2.1. M

2.11 The models to be discussed in this chapter are the simplest
models conceivable, thought to reflect the one phenomenon most charac-
teristic of development, that 1s, the accumulation of capital. The one
scarce factor considered is capital, and no other scarce factor is assumed
to exist. Notwithstanding their extreme simplicity, these models can
sometimes be used to make a first rough exploration of a country’s growth
process and to demonstrate some very fundamental relationships. These

models or related ones have been introduced and discussed by R. F.
Harrod and E. D. Domar.?

2.12

Gestation Lag; No Depreciation

The variables used are

k capital stock?
y national income
7 1nvestment

The equations assumed are
k= j (2.12.1)

This equation states that, in the absence of a gestation lag and of
depreciation, the rate of increase k (= dk/dt) of capital stock equals

Investment. -
k = ky (2.12.2)

1 R. F. Harrod, “Towards a Dynamic Economics,”’ London, 1948; Evsey D. Domar,
“Essays in the Theory of Economic Growth,”” New York, 1957. .

2 Since the role to be played by this variable depends on the production laws
assumed, its definition will have to be adapted to these laws.

15
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This equation expresses the assumption of a fixed capital coeffictent
(or capital-output ratio), representing a very simple production function.

This equation states that investment (assumed equal to savings) shows a
fixed ratio o to income; ¢ may be called the savings rato.

2.13 The model admits a very simple solution of its system of
equations, informing us about the speed of development.
oy = j = k = xy (2.13.1)
or y_7 (2.13.2)
Yy K

meaning that the rate of growth of income (and hence of both other varia-
bles) equals ¢/«k.

As an example, let us take ¢ = 0.12 and « = 3 years. Then evi-
dently 7/y = 0.04 per annum; income, capital, and investment all grow
4 per cent per annum. Development over time of income can be repre-

sented by
Yi = yoe”/" (2133)

where y, 1s income at time ¢ = 0. This income, or, alternatively, the
initial value of capital (k,) or investments (jo), has to be given in order
that the development path may be determined.

The formulas may be interpreted as the solution of an analytical prob-
lem in which ¢ and « are given and the rate of development follows.
Inversely, a political problem may be solved with them by considering
the desired rate of growth of income w given and calculating the required

rate of savings o’.
o’ = wk (2.13.4)

2.14 The model may be supplemented with more variables and
equations which do not change the relationships already discussed.
This will always be the case if the new variables are dependent on the
variables already discussed without changing the equations already dis-
cussed. The simplest example is the addition of the variable ¢, standing
for consumption and satisfying the relation ¢ = y — j.

Other variables may be added for an open country, namely, imports

1 and exports e, as well as gross product ».* The relations to be added
may be

L= W (2.14.1)
v=y+i1=c+j+e (2.14.2)
e = 1 (2.14.3)

¥ T_he use of the vi’rord “gross’’ here means that product is taken at the final stage,
that 1s, vichen reaching the consumer, the investor, or the country to which exported.
For a nation as a whole v is also called fotal resources.
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The latter equation 1s a consequence of our assumption ¢ = y — 7 and
expresses the well-known equivalence between internal financial equi-
librium and balance-of-payments equilibrium. It should be noted, how-
ever, that there 1s an implicit assumption in these equations, namely,

that exports to the volume of e are salable at the (constant) price level
assumed.

2.2. Macromodel; No Gestation Lag; with Depreciation and Replacement

2.21 The models to be treated in this section are characterized by
the assumption of a finite lifetime O of all capital goods. This assumption
makes 1t desirable to distinguish between the stock b of equipment or
capital goods and the stock k of capital. The difference between the two
concepts is to be found in the fact that an individual machine remains a
constant volume of equipment until 1t is scrapped, whereas its contribu-
tion to the capital stock falls because of its depreciation. Our assumption
implies that no obsolescence occurs; otherwise the contribution to b may
not be constant. In order not to complicate the model unnecessarily,
linear depreciation will be assumed. The model brings out some inter-
esting features of development under these assumptions.

