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ABSTRACT. In this paper we will discuss a general framework for single item
inventory models based on the theory of regenerative processes. After present-
ing without proof the main theorems for regenerative processes we analyze
in detail how the different single item models can be embedded within this
general theory. This facilitates to write down the expressions for the average
cost associated with an arbitrary costrate function f, and some of the service
measures, which appear most frequently in the literature.

1. INTRODUCTION

Ford Harris’ famous paper on the EOQ model in 1913 (cf. [8]) was the first of
many publications on inventory theory. At present, thousands of papers have ap-
peared in the management science and operations research literature. One may
wonder why so much research is done on inventory models. The explanation is sim-
ply that in practice one encounters many different situations and each one requires
a tailor-made analysis. For example, there may be differences with respect to the
following aspects: number of locations and echelons, number of products, demand
process, cost structure, service requirements and measurement, possible moments
of placing a replenishment order, the way a stockout is handled, and the lead time
of replenishment orders. Since so many different situations can be analyzed, we feel
that there is a need to develop a general framework. Such a framework will help to
improve the understanding of the models that appeared in the literature. In this pa-
per the average cost and the most widely known service measures will be derived for
a number of basic inventory models using a general framework which is presented in
the next section. This framework is based on the theory of regenerative processes.
It can be shown that most inventory models satisfy the so-called regenerative prop-
erty which allows for a nice derivation of the average cost and service measures. We
will restrict ourselves to inventory systems with a single product, a single location,
backordering of stockouts and deterministic lead times. In most of the inventory
literature such a system is considered and for an overview the reader is referred
to Chikan (cf. [5]). A more recent discussion of the classical single item inventory
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models is given by de Kok (cf. [11]). Observe, the results of these models serve
as a basis for multi-location, multi-echelon and multi-item systems (e.g. [9], [4]).
It is hopefully clear now that a proper understanding of the classical single item
inventory models is important and to achieve this we structured the paper in the
following way. The theory of regenerative processes is briefly discussed in Section
2. Its application to inventory models with complete back-ordering is presented in
Section 3. In this section we also impose a general condition satisfied by all clas-
sical single item inventory models and using this condition it is possible to give a
unified and easy proof of all the relevant expressions. In Section 4 this condition is
checked for all the classical inventory models and at the same time the expressions
for the average cost and service measures are derived for each model. In Section 5
some conclusions are presented. Finally we observe that no computational results
are reported. This is the topic of a subsequent paper (cf. [2]) in which the Laplace
transforms of the objective functions are calculated. These Laplace transforms are
used in a newly developed robust Laplace transform inversion algorithm (cf, [10])
and as a result we obtain computations with machine precision.

2. REGENERATIVE PROCESSES

The theory of regenerative processes plays a major role within stochastic models.
For these stochastic processes many properties and results are presented in the book
of Asmussen (cf. [1]). Since for our purpose it is sufficient to consider only pure
regenerative processes, we will not discuss delayed regenerative processes. The goal
of this section is to give an overview of the theory of pure regenerative processes
and we first start with a simplified version of a pure regenerative process. Observe
that random variables are denoted by boldface characters while the set T either
denotes the set [0, 00) or IV |J{0}.

Definition 2.1. A stochastic process X = {X(¢) : t € T'} with metric state space
FE is called a pure regenerative process if there exists a positive constant ¢ € T
such that for every n € IV |J{0} the distribution of the shifted stochastic process
{X(t +no) : t € T} is independent of n.

A more general definition of a pure regenerative process is given by the next one.

Definition 2.2. A stochastic process X = {X(¢) : t € T'} with metric state space
F is called a pure regenerative process if there exists an increasing sequence o,,, n €
IN | J{0} with o¢ := 0 of random points belonging to T', satisfying
1. The random variables 0,41 — o, ,n € IN|J{0}, are independent and iden-
tically distributed with right continuous cumulative distribution function Fi,
satisfying F(0) =0 and F,(o0) = 1.
2. For each n € IN [J{0} the post-o, process

{X(t+o,) : teT}

is independent of og, ... ,on.
3. The distribution of {X(t + 0,) : ¢t € T'} is independent of n.

In case the difference 0,41 — 0, n € IN|J{0}, is degenerate and given by
0 = Onpy1 — 0p, > 0 with probability one then it is obvious that the definition
of a pure regenerative process as mentioned in Definition 2.2 reduces to Definition
2.1. Moreover, in most applications with T = [0, 00) a pure regenerative process



Emdke Bdzsa, Hans Frenk and Peter den Iseger 3

X is cadlag. This means that the sample paths of the stochastic process X are
right continuous with left limits IP-almost surely with /P denoting the probability
measure of the underlying probability space. For pure regenerative processes the
next result is easy to verify.

Theorem 2.3. If the stochastic process X = {X(t) : t € T'} is a pure regenerative
process with metric state space E and the increasing sequence oy, n € IN [ J{0} and
® : E — R is a Borel measurable function, then the process ® o X := {®(X(t)) :
t € T} is a pure regenerative process with the same increasing sequence. Moreover,
if T =[0,00) and ® is a continuous function then the stochastic process ® o X is
cadlag if X is cadlag.

To introduce a cost structure on a pure regenerative process we consider a non-
negative Borel measurable function f : £ — IR, called the costrate function. Using
this function we denote by C = {C(t) : t € T} with T = [0, 00), the stochastic
cumulative cost process given by

t
CW%=Af@@W&
while for T' = IN |J{0} it is given by

t
c) =Y FXn)).
n=0

We always assume that this stochastic cumulative cost process C is well-defined
and IEC(t) < oo for every t € T. In order to keep the size of this paper limited, we
only consider pure regenerative processes with T' = [0,00). Observe that the next
result can be easily rewritten for the discrete time version.

Theorem 2.4. If X = {X(t) : 0 < t < oo} is a pure regenerative process with
the increasing sequence op,n € IN | J{0} of random points satisfying IEo, < oo and
equipped with a nonnegative Borel measurable function f satisfying

E ( /0 " f(X(s))ds) <o

lim %IEC(t) = 101 E (/00 f(X(s))ds) .

By obvious reasons the above limit is called the average cost with respect to the
costrate function f. The proof of the above result uses a standard renewal argument
and the weak renewal theorem (cf. [1], [13]). In the next section we show how the
theory of pure regenerative processes can be applied in the analysis of single item
inventory models (cf. [15]).

then it follows that

3. A GENERAL FRAMEWORK FOR SINGLE ITEM INVENTORY MODELS

In single item inventory control the decision maker is dealing with two objectives.
First of all, he likes to control the cost of keeping inventory, and secondly, he likes
to maintain a certain service level (cf. [16]). Therefore the decision maker faces
two main questions. These questions are when to order and how much to order.
Clearly the question of how much to order depends on the demand process the
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decision maker is expecting in the future. Moreover, if at some time in the future
a stockout occurs, the decision maker needs to know whether the excess demand is
lost or can be backlogged. To model this situation, we need to distinguish between
the so-called lost sales case or the backlog case. Lost sales means that any demand
arising when the system is out of stock is lost. Backlogging implies that the demand
occurring during the stockout period will be filled as soon as a new replenishment
arrives. In this paper we will only consider the backlog case. Clearly, the amount
of backlog depends on the time it takes before a new replenishment order arrives.
Therefore we introduce the following assumption with respect to the arrival of
orders.

