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in the autoregressive representation or in a separate state equation. Tests based on the former

are analogous to Dickey-Fuller tests of unit roots, while the latter are analogous to KPSS tests of

trend-stationarity. We use Bayesian methods to survey the properties of the likelihood function in

such models and to calculate posterior odds ratios comparing models with and without stochastic

trends. We extend these ideas to the problem of testing for integration at seasonal frequencies

and show how our techniques can be used to carry out Bayesian variants of either the HEGY or

Canova-Hansen test. Stochastic integration rules, based on Markov Chain Monte Carlo, as well as

deterministic integration rules are used. Strengths and weaknesses of each approach are indicated.
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1 Introduction

State space models have been widely used for the analysis of time series in many �elds in the

physical and social sciences. The literature on state space modelling is extensive. Inuential

references include Harvey (1989), Aoki (1990), Nerlove, Grether and Carvalho (1979) and West

and Harrison (1997). Such time series models can also be used to analyze so-called stochastic

trends in macroeconomic and �nancial data. Stock and Watson (1988) o�er an expository survey

of stochastic trend behavior in economic time series. One of the models they focus on is a type of

state space model.

In this paper, we use state space models and Bayesianmethods to investigate whether stochastic

trends are present in economic time series. In classical econometrics, a large number of tests have

been developed which test for stochastic trends (see the survey by Stock, 1994 or see Dickey and

Fuller, 1979). The vast majority of these tests have the unit root as the null hypothesis. In light

of the low power of unit root tests, Kwiatkowski, Phillips, Schmidt and Shin (1992) developed

a test for trend-stationarity, hereafter the KPSS test (i.e. the null is trend stationarity and the

alternative is the unit root, see also Leybourne and McCabe, 1994, Nyblom and Makelainen, 1983,

Harvey and Streibel, 1996 and Tanaka, 1996 and the references cited therein).

The two types of classical tests can be illustrated in the following models. Dickey-Fuller type

unit root tests use:

yt = �yt�1 + et; (1)

where et is a stationary error term and the null hypothesis is � = 1. A simple version of the KPSS

test for stationarity makes use of a state space representation:

yt = �t + et (2)

�t = �t�1 + ut;

where ut is white noise with variance �2u; et is white noise with variance �2e and ut and es are

independent for all s and t. The null hypothesis is �2u = 0, in which case the series is stationary.

Bayesian analysis of nonstationarity (see, among many others, DeJong and Whiteman, 1991,

Koop, 1992, Phillips, 1991, and Schotman and van Dijk, 1991a,b) has focussed almost exclusively

on generalizations of (1). Hence, one purpose of this paper is to develop Bayesian tests based on
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extensions of (2) which can be used to test for stochastic trends by looking at �2u (as in the KPSS

test) or by looking at the autoregressive coeÆcients (as in the Dicky-Fuller test) or both. The

�rst part of this paper is devoted to analyzing evolving trends models (i.e. investigating roots at

the zero frequency). We begin by focussing on (2) to provide intuition into this class of models.

For empirical relevance, however, it is important to allow for deterministic components and more

general stationary dynamics. These are added as we generalize the model. The proposed model

is very exible and allows for stationary and integrated process which may be I(1) or I(2). Using

Bayesian methods we can, unlike classical approaches, compare several hypotheses on stationarity

and nonstationarity in a single analysis. The second part of the paper focuses on testing for

integration at the seasonal frequency using the extension of (2) referred to as the evolving seasonals

model (Hylleberg and Pagan 1997). In the context of seasonal models one can test for roots by

looking at the autoregressive coeÆcients (see Hylleberg, Engle, Granger and Yoo, 1990| hereafter

HEGY) or at parameters similar to �2u (see Canova and Hansen, 1995). We show how the evolving

seasonals model can be used to nest both these approaches and, hence, Bayesian tests for seasonal

integration analogous to HEGY or Canova-Hansen can be developed.

Related Bayesian literature on models with time varying structure include (amongst others)

West and Harrison (1997) and the references cited therein, Shively and Kohn (1997), Kato, Naniwa

and Ishiguro (1996), Carter and Kohn (1994), Shephard (1994), De Jong and Shephard (1995),

Fruhwirth-Schnatter (1994, 1995), Kim, Shephard and Chib (1998), Min (1992) and Min and

Zellner (1993). West and Harrison (1997) is the standard Bayesian reference on dynamic linear

models with time varying parameters, but these authors do not discuss the issues of prior elicitation

and testing involving �2u. Fruhwirth-Schnatter (1994), Carter and Kohn (1994) and the papers

involving Shephard focus on simulation methods for carrying out Bayesian inference in very general

(e.g. non-Normal) state space models. Kato, Naniwa and Ishiguro (1996) estimate a multivariate

nonstationary system, but do not test for nonstationarity. Shively and Kohn (1997) use Bayesian

state space methods and Gauss-Legendre quadrature to investigate whether regression parameters

are time-varying. Fruhwirth-Schnatter (1995) is a theoretically-oriented paper developing methods

for Bayesian inference and model selection in state space models. Although the focus of these

latter two papers is di�erent from ours, some of the basic issues are similar. In particular, they

are interested in questions analogous to our testing �2u = 0: It is worth noting that Shively and

Kohn use truncated uniform priors for their error variance parameters, while Fruhwirth-Schnatter

uses training sample methods to elicit informative priors for these parameters.
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A further purpose of this paper is to develop computational tools for analyzing state space

models from a Bayesian perspective. We want to emphasize, however, at the outset that as far

as numerical methods for the evaluation of integrals is concerned there is, in our opinion, no

single best approach which is relevant for all applications. Accordingly, this paper illustrates how

di�erent computational methods can be used and outlines the strengths and weaknesses of each.

The e�ectiveness and eÆciency of a computational procedure depends, of course, on the com-

plexity of the model. For instance, one may be able to integrate a posterior analytically with

respect to a subset of the parameters. This happens, in particular, when part of the model is

linear and/or the prior is conjugate. This has the additional advantage of obtaining analytical

insight into part of the model. If the analytical methods can be used to reduce the dimensionality

of the problem suÆciently, deterministic integration4 rules can be used eÆciently for the resulting

low dimensional problem, (see, e.g., Schotman and van Dijk, 1991a). Stochastic integration has

truly revolutionized Bayesian analysis of state space models (see the references cited before, in par-

ticular the works involving Shephard). The best known methods are Markov Chain Monte Carlo

(MCMC) and Metropolis-Hastings (see, e.g., Casella and George, 1992, and Chib and Greenberg,

1995, for clear expositions and Geweke, 1999, for a recent survey).

In this paper we make use of both deterministic and stochastic integration5 methods and

indicate the strengths and weaknesses of each approach. Typically, for the Normal state space

model one can use analytical methods to integrate out all but one or two of the parameters

of interest. The resulting marginal posterior can be handled more eÆciently by deterministic

integration rules than by stochastic integration methods. Furthermore, the use of analytical

methods allows us to derive formulae for the marginal posterior of the parameter of interest and

for the Bayes factor for testing for unit root behavior. With deterministic integration methods, it

proves convenient to calculate this Bayes factor using the Savage Dickey density ratio (SDDR, see

Verdinelli and Wasserman, 1995). As shall be stressed below, this combination of deterministic

integration plus SDDR is perfectly suited for handling the relatively simple evolving trends model

with any sort of prior.