2.22 The variables used are

b volume of equipment
k  volume of capital
v gross product
d depreciation allowances
r replacement
¢ consumption
8§ savings
7¢  gross investment
7 net investment
Y

net product
The equations of the model are, with their motivations,
b = 4¢ — r (2.22.1)

The net addition to the stock of equipment can be found by deducting
replacement from gross investment.

k= s (2.22.2)

The net additions to capital are equal to savings.

b = kv (2.22.3)
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Gross product is taken to be proportional to the volume (or capacity) of
equipment, « representing a gross capital coefficient.

Net, investment equals gross investment minus depreciation.
ry = j?__e (2.22.5)
Replacement equals gross investment one lifetime betore.
b
= — 2.22.6
A=< (2.22.6)

Depreciation allowances are equal to the new value of total equipment
divided by lifetime. The essence of what is here called new value 1s that

1t is value without deduction of depreciation.
Yy =0 — d (2.22.7)

Tncome equals gross product minus depreciation. Since no imports are
assumed to exist in this version of the model, no deduction of imports 1s

necessary.
Yy = ¢ + S (2.22.8)

From the spending side, income equals consumption plus savings. No
lags are assumed to occur in this relationship.

§ =17 (2.22.9)
Savings are equal to net iInvestment.

= gy (2.22.10)
Savings are a portion ¢ of income, where ¢ is the savings rate.

2.23 Also, this system of relations admits a relatively simple
solution, although less simple than the previous model. Since the

system 18 linear, the usual method will do, which consists in assuming a
solution of the shape!

7¢ = 5,Cev" (2.23.1)

where 7% 1s an arbitrary constant representing the initial value of j¢ and

w a constant which will have to satisfy some condition to be found from
the system of equations.

It can be easily found that

re = Ji o = Jo%e? =9 (2.23.2)
b = 7% — r = j%e(1 — ¢v9) (2.23.3)

18¢e, e.g., Lyman M. Kells, “Elementary Differential Equations,”’ p. 87, New
York and London, 1935. *
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from which it follows that?

b = éjoge“"(l — ¢g~«0) (2.23.4)
From b we can derive v and d:
b b
V = ';c""}" &Ild d — "'é-
leading to
ij-dmjmsmo*ymo-(vmd)mo-(%;——--lé-)b (2.23.5)
Upon filling out the expressions for 7¢, d, and b, we find the condition
— E. l —o — p—wO
W = (K, +- 5 ) (1 — ¢7«9) (2.23.6)

A complete solution for j¢ and the other variables consists of as many
terms of the shape shown in (2.23.1) as there are roots of Eq. (2.23.6),

Fig. 1

Roots may be real or complex; complex roots correspond to fluctuating
movements of the variables. The nature of real roots—to which, as
long as o > 0, monotonically rising movements of the variables cor-
respond—can be illustrated by Fig. 1. Let the right-hand side of (2.23.6)
be represented by

1 — o)
(1)(03) p— (.E; + _ 5 0') (1 — 8""&?9)
Then the root we will be represented by the point of intersection between
the straight line with slope 1 (of which the ordinates are w) and the curve
with ordinates ®(w). It can be shown that for ¢ > 0 and © > «’, both

1 No additive constant can be added to (2.23.4), since then the relation (2.22.5)
would be violated.
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realistic assumptions, there is always such an intersection point. An
explicit solution is not possible, but for small values of w6 the expression
¢~9® can be approximated by 1 — w0 + 14»?0? - - - leading to

o ] — o .........1 -

-7+ 557) (o -39)
1 1

or wmQJ(?——-—e—)

For large values of 6, on the other hand, the Domar-Harrod result
= ¢/k' will be obtained, as can be seen directly from (2.23.6). Evi-
dently, there are no other real roots.