Assumption 3.1. If an order is placed at some time t this order arrives at the
facility at time t + L with L > 0 a given fixed constant.

The constant L in Assumption 3.1 is called the lead time. When L equals zero
this corresponds to instantaneous replenishments. By the above observations the
inventory manager faces two different forms of risk. The first type of risk is the
probability of not being able to satisfy demand directly from stock. The second
type of risk is the generation of costs due to unnecessarily high average inventory
levels. To model the possibility of not being able to satisfy demand directly, the
following service measures are used (cf. [15]):

e No-stockout service measure or P;-measure: the fraction of cycles in which a
stockout does not occur. Observe that the time interval between the arrival
of two consecutive replenishment orders is called a cycle.

e Fill rate service measure or P,-measure: the fraction of demand satisfied
directly from stock.

e Ready rate service measure or P3-measure: the fraction of time that the
inventory level is positive.

Since usually managers aim to minimize total costs we need to assign penalty costs
to the occurance of events described by the above service measures (cf. [15]). The
most often used penalty costs are given by the following;:

e Fixed cost (b1) per stockout occasion: for each stockout a fixed cost by is
determined and the total cost depends only on the number of stockouts and
it is independent of the magnitude or duration of the stockout.

e Fractional charge (by) per unit short: for each unit short a fixed cost by is
determined and the total cost depends only on the total number of items short
and not on the total time items are short.

o Fractional charge (bs) per unit short per unit time: for each unit short a fixed
cost b3 is determined per unit of time that this item is short and so the total
cost depends on the number of short items and the time that these items are
short.

Before presenting how these costs can be incorporated in our analysis, let us
introduce the basic processes which describe the inventory system. To describe the
behaviour of the inventory level we need to introduce the demand process for a
single item. For this purpose we consider a stochastic process D = {D(¢) : t >
0}, with state space [0,00) or IN |J{0}. The random variable D(t) represents the
total demand up to time ¢. By its definition the process D is increasing and it is
assumed that this process is cadlag. In case the state space is [0,00) the item is
called indivisible (for example, gasoline) and in case the state space is IV |J{0} the
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item is called divisible. It is assumed that the customers arrive according to some
renewal process N = {IN(¢) : ¢ > 0} with independent and identically distributed
interarrival times T;,7 € IN. Moreover, the nth arriving customer has a random
demand Y,, and the random variables Y,,,n € IN are independent and identically
distributed with common cumulative distribution function Fy satisfying Fy (0) =0
and Fy(oo) = 1. Observe, in case the item is indivisible, it is always assumed
that the cumulative distribution function Fy is continuous. We also assume that
these random variables, representing the individual demands, are independent of
the arrival process N. Moreover, to define the cost assigned to an inventory model
governed by some inventory control rule, to be specified later, we need to introduce
the following different inventory processes. These processes are defined on the same
state space as the demand process. First of all, consider the stochastic process
I={I(¢): ¢t > 0} with
I(t) := actual stock on the shelves at time ¢.

This process is called the on-hand stock process and sometimes it is also referred to
as the inventory level process. Since we assume that the demand process is cadlag
this process is also cadlag. Another inventory process is given by the cadlag process
B = {B(t) : t > 0} with B(0) = 0 and

B(t) := amount of items backlogged at time .
Using the definition of the on-hand stock process and the backlog process we obtain
the so-called netstock or net inventory process IN = {IN(¢) : ¢ > 0} given by

IN(t) :=I(t) — B(¥)
for every t > 0. Again IN is cadlag and by the definition of the backlog process,
it follows that IN(¢) > 0 implies B(¢) = 0 and IN(¢) < 0 implies I(¢) = 0. The
definition of the netstock process implies that the cost of an inventory system,
governed by some inventory control rule, depends only on the stochastic process
IN. Hence, if one can show that this process is a pure regenerative process, we can
apply the results from Section 2 to derive the average cost in a fast and efficient
way. To verify the regenerative structure of this process we need to consider the
cadlag stochastic process O = {O(t) : t > 0} with O(0) := 0 and
O(t) := amount of ordered and not yet delivered items at time ¢.

The related, so-called inventory position process IP = {IP(t) : ¢ > 0} given by

IP(t) := IN(t) + O(t),

for every t > 0, now plays an important role. First of all it should be clear that the
decision to order depends on the inventory position process. Secondly, it is relatively
easy to show that under certain conditions on the demand process the inventory
position process IP is a pure regenerative process for the different inventory control
models. Since it is shown by Sahin (cf. [14]) that there exists an easy relation,
in case of backlogging, between the inventory position process and the netstock
process this enables us to verify that a shifted version of the netstock process is a
pure regenerative process. To start with this verification we first list the relation
between the netstock and inventory position processes. The proof of this relation
is easy and can be found in Sahin (cf. [14]).

Theorem 3.2. If backordering occurs with a fized lead time L and the stochastic
process D is cadlag then it follows for every t > 0 that

IN(t+ L) =1IP(¢t) — (D(t + L) — D(t)), IP — almost surely.
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In the remainder of this section we assume that the following assumption holds.
This assumption will be verified for the different classical single item inventory
models.

Assumption 3.3. The joint stochastic process {(IP(t),D(t + L) — D(¢)) : t >
0} is a pure regenerative process with an increasing sequence o, n € IN |J{0},
satisfying IEoy < 0o and this increasing sequence contains as a subset the times
that a replenishment order is issued.

It is very important to realize that Assumption 3.3 plays a crucial role in our
analysis. The next result shows the connection between the theory of pure regen-
erative processes and inventory control models and it is an easy consequence of
Theorem 2.3 and Theorem 3.2.

Theorem 3.4. If the stochastic process {(IP(t), D(t+L)—D(t)) : t > 0} associated
with an inventory model and a given control rule satisfies Assumption 3.3, then it
follows that the stochastic process IN = {IN(t+ L) :t >0} is a pure regenerative
process with the same increasing sequence.

Based on the previous results, the next step will be to give a general expression
for the different service measures and shortage costs, in case Assumption 3.3 holds.
These expressions can be specialized to the different single item inventory models.
Observe it is possible to give a general expression solely based on Assumption 3.3.
To start we first aim to give an expression for the no-stockout service measure, and
the average number 3, of stockout occasions.

Theorem 3.5. If the stochastic process {(IP(t), D(¢t+L)—D(t)) : t > 0} associated
with an inventory model and a given control rule satisfies Assumption 3.3, the
stockout probability 1 — Py is given by

1-—P =P{D((c; + L)-) >IP(0)} — P{D(L) > IP(0)}.

