3.4l:, €1, - - 0.1021* (0.0409)
I, e3.:1., €2, - - -0.1178 (0.0775)
Iaa,tsgyt - - 0.1697* (0.0530)
L, e1e(1 =1, ey - - 0.1003 (0.0577)
I, e3:(1 -1, )e1e - - 0.2581* (0.0651)
I, e3:(1 —1Ic,,)e2s - - 0.4045* (0.0933)
*denotes significance at the 5% level. (continued on next page)
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Table 1 (Continued): Estimates of Multivariate GARCH Model

Explanatory (Model 1) (Model 2)
Variables Estimate Std. Error Estimate Std. Error
(J’%)t 0.8434* (0.0213) 0.8536* (0.0184)
021t 0.8649* (0.0414) 0.8814* (0.0327)
U%,t 0.1016 (0.1226) 0.0160 (0.0347)
031t 0.3286 (0.5646) 0.7176* (0.0769)
0321 0.2941 (0.5830) 0.2854 (0.2106)
(r%yt 0.9205* (0.0189) 0.7946* (0.0375)
Log-likelihood 1449.94 1523.78

* denotes significance at the 5% level.

positive relation between the expected market risk premium and the conditional
market covariance, this relationship is not statistically significant for both speci-
fications. Thus, our results suggest that the expected returns are independent of
the time-varying reward to risk. A possible explanation is that investors typically
hold undiversified portfolios (see, e.g. Barber and Odean, 2000), so that a risk
measure including idiosyncratic risk might be more appropriate to measure the
intertemporal risk return relationship (see Goyal and Santa-Clara, 2001). While
our theoretical model says that the expected returns only depend on the risk term,
some of the estimated coefficients of the constant terms in the mean equation are

significantly different from zero. These results do not support the simple one-factor
CAPM.

4.2.2 Dynamics in Volatility

Next, we consider the estimation results of the parameters that govern the dynam-
ics in the variances and covariances. It appears that covariances change substan-
tially over time, as most of the corresponding estimated parameters are statistically
significant at the 5 percent level. Hence, the constant covariance hypothesis can
be rejected. This result is consistent with the findings of Bollerslev, Engle and
Wooldridge (1988), Harvey (1989) and Bodurtha and Mark (1991), who also docu-
ment strong evidence in favor of heteroskedastic covariances. The estimates for the
coefficients on the product of the return shocks (i.e. the ¢;e;’s) in Model 2 range
from 0.032 to 0.111 for the variances, and from —0.080 to 0.083 for the covari-

ances. A negative estimate for the ARCH term in the covariance equation means
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that two shocks of the same sign affects the conditional covariance between the
corresponding assets negatively, while two shocks of opposite signs have a positive
effect on the forecasted covariance. Apparently, negative (or positive) shocks in
both the S&P 500 and the short term bond leads to a significant decrease in their
next period’s covariance, while the opposite holds for the covariance between short
and long bond returns and between long bond and S&P 500 returns. However,
this interpretation only holds if we neglect the asymmetries in covariance. We will
see below that the introduction of these asymmetric effects lead to more complex
relationships.

Finally, the estimates for the coefficients on lagged volatility (i.e. the o;;,’s) are
statistically significant and range from 0.016 to 0.854 for the variances and from
0.285 to 0.881 for the lagged conditional covariances. Obviously, not only variances,
but also covariances tend to cluster over time. Striking is the low estimate for the
parameter corresponding to the lagged variance in the long term bond return. This,
combined with the fact that the constant term in the volatility equation for this
asset is relatively high, indicates that the volatility of the long term bond return is
harder to predict than volatility in stock returns and short bond returns. The low
value of the estimated lagged volatility coefficient is also found using a univariate
analysis (not reported). The technical explanation for this low value is probably
the influence of the outlier in the long bond return in 1987. An outlier correction,
by removing the outlier observation, results in a substantial higher estimate. The
estimated coefficient of lagged volatility becomes 0.677. Obviously, the outlier has
a big impact, and causes the predictable component to decrease.