2.24 The solutions can be used for the analytical problem to explain
development with given values of the coefficients, including the savings
ratio o, and with given initial values of the variables, such as 7% ete.
In such a problem also the complex roots of (2.23.6) will have to play
their part. Only when a sufficient number of terms of the general form
(2.23.1) [where, however, the constant factors are not now identical to
70%, since that only applies if only one term is taken, as in (2.23.1)] 1s
introduced is it possible to solve the analytical problem with given initial
values of the variables. These initial values may, however, be such as
to let the system move along cycles.

For the solution of the political problem, the situation is different.
There 1s scope here to consider as the aim a pattern of development without
cyclical setbacks. In our mathematical language, this means that only
one root, namely the real one, of Eq. (2.23.6) is relevant to us and accord-
ingly Eqgs. (2.23.1) to (2.23.5) are valid, with 5,¢ equal to the initial value
of 7% whereas all other initial values can be calculated from it. This
means that, in order to warrant a noncyclical movement, certain rela-
tionships between the initial variables must be satisfied. If, in addition,

a certain rate of development wy 1s desired, the rate of savings oo can be
derived from (2.23.6); it should be

wo/(]. e 6""’09) — 1/6
1/ — 1/06

It will again easily be seen that for © = <« this expression coincides
with (2.13.4).

2.25 Once a development pattern of this kind is followed, there will
exist fixed ratios between the variables. This is a consequence, of course,
of a number of simplifying assumptions implied in our model. Later we
shall discuss models where this somewhat unrealistic feature has been
removed. It seems interesting, however, to calculate some of the ratios

tlr}a:t may make sense, if only approximately, under more general con-
ditions. We shall calculate k/y, k/b, and r/d.

(2.24.1)

gy —
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Starting from (2.23.5) we have

k=3 = o*(%; — é—-)b (2.25.1)
Using (2.23.4) we find
'........E ..!'_...__._:!_'_. y G pwt — p—wo :
k = " (K’ 9) Jo € (]. € ) (2252)
By integration over time and by requiring that k£ should approach zero
for { = — oo, where the other variables so far considered also vanish, we
have
o [ 1 1\ .
k = ;-"2“ (;{";‘ — 'é") jogewt(l — Gmme) (2253)

We can now calculate the three ratios mentioned:

For the political problem 1t 1s desirable to express them in terms of w, as
can be done explicitly with the aid of (2.23.6); the results are

k 1/(1 — 6““’8) — 1/w8 k 1 1 r wO

R I

Y 1/ — 1/6 b 1 —e“% B d e® —1
(2.25.5)

For very small and very large values of w® these expressions can be
further simplified. The results are shown below.

k/y k/b | r/d
. % L
w@ 81‘1’1&11 1/}{’ - 1/9 79 1
w0 large K’ 1 0
2.26 The model remains simpler if instead of Eq. (2.22.3), repre-

senting a purely technological production function, the more customary
but less clear relationship
k = ky (2.26.1)

1s maintained. In this case, as in Sec. 2.14, k, s, or 7 and y remain an
inner circle of variables, the movements of which are independent from the
equations outside (2.22.2), (2.22.10), and (2.26.1). We have

=2k (2.26.2)
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and hence k = ket satisfies, with
w = gx-- (2.26.3)

As a consequence y = (ko/x)e™' .
The remaining variables may be determmed by first considering b,

which has to satisfy

- b be_
= j¢ — jf_e =0y + 5 — oYre — ._.._%_... (2.26.4)

This is a linear nonhomogeneous difference-differential equation. The
seneral solution consists of two parts: (1) the general solution of the

homogeneous equation |
0b: = b: — bi—o (2.26.5)

and (2) a particular solution of the nonhomogeneous equation.! It is
easily seen that the general solution of (2.26.5) runs

b = b%0 + b (2.26.6)

If, however, we require that for ¢ = — «, b: should be zero, 1t will
appear that thls solution 1s discarded again.

A partmular solution of the nonhomogeneous equation may be attempted
by assuming b; = bge** where w = o/k, as in (2.26.3). This solution 1s
admissible only when b, satisfies

0= (1 — e (" oo 4 1) (2.26.7)
K bo

Since o has to be adapted, in the political problem, to the desired rate of

erowth w, this expression can then be transformed into
ko 1 1

Do =1 =% 40 (2.26.8)

It 1s interesting to note that this formula is identical with the one shown
for k/b in (2.25.5).