Moreover, the average number of stockout occasions is given by

1-P
0= oy
o1
Proof. By Assumption 3.3 we know that the sequence oy,03,... of regeneration

points contains the random points in time when an order is placed, and this order
arrives at the facility L time units later. Therefore, in the random interval [o,, +
L,op41 + L), n € IN|J{0} at most one order arrives, and if so, it will arrive
at o, + L. Hence, the cadlag netstock process is monotone decreasing on this
interval due to the arrival of demands. Moreover, for the same reason, it is also
monotone decreasing on the interval [0, L). Since by definition a stockout occurs if
the netstock process drops from a nonnegative value to a negative value, it follows
by the previous observations that there is at most one stockout occasion in the
random interval [0y, + L, 0pny1 + L) for every n € IN|J{0}. Let A,,n € INJ{0}
denote the event that a stockout occurs in [0y, + L,0p41 + L), and A_; in [0, L).
By this definition we obtain that

(3.1) A = {IN(or + L) > 0,IN((0k4+1 + L)—) < 0},
for every k € IN | J{0}, and
1— P, = fraction of cycles that there is a stockout

(3.2) = lim M = lim M_
n

ntoo n ntoo
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Since Theorem 3.4 implies that the stochastic process IN is regenerative, it follows
for every k € IV |J{0} that

(3.3) P{A;} = P{IN(L) > 0,IN((oq + L)—) < 0}.
In order to evaluate this probability we observe that
(3B{IN((o1 + L)-) < 0} = P{IN(L) < 0,IN((01 + L)—) < 0} + IP{ A},
for every k € IN [J{0}. Moreover, since the sample paths of IN = {IN(t + L) : t >
0} are decreasing on [0,07), we obtain that
(3.5) P{IN(L) < 0,IN((o; + L)—) < 0} = IP{IN(L) < 0}.
These observations, together with relations (3.3), (3.4), (3.5) and Theorem 3.2
imply that
P{A;} = P{IN((o; +L)-) < 0} — IP{IN(L) < 0}

(3.6) = P{D((o1 + L)-) > IP(0)} — P{D(L) > IP(0)}.
Substituting this into relation (3.2), the first part of the theorem is verified.

If we denote

N, (t) := sup{n € ﬂVU{O} 1o, <t}

representing the total number of completed cycles up to time ¢+ L, then the average
number of stockout occasions f; is given by

N, (t
(3.7) B =i B (T34 1a.)
) 1_t%§<1> t )

As already observed the stochastic process IN is regenerative and this implies for
arbitrary k € IV |J{0} and relation (3.1) that the event

{No(t) > k} = {ox <t}
is independent of the event 14,. This observation together with the weak renewal
theorem (cf. [13]) and relations (3.7),(3.6) and (3.2) implies that
E(1+N,(t)P{A} .. (Q+EN,t)1-P) 1-P

= lim lim
A oo t ttoo t IEo,

This shows the second part of the theorem. [l

Next we determine the fraction of demand satisfied directly from stock and we
also give an expression for the average number of items short.

Theorem 3.6. If the stochastic process {(IP(t), D(t+L)—D(t)) : t > 0} associated
with an inventory model and a given control rule satisfies Assumption 3.3, then it
follows that the average number B of items short is given by

5, — Emax{D((o1 + [)=) ~TP(0),0}) — F(max{D(L) ~ TP(0),0})
2= E(Ul)

Moreover, if a = limoo w > 0 exists, the fraction Py of demand satisfied
directly from stock is given by
B2

P=1-—.
a
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Proof. Introduce the stochastic process NIS := {INIS(%) : ¢ > 0} with
NIS(¢) := the total number of items short up to time ¢.

By definition we obtain:

. E(NIS(t + L)) . E(D(t+L) - E(NIS(t + L))
fri=lim —— =7 and Py :=lim ED(t+ L))
This implies for the P, measure that:
. IE(NIS(t+ L)) B2
PB=1-lm——————>=1-——
2 ttoe E(D(t + L)) a’

and so we only have to derive an expression for fs.

By Assumption 3.3 at most one replenishment order arrives in the random inter-
val [0y + L,0n41 + L), and if so, it will arrive at o, + L. Hence, the cadlag backlog
process B = {B(t) : t > 0} has a possible jump at o, + L and it is monotone
increasing on the interval [o,, + L, 0,41 + L). Denoting by NIS,,, n € IV |J{0} the
total number of items short on the interval [0, + L, 0,41 + L), it follows by the
previous observations that

NIS, = B((opy1+L)—) —B(o, +1L)
(3.8) = max{—IN((op+1 + L)—),0} — max{—IN(o, + L),0},
for every n € IN |J{0}. Introducing now the random variable NIS_;, which repre-
sents the total number of items short in the interval [0, L), we similarly obtain
NIS_; = B(L-) = max{—IN(L-),0}.

By Theorem 3.4 and relation (3.8) the random variables NIS,,, n € IV |J{0} are
identically distributed with

NIS, £ max{—IN((o; + L)-),0} — max{-IN(L),0}
(3.9) = max{D((o1 + L)-) — IP(0),0} — max{D(L) — IP(0), 0},

and "2’ denoting ’distributed as’. Moreover, again by Theorem 3.4 and relation
(3.8) it follows that the random variable NIS,, is independent of the random vari-

ables 01,...,0,. Now it is easy to verify that
N, () N, (t)+1
(3.10) > NIS, <NIS() < > NIS,
n=-—1 n=-—1

for every t > 0. By a similar argument as used in Theorem 3.16 of Ross [13] and
the argument used at the end of the proof of Theorem 3.5, we obtain that

IE (NIS
m (NISy()11)
ttoo t
and this implies together with (3.10), that
E(NIS(t+L)) IE(NIS)

=0.

=1 = .
b=l —=77 Eo
Applying now relation (3.9) yields the desired result. O

Finally we derive the expression for the ready rate measure.
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Theorem 3.7. If the stochastic process {(IP(t), D(t+L)—D(t)) : t > 0} associated
with an inventory model and a given control rule satisfies Assumption 3.3, then it
follows that the ready rate has the form

L
o _F (7 1py>1n0ydy)
8 E(oy) '

Proof. To determine the ready rate P; we need to evaluate the expression

i
B (fo 1{I<y>>0}dy)
lim
ntoo t

Since I(t) = max{IN(t), 0} it follows by Theorem 3.4 and Theorem 2.4 that

t t o1+L
E (fy 1i1>01dy) T (Js tuwrnsordy) B (7 Lpg)<inondy)
= lIim .

li = =
t1os t ttoo t E(o1)

O

This concludes our general discussion on single item inventory models. In the next
section we will apply the results of this section to a number of basic inventory
models. In all the cases we assume that the costs of inventory, related to the
netstock process, are determined by a cost rate function f. Moreover, every time
an order is placed a fixed setup cost K has to be paid.

