Appendix

SYMBOLS USED

General Remarks on Symbols

Lower index as a rule indicates time period to which variable refers.
Upper index h or h' indicates sector (industry); in some cases upper
index 1, 2 indicates process of production or geographical sector. Symbols
with one index only are given without index in the following list;
thus, meaning of v^h can be found under v, etc. Symbols with two indexes,
for example, $v^{h'}$, have been mentioned separately.
Money values are indicated by capital letters, usually but not always
corresponding to symbols for volume variables. Greek symbols often
are corresponding coefficients (for example, $x, X, \xi, \epsilon, S, \sigma$; etc.). Dot on
top of symbol indicates derivative with regard to time: $\dot{c} = dc/dt$, etc.

List of Symbols

I. Alphabetical order of definitions\(^1\)

Allocation of investment coefficient, Mahalanobis, A
Balance-of-payments deficit, F
Capital, in accounting sector, K
\hspace{1cm} in existence, K^0
\hspace{1cm} in nonaccounting sector, K
\hspace{1cm} in use, k, K
Capital exponent in Douglas production function, μ
Capital-income ratio, gross, κ'
\hspace{1cm} net, κ
Capital supply flexibility, β

\(^1\) Some symbols which do not have generally used names have been included only in
list II below.
Coefficient, current Leontief interindustry delivery, φ^{AV}
of demand, η
Coefficient, investment, interindustry delivery, k^{AV}
Constant, Douglas production function, Γ
Consume, propensity to, γ
Consumption, minimum level, δ
saturation level, c^m
value, C
volume, c
Debt, foreign, M
Deficit on balance of payments, F
Deliveries, interindustry, current, v^{AV}
investment, w^{AV}
Demand, coefficient, η
elasticity, η
price flexibility of, ψ
Depreciation allowance, d, D
rate, δ
Discount rate, \bar{m}
Douglas production function, constant, Γ
exponents, capital, μ
labor, λ
rate of increase, labor, λ'
Elasticity, of demand, η
products, ρ
Employment, a
in accounting sector, \bar{a}
coefficient, Mahalanobis, Ξ
in nonaccounting sector, \bar{a}
Equipment, b, B
Expenditure, national, x, X
Exponents, Douglas production function, capital, μ
labor, λ
rate of increase, λ'
Exports, value, E
volume, e
Flexibility, of demand, ψ
of marginal utility, u
of supply, capital, β
labor, α
Foreign debt, M
Gestation period, θ
Growth rate, of efficiency, \(\varepsilon \)
of population, \(\pi \)
of production, \(\omega \)
Horizon, \(T \)
Import content, \(\iota \)
Imports, \(i, I \)
Income, national, \(y, Y \)
Index, sector, \(h, H \) (maximum)
Interest rate, \(m \)
accounting, \(m' \)
Interindustry deliveries, current, \(w_M^c, V^M \)
Interindustry delivery coefficient, current, \(\varphi^M \)
investment, \(\kappa^M \)
Interindustry investment, \(w_M^c, W^M \)
Investment coefficient, \(\kappa^M \)
finished, \(j', J' \)
gross, \(j^g, J^G \)
net, \(j, J \)
replacement, \(r, R \)
Labor-capital ratio, without accounting prices, \(\Phi_0 \)
in accounting sector, \(\Phi_1 \)
Labor exponent, Douglas production function, \(\lambda \)
rate of change, \(\lambda' \)
Labor productivity, \(q \)
Labor supply flexibility, \(\alpha \)
Leontief coefficients, current, \(\varphi^M \)
investment, \(\kappa^M \)
Lifetime of investment goods, \(\Theta \)
Marginal utility, \(u \)
flexibility, \(v \)
National expenditure, \(x, X \)
National income, \(y, Y \)
Output-capital ratio, \(\xi \)
Population, \(P \)
growth rate, \(\pi \)
Price capital stock, \(q' \)
Price consumption, \(p^s \)
Price exports, \(p^e \)
Price gross product, \(p \)
Price imports, \(p^i \)
Price investment, \(q \)
Price national expenditure, \(p^s \)
Price national income, p^u
Price product, h, p^h
Product, gross, v
Production, rate of growth, ω
Productivity, labor, g
Propensity, to consume, γ
of region r to buy good h in region r', $\pi r x^h$
to spend, ξ
Region index, r, R (maximum)
Repayment period, τ
Replacement investment, r, R
Savings, s, S
rate, σ
Sector index, h, H (maximum)
Spend, propensity to, ξ
Supply coefficient, product, ρ
Supply flexibility, capital, β
labor, α
Taxes, G
Time, t
integration variable, t'
Transportation coefficient, $r^r T^h$
Utility, marginal, u
flexibility of, v
total, U
Wage rate, l
accounting, l'
desired, l^0
rate of growth, Ω

II. Alphabetical order of symbols—Latin\(^1\)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
<th>Greek List</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Employment</td>
<td>A</td>
</tr>
<tr>
<td>\bar{a}</td>
<td>Employment in accounting</td>
<td></td>
</tr>
<tr>
<td>\ddot{a}</td>
<td>Employment in non-</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>Volume of equipment</td>
<td>B</td>
</tr>
<tr>
<td>c</td>
<td>Consumption volume; $c' = c - \bar{c}$</td>
<td>C</td>
</tr>
</tbody>
</table>