Figure 4 and 5 present the plots of the conditional variance and covariance fore-
casts over time, based on the estimation results of Model 2. The figures show that
the conditional variances and covariances are not constant over time and are espe-
cially volatile during the periods 1987-1988 (the October 1987 crash), 1990-1991
(recession and Gulf war), and 1998-1999 (the Millennium crash). Like Schwert
(1989) we find that U.S. stock and bond volatilities tend to move together.!¢ Fur-
thermore, the figures suggest that in general covariances between assets are higher
(lower) in times of high (low) volatility. Looking at Figure 5, we see that the

conditional covariance between short and long bond returns, as well as between

6 Moreover, Engle, Ng and Rothschild (1990) uncover that changes in U.S. bond volatility are

closely linked across maturities.
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Figure 4: The Estimated Conditional Variances

Conditional Variance (Short Term Bond) Conditional Variance (Long Term Bond)

14

0.050

Variance
0.030 0.040
Variance
10 12

0.020

0.010

0.000

o L L L L L L
1986 1988 1990 1992 1994 1996 1998 2000 1986 1988 1990 1992 1994 1996 1998 2000

Conditional Variance (S&P 500)

Variance
40 50 60

30

20

. L L L L L L
1986 1988 1990 1992 1994 1996 1998 2000

short bond returns and the stock index returns are highly clustered over time (the
corresponding estimated influence of lagged covariances are 0.881 and 0.718 respec-
tively). We further see that the degree of clustering between long bond returns
and stock index returns is much lower (the corresponding estimated influence of
lagged covariances is 0.211).

To examine whether the time-variability in covariances is solely due to the
variation in variances, we consider the conditional correlation coefficients. Let
Pijr+1 denote the conditional correlation coefficient between return 7 and j at time

t+ 1:
COUt{Ti,tH, Tj,t+1}

Pijt+1 = )
VVardrizaby/Vardrsea
If p;;4.1 is constant over time, the variability in covariances is solely due to vari-

(19)

ation in variances. In that case, modeling of time-varying covariances is not very
interesting, as all the dynamics are captured in variances. Figure 6 presents the

estimated correlation coefficients, and shows that correlation coefficients vary con-
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Figure 5: The Estimated Conditional Covariances
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siderably over time. This is in line with Tse (2000), who rejects for different
countries that conditional correlations are constant over time. Tests of constancy
of these correlation coefficients (not reported), by performing regression of the cor-
relation coefficients on a constant and lagged correlation coefficients, clearly show
that the correlation coefficients are not constant over time. Consequently, the
variability in covariances is not solely due to time-varying variances, and modeling

time-varying covariances is important.'”

4.2.3 Asymmetric Effects in Variances

In this subsection, we address the degree of importance of the asymmetric effects
i =1,2,3). The results in Table 1 indicate that this

effect is especially pronounced in the variance of long term bond returns and stock

in the variances (i.e. I, &7,

I7Tf correlation coefficients were constant over time, we could simply calculate conditional

covariances via the estimated variances (see (19)).
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Figure 6: The Estimated Conditional Correlation Coefficients
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index returns. For example, the estimated coefficient of the variable that captures
the negative shocks in the S&P 500 return is equal to 0.170, which means that
negative return shocks in the S&P 500 are followed by a relatively high conditional
variance. Given existing results in the literature (see, e.g., Glosten, Jagannathan
and Runkle, 1993, and Engle and Ng, 1993), it is not surprisingly that we find this
asymmetric effect in the variance of the stock index. However, for bond returns this
effect is not reported before in the literature. The presence of asymmetric effects
in the variance of Treasury bond returns means that the leverage explanation of
Black (1976) cannot be the (only) valid argument of this effect, as his explanation,
based on the debt-equity ratio, only holds for stocks. The news impact curves,
discussed in Section 3, for the three assets using the estimates from Table 1 are
given in Figure 7. The solid lines represent the symmetric impacts on volatility of
shocks in the asset returns, calculated using Model 1. The dashed lines represent

the asymmetric impact on volatility, which are calculated using the estimates of
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Figure 7: Estimated News Impact Curves with and without Imposing Symmetry
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Model 2. Figure 7 illustrates that the models predict that a negative return shock
is followed by a higher subsequent volatility than a positive return shock of the
same magnitude. While this effect is small for the short term bond, it is substantial
for the long term bond and the S&P 500 index.