4. ANALYSIS OF THE INVENTORY MODELS

In the inventory literature some of the basic control rules have been studied ex-
tensively (cf. [15]). The (s,S) policy is the most frequently analyzed, though very
often in the discrete time case (i.e. periodic review (s,S) policy with unit period
lengths). To analyze this model, Sahin (cf. [14]) also used the theory of regenerative
processes. However, his approach is less probabilistic and more based on the anal-
ysis of the underlying renewal equation. This makes his proofs more complicated
and long. Also, inventory costs are based on period ending inventory and approxi-
mations of the cost formula are used for optimization purposes. Following the ideas
of Chen and Zheng (cf. [3]) we also analyze the (s,n@Q) model. The above inventory
models are examples of the so called continuous review systems. However, in many
practical situations, it is only possible to place replenishment at certain points in
time. If this holds, the above continuous review policies are replaced by the periodic
review (R, S), (R,s,S) and (R, s,n@) policies. An important advantage of these
models is the easy coordination of replenishment orders for different items.

The remainder of this section is organized as follows: first, we will discuss the
periodic review inventory models described above. For each model, we will show
that the regenerative property is satisfied and an expression for the average cost
and the service measures is derived. Thereafter, a similar analysis is presented for
the continuous review models.

4.1. Periodic review inventory models. In this section we subsequently ana-
lyze the (R, S), (R,s,S) and (R, s,n®) models.
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4.1.1. The (R, S) inventory model. Under this rule every R time units the inventory
position process is inspected and an order is placed if the level of the inventory
position process at the inspection time is below S. Moreover, the size of the order
is such that all excess demand up to that time will be backlogged and the inventory
position process is raised to order-up-to level S. Hence, the variables R > 0 and
S > 0 are decision variables and need to be chosen optimally depending upon the
chosen cost structure. It is assumed that the demand process D associated with
the (R, S) inventory control model is a compound Poisson process with arrival rate
A > 0, and the used nonnegative costrate function f satisfies

E ( /0 t f(IN(s))ds) <o

for every t > 0. Without loss of generality, the initial inventory level is set at S, or,
equivalently, IP(0) = IN(0) = S. If this does not hold, we need to apply the theory
of delayed regenerative processes (cf. [1]). It is now possible to show the following
key result for the (R, S) model. Observe that the proof includes both divisible and
indivisible items.

Theorem 4.1. For any (R, S) model with a compound Poisson demand process the
stochastic process {(IP(t),D(t + L) — D(t)) : t > 0} is a pure regenerative process
with the increasing sequence of points given by nR,n € IN |J{0}. Moreover, the
netstock process IN = {IN(¢t + L) : t > 0} is a pure regenerative process with the
same sequence of increasing points.

Proof. To prove the first part of this result we only need to verify Definition 2.1. To
show that this holds, we first observe (cf. [12]) that the shifted stochastic process

D,r :={D(t+nR) - D(nR):t> 0}

has the same distribution as the process D for every n € IN, and so, the stochastic
process D, is again a compound Poisson process. By the definition of the (R, S)
rule we obtain that IP(nR) = S, and the process {IP(t+nR) : t > 0} is completely
determined by IP(nR) and the stochastic process D,g. This implies that the
joint stochastic process {(IP(¢t + nR),D(t + nR+ L) — D(t +nR)) : t > 0} is a
function, independent of n, of the stochastic process D, g, and so, by the previous
observations its distribution is independent of n. Clearly, the second part is an
immediate consequence of the first part and Theorem 3.4. O

It is also easy to see by the definition of the (R,S) policy, that the history of
the inventory position process IP up to time s is completely determined by the
history of the demand process up to time s, given by {D(¢) : ¢ < s}. This implies,
due to the stationary and independent increments of a compound Poisson process
(cf. [12]) that the random variables IP (¢ +nR) and D(t+nR+ L) — D(t +nR) are
independent for any ¢ > 0 and n € IN |J{0}. Moreover, for every 0 < t < R, the
relation IN(¢ 4+ L) = S — D(¢ + L) holds. It is now possible to identify the average
cost of an (R, S) model.

Theorem 4.2. For any (R,S) model with a compound Poisson demand process it
follows that the average cost ®(R,S) of an (R, S) policy with nonnegative cost rate
function f and ordering cost K > 0 is given by
K(1 —exp(—AR)) + ;T Ef(S — D(t + L))dt

7 .

8(R,S) =
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Proof. Introducing the function C : [0,00) — IR given by

Clt) = B (/Ot f(IN(s))ds) >0

we obtain for every ¢ > 0 that

t+L t
Clt+1)—C(L) = E (/ f(IN(s))ds) - E (/ FOIN(s + L))ds) _
L 0

Since by Theorem 4.1 the stochastic process IN = {IN(t + L) : t > 0} is a pure re-
generative process with regeneration points nR,n € IN | J{0} it follows by Theorem
2.4 and the finiteness of C'(L) that

R
lim %C(t) = lim % (Ct+ L) — C(L)) = %E ( /0 FON(E + L))dt) .

Using now IN(t + L) = S — D(t + L) for every 0 < ¢ < R this yields that

ttoo t

lim 2C(t) = }%E (/Rf(S _D(t+ L))dt) .
0

Applying now the renewal reward theorem (cf. Ross [13]) it is easy to verify by the
memoryless property of the compound Poisson process that the average ordering
costs are given by £K (1 —exp(—AR)). As a consequence, the expression of the
average cost follows by adding the two components. O

By the regenerative structure of the shifted netstock process IN it should be clear
that it is sufficient and necessary to assume that

E (/Rf(IN(s + L))ds) < o0

in order to obtain finite average costs. If we want to derive the expressions for the
different service measures then we can use Theorem 4.1 and the general formulas for
these measures presented in Section 3. Observe, if we consider an (R, S) inventory
model with a compound Poisson demand process then the average demand rate a is
given by MIEY;, by Theorem 4.1 the random variable o, equals R, and IP(0) = S.
Applying now Theorems 3.5 up to 3.7 we immediately obtain the following result.

Theorem 4.3. For any (R, S) model, with a compound Poisson demand process it
follows that the stockout probability 1 — Py is given by
1— P, = P{D(R+L)> S} — P{D(L) > S}.
Moreover, the average number B2 of items short has the form
E(max{D(R+ L) — S,0}) — E(max{D(L) — S, 0})

182 = R )
while the fraction P, of demand satisfied directly from stock equals
B2
P=1- .
? AEY,

Finally, the ready rate measure P3 boils down to

[7HE P{D(y) > S}dy
P; = 7 .
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The expressions in Theorems 4.2 and 4.3 may look complicated, but as will be
shown in [2] it is easy to give analytical formulas for associated Laplace trans-
forms. Hence we may apply (cf. [2]) a newly developed Laplace transform inversion
algorithm (cf. [10]) to generate accurate computations.

