Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Coffee consumption is not related to the metabolic syndrome at the age of 36 years: the Amsterdam Growth and Health Longitudinal Study

Abstract

Background/Objectives:

Coffee consumption has been postulated to decrease the risk of diabetes mellitus type II. The long-term effects of coffee consumption on the metabolic syndrome (MS) and its components are unknown. This study investigated the relationship of long-term coffee consumption between the age of 27 and 36 years with the prevalence of the MS at the age of 36 years.

Subject/Methods:

Data on coffee consumption and the MS components were derived from a healthy sample of 174 men and 194 women followed up from the age of 27 years onwards. Data analysis was performed with the use of generalized estimating equations and regression analysis.

Results:

At the age of 36 years, the prevalence of the MS was 10.1%. The growth of coffee consumption did not differ significantly between subjects with or without the MS or its components. Regression analyses showed that one cup day−1 higher coffee consumption was related to 0.11 mm Hg lower mean arterial blood pressure (P=0.03), 0.02 mg 100 ml−1 higher triglyceride level (P=0.57), 0.04 mg 100 ml−1 higher high-density lipoprotein cholesterol level (P=0.35), 0.09% higher HbA1c (P=0.12) and 0.02 cm larger waist circumference (P=0.57). After adjustment for physical activity, energy intake, smoking behaviour and alcohol consumption, none of the relationships between coffee consumption and the MS or its components was significant.

Conclusions:

Coffee consumption is not associated with the MS or its components in a healthy sample followed up for 9 years.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  • Agardh EE, Carlsson S, Ahlbom A, Efendic S, Grill V, Hammar N et al. (2004). Coffee consumption, type 2 diabetes and impaired glucose tolerance in Swedish men and women. J Intern Med 255, 645–652.

    Article  CAS  PubMed  Google Scholar 

  • Ainsworth BE, Haskell WL, Leon AS, Jacobs Jr DR, Montoye HJ, Sallis JF et al. (1993). Compendium of physical activities: classification of energy costs of human physical activities. Med Sci Sport Exerc 25, 71–80.

    Article  CAS  Google Scholar 

  • Arnlov J, Vessby B, Riserus U (2004). Coffee consumption and insulin sensitivity. JAMA 291, 1199–1201.

    Article  PubMed  Google Scholar 

  • Astrup A, Andersen T, Christensen NJ, Bülow J, Madsen J, Breum L et al. (1990). Impaired glucose-induced thermogenesis and arterial norepinephrine response persist after weight reduction in obese humans. Am J Clin Nutr 51, 331–337.

    Article  CAS  PubMed  Google Scholar 

  • Astrup A, Breum L, Toubro S, Hein P, Quaade F (1992). The effect and safety of an ephedrine/caffeine compound compared to ephedrine, caffeine and placebo in obese subjects on a energy restricted diet. A double blind trial. Int J Obes Relat Metab Disord 16, 269–277.

    CAS  PubMed  Google Scholar 

  • Bernaards CM, Twisk JW, van Mechelen W, Snel J, Kemper HC (2004). Comparison between self-report and a dipstick method (NicCheck1) to assess nicotine intake. Eur Addict Res 10, 163–167.

    Article  PubMed  Google Scholar 

  • Bidel S, Hu G, Sundvall J, Karpio J, Tuemilehto J (2006). Effects of coffee consumption on glucose tolerance, serum glucose and insulin levels—a cross-sectional analysis. Horm Metab Res 38, 38–43.

    Article  CAS  PubMed  Google Scholar 

  • Bidel S, Silventoinen K, Hu G, Lee DH, Kaprio J, Tuomilehto J (2007). Coffee consumption, serum gamma-glutamyltransferase and risk of type II diabetes. Eur J Clin Nutr, 1–8 [Epub ahead of print].

  • Bucala R, Vlassara H (1995). Advanced glycosylation end products in diabetic renal and vascular disease. Am J Kidney Dis 26, 875–888.

    Article  CAS  PubMed  Google Scholar 

  • Davidson MB, Schriger DL, Peters AL, Lorber B (1999). Relationship between fasting plasma glucose and glycosylated hemoglobin: potential for false-positive diagnoses of type 2 diabetes using new diagnostic criteria. JAMA 281, 1203–1210.

    Article  CAS  PubMed  Google Scholar 

  • de Ferranti SD, Gauvreau K, Ludwig DS, Neufeld EJ, Newburger JW, Rifai N (2004). Prevalence of the metabolic syndrome in American adolescents: findings from the Third National Health and Nutrition Examination Survey. Circulation 110, 2494–2497.

    Article  PubMed  Google Scholar 

  • Dobbelsteyn CJ, Joffres MR, MacLean DR, Flowerdew G (2001). A comparative evaluation of waist circumference, waist-to-hip ratio and body mass index as indicators of cardiovascular risk factors. The Canadian Heart Health Surveys. Int J Obes Relat Metab Disord 25, 652–661.

