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************************************************************************ 
Thinking reed ... 
 
346. Pensée fait la grandeur de l'homme. 
347. L'homme n'est qu'un roseau, le plus faible de la nature; mais c'est un roseau pensant. Il ne 
faut pas que l'univers entier s'arme pour l'écraser: une vapeur, une goutte d'eau, suffit pour le 
tuer. Mais, quand l'univers l'écraserait, l'homme serait encore plus noble que ce qui le tue, 
parce qu'il sait qu'il meurt, et l'avantage que l'univers a sur lui; l'univers n'en sait rien. 
Toute notre dignité consiste donc en la pensée. 
 
Pensées. Blaise Pascal (1623-1662).1 
 
 
 
 
 
 
           ... and thinking sand 
 
Silicon; Si, the 14th element in the periodic table of elements. The name silicon derives from the 
Latin silex or silicis, meaning "flint" or "hard stone". 
Silicon is one of the most common of all the elements, occurring in the Earth's crust as sand.... 
A(n)...property resulting from the electronic structure of silicon is that it functions as an intrinsic 
semiconductor. 2 
 
The silicon chip controls our daily life. It replaces boring jobs and creates new ones. It is present 
in most of the devices that accompany us, that make our lives pleasant or watch over our safety. 
It is doing a lot of thinking that man used to do himself. 
After the Stone, the Bronze, and the Iron Age, we are now living in the Sand Age. 
 
************************************************************************* 

                                                 
    1 Blaise Pascal. Pensées. Édition nouvelle revue sur les manuscrits et les meilleurs textes avec un introduction, des 
notes et un index analytique par Victor Giraud. (Paris 1943) 
 
346. Thinking makes the greatness of man. 
347. Man is only a reed, the most fragile in nature; but it is a thinking reed. It is not necessary that the whole world 
arms itself to crush him: a vapor, a drop of water is sufficient to kill him. But even when the universe would crush 
him, man would still be more noble than that what kills him, because he knows that he dies and what advantage the 
universe has over him; the universe does not know anything about it. 
All our dignity thus consists in our thinking. 

2     From the New Encyclopaedia Brittanica. 15th edition. 

 

 3



 

 

CHAPTER 1 INTRODUCTION  
 

1.1 THE PROBLEM 
 
In a previous paper (Vlaanderen 1990) I have tried to show the problems that are involved in 
knowledge acquisition. The transfer between human knowledge and knowledge bases for 
expert systems seems to be a fundamental and also difficult process in knowledge 
engineering. Feigenbaum (1977) gave his name to this problem: Feigenbaum’s bottleneck. 
 
In the process of knowledge acquisition a knowledge engineer performs the task of extracting 
knowledge from an expert in a certain field. This knowledge is modeled in such forms that it can 
be implemented in a computer program that serves as an expert system. The principal problem in 
this enterprise is that on one side the human knowledge of the expert, and on the other side the 
way the expert system organizes its knowledge do not match. This discrepancy between human 
and machine knowledge can be broken down into several mismatches. These mismatches 
between man and machine are quite obvious, but so far little attention has been paid to this 
subject in the artificial-intelligence (AI) literature. 
 
In this paper the mismatch problem will be examined from various points of view. The 
participants in this problem are: 
- The human beings: the experts and the knowledge engineer. As a simplification, I do not 

distinguish between them and average people. Only in certain cases I shall specify the 
experts. 

- The knowledge. 
- The machine or the computer program. 
Philosophy will provide insight in the "knowledge-part" of the problem. The "human-part" can 
be viewed from theories in cognitive science. The "machine-part" of the mismatch has its basis in 
knowledge representation and AI techniques. I propose to select a few themes from the 
previously mentioned disciplines and see how they can illuminate the man-machine relation. 
 
In chapter 2 knowledge and understanding will be examined. Philosophy has always been the 
key discipline to solve conceptual questions about knowledge. But is philosophy always relevant 
in this case? Theories of knowledge seem to be insufficient for the answers we need. Probably a 
selection from knowledge theories must be made so that each theory can contribute in its own 
way to the role of knowledge in AI. In the last two sections of this chapter I shall elaborate on 
"understanding" and argue that this is a concept that can be attributed to humans and to 
programs. Although, an analysis will show that different levels of "understanding" distinguish 
man from machine. 
 
Chapter 3 deals with knowledge representation in human beings. For this purpose I have chosen 
mental models. They seem to be workable hypotheses about knowledge, information processing, 
and language. 
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Knowledge representation in expert systems is the subject of chapter 4. Several methods of 
knowledge representation will be reviewed, evolving in present-day methods. I follow the 
debates about them and mention some "best bet" methods. 
 