The remaining variables can be derived from the equations connecting
them with the variables already determined.

2.3.

2.31 A somewhat unrealistic feature of the models so far discussed
1s the absence of a gestationlag. Each unit of investment, however small,
1s supposed immediately to add to the capital stock. It will now be
assumed that a time lag 6 occurs between the start of any investment
process (say building) and the addition to the eapital stock of a finished

15ee, e.g., Kells, op. cit., p. 93.

Macromodel with Gestation Lag F No Depreci’ation
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capital good. The introduction of this phenomenon necessitates the
addition of assumptions about the Investment process during this time
period. We shall first make the simplest conceivable hypothesis, namely,
that the process requires a uniform mput of effort during the period 6.

It is useful to introduce as a new variable ‘“investment finished,’” to be
indicated by j,. By definition we shall then have

7cf, — ]g (2.31.1)

Total investment activity j: at any time period ¢ 1s now the total of
activities started and not yet finished, that is, activities of which the time
of finishing 1s between t and ¢ + 0. Since all are running at an even pace,
activity 7 1s only an unweighted average:

1 [t+o
Jt = 3/ 7" dt’ (2.31.2)
2
This expression can be transformed with the aid of (2.31.1):
1 e 1 ,
Jt = "fé' ky t — "5 (kg+5 - kt) (2312 )

Adding Eqs. (2.12.3) and (2.12.2), we have a system of four equations
for our four variables.

2.32 The solution of the system can be found by expressing 7: in
terms of k: with the aid of the last two equations, yielding

jg — g kt — -]é* (kt.;_.e - ]Ct) (2321)

K
which may be rewritten

lopry = (1 1 95) k. (2.32.2)

The same equation will also hold for the other variables. During a
period 6, capital will have grown in the ratio 1 4+ 65/k. Disregarding
fluctuations with a period smaller than 6, we may write the solution

- t/6
from which we can derive
Z’Jt . ]. 00’ |

It 1s easily seen that for small values of s/« this becomes identical to
o/k, that is, the rate of growth found in Eq. (2.13.2) holding for the model
without gestation lag. For larger values of s/«, the deviations from the
rate previously found may be considerable; growth will be slower.
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2.33 The investment process may be of a different kind. Another
simple example is that of a point input at the beginning of the lag, fol-
lowed by the same point output we assumed in the previous case. Here

we simply have
Jt = Jtvo (2.33.1)

Consequently we find
by = 70 = jop = — kes (2.33.2)

K

Again writing k; = kee*!, we find that » will have to satisty

o

w = — e’ (2.33.3)

K

Again, for small values of w8 we find w = o/«.

2.4. The Optimum Rate of Development’

2.41 A practical problem of considerable importance consists in
deciding upon the rate of growth of production to be chosen. The well-
known fact that in communist countries these rates and, as a consequence,
the rates of saving applied are almost double those of noncommunist
countries? illustrates the wide differences in decisions taken. The ques-
tion may therefore be asked whether economic science can give a clue to a
numerical choice.

Attempts made by the present authors seem to justify a negative
answer. Nevertheless, it seems worth while to describe the attempts and
their results. An attempt was made so to interpret the problem that the
optimum rate of development was the one maximizing utility over time
and to utilize the scarce efforts made at measuring the relevant properties
of the utility function. Maximization of utility as a device 1s in any case
superior to maximization of consumption, which again is better than
maximization of income. The specific interpretation given to utility
was the assumption that it depends only on consumption in the same time
unit; this may be too restrictive, as will be discussed later, but no measure-
ments at all are availlable for the dependence of utility of consumption at
other time periods.

2.42 Various types of uizlity funcizons were assumed; it appeared
desirable to introduce a minimum level é of consumption, below which

* This section may be skipped by the reader interested only in practical planning.