The great advantage of Markov Chain Monte Carlo (MCMC) methods is that they are very

general and can be used for all the models in this paper and the many extensions discussed in

the conclusion to this paper. With MCMC methods, Chib (1995) provides an excellent method

4These are frequently called "numerical" integration techniques. However, we �nd this terminology misleading

and prefer the more precise term "deterministic".
5In order to minimize possible confusion to the reader, note that we use the word "integration" in two ways in

this paper. Whether it refers to calculating an integral or unit root behavior should be clear from the context.
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for calculating the marginal likelihoods which are used to construct the Bayes factor. We shall

refer to this as the "Chib method". As shall be stressed below, this combination of MCMC

plus Chib method is perfectly suited for handling high-dimensional state space models. However,

this approach may be somewhat complicated and computationally ineÆcient when we move away

from a restricted class of priors.6 Furthermore, the routine use of MCMC methods without fully

understanding the analytical properties of the posterior can be misleading in some cases (e.g.

the posterior or its moments may not exist, yet MCMC methods may incorrectly yield posterior

results, see Fernandez, Osiewalski and Steel, 1997).7

The outline of this paper is as follows. In section 2 we start with the local level model as a

canonical case. As a next step, we add autoregressive dynamics to the model. This gives a exible

structure so that we can analyze four hypotheses of interest: stationarity, nonstationarity through

the state equation, nonstationarity through the autoregressive part, and nonstationarity through

both parts (i.e. I(2) behavior). We note that nonstationarity of the state equation is an indication

of a strong moving average component in the series. We present results using both deterministic

and MCMC methods.We also investigate the sensitivity of the posterior results with respect to

the parameterization and to the choice of the prior. In section 3 we introduce the evolving trend

model and investigate the presence of stochastic trends in the extended Nelson Plosser data sets

(see Schotman and Van Dijk, 1991b). In section 4, our modeling approach is extended to analyze

the case of unit roots at seasonal frequencies. Some illustrative results are presented using several

seasonal series from the United Kingdom. In section 5, we summarize our conclusions and discuss

extensions for further work. The appendices contain some analytical results, a description of our

MCMC methods, and a discussion of the choice of the parameterization.

2 Canonical Times Series Models

2.1 The Local Level Model

We begin with the simplest state space model given in (2) with the further assumptions that the

errors, ut and et are Normally distributed and that �0 = 0. This model is referred to by Harvey

(1989) as the local level model. There exist several di�erent ways of interpreting this model.

6Of course, we are not saying that the MCMC plus Chib method cannot be used in every case. However, with

non-standard priors a Metropolis-Hastings step may have to be added (see the evolving seasonals model in this

paper). With truncated priors (such as we have in our evolving trend model), additional prior simulation may be

required. Furthermore, when we have many di�erent hypotheses to compare, the Chib method requires simulation

from each model to be done. These issues are discussed in Appendix B.
7Since the state space models used in this paper have moving average representations, a third computational

approach would be to use the algorithm in Chib and Greenberg (1994) combined with either the Chib method or

the SDDR for Bayes factor calculation. We do not consider such an approach in this paper.
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First, it can be interpreted as saying that the observed series is decomposed into a local level

plus error where the local level contains a unit root. Secondly, it can be interpreted as a time-

varying parameter model (i.e. �t is the mean which varies over time). Thirdly, by substituting

the state equation into the measurement equation, the observed series can be seen to have an

ARIMA(0,1,1) representation. Fourthly, by successively substituting the state equation into the

measurement equation we obtain:

yt = et +

tX
i=1

ui: (3)

The dependent variable yt is, thus, the sum of a random walk and a white noise component with

a weight for each component which depends on the ratio � =
�2
u

�2
e

. This ratio is commonly used by

state space modellers (e.g., Harvey, 1989).

It may be convenient to map the parameter � from the interval [0,1) to the interval [0,1)

through the transformation � = �
1+�

=
�2
u

�2
u
+�2

e

. This parameterization also has a simple inter-

pretation: � is the share of the variance of y1 accounted for by the random walk component.

Alternatively, � is the share of the variance of yt conditional on yt�1 accounted for by the random

walk component. Thus, there are three common parameterizations for the local level model: i)

in terms of �2e and �2u, ii) in terms of �2e and �, and iii) in terms of �2e and �. The choice of

parameterization is crucial in Bayesian analysis since it is much easier to elicit priors on parame-

ters which have an intuitive interpretation. In the present paper, we focus largely on �, but the

basic methods of the paper can be used for any parameterization. The consequences of our prior

speci�cation on � and �2e for the other parameterizations are discussed in Appendix C.

It is well-known that proper, informative priors are required when calculating the Bayes factor

in favor of a point hypothesis (e.g. � = 0) against an unrestricted alternative. Noninformative

priors de�ned on an unbounded region typically lead to the case where the point hypothesis is

always supported. This is known as Bartlett's paradox (see Poirier, 1995, page 390). However,

following Je�reys (1961), it is common to use noninformative priors on nuisance parameters ap-

pearing in both hypotheses (e.g. �2e appears in both the unrestricted model and the one with

� = 0 imposed). Kass and Raftery (1995, page 783) provides a discussion of this issue along with

numerous citations. With these considerations in mind, in this paper we pay close attention to

prior elicitation of parameters involved in the tests (e.g. �), but are relatively noninformative on

the other parameters.

Since � lies in the bounded interval [0; 1), a plausible prior is p(�) = 1; which is proper. In a
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prior sensitivity analysis, we consider a more general prior for �. In particular, we use a Beta prior

which contains the uniform as a special case. The formulae derived below assume the uniform

prior, but can be extended in the obvious way to include the Beta prior. In the Normal linear

regression model, a Gamma prior for the error precision, he = ��2

e is natural conjugate. We

maintain this common choice and assume, a priori, that he is independent of �: Formally, we

assume the following prior:

p(he; �) = fG(�e; s
�2

e )

for 0 � � < 1 and 0 < he <1, where fG(a; b) indicates the Gamma distribution with mean b and

a degrees of freedom (see Poirier, 1995, page 100). However, he is a nuisance parameter which

we will integrate out shortly, so its prior will have little e�ect on the Bayes factors we calculate

(assuming the prior is reasonably at).8 In practice, we set �e = 10�300 and hence use a prior

that is proper but is extremely close to the usual improper noninformative prior for the precision.

For this choice of �e, the value of s
�2

e is essentially irrelevant and we just set it to 1.

To develop a Bayesian version of the KPSS test, consider the Bayes factor (B01) comparing

H0 : � = 0 to H1 : 0 < � < 1, which can be calculated using the Savage-Dickey density ratio9 (see

Verdinelli and Wasserman 1995). The Bayes factor can be written as:

B01 =
p(� = 0jData)

p(� = 0)
;

where the numerator of the Bayes factor is the marginal posterior of � for the unrestricted model

(or the alternative hypothesis) and the denominator is the marginal prior for � evaluated at the

point of interest � = 0 (or the null hypothesis).

For the case of the local level model with our prior for � and he,:

B01 =
(y0y)�

T

2R
1

0
jV j�

1
2 (y0V �1y)�

T

2 d�
: (4)

8We have also experimented with more informative priors for this parameter and found that they have little e�ect

on Bayes factors. The argument for using noninonformative priors on nuisance parameters is further strengthened

if they are not strongly correlated with the parameter being tested. In many cases, it makes sense to assume that

magnitude of the error in the measurement equation is independent of the relative contributions of the random

walk and stationary components to the overall variance. In such cases, it is reasonable to assume that �2
e
is a priori

independent of either � or � . See Appendix C for further details.
9The Savage-Dickey density ratio is a very general way of calculating Bayes factors for sharp null hypotheses.