In the next section we consider a generalization of the (R,.S) inventory model.

4.1.2. The (R,s,S) inventory model. Under this rule every R time units the inven-
tory position process is inspected and an order is placed if the level of the inventory
position process is below level s < S. If this is not the case no order is triggered
and one waits until the next inspection time. The order size is now similarly deter-
mined as for the (R, S) rule, and the decision variables are S, s and R. As before,
the demand process is a compound Poisson process with arrival rate A > 0, and
the used nonnegative costrate function f satisfies

E ( /0 t f(IN(s))ds) <o

for every t > 0. Assume without loss of generality that the initial inventory level is
set at S, or, equivalently, IP(0) = IN(0) = S. To analyze the (R, s, S) model we
define iteratively the stopping times o,,,n € IN |J{0} (0o := 0), with respect to the
demand process D given by

(4.1) o1 :=min{nR: D(nR) > S —s,n € IN}.
This random variable represents the first inspection time, where the total demand

exceeds the quantity S — s. This results in the inventory level dropping below level
s and so a replenishment order is triggered. We define now inductively

(4.2) opy1 =0, + min{mR : D(o, + mR) —D(o,) >S —s,me N}, nelN.

Since 0,,,n € IN is an increasing sequence of stopping times with respect to the
compound Poisson process D, we obtain by Theorem 32 of Protter (cf. [12]) that
for every n € IN the stochastic process
D,, :={D(t+o0,) — D(o,) : t >0}

is again a compound Poisson process, with the same distribution as D, and this
stochastic process D, is independent of the process {D(t) : t < 0, }. Moreover,
it follows that the event 01 < 03 < ... < g, < t is completely determined by the
history of the process D up to time ¢ (this is the definition of a stopping time), and so
by the previous result we also obtain that the stochastic process D, is independent
of the random variables o¢,01,... ,0,. By these observations it follows that the
random variables 0,41 — 0,,,n € IN are independent and identically distributed.
To determine their distribution we observe for every k € IN |J{0} that

P{op41 —0n > kR} = P{D(kR) < S — s} = Ffy ) (S — 5).
In the above formula Fg( R) denotes the k-fold convolution of the cumulative dis-
tribution function Fp(g), given by
Fp(r)(z) := IP{D(R) < z}.
Using the above observations it is easy to show the following result.

Theorem 4.4. For any (R, s,S) model with a compound Poisson demand process
the stochastic process {(IP(t),D(t + L) — D(t)) : t > 0} is a pure regenerative
process with the increasing sequence of random points given by relation (4.1) and
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(4.2). Moreover, the netstock process IN = {IN(t+L) : t > 0} is a pure regenerative
process with the same sequence of increasing points.

Proof. To show the regenerative property of the considered stochastic processes
we need to check Definition 2.2. We already showed before Theorem 4.4 that the
differences 0,41 —0op,n € IN |J{0} with o, iteratively defined by (4.1) and (4.2) are
independent and identically distributed, and hence the first condition of Definition
2.2 is verified. To show that the second condition of Definition 2.2 also holds we
observe by the definition of the (R,s,S) rule that IP(c,) = S, and therefore the
stochastic process {IP(t + o,,) : t > 0} is completely determined by the demand
process D, . By this observation it follows that the joint stochastic process

{(IP(t + 0,),D(t + 00 + L) = D(t + 0)) : t > 0}

is a function, independent of n, of the stochastic process D, . This implies by the
observation before Theorem 4.4 that the process

{IP(t+ 0,),D(t + 0, + L) = D(t +0y,)) : t > 0}

is independent of o, ... ,o, and this verifies the second condition of Definition 2.2.
Since the process {IP(t+0,),D(t+0,+ L) —D(t+0,) : t > 0} is a function of the
stochastic process D, and the distribution of D, is independent of n, condition
3 of Definition 2.2 also holds. Hence we have verified the first part of the theorem
and the second part is an immediate consequence of this part and Theorem 3.4. O

Since the demand process is a compound Poisson process it follows again by the
observation before Theorem 4.4 that the random variables IP(¢t + ¢,,) and D(¢ +
on + L) — D(t + o,,) are independent for every given t > 0 and n € IN|J{0}.
Moreover, if 0 < ¢t < 01 we obtain the relation IN(¢t + L) = S — D(¢ + L). This
observation enables us to identify the average cost of an (R, s, .S) model.

Theorem 4.5. For any (R, s,S) model, with a compound Poisson demand process
and the stopping time o1 defined by relation (4.1), the average cost ®(R,s,S) of
an (R, s,S) policy with nonnegative costrate function f and ordering cost K > 0,is
given by
K+ E ([, f(S—D(t+ L))dt)

EO’l

with Eoy = RUy(S—s) and Up(t) := > o2, FB; R) (t) the renewal function associated
with the distribution Fp(gr).

®(R,s,S) =

Proof. Introduce the random variable 7 := min{n € IV [J{0} : D(nR) > S—s}. By
the definition of the stopping time o, it follows that o; = R7 and so [Fo; = RIET.
Observe now for every n € IN [J{0} that

P{r>n+1} = P{D(nR) < S — s} = F (S — 5)

which implies
E(r)=Y P{r>n+1}=14Y Fp4(S—5)=U(S—s).
n=0 n=1

Since Fp(gr)(0) = exp(—AR) < 1, and hence Up(S — s) < oo (cf. [13]), we obtain
that IEo; = RUp(S —s) < oo. As before, we introduce the function C : [0,00) — IR
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given by
Clt) = E ( / t f(IN(s))ds)
0
and this yields for every ¢ > 0 that

Clt+I)—C(L) = E (/HL f(IN(s))ds) - E (/Ot FOIN(s + L))ds) .

L
Since C(L) is finite and by Theorem 4.4 the stochastic process IN = {IN(t + L) :

t > 0} is a pure regenerative process with regeneration points o,,n € IN [J{0}
given by (4.1) and (4.2) it follows by Theorem 4.4 and Theorem 2.4 that

i EC(t) _E([)" fAN({+L))dt) E([)" f(S—D(t+ L))dt)
t’ll‘g t B FEo; a Eoy ’

Again by the renewal reward theorem we obtain that the average ordering costs are
given by K/IEc; and combining the two components yields the desired result. O

If we want to derive the expressions for the different service measures then we can
use Theorem 4.4 and the general formulas for these measures presented in Section
3. Observe, if we consider an (R, s, S) inventory model with a compound demand
process, then the average demand rate a is given by AEY1, o1 is given by relation
(4.1), and IP(0) = S. Applying now Theorems 3.5 up to 3.7 we immediately obtain
the following result.