? In the United States the average savings ratio over a business cycle has long been
11 to 12 per cent; for the United Kingdom a slightly higher figzure has been found. At
present, savings ratios in Western Europe are higher. Savings ratios in communist
countries cannot be compared easily, for several reasons, but figures of 25 per cent in
terms of Western concepts have been mentioned.



Sec. 2.42] ONE ScARCE FacToRr 25

marginal utility becomes infinitely large. Further exploration taught the
authors that 1t i1s also desirable to introduce a maximum or saturation
level ¢™ above ¢, that 1s, ¢ = ¢™ 4 ¢, at which the marginal utility is zero.
The utility function to be used in this section will be written

" = ( " _ 1)” (2.42.1)

cC — C

where % 1s marginal utility and v a constant. Its value was derived from
Friseh’s well-known estimates' of the flexibility of marginal utility,
originally based on the assumption that sugar is an ‘“‘independent’’
commodity, an assumption later removed, however, to some extent. In
order to arrive at one single value for v, it was necessary to complete
Frisch’s estimates by a few more assumptions. Frisch estimated the
flexibility of marginal utility for two groups of workers, an American
group, for which he found —1, and a French group, for which he found
—3.5. Our assumptions are that (1) the same utility function holds for
both and that (2) the level of consumption of French workers, at the time
of measurement, was one-half the level of American workers.
Flexibility being defined as (du/dc) ¢/u, it appears to be

_o_wer (e N e oo were 1
(c — &) \c — ¢ em/(¢c —¢) — 1]  ¢e¢m+é—cc—¢
(2.42.2)

Indicating French consumption by ¢ and hence American consumption
by 2¢¥, we have, according to Frisch,
2c™vct c™uc?

(¢ + ¢ — 2¢F)(2¢F — @) = 1 and (" F ¢ — F)(F =3 = 3.0
(2.42.3)

Adding the further assumption that ¢” is large in comparison with 2¢%,
we have, approximately,

2ucF Vo
SF 1 T 3.5 (2.42.4)

From these equations we find that v = 0.6 and &/c¢¥ = 24. This sec-
ond result does not seem to be unrealistic, and may justify some confidence
1n the result for v too.

No dzscount for future consumption was applied in the belief that for a
country’s planning, future generations should count as much as present
generations. According to this philosophy, a discount may be realistic
for the individual’s plans but not necessarily for a nation’s. It is not
difficult to introduce discounts for future consumption when so desired,

! Ragnar Frisch, “New Methods of Measuring Marginal Utility,”’ Tiibingen, 1932.
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but the question then arises at what level the discount should be put.
Instead of a discount, a finite horizon 7' may be introduced; a similar
question then comes up about its length.

Population was assumed to remain constant. It is not difficult, how-
ever, to assume a certain rate of growth = and change the formulas accord-
ingly. In a general way this will raise the optimum rate of savings in the
well-known way, that is, by m«, when a fixed capital-output ratio is
assumed.

This, in fact, was the production function utilized. As long as capital
is the scarcest factor, this assumption may be a proper approximation.
It appeared to be very difficult, if not impossible, to find an explicit solu-
tion if a more complicated production function were assumed to exist,

for example, the Cobb-Douglas function.

2.43 The problem of the optimum rate of development was then given
the following formal shape. Given an initial income y, and a capital-
output ratio « (implying, if one likes, an initial capital stock ko = «yo) and
ogiven the utility function (2.42.1), what program c¢(f) of consumption
(Implying a program of saving and hence of capital expansion) yields

maximum satisfaction over time /Om U(t') dt’, where U 1s total utility of

consumption at time ¢'?
Evidently the maximum is one with a side condition, namely, that at

any time { (using symbols as before), ¢ + s = yor, withs = 7 = k = «y

C + Ky' — y (2.4:3.1)

Apart from this side condition, we shall also consider two boundary

conditions, namely,
¢c2>¢C s2>0 (2.43.2)

As long as these boundary conditions are not active, that is, income is
actually distributed between some positive savings and a volume of con-
sumption surpassing the subsistence minimum ¢, for all time units con-
sidered, that is, for 0 < { < o, the maximum requires that the marginal
utility of consumption at moment ¢ equals the total marginal utility of
the additional consumption in the future to be obtained from giving up
one unit of consumption at time{. Since the increase in future production
made possible by giving up one unit of consumption is 1/« for all the
future, the condition runs

K

It does not matter that this future production may not actually be
consumed but partly saved; this decision can be separated from the one
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at time ¢ If this future decision again obeys (2.43.3), the marginal
utility of the corresponding addition to production can be measured either
on the consumption or on the savings side; these two are equal.