It is valid provided two conditions hold: i) 0 < p(� = 0jData) < 1, ii) 0 < p1( ; � = 0) < 1, and iii) p1( j� =

0) = p0( ). In the previous formulae  contains all the parameters in the model other than � and pi(:) is the prior

under Hi. These conditions hold in the present paper. If the third condition is violated, a slightly more complicated
expression can be used (see Verdinelli and Wasserman, 1995).
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For details, including a de�nition of V , see Appendix A. The use of a di�erent prior for � will

cause only minor changes in this formula. In particular, if p(�) is the prior for � then it will appear

inside the integral sign in the denominator. Since one dimensional deterministic integration is a

simple procedure, virtually any form for p(�) can easily be accommodated.

Note that the Bayes factor with the uniform prior on [0,1) reduces to something similar to

a likelihood ratio (with �2e integrated out), except the denominator of the likelihood ratio is an

average over the parameter space under the alternative hypothesis.

To illustrate our test procedure, we simulated two data sets from the local level model. In all

cases, T = 100 and �2e = 1. For the �rst data we set � = 0 and for the second � = 0:5: Using

simple deterministic integration, we calculated the integrating constant for p(�jData) used in the

Bayes factor. The Bayes factors comparing the stationary to the unit root model for the two data

sets are 90:82 and 2:86�10�86, respectively, indicating that they distinguish well between the two

hypotheses. A third data set is simulated from the standard AR(1) unit root model: �yt = "t,

where "t is i:i:N(0; 1). Note that this model can be obtained from the local level by setting �2e = 0

and, hence, � = 1.10 The Bayes factor in favor of stationarity is 9:85� 10�146. This suggests that

if there is an AR unit root in the data generating process, our methods will be good at detecting

nonstationarity.

We note that these results can also be calculated using the MCMC plus Chib method. Details

on how to do this are given in Appendix B. However, in order to achieve the same accuracy as the

deterministic method, MCMC requires considerably more compututational e�ort in this simple

case.

2.2 Adding an AR(1) Component

The Bayes factor above compares a white noise model to one with a random walk plus noise. With

macroeconomic series, we are usually interested in testing whether a series can be characterized

by stationary uctuations around a deterministic trend, or whether it is better characterized by a

stochastic trend. As a step in this direction, and as a way of illustrating the connections between

the Dickey-Fuller and KPSS tests, consider:

10Note that when � = 1, the matrix V becomes in�nite. Hence, formally speaking, the pure random walk model
is not nested in the local level model, although the latter can come arbitrarily close to the former. This is why we

restrict � to lie in the interval [0; 1). When doing deterministic integration we use a grid over the interval [0; 0:9999].
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yt = �t + �yt�1 + et (5)

�t = �t�1 + ut;

where the assumptions about the errors are as in the previous section. If � > 0 and j�j < 1, then

yt has a random walk component plus a stationary component. If � = 0, then we get the AR(1)

model: yt = �yt�1 + et:

In (5), a unit root is present if either � > 0 or � = 1. Our speci�cation is very exible and

allows us to consider four hypotheses:

H1 : � = 0 and j�j < 1: The series is stationary.

H2 : 0 < � < 1 and j�j < 1: The series is I(1) plus a stationary component.

H3 : � = 0 and j�j = 1: The series is I(1) and a random walk.

H4 : 0 < � < 1 and j�j = 1: The series is I(2).

We use the same prior on � and �2e as before and add the assumption that p(�) is uniform over

the interval [�1; 1] and � is a priori independent of the other parameters. If we condition on the

initial observation, set presample values of ut to zero, multiply likelihood function by prior and

integrate out �2e analytically, we obtain:

p(�; �jData) / jV j�
1
2 [(y � �y�1)

0V �1(y � �y�1)]
�
T

2 ; (6)

where y = (y2; :::; yT )
0 and y�1 = (y1; :::; yT�1)

0:

We label B�, B� and B�� as the Bayes factors for testing � = 0, j�j = 1 and (� = 0; j�j = 1),

respectively. The Savage-Dickey density ratio can be used to calculate any of these Bayes factors.

In particular, any such Bayes factor will involve only the two-dimensional unrestricted posterior

in (6) and the prior for � and �. Although the setup here is more general than the simple Dickey-

Fuller or Schotman and van Dijk (1991a,b) setup, the similarities between B� and these tests

are apparent. The similarity between B� and the KPSS test is also apparent. However, our

setup allows for more general comparisons. In fact, the posterior probability of any of the four

hypotheses listed above can be calculated using B�, B� and B��.

To investigate posterior properties and the performance of Bayesian model comparison proce-

dures, we simulate data assuming T = 100 and �2e = 1. Table 1 presents posterior probabilities

for the four hypothesis listed above for di�erent values of � and �.

Table 1: Posterior Model Probabilities for Simulated Data Sets
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p(H1jData) p(H2jData) p(H3jData) p(H4jData)

� = 0; � = 0 0:975 0:025 0:000 0:000

� = :5; � = 0 0:000 0:998 0:002 0:000

� = 0; � = 1 0:154 0:040 0:798 0:009

� = :5; � = 1 0:000 0:010 0:000 0:990

� = :5; � = :5 0:008 0:199 0:772 0:020

� = 0; � = :5 0:987 0:013 0:000 0:000

Given that our simulated data sets exhibit a wide variety of behavior: from white noise,

through stationary but persistent, to I(1), to I(2) series, it can be seen from Table 1 that the

Bayes factors, as reected in the posterior model probabilities, do detect the appropriate degree

of integration with high probability. In general, they also seem to detect whether nonstationarity

is entering through an AR unit root or through a non-degenerate random walk state equation.

The only exception is the case � = :5; � = :5 where more weight is put on the AR unit root than

we would expect. This result may be explained as follows. When we compare (5) with a general

ARIMA speci�cation, it can easily be shown that, in the case of � = :5; � = :5, the implied ARIMA

nearly has a common factor. It is well-known that the posterior (with a relatively noninformative

prior) is ill-behaved in such a case. We have used this pathological case to show the exibility

of model selection in a Bayesian setup. Of course, in practice, an applied time series researcher

may use prior information to surmount such diÆculties. For instance, a tight prior on � (e.g.

� � N(0; 0:10)) would force all the persistence in the series into the state equation, leaving the

AR component to pick up only the temporary component.

One may question the robustness of the results in Table 1 to the choice of prior. In this respect,

we make the following comments. In Bayesian analysis, a desirable strategy is to specify the model

so that its parameters can be easily interpreted. The researcher can then elicit informative priors

about them in a straightforward way. In time series models, the parameters rarely have a structural

interpretation and, hence, it is often diÆcult to follow this strategy. So far, we have responded to

this problem by working with a parameterization which is rather natural. Furthermore, we have

made a particular choice for the prior on this parameter. We acknowledge, however, that some of

our readership might prefer other parameterizations (e.g. in terms of moving average coeÆcients)

and other priors. Since the purpose of the present paper is to develop Bayesian methods for testing

for integration, we note that other readers can use di�erent parameterizations and priors with only

minor alterations to the techniques introduced here (see Appendix C). Furthermore, we perform

a prior sensitivity analysis on � to test the robustness of the results reported.