Theorem 4.6. For any (R, s,S) model, with a compound Poisson demand process
it follows that the stockout probability 1 — P, is given by

1— P, =P{D(o1 + L) > S} - IP{D(L) > S}.
Moreover, the average number B2 of items short has the form

E(max{D(oy + L) — S,0}) — E(max{D(L) — S,0})

B2 =

RU()(S - S) ’
while the fraction P> of demand satisfied directly from stock equals
Be
P=1- .
? A\EY,

Finally, the ready rate measure P3 boils down to

E (7" 1ps>s)dt)
= RUo(S — 5)

The expressions in Theorems 4.5 and 4.6 may look complicated, but as will be
shown in [2] it is easy to give analytical formulas for associated Laplace transforms.
Hence we may apply (cf. [2]) a newly developed Laplace inversion algorithm to
generate accurate computations.

Clearly, for s = S we recover the simplified formulas derived in the previous
subsection for the (R,S) model. Moreover, if each arriving customer has unit
demand, the above formulas simplify considerably. We leave the details to the
reader. In the next subsection we discuss the last periodic review model.

Py




Emdke Bdzsa, Hans Frenk and Peter den Iseger 15

4.1.3. The (R,s,nQ) inventory model. According to this inventory rule at every
R > 0 time units the inventory position process is inspected and an order is placed
if the level of the inventory position process is below or at level s < S. If this
is not the case no order is triggered and one waits until the next inspection time.
The order size is chosen to be an integer multiple of @), such that after ordering
all excess demand will be backlogged and the inventory position process will be
between s and s + . Again, the demand process is a compound Poisson process
with arrival rate A > 0 and the nonnegative costrate function f satisfies

E </tf(IN(s))ds) < oo for every t > 0.
0

To show that the inventory position process, equipped with some suitably chosen
initial distribution, is a pure regenerative process, we first consider the embedded
stochastic process {IP, : n € IN|J{0}} given by IP,, := IP(nR). This means
that we only consider the review moments of the inventory control model and by
the definition of this control rule it follows for every n € IV [J{0} that

IPn-‘rl = 1P, - (D((n + I)R) - D(TLR)) + ch
with ¢, := inf{k € INJ{0} : kQ > s—IP,+ (D((n+1)R) —D(nR))}. Since the
demand process is compound Poisson, an equivalent representation is given by
IPn+1 =1P, - B, + ch:

with ¢, := inf{k € NJ{0} : ¥Q > s— 1P, +B,}, and B,,, n € IN, a sequence
of independent and compound Poisson distributed random variables. By the above
representation it is clear that for divisible items the process {IP,, : n € IN |J{0}} is
a stationary Markov chain with state space {s+1,...,s+ @}, while for indivisible
items it is a Markov chain with state space (s, s+ @]. We will now determine the in-
variant distribution of this Markov chain. Observe, that this invariant distribution
has already been computed on page 246 of Hadley and Whitin (cf. [7]) for divis-
ible items and to be complete we list their argument. Introducing the transition
probabilities

aij = P{IPp11 =s+j|IP, =s+i}, 4,5 €{1,...,Q},
and
pr = P{B, = k}, k€ IV|_J{0},
it follows that

oo
D pijing f1<j<i<Q

(43) a5 = "0200
Y Pisjing H1<i<j<Q
n=1
Q
By this observation it is easy to verify that Z aij=1fori=1,...,Q and
=1

j—1 oo Q

Q oo oo
Z%‘ = Z Zpi—j-i-nQ + Z Zpi—j+nQ = Zpk =1,
i=1 k=0

i=1 n=1 i=j n=0
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for every 1 < j < @, and so the transition matrix (a;;) is double stochastic. The
invariant distribution of the Markov chain {IP,, : n € IN |J{0}} is now given by
the uniform distribution on {s+1,... ,s+ @} (easy to check by substitution). This
implies, with 4 denoting ”distributed as”, that IP,, Ls+ QU, for every n € IN
if IPg L+ QU and U is a discrete uniformly distributed random variable on
{%, ...,1}. Consulting Section VI.11 of Feller (cf. [6]), it is easy to verify that a
similar result holds for the Markov chain IP associated with an indivisible item
and in this case it follows that IP, < s + QU, for every n € IN if IP Ls+ QU
and U is a uniformly distributed random variable on (0, 1]. If we consider now the
stochastic process {(IP(¢),D(t + L) — D(t)) : t > 0} satisfying IP(0) L5+QU
and the random variable U is independent of the demand process D, then by a
similar argument as used for the (R, S) model, and having IP(nR) 4 IP(0) for
every n € IN, we obtain that the distribution of the stochastic process

{IP(t+nR),D(t +nR+ L) — D(t+nR)) : t > 0}
is independent of n. By this observation the next result follows immediately.

Theorem 4.7. For any (R, s,nQ) model with a compound Poisson demand process
the stochastic process {(IP(t),D(t + L) — D(t)) : t > 0}, satisfying IPg Ls+ QU
and U independent of the demand process D, is a pure regenerative process with
the increasing sequence of points given by nR, n € IN [J{0}. Moreover, the shifted
netstock process IN = {IN(¢t + L) : t > 0} is a pure regenerative process with the
same sequence of points.

Since in particular
INt+L)=s+QU-D(t+ L), 0<t<R,

the average cost of the above model is easy to derive. Observe, the random variable
U is independent of the demand process D and uniformly distributed on (0, 1] for
an indivisible item, and discrete uniformly distributed on {%, ..., 1} for a divisible
item.

Theorem 4.8. For any (R, s,nQ) model with IPg 4 s+QU and U independent of
the compound Poisson demand process D, it follows that the average cost ®(R, s, Q)
with monnegative costrate function f and ordering cost K > 0 is given by

K(1 - EFpr)(QU)) + [y  B(f(s + QU — D(t + L)))dt
= .

Proof. Apply Theorem 4.7 and use a similar argument as in Theorem 4.2. O

®(R,s,Q) =

In the article of Y.S. Zheng and F.Chen (cf. [3]) a detailed analysis of the average
cost of a related model is presented. Moreover, they discuss a simple algorithm to
compute the optimal inventory control rule. To compare their model with the above
model we observe, that the periodic review model discussed in [3] is a discrete time
inventory model with unit review periods, or equivalently R = 1. Moreover, in [3]
costs are charged on period ending inventory levels. This means in our framework
that instead of T' = [0, 00) one should take T' = IN [ J{0}. Since as already observed,
the results in this paper can be easily adapted for T' = IN |J{0}, it follows that the
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average cost ®(R,s, Q) of an (R, s,nQ) model in this case and R necessarily an
integer is given by

8(R,s,Q) = L1~ EFpw(QU)) + Z%l E(f(s +QU - D(k + 1))

and so, we obtain their average cost by substituting R = 1. If we want to derive
the expressions for the different service measures then we can use Theorem 4.7
and the general formulas for these measures presented in Section 3. Observe, if we
consider an (R, s,n()) inventory model with a compound Poisson demand process
then the average demand rate a is given by AIEY;, by Theorem 4.7 the random
variable o7 equals R, and IP(0) = s + QU. Applying now Theorems 3.5 up to 3.7
we immediately obtain the following result.