4.2.4 Asymmetric Effects in Covariances

Next, we focus on the asymmetries in covariances. The results in Table 1 show that
not only variances, but also covariances exhibit significant leverage effects. The
asymmetric effects for shocks with the same sign (i.e. I, ,ei:l., €51, @ 7 j) seem
to be important, as the corresponding estimated coefficients are statistically sig-
nificant for two out of three cases. While the asymmetric effects in the covariance
between the long bond return and the S&P 500 return is statistically negligible,

the leverage effect in the covariance between the other assets are statistically sig-
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Figure 8: Estimated News Impact Surfaces Imposing Symmetry
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nificant. A positive sign of the coefficients indicates that next week’s conditional
covariance between returns is higher when there are two negative shocks rather
than two positive shocks. Below, interpretations will be given using estimated
news impact curves and surfaces. The cross effects in the asymmetry, i.e. when
shocks in the two assets are of opposite signs (i.e. I, ,&i:(1— I, ,)ejs, @ 7 J), seem
also to be important. An estimated positive sign of the corresponding parameter

it

indicates that the conditional covariance between returns is higher when there is a
negative shock in ¢ and a positive shock in j rather than a positive shock in 7 and
a negative shock in j of the same magnitude.

The estimated news impact surfaces imposing symmetry, based on results from
Model 1, are shown in Figure 8, while Figure 9 presents estimated news impact
surfaces which allow for asymmetries, obtained from Model 2. The interpretation
of these surfaces is more difficult than the news impact curves, as there are two
shocks instead of one. The symmetric news impact surface for short and long bonds

in Figure 8 shows that the conditional covariance is high after return shocks of the
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Figure 9: Estimated News Impact Surfaces Allowing for Asymmetry
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same sign, while shocks in opposite direction lower the conditional covariances.
This is because bond returns are (highly) positively correlated (see Figure 6). As
these assets move together, shocks in the same direction involves a higher forecasted
risk than shocks in opposite direction. This makes sense, as it is riskier to invest
in two assets that are highly positively correlated than to invest in two assets that
are less correlated.

The remaining two plots in Figure 8 show the opposite: a shock in both asset
returns of the same sign decreases the covariance between the assets. A possible
explanation is that a large negative stock return shock typically leads to a higher
demand for bonds and thus raises bond prices, and vice versa.

Figure 8 shows very clearly that, when one uses a symmetric model, shocks of
the same magnitude (in absolute value) in both assets, e.g. 5% or —5%, imply an
identical impact on the conditional covariance. Figure 9 presents the news impact
surfaces, allowing for asymmetries. The first plot contains the asymmetric news

impact surface for the short en long bond returns. The slope of the covariances in
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Q(—,+) is not downward anymore. A negative shock to the short bond return,
combined with a positive shock in the long bond return, results in a relatively high
conditional covariance. Apparently, a negative shock in the short bond is followed
by a relatively high degree of risk in the bond market. This is a novel result which
could not be found using standard symmetric covariance models.

We further see that there is a significant asymmetry in positive and negative
shocks in the stock index returns. Bad news in stock index returns is followed by
a large increase in the covariance between the bond return and the stock index
return. This holds irrespectively whether the news in the short bond market is
good or bad. This is what we expected ex-ante (see Section 3). Figure 9 further
uncovers that the conditional covariance is especially high after a positive shock
in the (short or long) bond return and a negative shock in the stock index return.
Thus, the cross effects in asymmetries, described in Section 3, seem to be impor-
tant. Bear markets (and stock market crashes) are typically followed by more risky
periods than bull markets. A possible economic arguments for this effect is Black’s
leverage argument, that bad news in the stock market leads to higher debt-equity
ratios of companies, and this again increases the risk of holding stocks. However,
this argument can not explain the asymmetries in the bond markets. An alterna-
tive explanation is the volatility feedback effect, examined by, e.g., French, Schwert
and Stambaugh (1987) and Bekaert and Wu (2001). If volatility is priced, unan-
ticipated increase in volatility raises the required return on equity, leading to an
immediate stock price decline. Another possible explanation is the following-the-
herd effect. Investors tend to pay less attention to the fundamentals during a stock
market crash, and follow the herd by selling (a part of) their stocks if they observe
that other investors are selling. This leads to relatively high volatility when bad
news arrives in the market. However, it should be stressed that this interpreta-
tion is subjective, and further research on the asymmetric effects in variances and

covariances is needed to underpin the interpretations.