Since � is bounded in the unit interval, a sensible class of prior distribution is the Beta, which

can take on a myriad of di�erent shapes (see Poirier, 1995, pp. 104-105). In the table below, we
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assume � �fB(�0; �1) for di�erent choices of �0 and �1. For the rest of the parameters we retain

the priors used in the body of the paper. To aid in interpretation note that the mean and variance

of the Beta are �0
�0+�1

and �0�1
(�0+�1+1)(�0+�1)2

, respectively: The distribution is symmetric around

� = 1

2
if �0 = �1, positively skewed if �0 < �1 and negatively skewed otherwise. Special cases worth

noting are: i) The uniform which implies �0 = �1 = 1, ii) If �0 and �1 are both greater than one

then the distribution has an interior mode and becomes roughly bell-shaped as �0 and �1 increase,

and iii) If �0 and �1 are both less than one then the distribution is U-shaped. Using these facts,

it can be seen that the prior sensitivity analysis below covers an enormous range of priors.11

For brevity, we present only the Bayes factor in favor of the hypothesis that � = 0. Table 2

reports results from a new arti�cial data set from (3) with T=100, � = 1

3
; �2e = 1 and � = 0.

Table 2: Bayes Factors in Favor of � = 0 for Arti�cial Data Set
�0 = :1 �0 =

1

2
�0 = 1 �0 = 2 �0 = 10

�1 = :1 3:5� 10�4 2:0� 10�6 3:0� 10�9 5:7� 10�15 2:6� 10�62

�1 =
1

2
4:5� 10�4 2:7� 10�6 4:4� 10�9 9:5� 10�15 1:2� 10�61

�1 = 1 5:8� 10�4 3:6� 10�6 6:1� 10�9 1:5� 10�14 4:2� 10�61

�1 = 2 8:9� 10�4 5:8� 10�6 1:0� 10�8 2:8� 10�14 2:4� 10�60

�1 = 10 8:4� 10�3 6:6� 10�5 1:5� 10�7 6:9� 10�13 3:5� 10�57

We note that the table provides clear evidence in favour of the unit root hypothesis, despite

the fact that we have considered an enormously wide range of priors. It can be seen that most

evidence for a unit root is found when the prior has an interior mode and allocates less weight to

the region near zero (see the right hand side of the table). Priors that allocate substantial weight

near � = 0 yield less evidence for the unit root (see the left hand side of the table). In summary,

for a clear cut case like the present one (i.e. � = 1

3
) the Bayes factor can vary a lot, but in all cases

strong evidence of a unit root appears. This prior sensitivity analysis will be continued below and

in the following section.

The previous tables were calculated using deterministic integration methods plus the SDDR.

It is useful to also consider the MCMC plus Chib method. This depends on the precise parame-

terization and priors used. Appendix B develops this method for the case where either the � or �

parameterization is used and the prior for �; ��2

e is either noninformative or Normal-Gamma. In

order to continue our investigation of the sensitivity of results to di�erent priors and parameteri-

zations, we use the methods of Appendix B along with the arti�cial data set used to make Table

2. We work with the � parameterization and try di�erent priors for � in the inverted-Gamma

11The Beta distribution is de�ned on the interval (0,1) and not our desired interval of [0,1). So formally speaking,

what we are using in this paper is not the Beta distribution but the Beta distribution plus the assumption that the
density evaluated at the point zero is some �nite constant. Since zero is a point of measure zero it can easily be

veri�ed that the precise choice of constant does not matter.
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class. For � we use a Normal prior with mean 0 and standard deviation 1. Note that the inverted-

Gamma distribution can be parameterized in terms of a degrees of freedom parameter, �� and

the mean, ��. We set �� = 2 and �� = 0:005; 0:01; 0:1 or 1:0: In other words, we are expressing

a wide range of prior means reecting a range of beliefs from �u being very small relative to

�e through a case where they are roughly equal. The Bayes factors for testing � = 0 for these

four priors are 5:8 � 10�8; 3:2 � 10�8; 1:4� 10�9 and 2:7� 10�9, respectively. These results are

similar to those given in Table 2, indicating that the MCMC plus Chib method is giving reliable

results.12 As before, the sensitivity analysis indicates that priors which place more weight near

the trend-stationary hypothesis (here � = 0) give it more support. The degree of prior sensitivity

in the �-paramterization appears less than was found in Table 2. This is due to the fact that all

of the inverted-Gamma priors set �� = 2, a relatively noninformative value. However, some of the

priors in Table 2 are very informative and di�er enormously from one another. Hence, the greater

prior sensitivity found in Table 2 is not surprising.

3 Testing For Integration in the Evolving Trend Model

Economic time series typically have more dynamic and deterministic terms than (5) allows for.

These considerations suggest that the following speci�cation is more appropriate for empirical

research:

�(L)yt = �t + et (7)

�t = �+ �t�1 + ut

where �(L) is a polynomial in the lag operator of order p and the assumptions about the errors

are the same as for the previous models, but here we no longer assume �0 = 0. It is worthwhile

to motivate briey this particular extension as opposed to one which puts the deterministic com-

ponent directly in the measurement equation or puts the AR component in the state equation. If

we assume that �(L) satis�es the stationarity conditions and di�erence yt; we can write:

�(L)�yt = �+ ut +�et: (8)

12However, at least for this simple model, MCMC methods are much more computationally demanding than

deterministic ones. Furthermore, the calculation of posterior probabilities of all four hypotheses would have required

MCMC simulation from four di�erent models. Note that the use of the SDDR requires only that the researcher

work with the unrestricted model.
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That is, if � > 0 the model becomes an ARIMA(p,1,1) plus drift. If � = 0, then the model can

be written in terms of stationary uctuations around a deterministic trend:

�(L)yt = �0 + �t+ et: (9)

Hence, if we test � = 0 we are testing a null of trend-stationarity against an alternative of a

unit root with drift. We feel that these are the sensible hypotheses to be considering in practice.

An alternative way of extending (5) is to add the AR component to the state equation. Then,

under � = 0; the model would reduce to white noise uctuations around a deterministic trend

which is not a reasonable null hypothesis for most macroeconomic data. We note that the present

speci�cation is identical to the one presented in Leybourne and McCabe (1994).13

Since this speci�cation is now suitable for working with macroeconomic time series, in this sec-

tion we investigate the properties of the extended Nelson-Plosser data in an empirical illustration.

Schotman and van Dijk (1991b) use this data set to carry out Bayesian tests for a unit root in

an AR process (allowing for deterministic time trend). The reader is referred to this paper for a

description of the data. In an attempt to make our results comparable to Schotman and van Dijk

(1991b), we set p = 3 for all series except the unemployment rate for which we set p = 4. Table

3 presents posterior model probabilities for these series, the last column of this table presents the

probability of a unit root calculated by Schotman and van Dijk.14

13Another interesting speci�cation is used in Harvey and Streibel (1996) which forces � to zero as � approaches

1.
14The last column of Table 2 is taken from Hoek (1997), who made some corrections to Schotman and van Dijk's

original calculations.
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Table 3: Posterior Model Probabilities for Nelson-Plosser Data

p(H1jData) p(H2jData) p(H3jData) p(H4jData)
S:v:D:

p(� = 1)