Theorem 4.9. For any (R,s,nQ) model with IPg L5+ QU, U independent of
the compound Poisson demand process D, it follows that the stockout probability
1— P, is given by

1— P, = P{D(R+L)>s+QU} - P{D(L) > s + QU}.
Moreover, the average number B2 of items short has the form
E(max{D(R+ L) —s—QU,0}) — E(max{D(L) — s — QU,0})

B2 =

R b
while the fraction P, of demand satisfied directly from stock equals
B2
P=1- .
? AEY,

Finally, the ready rate measure Ps boils down to

[+ P{D(t) > s + QU}dt
7 .

The expressions in Theorems 4.8 and 4.9 may look complicated, but as will be
shown in [2] it is easy to give analytical formulas for associated Laplace trans-
forms. Hence we may apply (cf. [2]) a newly developed Laplace transform inversion
algorithm (cf. [10]) to generate accurate computations.

Py =

4.2. Continuous review inventory models. In this section we subsequently
analyze the (s, S) and (s,nQ) inventory model.

4.2.1. The (s,S) inventory model. Under this rule an order is triggerd in the mo-
ment the level of the inventory position drops below s < S and the size of the
order is such that all excess demand is backlogged and the level of the inventory
position process is raised to order-up-to level S. It is assumed that the demand
process associated with the (s, S) policy is a compound renewal process and the
used nonnegative costrate function f satisfies

B ( /0 t f(IN(s))ds) < o0

for every ¢ > 0. Just as for the (R,S) and (R,s,S) model, we assume without
loss of generality that the initial inventory level is set at S or equivalently IP(0) =
IN(0) = S. Observe, by the definition of an (s,S) policy, that we can identify
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iteratively an increasing sequence o, n € IN | J{0}, oo := 0 of stopping times with
respect to the compound renewal demand process D, given by

(4.4) op =min{t >0 : D() >S5 — s}
and
(4.5) Ont1 =0p+min{t >0 : D(t+0,) —D(o,) >S —s}, ne IN.

The random times o, represent the times that an order is placed and are a subset
of the random arrival times of customers. By this observation it follows that the
stochastic process

D,, :={D(t+ 0,) — D(o,) : t > 0}

is again an compound renewal process and it is independent of {D(¢) : t < o, }.
Since the random variables o, are stopping times with respect to the demand pro-
cess this also implies that the process D, is independent of the random variables
00,--- ,0n, n € IN. Finally, by these remarks and the relations (4.4) and (4.5) it is
easy to check that the random variables oy41 — 0y, n € IN | J{0} are independent
and identically distributed. Hence, by a similar proof as for the (R,s,S) model,
one can show the next result for an (s, S) model.

Theorem 4.10. For any (s,S5) model with a compound renewal demand process,
the stochastic process {(IP(t),D(t + L) — D(t)) : t > 0} is a pure regenerative
process with the increasing sequence o,, n € IN |J{0} of random points given by
(4.4) and (4.5). Moreover, the netstock process IN = {IN(t + L) : t > 0} is a pure
regenerative process with the same sequence of increasing points.

Proof. We already showed that the differences oy 11 — on,n € IN|J{0} with oy,
iteratively defined by (4.4) and (4.5) are independent and identically distributed and
hence the first condition of Definition 2.2 is verified. We observe by the definition
of the (s, S) rule that IP(o,,) = S and therefore the stochastic process {IP(t+0y,) :
t > 0} is completely determined by the demand process D, . By this observation
it follows that the joint stochastic process

{@P(t+0,),D(t +0, + L) —D(t+0y)) : t >0}
is a function of the stochastic process D, and this implies that the process
{(IP(t +0,),D(t+0,+L)-D(t+0y,)):t> 0}

is independent of gy, . . . ,0,,. This verifies the second condition of Definition 2.2. By
the observation that the process {(IP(t+0,), D(t+0,+L)—D(t+0,)) : t > 0} isa
function of the stochastic process D, and the distribution of D, is independent of
n, the third condition of Definition 2.2 also holds. Hence {(IP(¢),D(t+ L) —D(t)) :
t > 0} is a pure regenerative process and the regenerative property of the process
IN = {IN(t + L) : t > 0} is an immediate consequence of Theorem 3.4. O

To identify the average cost of an (s,S) model with costrate function f we observe
that

INt+L)=S—-D({+L) for 0<t<oy.
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Moreover, we introduce the stopping time v(S — s) with respect to the individual
demand process {Y; : 4 € IN} and this random variable is given by

v(S —s) :==min{n € IV : ZY,- > S —s}.
i=1
It is easy to verify that oy = E;’g_s) T;. Since the individual demands Y;,i € IN
are independent of the renewal arrival process the stopping time v (S — s) is also
independent of the random variables T;,i € IN. By this observation we obtain
(cf. [13]) that
v(S—s)
E()=E| Y Ti|=IET)EvS-s).
i=1

To compute the expectation Ev(S — s) we observe for every n € IN and Yo := 0
that

P{v(S—s5)>n+1}=P{) Y;<S—s}=Fy (S—s).
=0
and so,

Ev(S—-s)= iP{V(S—S) >n+1} =1+ iFQ*(S—s) =Up(S — ),
n=0 n=1

with Uy denoting the renewal function associated with the cumulative distribution
function Fy. Due to Fy (0) = 0 this implies (cf. [13]) E(o1) = ET1U(S —s) < co.
It is now possible to prove the following result, which includes both the case of a
divisible and indivisible item.

Theorem 4.11. For any (s,S) model with a compound renewal process it follows
that the average cost ®(s,S) of an (s,S) policy with nonnegative costrate function
f and ordering cost K > 0 is given by
K+ E(f)" f(S—D(t+ L))dt)

E(T1)Uo(S — s)
with o1 given by (4.4) and Uy the renewal function associated with the cumulative
distribution function Fy .

®(s,9) =

Proof. By a similar argument as in the proof for the (R,s,S) model it follows by
Theorem 4.10 and Theorem 2.4 that
1 E([J' fAN(t+ L)dt) E ([ f(S—D(t+L))dt
i Lo = B U SONG+ D)dt) B (J}" 1(S ~D(t+ D)de)
ttoo t EUl EO’l
Again by the renewal reward theorem we obtain that the average ordering costs are
given by K/IEo,, and combining the two components yields the desired result. [

If we want to derive the expressions for the different service measures then we can
use Theorem 4.10 and the general formulas for these measures presented in Section
3. Observe, if we consider an (s,S) inventory model with a compound renewal
demand process with arrival rate A > 0, then the average demand rate a is given
by AEY, o1 is given by relation (4.4), and IP(0) = S. Applying now Theorems
3.5 up to 3.7 we immediately obtain the following result.
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Theorem 4.12. For any (s,S) model, with a compound renewal demand process
it follows that the stockout probability 1 — Py is given by

1- P, =P{D(c1 +L) > S} - P{D(L) > S}.
Moreover, the average number By of items short has the form

E(max{D(oy + L) — S,0}) — E(max{D(L) — S,0})

Pz = ET.Uy(S — 5) ’
while the fraction Py of demand satisfied directly from stock equals
B2
P=1- .
? AEY,

Finally, the ready rate measure P3 boils down to

n I (S 1ppy>syat)
57 ETon(S - S)

The expressions in Theorems 4.11 and 4.12 may look complicated, but as will be
shown in [2] it is easy to give analytical formulas for associated Laplace transforms.
Hence we may apply (cf. [2]) a newly developed Laplace inversion algorithm to
generate accurate computations. Finally we will present in the next subsection the
(s,nQ) inventory model.