4.3 Specification Tests

When modeling the conditional covariance, it is important whether the specifica-
tion is a statistically adequate representation of the data. In particularly, it must
be the case that the standardized residuals, & = f];l/zét ~ 1.i.d.(0, 7). In Table 2

we present the test statistics for the (normalized) covariance for the three assets
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Table 2: Diagnostic Tests for Covariance Specification

& & &3 g2 &2 2 E1&o £183 Eofo
Mean -0.0486  0.2282  -0.0135 0.9750  0.9940  1.0023  0.9946  -39.2854 -34.2143
Std. Dev. 0.9880  0.9713  1.0018  1.0836  0.5162  1.9247  24.8338  884.4523 703.9095
Skewness ~ 0.1635  -0.4468  -0.7299 41854  2.0636  5.3763 -14.7819 -21.6252 -18.1501
Kurtosis ~ 2.2451  1.4990  4.6424 30.0875 15.0728 50.6090 375.0372 510.0952 363.9575
Ljung-Box Statistics
Q(6) 5.4864  10.5162 7.5515 4.5182 8.6452  10.1651 3.2165 4.8425 2.5405
Q(12) 71508 14.5426  10.2948 85161  10.512 15.2115  6.6843  6.8422  5.2012
Q(18) 11589  17.84533 15.1872 14.6548 16.256 17.2565  8.6468  9.4156  9.3188
Q(24) 16.168  20.4563  22.2565 19.6654 29.5152 19.5666  12.1635 12.5464 13.5118

Notes: This table reports summary statistics and Ljung-Box statistics for standardized residuals and stan-

dardized products of residuals. Q(r) denotes the Ljung-Box test statistic for rth order serial correlation in
the standardized cross-product of residuals. The 95% critical values for Q(6), Q(12), @(18) and Q(24) are
12.6, 21.0, 28.9 and 36.4, respectively.

combinations. The tests to evaluate the adequacy of the model are based on the

standardized residuals and the standardized products of residuals from the asym-

metric covariance model. We consider the mean, standard deviation, skewness and

kurtosis.. In addition we present the Ljung-Box tests for serial correlation in the

normalized cross-product of residuals. As can be seen from the table, the sample

skewness and the sample kurtosis for the standardized residuals should not show

any significant skewness and leptokurtosis. The sample means do not significantly

differ from zero (the t-statistics are obtained by the mean divided by the standard

deviation times v/T') and the squared residuals do not differ significantly from one.

Further, the Ljung-Box tests do not reject the models. Consequently, the tests

reveal no significant departure from the null hypothesis of temporal independence.

5 The Economic Value of the Volatility Timing

In this section we examine the economic value of exploiting the multivariate GARCH

model. The appealing estimation results do not necessarily imply economically

useful implications for forecasting volatility. Hence, the performance of the model

is further evaluated through some measures of economic value. One of the most
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important applications of (asymmetric) volatility prediction is portfolio selection.
To examine the economic gains of using the asymmetric model, we compare the
performance of this model to allocate wealth with the restricted (symmetric) one
and with a passive portfolio.

There has been only few studies that addresses the economic value of volatility
timing. Without doubt, the most important contribution being Fleming, Kirby
and Ostdiek (2001). We follow their strategy by evaluating the impact of volatil-
ity timing on the short-term allocation strategy performance. To easily compare
different volatility timing strategies, we consider an investor who minimizes his
portfolio variance subject to a particular target rate of return. In formula:

: ’ -1
min w43 Wi, (20)
Wil

st Wi+ (L= Wi 0)rp =

where pp = E{r,,}, w1 is the vector of portfolio weights on the risky assets, and
1, is the target expected return. The proportion invested in the riskfree asset is

wo 41 = 1 — ¢'Wy4q. Solving (20) for wy;; gives us the optimal weights:

(1 — Tree1) S (1 — Tpegat)
(= 7pp1t) S (1 — rpegat)

Wi = (21)
To calculate the optimal portfolio, we need the conditional forecasts of the co-
variance matrix. We employ three types of conditional covariances: a constant, a
symmelric time-varying, and an asymmetric time-varying covariance matrix. In
every case we assume that the expected return is constant over time. The reason
for this is threefold. First, we want to concentrate on only the volatility timing.
Second, there is little evidence that (economically significant) predictable patterns
in returns exist at the weekly level. Third, a long sample period is needed to
produce reliable estimates in a forecast regression for first moments (see Merton,
1980). Ideally, out-of-sample forecasts, generated by the model, are used to eval-
uate the performance. However, this would mean that for each observation the
model has to be re-estimated, which is unfortunately a too time consuming oper-

ation.!® Therefore we employ in-sample forecasts.