\(^1\) Asterisk * indicates stock variable.
\(c \) Total consumption in period \(0 \leq t \leq T \\
\bar{c} \) Constant in Engel function \\
\(\bar{c} \) Subsistence minimum \\
\(c^p \) Consumption of French workers \\
\(c^m \) Saturation level \\
\(d \) Depreciation allowances, volume \\
\(e \) Exports, volume \(^1\) \\
\(\bar{e}^t \) Constant in function describing time pattern of \(e^t \) \\
\(f \) Foreign exchange rate \\
\(g \) Labor productivity \\
\(h \) Sector index \\
\(i \) Imports, volume \\
\(j \) Investment, net, volume \\
\(j' \) Investment, finished, volume \\
\(j^g \) Investment, gross, volume \\
\(k \) *Capital stock volume, in use \\
\(\bar{k} \) Capital in accounting sector \\
\(\bar{k} \) Capital in non-accounting sector \\
\(k^o \) Capital stock volume, in existence \\
\(l \) Wage rate \\
\(l^o \) Desired wage rate \\
\(l' \) Accounting wage rate \\
\(m \) Interest rate \\
\(m' \) Accounting interest rate \\
\(m^d \) Discount rate \\
\(D \) Value \\
\(E \) Value \\
\(F \) Deficit on balance of payments \\
\(G \) Taxes \\
\(H \) Maximum value of sector index \\
\(H^x \) Number of export items \\
\(I \) Value \\
\(J \) Value \\
\(J' \) Value \\
\(J^g \) Value \\
\(K \) *Value \\
\(M \) *Foreign debt

\(^1\) Of course, \(e \) is also used for base natural logarithms.
p Price index of gross product
p^h Price index of product h
q Price index of investment goods
q' Price index of capital stock
r Replacement investment, volume
As an index: region
s Savings, volume
t Time
t' Time as integration variable
t'', t''' Integration variable depending on t'
u Marginal utility
v Volume of gross product
v^h, v'^h, v''^h Constants in functions describing time path of v^h
v^{h^r} Interindustry deliveries, current
w^{AN} Interindustry deliveries for investment purposes
x National expenditure, volume
$x^r_{h^r}$ Quantity of good h supplied by region r to region r'
y National income, volume
$y' = y - \bar{z}$
\bar{g} Constant in Sec. 2.4

P Population
R Number of regions
S Value
T Horizon
r^rT Transportation coefficient
U Total utility
V Value
W^{AN} Value
X Value
Y Value

III. Alphabetical order of symbols—Greek

α Supply flexibility of labor
A c^x/\bar{e} (Sec. 2.4)
β Supply flexibility of capital
B Constant in consumption time path (Sec. 2.4)

1 Upper index, when applied, indicates corresponding volume (c, i, e, x, y).
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\gamma)</td>
<td>Propensity to consume (\gamma^{\lambda}) Other constants appearing in consumption function</td>
</tr>
<tr>
<td>(\delta)</td>
<td>Rate of depreciation (\delta' = 1 - \delta)</td>
</tr>
<tr>
<td>(\epsilon)</td>
<td>Rate of growth of efficiency</td>
</tr>
<tr>
<td>(\xi)</td>
<td>Output-capital ratio (\xi^{P}) Partial output-capital ratio</td>
</tr>
<tr>
<td>(\eta)</td>
<td>Elasticity (or coefficient) of demand</td>
</tr>
<tr>
<td>(\theta)</td>
<td>Gestation period</td>
</tr>
<tr>
<td>(i)</td>
<td>Import content of product</td>
</tr>
<tr>
<td>(\kappa)</td>
<td>Capital-output ratio, net</td>
</tr>
<tr>
<td>(\kappa')</td>
<td>Capital-output ratio, gross (\kappa^{P}) Partial capital-output ratio</td>
</tr>
<tr>
<td>(\lambda)</td>
<td>Labor exponent in Douglas production function</td>
</tr>
<tr>
<td>(\lambda')</td>
<td>Rate of change of (\lambda)</td>
</tr>
<tr>
<td>(\mu)</td>
<td>Capital exponent in Douglas production function</td>
</tr>
<tr>
<td>(\xi)</td>
<td>Propensity to spend</td>
</tr>
<tr>
<td>(r^{r*})</td>
<td>Propensity of region (r) to buy good (h) in region (r')</td>
</tr>
<tr>
<td>(\xi_{0}, \xi_{1})</td>
<td>Constants in this propensity, when dependent on relative prices</td>
</tr>
<tr>
<td>(\pi)</td>
<td>Rate of growth of population</td>
</tr>
<tr>
<td>(\rho)</td>
<td>Elasticity of supply</td>
</tr>
<tr>
<td>(\sigma)</td>
<td>Rate of savings</td>
</tr>
<tr>
<td>(\Gamma)</td>
<td>Constant in Douglas production function</td>
</tr>
<tr>
<td>(\Delta)</td>
<td>Finite increase in variable it precedes</td>
</tr>
<tr>
<td>(\Theta)</td>
<td>Lifetime of investment goods</td>
</tr>
<tr>
<td>(\Delta)</td>
<td>Mahalanobis allocation of investment coefficient</td>
</tr>
<tr>
<td>(\Xi)</td>
<td>Mahalanobis employment coefficient</td>
</tr>
</tbody>
</table>
126 **Mathematical Models of Economic Growth**

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>τ</td>
<td>Period of repayment</td>
<td></td>
</tr>
<tr>
<td>ν</td>
<td>Flexibility of marginal utility</td>
<td></td>
</tr>
<tr>
<td>$\varphi^{h'}$</td>
<td>Current Leontief coefficients</td>
<td>Φ_0 Labor-capital ratio without accounting prices</td>
</tr>
<tr>
<td>$\chi, \chi^{h'}$</td>
<td>Constants in function describing time path of ν^{h}</td>
<td>Φ_1 Labor-capital ratio in accounting sector</td>
</tr>
<tr>
<td>ψ</td>
<td>Price flexibility of demand</td>
<td></td>
</tr>
<tr>
<td>ω</td>
<td>Rate of growth of production</td>
<td>Ω Rate of increase in desired wage rate</td>
</tr>
</tbody>
</table>