Equation (2.43.3) may be replaced by one which is simpler to handle,
by replacing both sides by their derivatives with regard to time. We
must later test, however, whether (2.43.3) is then also satisfied, depending
on the integration constant applied. The new equation runs

du ()
7 (2.43.4)
Since u depends on ¢ via ¢, it 1s better to rewrite it
K __‘_i___"f’_ Cc = —U
dc
Using (2.42.1), we obtain
¢ ="ty (2.43.5)
KUC

where ¢’ = ¢ — ¢. Since this equation only contains the variable ¢’ and
not the other variable y of our system, its integration can be undertaken
separately. Equation (2.43.5) 1s the well-known differential equation of
the logistic curve; the integral may be written

/ Cm

C = 1 + Be—-t[xu

(2.43.6)
where B = e%/* is an arbitrary constant which may be replaced by {,, the
time at which ¢’ = l4c¢™, that 1s, half the level of the asymptote.

Our result means that consumption will gradually have to approach,
but never have to reach, the saturation level ¢c™ 4 ¢.

2.44 The next step consists in integrating Eq. (2.43.1) for y, which
can now be written

b = C .

Yy — KY T T B (2.44.1)

when y =1y —¢C (2.44.2)

and evidently represents a nonhomogeneous first-order linear differential
equation. A standard method to deal with the left-hand side of the
equation is to calculate the derivative of y’¢~*/* with respect to time:

d ! et [ e o=t | Ay g:

a1 Yy e = € (?/ )

According to (2.44.1), this expression must be equal to
_cme-—-t/x
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Hence we have

™ et /* di’
o=tk o o R
y e K 1 —I" Be“t’/“” (2.4‘.‘4:.3)

It appears possible to carry out explicitly this integration for integer
values of 1/v. Since our estimate v = 0.6 is a rough approximation, it
seems worth while carrying out the integration for v = 0.5 or 1/v = 2.
This can be done with the aid of the substitution

Be—2#'lx = ¢/'2

where ¢’ is a new integration variable. It follows that e~*/*A/B = ¢’

VB e~VI*di’ = dit’’

K

and —

The integral (2.44.3) now becomes

.Lc... f o=tk — . dt,,
e - / T (2.44.4)
or r =L e'/* arctan ¢ -+ Yy = ° e''* arctan e/« ‘\/E T

\/B \/B
where § 1s an arbitrary constant the value of which has to be determined
with the aid of boundary conditions.
A natural boundary condition, to be added to the initial condition that
Yo be given, 1s that for { = o, y approaches ¢; in fact, there is no reason to
save at the saturation level, because there is no reason to surpass that

level. Economic development finds its natural end when saturation is
approached. Since fort = o

arctan e~t* /B

—— 1
e—t'* v/ B
y' = c¢™ + ¢ and hence 7 = 0.
The solution for y therefore is
Yy = Fﬁeﬁ arctan e=** /B + ¢ (2.44.5)
This implies that
Yo = C™ arctan /B + C (2.44.6)

/B
Production and hence caﬁpita,l must develop, according to (2.44.5),

along a curve very similar to a logistic; both curves are characterized by a
moderate slope in the early phases, increasing in acceleration until a
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certain point and then slowing down again and approximating a hori-
zontal asymptote.