180ut-of-sample forecasts are easy to obtain using Foster and Nelson’s (1996) rolling estimator.

However, to extend this estimator to capture asymmetric effects is less straightforward.
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We will compare the performance of the dynamic strategies with the static one
(i.e. the constant covariance matrix), and we compare the dynamic strategy which
entails the asymmetric effects with the dynamic strategy that only considers the
symmetric covariances. If the asymmetric extension has no economic value, then
the ex post performance of the two strategies should be statistically indistinguish-
able. A suitable performance measure, which captures the trade-off between risk

and return, is:
T—1
1

A 1
) = 7 3 e = 3 77hes] 22)

t=0

where 7,1 denotes the portfolio return. Unfortunately, due to data limitations
we cannot use high frequency data to determine the ex post (co)variances like in
Marquering and Verbeek (2000). Instead, we follow Fleming, Kirby and Ostdiek
(2001) by employing the squared portfolio returns.

The above approach enables us to compare alternative investment strategies by
calculating the associated average utility levels. We can determine the economic
value of volatility timing by calculating the maximum fee per week, an investor
would be willing to pay for holding the dynamic portfolio rather than a passive
one. To find the maximum fee for holding portfolio a rather than portfolio b, A,

we solve

12 1 =, ]
T t=0 {(ra’tﬂ ~ Aa) - 57(%’”1 B Aab)z} T ; {rb’tﬂ B 577’g,t+1} ,  (23)

where the indices a and b refer to the active and passive strategies, respectively.
The A,y will be reported using different values of ~.

Table 3 presents summary statistics and performance measures on several dy-
namic and passive portfolios. The unconditionally mean-variance efficient passive
portfolio, constructed using the unconditional means, variances, and covariances,
has a lower mean than the market portfolio, which is a weighted portfolio of the
short bond, the long bond and the S&P 500 index. However, the unconditionally
mean-variance efficient passive portfolio with a target return of 0.20, has a lower
standard deviation, such that the Sharpe ratio for this portfolio is slightly higher
than the Sharpe ratio of the market portfolio. More interestingly, the volatility
timing strategies, both with target return of 0.20, generate a higher Sharpe ratio.

The highest Sharpe ratio is obtained for the asymmetric volatility timing model.
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Table 3: Evaluation of Various Strategies

Mean and Std. Dev. denote the mean return and the standard deviation of the return on the

corresponding strategy in %, respectively. The Sharpe ratio equals the average excess return of

the strategy divided by the sample standard deviation. The maximum fee an investor is willing

‘K) pay for holding one of the dynamic portfolios rather than the passive portfolio is denoted by
ab-

Mean Std. Dev. Sharpe Ay, (v=3) Ap (y=6) Ap (y=9)

Market portfolio 0.2095 1.7151 0.0543 — — —
Passive portfolio 0.1984 1.4861 0.0552 — — —
Vol. timing 0.1934 1.2460 0.0618 0.1874 0.2812 0.3722
Asym. vol. timing  0.1947 1.2284 0.0638 0.2214 0.3281 0.4092

Next, we compare the performance of the dynamic portfolios to the performance
of the unconditionally mean-variance efficient passive portfolio. Using performance
measures based on the ex post utility levels, enables us to obtain an economic value
of volatility timing. For different values of v, Table 3 presents A,, in percentages
per week. For example, an investor with v = 6 who currently holds his wealth in the
passive portfolio, is willing to pay a fee of 0.28% to switch to the volatility timing
strategy and 0.33% to switch to the asymmetric volatility timing strategy. These
numbers indicates sizeable gains due to volatility timing, and increase with higher
risk-averse levels. Moreover, the strategy using the asymmetric model outperforms
its symmetric counterpart.

Table 4 presents the same statistics in the presence of transaction costs and
short-sale constraints. We assume that the transaction costs are equal to 7 per-
centage points of the value traded on the stock market, such that the trans-
action costs equal: TW;|Aws 1|, where W, denotes the wealth at time ¢, and
Aws 1 = w341 — w3y, Where index 3 refers to the stock market weight. Conse-
quently, the return after transaction costs is equal to 7,11 — 7|Aws 11]. Panel A
presents the results for 7 = 0.5% and Panel B for 7 = 1%.