Real

GNP
0:169 0:819 0:012 0:000 0:300

Nominal

GNP
0:010 0:931 0:055 0:004 0:619

GNP per

capita
0:247 0:740 0:013 0:000 0:290

Industrial

Production
0:293 0:686 0:021 0:000 0:316

Employment 0:002 0:998 0:001 0:000 0:313

Unemployment 0:463 0:533 0:004 0:000 0:217

GNP

Deator
0:011 0:866 0:110 0:014 0:678

Consumer

Prices
0:000 0:996 0:003 0:001 0:697

Nominal

Wages
0:026 0:887 0:078 0:010 0:602

Real

Wages
0:006 0:948 0:042 0:004 0:642

Money 0:036 0:897 0:055 0:012 0:397

Velocity 0:001 0:983 0:015 0:000 0:666

Interest

Rate
0:001 0:973 0:011 0:015 0:641

Stock

Prices
0:021 0:898 0:079 0:001 0:653

The results in Table 3 accord reasonably well with the results of Schotman and van Dijk

(1991b), despite di�erences in speci�cation (and slight di�erences in the prior). In particular,

most evidence for stationarity is found for series like real GNP, GNP per capita, unemployment

and industrial production. Other series provide much stronger evidence of integration. The

present approach, however, �nds more evidence of evolving trends. Given the results reported in

Hoek (1997, p. 91) on the strong presence of MA terms in the Nelson-Plosser data, we conclude

that the implicit MA component added in our state-space approach is an important extension

for macro data. For most series, H2 receives much more probability than H3 indicating that the

data prefer the state space unit root (which implicitly adds a moving average component) to the

autoregressive unit root. To see why this might increase the probability of integration, suppose

that a true data generating process exists and it is ARIMA(3,1,1) and that the MA coeÆcient is

substantial and negative. This series, of course, is I(1) and we would hope a test would indicate

this. The Schotman and van Dijk approach would approximate the ARIMA(3,1,1) by an AR(3)

model. The presence of a negative MA coeÆcient would tend to pull the AR coeÆcients into the

stationary region, reducing the probability of the unit root relative to the present approach which

would correctly model the ARIMA(3,1,1).
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The following table continues our prior sensitivity analysis, using the Beta family of priors for

� for one of the Nelson-Plosser series.

Table 4: Bayes Factors in Favor of � = 0 for Real GNP
�0 = :1 �0 =

1

2
�0 = 1 �0 = 2 �0 = 10

�1 = :1 243:55 15:85 0:02 2:0� 10�8 2:4� 10�56

�1 =
1

2
244:84 52:40 0:08 1:1� 10�7 2:2� 10�55

�1 = 1 246:90 88:40 0:21 3:4� 10�7 1:4� 10�54

�1 = 2 248:00 130:03 0:52 1:2� 10�6 1:6� 10�53

�1 = 10 249:17 206:12 4:68 4:0� 10�5 1:9� 10�49

Table 4 indicates a greater degree of prior sensitivity than Table 2. It is worthwhile to discuss

this result. The uniform prior for � indicates moderate support for the hypothesis that � > 0. If we

use a prior which allocates more weight to the region � > 1

2
or keeps the prior mean greater than

1

3
and tightens the prior variance, the support for the hypothesis that � > 0 is strengthened (i.e. if

we look in the right and upper right hand parts of the table we see strong support for integration).

However, if the prior allocates signi�cant weight near the region � = 0, we �nd support for � = 0.

This lack of robustness is due to the strong correlation between � and �. If the prior for � places

a great deal of weight near � = 0, then the marginal posterior for � also gets pulled towards zero

and � becomes larger. Since the posterior for � is located near zero, the hypothesis that � = 0

gains support. However, if the prior for � is more spread out, then the opposite happens. Loosely

speaking, in our model there are two ways that integrated behavior can enter. For real GNP, the

data are happy with either of them and the prior can determine whether persistence enters through

� or through �. Our conclusion is that this macroeconomic time series is only weakly informative

about the presence of a stochastic trend. This corresponds with other Bayesian studies in the

literature and appears to be much more sensible than the mechanical classical failure to reject

the unit root hypothesis for U.S. real GNP. It is worth noting, however, that with other data sets

(either arti�cial or real) that this lack of prior robustness is usually not observed.

4 Testing for Integration in the Evolving Seasonals Model

4.1 Theory

The evolving seasonals model has recently been reintroduced to the econometrics literature in

Hylleberg and Pagan (1997). Originally developed in Hannan, Terrell and Tuckman (1970), this

model is a very exible speci�cation which allows the seasonal pattern to vary over time. A simple

variant of this model is given by:
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yt = �0t cos(�0t) + �1t cos(�1t) + 2�2t cos(�2t) + 2�3t sin(�2t) + et; (10)

where �0 = 0; �1 = � and �2 = �
2
capture behavior at the relevant 0 and seasonal frequencies,

respectively. The � 0its capture the evolution of the trend and seasonal patterns over time. Hylleberg

and Pagan (1997) shows how this speci�cation nests most common seasonal models. Note that

there are other ways of modelling seasonality (see, for instance, Franses, 1996, West and Harrison,

1997, chapter 8 or Harvey, 1889, chapters 2 and 6). The evolving seasonals model is a particularly

exible speci�cation.

In this paper we focus on testing for seasonal unit roots from a Bayesian perspective. It is

worthwhile to briey digress and describe the two chief classical approaches. The most common

of these is outlined in Hylleberg, Engle, Granger and Yoo (1990) | HEGY | and is based on the

fact that an AR(p) speci�cation: �(L)yt = et can be written as

��(L)y4;t = Æ0y1;t�1 + Æ1y2;t�1 + Æ2y3;t�2 + Æ3y3;t�1 + et;

where y1;t = (1+L+L2+L3)yt; y2;t = �(1�L)(1+L)yt; y3;t = �(1�L2)yt and y4;t = (1�L4)yt.

A nonseasonal unit root is present if Æ0 = 0, while if Æ1 = 0 a seasonal unit root at frequency �

is present. Æ2 and Æ3 relate to possible seasonal unit roots at frequency �
2
and HEGY suggests a

joint test of Æ2 = Æ3 = 0. An alternative test is given by Canova and Hansen (1995) and is based

on a speci�cation similar to (10) under the assumption that, for i = 0; 1; 2; 3:

�it = �i;t�1 + uit;

and var(uit) = �2i : If �
2

1
= 0 then a seasonal unit root at frequency � is present while if �2

2
= �2

3
= 0

then a seasonal unit root at frequency �
2
is present. The nonseasonal unit root occurs if �2

0
= 0.

Given the evolving seasonals model, it is apparent that we can derive a speci�cation that nests

both these approaches in the same way that our speci�cation in the previous section nested both

Dickey-Fuller and KPSS tests. As before, it is important to allow for deterministic terms and

hence we work with the following speci�cation:

15



��(L)y4;t = �0t + �1t cos(�t) + 2�2t cos(
�t

2
) + 2�3t sin(

�t

2
) (11)

+Æ0y1;t�1 + Æ1y2;t�1 + Æ2y3;t�2 + Æ3y3;t�1 + et

�it = �i + �i;t�1 + uit;

where the e0ts are i:i:N(0; �2e), the u
0

its are i:i:N(0; �2i ) and all error terms are independent of one

another. As in the previous section, we can test for unit roots either through the AR coeÆcients

or through the error variances in the state equations (e.g. testing Æ0 = 0 or �0 = 0 for the

nonseasonal unit root). If the state equations are substituted into the measurement equation it

can be seen that the � 0i0s enter as a deterministic seasonal pattern and the inclusion of drift terms

in the state equations (i.e. the �0is) allows for a deterministic trend in the seasonal patterns. In

our empirical work, we rule out the latter and set �1 = �2 = �3 = 0, but leave �0 unrestricted.