2.45 The nature of the movements found may be illustrated by
substituting for the last section an alternative setup which seems more
illuminating from the mathematical point of view and not even a bad

approximation from a practical economic point of view. Writing
instead of ¥ in Eq. (2.43.1) (y: — y:=)/k, that is, the average rate of

Fig., 2

increase over the last « time units (practically some three to four years),
we find that this equation takes a particularly simple shape

Ct T Yt — Yt = Yt (2.45.1)

leading immediately to the solution

Yt = C4
or Yt = Ciix (24:52)

The practical justification for this alternative setup may be that invest-
ments are based on the rate of increase in income experienced in the last
three to four years, rather than the last small time unit, indeed appealing
to the economist. The nature of the result then becomes very simple:
both consumption and production have to move along a logistic, the only
difference between the two being a time lag of « time units (cf. Fig. 2).
The logistic for y has to be located so as to leave an intercept on the
vertical axis of y,.

Savings are measured by the vertical distance between the two curves.
In the beginning they are small; they may become quite substantial,
absolutely as well as relatively speaking, but in the end, when half the
saturation level of consumption has been passed, they diminish and
finally peter out.
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2.46 We may finish this exercise by making an attempt at measur-
ing the rates of saving following from our formulas under various cir-
cumstances. As a consequence of our first boundary condition (2.43.2),
no savings are envisaged whenever i, = ¢. Asa consequence, no develop-
ment will take place either, and consumption and production will remain
on the subsistence level. Initial savings will have to be positive, however,
whenever 3, > ¢; in the beginning they may be small, but they will
increase, and during the full swing of the development process, they will
have to be considerable. This may be shown by calculating the maximum

rate of savings following from the formulas. Writing again

" = ¢-tix\/B (2.46.1)
we have c =7 _‘(imtnz + ¢ (2.46.2)
and Yy = W 4+ ¢ (2.46.3)

from which we derive, for the savings rate o,

O'M]_--E“_-:]. Cm/(1+t”2)+5

7, ~ (¢m/t") arctan ¢’ + ¢ (246.4)

It 1s more elegant now to introduce ¢’/ = arctan ¢/, or " = tan {'’"’;
writing also A for ¢™/¢, we find

_ 1 — (sin 2¢")/2¢8"

5 . T tam 7 (2.46.5)
A tli!
_ . tHl
Since = ¢
Ince Yy = C (A 7 +- 1)

and "’ /tan ¢'" is a decreasing function of t'’/, ¢’ evidently has its highest
value for the initial value y, of ¥ and then decreases.

As can be seen from (2.46.5), the maximum value of o depends only on '
A, at least as long as y, is below the value of ¥ corresponding with that
maximum o. For y, low, In comparison with ¢ + ¢, this always applies.

Computation shows that o... is quite high, as is illustrated by the
following figures:

2.47 o From the values shown it appears that the model used leads to
unrealistically high values for the optimum rate of savings. In fact, the
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formulas have the tendency to recommend austerity in order to reach
the saturation level “‘as soon as possible.” This may be illustrated by
calculating the rate of increase in consumption for the level 14¢™ 4 ¢,
that is, halfway between the subsistence level and the saturation level
and asking ourselves how much time it would take, at this rate of increase,
to reach the saturation level. From formula (2.43.5) it follows that
¢ = ¢ = cn/2 for ¢’ = Y4c¢™, meaning that, at that speed, the distance
from ¢ to ¢c™ + ¢ takes 2« years or 6 to 8 years only. Even though the
actual time will be longer, since the speed at halfway is the maximum, 1t
iHlustrates the order of magnitude involved.

There seem to be two main reasons why actual savings rates are so
much lower. On the one hand, individuals do discount future consump-
tion, although we disregarded this phenomenon. On the other hand,
savings programs near the ones implied in our formulas always mean that
the present generation 1s suffering for the coming generations to an extent
that is not generally considered proper. If, therefore, the element of
‘“more justice In the relations between generations’ were brought into our
utility concept, we would obtain lower savings as the optimum program.
Since no attempts to measure the preference schedules implied are known
to us, we have not tried to generalize our findings along these lines. Our
conclusion with regard to the question whether economic science can
indicate an optimum rate of development tends to be negative therefore.