    Article  CAS  PubMed  Google Scholar 

  • Ferreira I, Henry RM, Twisk JW, van Mechelen W, Kemper HC, Stehouwer CD (2005a). The metabolic syndrome, cardiopulmonary fitness, and subcutaneous trunk fat as independent determinants of arterial stiffness: the Amsterdam Growth and Health Longitudinal Study. Arch Intern Med 165, 875–882.

    Article  PubMed  Google Scholar 

  • Ferreira I, Twisk JW, van MW, Kemper HC, Stehouwer CD (2005b). Development of fatness, fitness, and lifestyle from adolescence to the age of 36 years: determinants of the metabolic syndrome in young adults: the Amsterdam Growth and Health Longitudinal Study. Arch Intern Med 165, 42–48.

    Article  PubMed  Google Scholar 

  • Ford ES (2005). Prevalence of the metabolic syndrome defined by the International Diabetes Federation among adults in the US. Diabetes Care 28, 2745–2749.

    Article  PubMed  Google Scholar 

  • Ford ES, Giles WH, Dietz WH (2002). Prevalence of the metabolic syndrome among US adults: findings from the third National Health and Nutrition Examination Survey. JAMA 287, 356–359.

    Article  PubMed  Google Scholar 

  • Greenberg JA, Axen KV, Schnoll R, Boozer CN (2005). Coffee, tea and diabetes: the role of weight loss and caffeine. Int J Obes (Lond) 29, 1121–1129.

    Article  CAS  Google Scholar 

  • Greenberg JA, Boozer CN, Geliebter A (2006). Coffee, diabetes, and weight control. Am J Clin Nutr 84, 682–693.

    Article  CAS  PubMed  Google Scholar 

  • Grundy SM, Brewer Jr HB., Cleeman JI, Smith Jr SC., Lenfant C (2004). Definition of metabolic syndrome: report of the National Heart, Lung, and Blood Institute/American Heart Association conference on scientific issues related to definition. Arterioscler Thromb Vasc Biol 24, e13–e18.

    CAS  PubMed  Google Scholar 

  • Han TS, van Leer EM, Seidell JC, Lean ME (1995). Waist circumference action levels in the identification of cardiovascular risk factors: prevalence study in a random sample. BMJ 311, 1401–1405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hino A, Adachi H, Enomoto M, Furuki K, Shigetoh Y, Ohtsuka M et al. (2007). Habitual coffee but not green tea consumption is inversely associated with metabolic syndrome: an epidemiological study in a general Japanese population. Diabetes Res Clin Pract 76, 383–389.

    Article  CAS  PubMed  Google Scholar 

  • Hu G, Jousilahti P, Peltonen M, Bidel S, Tuomilehto J (2006). Joint association of coffee consumption and other factors to the risk of type 2 diabetes: a prospective study in Finland. Int J Obes (Lond) 30, 1742–1749.

    Article  CAS  Google Scholar 

  • Isomaa B, Almgren P, Tuomi T, Forsen B, Lahti K, Nissen M et al. (2001). Cardiovascular morbidity and mortality associated with the metabolic syndrome. Diabetes Care 24, 683–689.

    Article  CAS  PubMed  Google Scholar 

  • Jee SH, He J, Appel LJ, Whelton PK, Suh I, Klag MJ (2001). Coffee consumption and serum lipids: a meta-analysis of randomized controlled clinical trials. Am J Epidemiol 153, 353–362.

    Article  CAS  PubMed  Google Scholar 

  • Jee SH, He J, Whelton PK, Suh I, Klag MJ (1999). The effect of chronic coffee drinking on blood pressure: a meta-analysis of controlled clinical trials. Hypertension 33, 647–652.

    Article  CAS  PubMed  Google Scholar 

  • Koppes LL, Twisk JW, Snel J, van Mechelen W, Kemper HC (2000). Blood cholesterol levels of 32-year-old alcohol consumers are better than of nonconsumers. Pharmacol Biochem Behav 66, 163–167.

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Garcia E, van Dam RM, Rajpathak S, Willett WC, Manson JE, Hu FB (2006a). Changes in caffeine intake and long-term weight change in men and women. Am J Clin Nutr 83, 674–680.

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Garcia E, van Dam RM, Willet WC, Rimm EB, Manson JE, Stampfer MJ et al. (2006b). Coffee consumption and coronary heart disease in men and women. A prospective cohort study. Circulation 113, 2045–2053.

    Article  PubMed  Google Scholar 

  • Noordzij M, Uiterwaal CS, Arends LR, Kok FJ, Grobbee DE, Geleijnse JM (2005). Blood pressure response to chronic intake of coffee and caffeine: a meta-analysis of randomized controlled trials. J Hypertens 23, 921–928.