Assuming the AR coeÆcients satisfy the stationarity condition, then if �i = 0 for i = 0; 1; 2; 3 the

model is characterized by stationary uctuations around a deterministic seasonal pattern. Hence,

equation (11) is an extremely exible speci�cation which nests most common seasonal models,

and our Bayesian counterpart to the Canova-Hansen test has as its null hypothesis a reasonable

model for macroeconomic time series.

As before, we reparameterize in terms of

�i =
�2i

�2i + �2e
:

This parameterization is less intuitive than we obtained for the evolving trends model. Neverthe-

less, it seems as intuitive as other alternatives. Tests of the various sorts of seasonal integration

reduce to testing for zero restrictions on the �0is.

Note, however, that there are eight parameters of interest (i.e. Æi and �i for i = 0; 1; 2; 3),

so that, even if we analytically integrate out all nuisance parameters, deterministic integration is

extremely diÆcult given current computational power. However, it is possible to set up an MCMC

algorithm to analyze this model (for details, see Appendix B). To calculate Bayes factors, it is

necessary to specify priors for the �0is. To do this, we extend the strategy of the previous section,

assume prior independence between these parameters, and obtain: p(�i) = 1 if 0 � �i < 1:15

For all other parameters, we use traditional, at, noninformative priors. Hence, the Bayes factors

15Note that we are using an improper prior for the Æ0
i
s and, hence, do not calculate Bayes factors for these

parameters. The methodology outlined in this section could be used do this, but proper priors would be needed.

Such priors could either be elicited subjectively or we could use a at prior over the stationary region. The necessary

restriction for imposing the latter is complicated (see Franses, 1996, pp. 64-66). Hence, for reasons of simplicity
and to keep the empirical illustration focussed on the �0

i
s, we do not consider proper priors for the AR parameters.
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calculated here have the same "weighted likelihood ratio" form as in the previous section. Of

course, subjective informative priors can be used if so desired.

4.2 Empirical Illustration

The techniques described above are here illustrated using several U.K. seasonal series: GDP, total

consumption (TOTCON), consumption of nondurables (NONDUR), total investment (TOTINV),

exports (EXPORTS) and imports (IMPORTS). All data are quarterly, logged and run from 1955:1

to 1988:4. These series have been analysed extensively by many authors (see Franses, 1996, chapter

5 for a list of citations). Franses, 1996, Table 5.2 presents results from the HEGY test on these

series (and others), concluding that the nonseasonal unit root seems to be present in all series, and

TOTCON and NONDUR have in addition roots at both seasonal frequencies. Table 5 presents

Bayes factors for testing �i = 0; which we call B�i for i = 0; 1; 2; 3. Small values of B�i indicate

evidence in favor of seasonal integration. The last four rows present posterior means of the Æ0is,

with posterior standard deviations in parentheses.

Table 5: Posterior Information on UK Seasonal Series
GDP TOTCON NONDUR EXPORTS IMPORTS TOTINV

B�o 4:9x10�114 1:5x10�13 3:2x10�41 7:0x10�142 8:4x10�3 2:1x10�35

B�1 0:10 5:8x10�3 6:3x10�4 0:26 5:7x10�2 0:27

B�2 0:14 2:4x10�2 2:7x10�3 0:66 2:8x10�2 3:1x10�2

B�3 0:31 4:8x10�3 7:4x10�4 0:18 0:15 0:29

Æ0
�0:19

(0:07)

�0:11

(0:05)

�0:09

(0:07)

�0:35

(0:07)

�0:20

(0:06)

�0:16

(0:05)

Æ1
�0:51

(0:21)

�0:75

(0:26)

�0:82

(0:34)

�0:27

(0:06)

�0:41

(0:10)

�0:34

(0:18)

Æ2
�0:53

(0:11)

�0:98

(0:23)

�0:77

(0:19)

�0:63

(0:09)

�0:69

(0:10)

�0:62

(0:12)

Æ3
�0:21

(0:12)

�0:34

(0:27)

�0:40

(0:25)

0:08

(0:08)

�0:21

(0:13)

�0:02

(0:14)

A standard Bayesian rule of thumb (see, e.g., Poirier, 1995, page 380) is to say that there is

slight evidence against �i = 0 if 0:10 < B�i < 1:0, strong evidence if 0:01 � B�i � 0:10, and

decisive evidence if B�i < 0:01: Using this rule of thumb, all series provide decisive evidence in

favor of a unit root at the nonseasonal frequency. TOTCON and NONDUR provide decisive

evidence in favor of roots at both seasonal frequencies. These results accord with those provided

by the HEGY test. The Bayes factors for the seasonal unit roots for the other series do not provide

decisive evidence, but nevertheless some evidence for seasonal unit roots is found.

Our speci�cation allows for seasonal and nonseasonal unit roots to enter through either the

AR coeÆcients or the state equation. Although we do not calculate Bayes factors for the former,

the posterior moments for the Æ0is indicate that the data chooses to put unit roots (if they exist) in
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the state equations. This �nding is analogous to that noted in Section 3, where the Nelson-Plosser

data tended to favor H2 over H3.

It is also worth noting that we test each of the �0is individually. Given the aliasing problem,

one may be interested in doing a joint test of �2 = �3 = 0. This can, of course, be easily done

using our present framework.

5 Conclusion

In this paper, we develop Bayesian tests of stochastic trends in economic time series using state

space representations. We consider both trend and seasonal models, and AR unit roots and unit

roots arising in the state equation(s). Our general framework nests most of the common approaches

to testing for integration in the literature. We construct computational methods involving either

deterministic integration or posterior simulation to calculate the probability associated with each

type of unit root. Empirical evidence using simulated and real data indicate that the approach

advocated in this paper is both simple to use and yields reasonable results. The added exibility

of state space modelling and the allowance for the test of stationarity to be a point hypothesis (in

contrast to the usual setup where the unit root is the point hypothesis) heighten the advantages

of our approach.

The basic ideas in this paper can be extended in a conceptually straightforward manner.

For instance, state space modelling of �nancial time series involving fat-tailed distributions and

stochastic volatility is studied by Kim, Shephard and Chib (1998) and Bos, Mahieu and van

Dijk (1999). Model comparison involving nonlinear models, outliers and models with structural

instability is taken up by Koop and Potter (1999b, 2000). Issues relating to lag length selection

are discussed in Koop and Potter (1999a). In all of these areas, Bayesian state space methods have

a potentially important role to play (see, in particular, Koop and Potter, 1999b). Furthermore,

multivariate models, including those for panel data, can be easily handled. For instance, testing for

common trends (i.e. cointegration) in multivariate systems and unit roots in panels with Bayesian

state space methods is a topic of our present research.

We end this paper with a remark. MCMC algorithms for all of these extensions are available

in the literature (see our list of references). Deterministic integration methods would be diÆcult

to use with these extensions due to the large number of parameters in the model than cannot be

integrated out analytically. Hence, we recommend the MCMC plus Chib method for Bayes factor

calculation as a very general approach for Bayesian analysis.
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Appendix A: Further Analytical Results

For the local level model of Section 2.1, we calculate the Savage-Dickey density ratio by integrating

out the nuisance parameter �2e . We set presample values of ut to zero. Using (3) and de�ning

y = (y1; :::; yT )
0, we obtain:

y � N(0; �2eV );

where V = IT + �
1��

CC 0 and

C =

0
BBBBBBBB@

1 0 : : : : 0

1 1 0 : : : 0

1 1 1 0 : : 0

: : : : : : :

: : : : : : :

: : : : : : :

1 1 1 1 1 1 1

1
CCCCCCCCA
:

C is known as the random walk generating matrix. Multiplying prior by likelihood and integrating

out �2e yields the marginal posterior for � :

p(�jData) / jV j�
1
2 (y0V �1y + �es

2

e)
�
T+�e
2 : (A.1)

Since we are setting �e = 10�300 and s2e = 1; terms involving these hyperparameters are

extremely small (at least for the data sets used in this paper) and can be ignored in equation (A.1).