Although the economic gain of volatility timing after transaction costs and
short-sale constraints is less pronounced, the predictability captured by volatility
modeling is still economically significant. We find that volatility timing strategies
for dynamic asset allocation matrix significantly outperform passive strategies.
Moreover, the symmetric volatility timing strategy is outperformed by its asym-
metric counterpart. Thus, we do not only find evidence the asymmetric volatility

models are superior statistically, but we also find that the predictability captured
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Table 4: Evaluation of Various Strategies in Presence of Transaction
Costs and Short-Sale Constraints

Mean and Std. Dev. denote the mean return and the standard deviation of the return on the
corresponding strategy in %, respectively. The Sharpe ratio equals the average excess return of

the strategy divided by the sample standard deviation. The maximum fee an investor is willing
to pay for holding one of the dynamic portfolios rather than the passive portfolio is denoted by
ab-

Panel A: 0.5% transaction costs

Mean Std. Dev. Sharpe Ay, (v=3) Anp (7=6) Au (y=9)
Market portfolio 0.2095 1.7151 0.0543 — — —
Passive portfolio 0.1984 1.4861 0.0552 — — —
Vol. timing 0.1922 1.3270 0.0581 0.0949 0.1288 0.2073
Asym. vol. timing 0.1936 1.2994 0.0603 0.1394 0.2605 0.2989

Panel B: 1% transaction costs

Mean Std. Dev. Sharpe Ay (7=3) Awp (vy=6) Awxp (y=9)
Market portfolio 0.2095 1.7151 0.0543 — — —
Passive portfolio 0.1984 1.4861 0.0552 — — —
Vol. timing 0.1904 1.3204 0.0561 0.0084 0.0754 0.1540
Asym. vol. timing 0.1929 1.2988 0.0589 0.0544 0.1819 0.2064

by the asymmetric volatility model is economically significant.

6 Conclusions

In this paper we analyzed the bond and stock market interactions by modeling
the time-varying covariances between stock and bond market returns. A multi-
variate GARCH-in-mean parametrization is employed, which nests the Bollerslev,
Engle and Wooldridge (1988) model. The main contribution of this paper is that
it extends the multivariate model by allowing for asymmetric effects in covariances
between stock and bond returns. We have shown that if asymmetric effects exist
in the variance of stock returns, then it is likely that asymmetric effects are also
present in the covariances between stock returns and returns on a second asset
as well. To model the asymmetric effects on conditional covariances we have de-
veloped a novel approach by generalizing the Glosten, Jagannathan and Runkle
(1993) specification towards a multivariate setting. The model is estimated us-
ing weekly U.S. asset market data on the S&P 500 index and a short and long

zero-coupon bond.
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The main empirical findings can be summarized as follows. As the conditional
covariances change substantially over time, the constant covariance hypothesis
should be rejected. While theory says that high returns should be associated
with high conditional covariances, our results suggest that this relationship is not
statistically significant. With respect to asymmetric effects in the variances, we find
that weekly returns on the S&P 500 index, as well as the long bond returns exhibit
significant leverage effects. The finding of leverage effects in the stock index returns
is to be expected and already well-documented, but the strong evidence of such
effects in Treasury bond returns is a novel result. This implies that Black’s (1976)
explanation (using the debt-equity ratio) cannot be the (only) explanation of the
asymmetric volatility phenomenon. The rationale behind these effects remains an
important area of future research.

Not only variances, but also covariances between stock and bond returns ex-
hibit significant asymmetric effects. Overall, our findings imply that a symmetric
specification is too restrictive to model the conditional covariances. Especially bad
news in the stock market is followed by a much higher conditional covariance than
good news in the stock market. This holds irrespectively the sign of the bond
market shock. Taking into account the predictable component in the covariances
turns out to be economically profitable. An investor who uses a dynamic allocation
strategy by employing volatility timing outperforms an investor who holds a pas-
sive portfolio. Even when short-sale restrictions are present and transaction costs
are high, the economic value of dynamic trading strategies is larger than that of a
passive strategy. Finally, the symmetric volatility timing strategy is outperformed
by its asymmetric counterpart.

A challenge for future research is to refine the economic rationale behind the
asymmetric effects in variances and covariances. As we do not find any support
for the CAPM, multi-factor or intertemporal asset pricing models may be more
appropriate. Further, the multivariate asymmetric model could, for example, be
used to analyze asymmetries in asset returns between different countries and to

analyze the interactions with announcement effects.
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