After dealing with these subjects there will be ample evidence to show how important the 
mismatch problem is in the human - machine relation in general and in the knowledge-
acquisition process in particular. Therefore, in the final chapter 5, I hope to indicate the channels 
that might match human knowledge and artificial-knowledge processing. This might also help 
the knowledge engineer how to widen Feigenbaum's bottleneck.  
 
The remainder of this introductory chapter is spent to the points of view in the debates that are 
going on among AI workers about several basic questions. I shall introduce the mismatch 
problem and what it is all about. 
Finally, a brief overview of the problems in knowledge acquisition is given.   
 

1.2 POINTS OF VIEW 
 
The issue of points of view and choosing sides is in artificial intelligence probably more 
important than in other fields of study. It seems sensible to start this paper with some of these 
views on several basic AI topics. This can be used as reference for further positioning. Yet, we 
should bear in mind that present-day AI research has moved away from questions about 
intelligence as reviewed in this section. Research is now focused on special purpose tools like 
expert systems. The important issues are now the fundamentals of knowledge representation and 
shells for the building of expert systems in a faster and consistent way. Other topics are the 
building of a universal knowledge base, like CYC3, and building systems without representation, 
like neural networks. 
 
 
Rich's definition 
 
One of the more interesting definitions of AI I ever came across is as follows: 
 
"AI is the study of how to make computers do things at which, at the moment, people are better." 
(Rich 1983 p.1) 
 
Although the vagueness of the definition does not leave much room for insight in AI, it gives us a 
little insight in the position of the workers in AI. First it shows the humbleness of incompetence: 
doubting if the whole enterprise of AI is worthwhile. It accommodates the usual laymen reactions 
to AI when they have heard our explanation. But also serious AI critics, like Dreyfus (1979), 
form their basic criticism on the essential difference between what people can do and what 
computers ever will do. 
 
Unfortunately, Dreyfus was beaten by a chess-computer program in 19674. Of course this did not 
count as a success for AI, because Dreyfus could not talk politics, or weather, or anything else 
with the chess-machine. He only could have done that with a human chessplayer. Yet, he could 
                                                 
3 See Lenat and Feigenbaum 1991 
4  See Boden 1977, p 436. 
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have discussed his emotional problems with ELIZA5, but then, ELIZA does not play chess as 
well. So computer systems are inadequate substitutes for human beings, for the time being. 
 
In the world of games, computers can do certain things better than most people. In 1979 a 
backgammon program won from the human backgammon world champion6. But also in other 
fields of expertise remarkable results take place. The program MYCIN7 that can diagnose and 
advice treatment for infectious diseases performs better than the average medical practitioner. 
Other examples are in the area of geology (mining: PROSPECTOR), chemistry (DENDRAL) to 
name a few "old" systems. Today, hundreds of useful systems - called expert systems - are 
commercially available. The state of the art in AI shows that when it comes to specific well 
defined tasks, computer programs can perform faster and more accurate than human beings. 
They may even perform better than people who are trained for a certain task. 
 
So far the counterexamples that weaken Rich's definition. The examples that will support the 
definition remain numerous. There are always tasks that people can do better. This is where the 
second aspect of the definition is clear: workers in AI will always have a challenge to continue 
and improve their efforts. The restriction in the definition "at the moment" refers to the tasks that 
still can be done by people. During the course of time there will be more and more things that 
can be done by computers, and even better than people can do. A relatively young science like AI 
needs some provocations like this to get itself established and recognized. So far, this definition 
serves the purpose of challenging. However, within the discipline of AI, it is necessary to 
describe the goals and limits of the field more precisely. First of all it should be understood that 
AI is a name for a complex science with different subfields. Robotics, theorem proving, playing 
games, perception, machine translation, speech recognition etc., all need different approaches and 
lead to different results. Some techniques are the same, some are different, but all under the roof 
of the AI house. 
 
 
"Artificial" and "intelligence" 
 
The term AI has the disadvantage of being anthropomorphic. When stressing "intelligence" AI 
gives the suggestion that we are dealing with a simulation of human intelligence. Even that we 
are trying to make duplicates of human brains. I would not recommend to sustain such a point of 
view. Human intelligence has the connotation of being a very complex instrument. A human 
being shows his intelligent behavior in his interaction with other (human) beings and the rest of 
the world. Simultaneously or successively he8 can solve problems, participate in a discussion of 
whatever kind, watch a bird flying over and recognize its species; he can hear sounds and draw 
conclusions about the origin and meaning of the sounds. He can summarize these events, fill in 
the gaps of information and use it all for a relevant purpose in the future. To this complex and 
                                                 
5 ELIZA is a very simple, straightforward, program that simulates a sort of Carl Rogers' psychotherapy. See 
Weizenbaum 1966. 