In our empirical work, they are included (although they are numerically irrelevant). However, to

make our expressions for posterior and Bayes factors easy to interpret and compare to classical

likelihood ratio statistics, we omit them in the formulae in Section 2, which should be considered

as providing (extremely good) approximations to the true posteriors and Bayes factors.

The integrating constant of posterior (A.1) is, to our knowledge, not known in terms of ele-

mentary functions (such as the Gamma function). However, one-dimensional integration suÆces

to calculate it and the Bayes factor in (4).

For the local level model with AR(1) component, one starts from (5) and the prior discussed

in Section 2.2. Proceeding in a similar way as for the simple local level model, one obtains the

marginal posterior of (�; �) given in (6). Note that, if we had assumed an untruncated uniform

prior for �, we could also have integrated out � analytically, using the properties of the Student-t
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density. Details are omitted here. If we were to integrate out �, we could derive an expression for

the Bayes factor analogous to that given in Section 2.1:

B01 =
(y0

�1
y�1)

�
1
2 (y0My)�

T�1

2R
1

0
jV j�

1
2 (y0

�1
V �1y�1)

�
1
2 (s2)�

T�1

2 d�
;

where M = I � y0
�1
(y0

�1
y�1)

�1y�1 and s2 = (y � b�y�1)
0V �1(y � b�y�1). Furthermore, b� =

(y0
�1
V �1y�1)

�1y0
�1
V �1y:

For the case of the evolving trend model given in Section 3, it is convenient to rewrite the

measurement equation in (7) as:

yt = �t + �yt�1 +

p�1X
i=1

�i�yt�i + et:

With this speci�cation, we can focus on the bivariate posterior for � and � in order to make

inferences about the presence of stochastic trends.

By repeatedly substituting the state equation into the measurement equation in (7) we can

write:

yt = xt� + vt;

where xt = (yt�1; 1; t;�yt�1; :::;�yt�p+1); � = (�; 0)0;  = (�0; �; �1; :::; �p�1)
0; k = p+ 2 and

vt = et +

tX
i=1

ui:

De�ning y = (y1; :::; yT )0 , X = (x0
1
; :::; x0T )

0 and treating p initial values of yt as �xed
16 we obtain:

y � N(X�; �2eV ):

Using the same prior as in previous cases plus untruncated uniform priors for the new pa-

rameters added, and integrating out �2e , we obtain an expression for the joint posterior of � and

�:

16Note that, when we condition on p initial values, we are implicitly rede�ning T so that it is now equal to the

old T � p. That is, we are treating our observed data as running from period 1� p through T instead of as running

from 1 through T as before. We maintain this convention throughout the remainder of this Appendix.
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p1(�; �jData) / jV j�
1
2 [(y �X�)0V �1(y �X�)]�

T

2 ; (A.2)

which is similar to (6).

To get the bivariate posterior for � and �, we can integrate out  using the presence of a

Student-t kernel in (A.2), yielding:

p1(�; �jData) / jV j�
1
2 jX�0V �1X�

j
�

1
2 s2

�

�

2
; (A.3)

where � = T � k + 1, X� has t0th row given by x�t = (1; t;�yt�1; :::;�yt�p+1),

s2 =
(y� �X�b)0V �1(y� �X�b)

�
;

y� has t0th element given by y�t = yt � �yt�1 and b = (X�0V �1X�)�1X�0V �1y�: Using two-

dimensional numerical integration we can calculate posterior properties of � and � using equation

(A.3). Bayes factors for the various hypothesis listed in Section 3 can be calculated using the

Savage-Dickey density ratio.

Appendix B: MCMC Methods

In this Appendix, we describe MCMC methods for posterior inference in the evolving trend model

of section 3 and the evolving seasonals model of section 4. The formulae below assume standard

noninformative priors for any regression coeÆcients and ��2

e . However, adding a Normal prior for

the regression coeÆcients and a Gamma prior for ��2

e can be easily done in the standard way or

see de Jong and Shephard, 1995, section 5).

For the evolving trend model, conditional on knowing �2e and �, the Gibbs sampler can be set up

exactly as in de Jong and Shephard (1995).17 In particular, our evolving trend model is exactly in

the form as the model in Section 3 of de Jong and Shephard if we condition on p initial observations.

Using their equations (2) and (4) modi�ed for the inclusion of regression e�ects as in their Section

5, we can sample jointly from all the states and all regression parameters (conditional on �2e and

the �). In our experience, the de Jong-Shephard algorithm is highly eÆcient. Of particular value

is the fact that it reduces the Gibbs sampler to three blocks. For the sake of brevity, we do not

17Fruhwirth-Schnatter (1994, 1995) and Carter and Kohn (1994) provide alternative methods for Gibbs sampling

with state space models.
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repeat the exact form of the algorithm here, but refer the reader to de Jong and Shephard (1995).

Hence, if we can sample from p(��2

e jData; �; �; �) and p(�jData; �; �2e ; �) we can complete our

MCMC algorithm The conditional density of ��2

e is:

p(��2

e jData; �; �; �) = fG(�
�2

e jT;
TPT

i=1 e
2

t

): (B.1)

The conditional posterior for � can be obtained by noting that � is closely related to the

variance of the state equation and ut = ��t. The resulting conditional posterior is:

p(�jData; �2e ; �) /

�
1� �

�

� T

2

exp

�
�
1� �

�
SSE

�
; (B.2)

where

SSE =

TX
i=1

u2i
2�2e

:

This distribution is non-standard and, hence, we do not draw from it directly, but instead add a

Metropolis-Hastings step to our MCMC algorithm, which is described below. Note that the use of

the � parameterization implies a complication to the MCMC algorithm, one reason for prefering

deterministic integration rules for the evolving trend model.

If we had parameterized with � =
�2
u

�2
e

and used a at prior for �, then the resulting conditional

posterior for ��1 would be Gamma and, hence, � is inverted-Gamma:18

p(�jData; �2e ; �) / ��
T

2 exp

�
�
SSE

�

�
: (B.3)

The uniform prior for �; which is truncated to ensure 0 � � < 1, is proper and implies a prior for

� which is proportional to 1

(1+�)2
. This suggests as simple strategy for drawing from � using a

Metropolis-Hastings algorithm (see, for instance, Chib and Greenberg, 1995). Suppose the current

draw of � is called �Old. First take a candidate draw of � from (B.3) using the inverted-Gamma

distribution (call it �New). This draw is accepted with probability:

1

(1+�New)2

1

(1+�Old)2

;

18In the body of the paper, we include some MCMC results using the � parameterization. These are obtained
by combining this formula with a inverted Gamma prior for � in the standard way.
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where probabilities greater than one are rounded down to one. If the candidate draw is not

accepted then the draw for � remains �Old. Draws from � can be converted into draws from �

using the fact that � = �
1+�

:

The MCMC algorithm for the evolving seasonals model is developed along similar lines, except

that � is replaced by �i for i = 0; 1; 2; 3: In particular, the conditional distribution of ��2

e is:

p(��2

e jData; ��; Æ0; Æ1; Æ2; Æ3; �) = fG(�
�2

e jT;
TPT

i=1 e
2

t

): (B.4)