    Article  CAS  PubMed  Google Scholar 

  • Pereira MA, Parker ED, Folsom AR (2006). Coffee consumption and risk of type 2 diabetes mellitus: an 11-year prospective study of 28 812 postmenopausal women. Arch Intern Med 166, 1311–1316.

    Article  PubMed  Google Scholar 

  • Rosengren A, Dotevall A, Wilhelmsen L, Thelle D, Johansson S (2004). Coffee and incidence of diabetes in Swedish women: a prospective 18-year follow-up study. J Intern Med 255, 89–95.

    Article  CAS  PubMed  Google Scholar 

  • Salazar-Martinez E, Willett WC, Ascherio A, Manson JE, Leitzmann MF, Stampfer MJ et al. (2004). Coffee consumption and risk for type 2 diabetes mellitus. Ann.Intern Med 140, 1–8.

    Article  PubMed  Google Scholar 

  • Schaefer B (2004). Coffee consumption and type 2 diabetes mellitus. Ann Intern Med 141, 321–324.

    Article  PubMed  Google Scholar 

  • Spriet LL, MacLean DA, Dyck DJ, Hultman E, Cederblad G, Graham TE (1992). Caffeine ingestion and muscle metabolism during prolonged exercise in humans. Am J Physiol 262, E891–E898.

    Article  CAS  PubMed  Google Scholar 

  • Tuomilehto J, Hu G, Bidel S, Lindstrom J, Jousilahti P (2004). Coffee consumption and risk of type 2 diabetes mellitus among middle-aged Finnish men and women. JAMA 291, 1213–1219.

    Article  CAS  PubMed  Google Scholar 

  • Twisk JWR (2003). Applied Longitudinal Data Analysis for Epidemiology: a Practical Guide. Cambridge University Press: Cambridge, England.

    Google Scholar 

  • van Dam RM, Dekker JM, Nijpels G, Stehouwer CD, Bouter LM, Heine RJ (2004). Coffee consumption and incidence of impaired fasting glucose, impaired glucose tolerance, and type 2 diabetes: the Hoorn Study. Diabetologia 47, 2152–2159.

    Article  CAS  PubMed  Google Scholar 

  • van Dam RM, Feskens EJ (2002). Coffee consumption and risk of type 2 diabetes mellitus. Lancet 360, 1477–1478.

    Article  PubMed  Google Scholar 

  • van Dam RM, Hu FB (2005). Coffee consumption and risk of type 2 diabetes: a systematic review. JAMA 294, 97–104.

    Article  CAS  PubMed  Google Scholar 

  • van Dam RM, Willett WC, Manson JE, Hu FB (2006). Coffee, caffeine, and risk of type 2 diabetes: a prospective cohort study in younger and middle-aged U.S. women. Diabetes Care 29, 398–403.

    Article  PubMed  Google Scholar 

  • van Soeren MH, Graham TE (1998). Effect of caffeine on metabolism, exercise endurance, and catecholamine responses after withdrawal. J Appl Physiol 85, 1493–1501.

    Article  CAS  PubMed  Google Scholar 

  • Wannamethee SG, Shaper AG, Lennon L, Morris RW (2005). Metabolic syndrome vs Framingham Risk Score for prediction of coronary heart disease, stroke, and type 2 diabetes mellitus. Arch Intern Med 165, 2644–2650.

    Article  PubMed  Google Scholar 

  • Wolffenbuttel BH, Girdano D, Founds HW, Bucala R (1996). Long-term assessment of glucose control by haemoglobin-AGE measurement. Lancet 347, 513–515.

    Article  CAS  PubMed  Google Scholar 

  • Wu T, Willett WC, Hankinson SE, Giovannucci E (2005). Caffeinated coffee, decaffeinated coffee, and caffeine in relation to plasma C-peptide levels, a marker of insulin secretion, in U.S. women. Diabetes Care 28, 1390–1396.

    Article  CAS  PubMed  Google Scholar 

  • Zock PL, Katan MB, Merkus MP, van DM, Harryvan JL (1990). Effect of a lipid-rich fraction from boiled coffee on serum cholesterol. Lancet 335, 1235–1237.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J W R Twisk.

Additional information

Guarantors: JWR Twisk and MT Driessen.

Contributors: MTD contributed to the manuscript and data analysis; LLJK contributed to the manuscript, study design, data collection and project planning; LV contributed to the manuscript and data analysis; DS contributed to the manuscript and data collection; JWRT contributed to the manuscript, study design, data analysis and coordinated the project.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Driessen, M., Koppes, L., Veldhuis, L. et al. Coffee consumption is not related to the metabolic syndrome at the age of 36 years: the Amsterdam Growth and Health Longitudinal Study. Eur J Clin Nutr 63, 536–542 (2009). https://doi.org/10.1038/ejcn.2008.6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ejcn.2008.6

Keywords

This article is cited by

Search

Quick links