4.2.2. The (s,nQ) inventory model. According to this inventory rule an order is
triggered at the moment the inventory position drops below or equals the reorder
level s. The order size is chosen to be an integer multiple of @, such that after
ordering all excess demand is backordered and the inventory position process will
be between s and s + ). This model is also discussed by F.Chen and Y.S. Zheng
(cf. [3]) for a divisible item. However, in their paper the correct formula for the
average cost is given without presenting a detailed proof. As before, we will show
that this model also fits within the general framework of regenerative processes.
Again, we assume that the demand process is a compound renewal process and the
costrate function f satisfies

E ( /0 t f(IN(s))ds) <o

for every t > 0. To start our analysis of this model we introduce the random
variables S,,, n € IV |J{0}, with Sp:=0 and S,, the arrival moment of the nth
customer, n € IN. By the definition of the renewal arrival process N = {N(¢t) : ¢ >
0} it follows that S,, = >°,_, Tk, n € IN and we consider now the cadlag inventory
position process IP evaluated at the arrival moments S,,. Introducing the random
variables {IP,, : n € IN |J{0}}, given by IP,, = IP(S,,), it follows by a similar proof
as for the (R, s,nQ) model (cf. [7]) that the stochastic process {IP,, : n € IN |J{0}}
is a Markov chain with state space (s, s + Q] for an indivisible item and state space
{s+1,...,s+ @} for a divisible item. Moreover, the invariant distribution is the
same as for the embedded Markov chain in the (R, s,n@Q) model. As before, the
random variable U is uniformly distributed on (0,1] for an indivisible item and
discrete uniformly distributed on {é, ..., 1} for a divisible item. It is now possible
to show the following result.
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Theorem 4.13. For any (s,nQ) model with a compound renewal demand process,
the stochastic process {(IP(t),D(t + L) — D(t)) : t > 0} satisfying IP(0) Ls5+QU
and U is independent of the demand process D, is a pure regenerative process with
the increasing sequence o, n € IN|J{0} of random points given by S,,. Moreover,
the netstock process IN = {IN(t + L) : t > 0} is a pure regenerative process with
the same sequence of increasing points.

Proof. By the definition of a compound renewal process it follows that the differ-
ences ony1 — op, n € IN|J{0} are independent and identically distributed, and
hence the first condition of Definition 2.2 trivially holds. To check the second con-
dition of Definition 2.2, we observe by the definition of the (s,nQ) rule that the
stochastic process {IP(t + oy,) : t > 0} is a function of the random variable IP(oy,)
and the stochastic process

D,, = {D(t+ 0,) — D(o,) : t > 0}.

Since IP(o,) is completely determined by the individual demands Yy,...,Y,
and the initial inventory level IP(0), this implies by the definition of the com-
pound renewal demand process that the random variable IP(o,,) is independent of
So,-..,S,. Moreover, the stochastic process D, _, by the definition of ¢, is also
independent of S, ... ,S,. By these observations, the joint stochastic process

{@P(t+ 0,),D(t+0n+ L) —D(t +0p)) : t >0},

being a function of IP(s,,) and D, is independent of Sy,... ,S, and this verifies
the second condition of Definition 2.2. Since by the definition of o, the process D,
has the same distribution as D, and by the observation before Theorem 4.13 the dis-
tribution of IP(c¢,,) is independent of n, we finally obtain that the third condition of
Definition 2.2 holds. Hence, {(IP(¢),D(t + L) — D(¢)) : t > 0} is a pure regenera-
tive process, and the regenerative property of the process IN = {IN(¢ 4+ L) : t > 0}
is an immediate consequence of Theorem 3.4. |

To identify the average cost of an (s,n(@)) model we observe, since IP(c},) is a
function of IP(0) and Y1,..., Yy, that this random variable is independent of the
compound renewal process D,, . Moreover, if the conditions of Theorem 4.13 hold,
it follows for every 0 <t < oy that IN(t+ L) = s+ QU —D(t+ L) with the random
variable U independent of the demand process D. Using Theorem 4.13 and the
above relation, one can apply the same arguments as before, and so we list without
proof the next result.

Theorem 4.14. For an (s,nQ) model with IP(0) £ s+ QU and U independent of
the compound renewal demand process D, it follows that the average cost ®(s, Q)
of an (s,nQ) inventory model, with nonnegative costrate function f and ordering
cost K > 0, is given by

. K(1- E(Fy(QU)) + E (f," f(s+ QU - D(y + L))dy)
(83 Q) - ET]_ .

If we want to derive the expressions for the different service measures then we
can use Theorem 4.13 and the general formulas for these measures presented in
Section 3. Observe, if we consider an (s,nQ) inventory model with a compound
renewal demand process with arrival rate A > 0, then the average demand rate a is
given by AIEY1, by Theorem 4.13 the random variable o4 is given by S; = T, and
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IP(0) = s + QU. Applying now Theorems 3.5 up to 3.7 we immediately obtain the
following result.

Theorem 4.15. For any (s,nQ) model with IPq Lot QU, U independent of the
compound renewal demand process D, it follows that the stockout probability 1 — Py
is given by

1-P=P{D(T1+L)>s+QU} - P{D(L) > s+ QU}.
Moreover, the average number B2 of items short has the form
B2 = A(IE(max{D(T; + L) — s — QU,0}) — E(max{D(L) — s — QU,0})),
while the fraction Py of demand satisfied directly from stock equals

_ B2
P =1 NEY,

Finally, the ready rate measure Ps boils down to

T1+L
Py=2A /L P{D(t) > s + QU}dt

The expressions in Theorems 4.14 and 4.15 may look complicated, but as will
be shown in [2] it is easy to give analytical formulas for associated Laplace trans-
forms. Hence we may apply (cf. [2]) a newly developed Laplace transform inversion
algorithm (cf. [10]) to generate accurate computations.

5. CONCLUSIONS

The general framework of regenerative processes enables us to derive the average
cost and the most well known service measures for any of the classical single item
inventory control models in an easy and efficient way. After we constructed this
framework it only has to be checked for every model if it fits into this framework.
In a subsequent paper (cf. [2]) computations are presented.
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