The conditional posteriors for the �0is (for i = 0; 1; 2; 3) are:

p(�ijData; �
2

e ; �) /

�
1� �i

�i

�T

2

exp

�
�
1� �i

�i
SSEi

�
; (B.5)

where

SSEi =

TX
j=1

u2ij

2�2e
:

Since these conditional posteriors are nonstandard, we use a similar Metropolis-Hastings step as

described above. If we had parameterized with �i =
�2
i

�2
e

and used a at prior for �i, then resulting

conditional posterior for �i would be inverted-Gamma:

p(�ijData; �
2

e ; �) / �
�
T

2

i exp

�
�
SSEi

�i

�
: (B.6)

We use the conditionals for �i as candidate generating densities in a Metropolis-Hastings

algorithm. Suppose the current draw of �i is called �Oldi . First take a candidate draw of �i

from (B.6) using the inverted-Gamma distribution (call it �New
i ). This draw is accepted with

probability:

1

(1+�New

i
)2

1

(1+�Old
i

)2

;

where probabilities greater than one are rounded down to one. If the candidate draw is not

accepted then the draw for �i remains �
Old
i . Draws from �i can be converted into draws from �i

using the fact that �i =
�i

1+�i
:
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Output from these posterior simulators can be used to calculate posterior features of interest

as well as the Bayes factor using the Savage-Dickey density ratio (see, for instance, Verdinelli

and Wasserman, 1995, section 2.2)19 or Chib's method. The results in the body of the paper

indicate that Chib's method is a very reliable way of calculating the marginal likelihood. Note,

however, that it requires the user to know the posterior and prior densities and the likelihood

functions precisely. Knowing the kernels of these densities is not enough. With nonstandard priors

(especially if they are truncated), �guring out the integrating constants of densities is diÆcult to

do analytically. Of course, it is usually possible to �gure out these integrating constants using

prior simulation methods, but this adds to the computational and programming burden. Hence,

when we use Chib's method in the body of the paper, we do not impose stationarity on the

autoregressive coeÆcients. Furthermore, the use of Chib's method with the evolving seasonals

model would require simulation from several di�erent models (e.g. the unrestricted model, the

model with a unit root at frequency � imposed, the model with a unit root at frequency �
2
imposed,

etc.). Hence, we used the SDDR for the evolving seasonals model, which requires only posterior

simulation from the unrestricted model.

We take 11,000 replications from our MCMC algorithm and discard the initial 1,000. Ex-

perimentation with di�erent starting values (and the experience of other Bayesian state space

modellers) indicates that our algorithm is well-behaved.

Appendix C: Priors and Parameterizations

In this Appendix, we discuss the issue of prior and parameterization choice for the case of state

space models. We note that these issues are well-known in autoregressive models (e.g. Schotman,

1994). In the local level model, we parameterize the variance of the state equation in terms of the

parameter:

� =
�2u

�2u + �2e
(C.1)

which, as stressed in Section 2.1, has a natural interpretation relating to the variance of yt con-

ditional on yt�1. Formally, we work with (�; he), where he = ��2

e . Proper priors on both these

parameters ensure that the posterior is proper and that meaningful Bayes factors can be calcu-

19Due to the diÆculties of evaluating (B.5) at the point 0 due to division by zero, we evaluate it at a point close

to zero. Formally speaking, this means we are testing the hypothesis that �i = 0:0001 rather than �i = 0. In

practical applications the di�erences between these two hypotheses are negligeable.
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lated.20 We discuss the connection between the prior for (�; he) and priors implied for two other

commonly-used parameterizations, viz. (he; hu) and (he; �) where hu = ��2

u and � =
�2
u

�2
e

.

Here, and in the material below, he is fG(�e; s
�2

e ). For �, we use a at prior over the interval

[0; 1) and the stationary case corresponds to � = 0.

We begin by asking what this prior implies in the other parameterizations. Using the change

of variable theorem, it can be seen that our prior implies:

p(he; hu) /
h
�e

2
e

(he + hu)2
expf�

he�es
2

e

2
g:

Note that our prior implies that he and hu are not independent. If we condition on a value for

he, it can be seen that this prior goes to zero as hu goes to 1 or zero, indicating inverted-U

behavior in hu space. This behavior is, of course, very di�erent from the Je�reys'-type prior21

often considered: p(hu) /
1

hu
:

In the � parameterization, we �nd that our prior implies:

p(he; �) /
h
�e�2

2
e

(1 + �)2
expf�

he�es
2

e

2
g;

which implies prior independence between he and �. The marginal for the latter parameter is

�nite at � = 0 and monotonically decreases to zero. Note that a at prior for � implies a prior for

� which has a Cauchy tail.

It is also interesting to begin in an alternative parameterization, elicit a sensible prior, and

see what prior for � is implied. In the alternative parameterizations, we assume informative

Gamma priors. That is, hu is fG(�u; s
�2

u ) and � is fG(��; s
�2

� ). The limiting cases with �u = 0 or

�� = 0 yield standard Je�reys'-type priors, which are improper and will yield improper posteriors.

These cases are to be avoided, but by setting �e or �� to small but positive values one obtains a

relatively noninformative, but proper, prior. Alternatively, one can work with these limiting case

priors truncated to lie in some large but �nite region.

If we had assumed that the prior for hu was fG(�u; s
�2

u ), we would have obtained the following

prior for (he; �):

20See Fernandez, Osiewalski and Steel (1997), which provides proofs on the existence of the posterior in a wide
class of models, including state space models.

21Note that we refer to this as a "Je�reys'-type prior" rather than a "Je�reys' prior" since, in the local level model,

the latter is quite complicated and is improper. Since we cannot use improper priors for parameters restricted under
the null hypothesis for Bayes factor calculation, we do not investigate the Je�reys' prior in this paper. For some

background relevant for use of this prior see Shephard (1993).
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p(he; �) /
( 1��

�
)
�u�2

2 h
�e+�u�2

2
e

�2
expf�

he�es
2

e

2
g expf�

( 1��
�
)he�us

2

u

2
g;

a complicated prior which does not exhibit independence between its parameters. To better

understand its behavior in "noninformative" cases, note that if we set �e = �u = 0, we obtain:

p(he; �) /
1

he(1� �)�
:

This limiting case is composed of the standard Je�reys'-type prior for he and a U-shaped prior

for � which goes to in�nity at 0 and 1.

If we had begun directly eliciting a prior for � of the form fG(��; s
�2

� ), we would have obtained:

p(he; �) /
( �
1��

)
���2

2 h
�e�2

2
e

(1� �)2
expf�

he�es
2

e

2
g expf�

�
1��

��s
2

�

2
g;

a complicated form with exhibits prior independence between the two parameters. The noninfor-

mative limiting case, �e = �e = 0, implies:

p(he; �) /
1

he�(1� �)
:

This limiting case is identical to that given above. That is, it is composed of the standard Je�reys'

type prior for he and a U-shaped prior for � which goes to in�nity at 0 and 1.

Hence, we have di�erent "noninformative" priors which imply very di�erent prior views about �

(i.e. uniform or U-shaped). This illustrates the great care that must be taken in prior elicitation,

even when the researcher is striving to be noninformative. However, we have found that, for

reasonably large sample sizes (e.g. T > 100) that the choice of prior has little e�ect on posterior

inference. In a more serious empirical exercise, the researcher would likely have prior information

which could be used to guide construction of a suitable informative prior.
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