 6 In July 1979 the program BKG 9.8 defeated the world champion backgammon Luigi Villa in Monte Carlo. The 
score was  7-1. This was the first time that a board or card-game program won from a world champion (see Berliner 
1980). 
 

 7  See Shortliffe 1976 

 8 "He", "his", and "him" can also be read as "she" and "her". 
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well adapted behavior an artificial counterpart would be superfluous. If we stress both "artificial" 
and "intelligence", only those systems would remain that serve as tools that improve the 
functioning of this behavior in certain details for certain purposes. In this view AI should be 
regarded as a one (or few) purpose tool, but not as a general replacement. This position makes 
way to ignore questions like "can computers think" and "do computers have knowledge" as so 
many books on AI and philosophy find necessary to ask. Moreover, this seems to me a merely 
linguistic problem. 
 
The scepticism about AI has more to do with what you expect from it. If one sees AI in terms of 
machines that can compete with human beings there is enough reason to be sceptic. But if one 
sees AI as a technique that can do certain jobs better than we do, like vacuum cleaners clean 
much more thoroughly than sweeps and welder robots in car manufacturing are more accurate 
than human welders, that seems to be a great advantage already. If you speak of AI only in terms 
of techniques or systems that are used for one or more special purposes and can do certain things 
in an intelligent way, scepticism is overtaken by the facts. But if we go into questions like "can 
computers think" and the like we have to be very careful (see the Chinese room in chapter 2). 
 
 
The imitation fallacy 
 
Another controversy needs mentioning. A number of AI scientists (e.g., Newell and Simon 1963) 
think that if we have built a computer program that is able to simulate certain intelligent human 
behavior, we can also make conclusions about the working of the real human brain. It is like the 
development of submarines that can teach us how fishes swim! There is also another angle to 
this. Newell writes "AI is the study of the mechanisms of intelligence and all supporting 
technologies......AI is itself part of computer science, which is the study of information and its 
processing in all its variety." But he also claims that "AI provides the theoretical infrastructure 
for the study of human cognition." These positions ties AI and human intelligence together 
without questions asked, and without arguments to prove. When AI is defined in such manner it 
leaves no room to discriminate between human and artificial intelligence. To me this is obviously 
not the case. 
 
Boden (1989) distinguishes clearly: The computers used for mental modeling are digital, serial, 
general-purposes devices, but the brain is an analogue, parallel-processing, special purpose 
machine. So, how is it possible to sustain Newell's second claim? Perhaps it is still possible to 
sustain a modest view such as Miller's (1981) who says that AI will prove to be an incomplete 
theory of cognition, a theory of certain lower level processing operations that require conscious 
attention only when they fail. 
 
But, the idea that we can learn from AI processes to get a better understanding of psycho-
physiological processes is not only a non-purpose of AI but also a very doubtful hypothesis. I 
will elaborate on this topic in chapter 2. 
 
 
Weizenbaum (1976) assumes three types of AI modes: 

1. Performance mode: reaching the goal, no matter how. 
2. Simulation mode: reaching the goal like human intelligence. 
3. Theory mode: reaching the goal by elaboration of a theoretical concept. 
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The performance mode might work, but then it is doubtful if we can talk about Artificial 
"Intelligence". A chess program that computes all possible modes before it comes up with an 
answer (suppose it is feasible in limited time and space) cannot be called intelligent, although the 
results might seem intelligent. It will be different if the program can deduct a strategy from an 
initial brute force method and use it for the next games. 
 
The simulation mode can be discarded for the reasons mentioned above. Remains the theory 
mode. Construct a theory about intelligent behavior and see if it works. May be we should say: 
"...and see if it stands through the Turing test."9 Although, with the Turing test the risk of 
simulation is again present. The theories might vary and do not resemble theories about human 
intelligence. I want to call this the imitation fallacy. This is the case in all the simulation of 
human intelligence efforts. Numerous tools that ease human actions have no resemblance at all 
with those actions. And do we call a hammer an artificial fist? Do we call wheels artificial legs? I 
want to stress that with complete different principles and the theories that accompany them, 
artifacts can reach the same or better results. 
 
 
Interaction between man and system 
 
Thus, AI theories should be theories about how to solve problems, make decisions and other 
things that usually need human intelligence, in an efficient way with an acceptable result. So far 
this will be a "no matter how" approach. However, I want to plea for an additional condition. 
During the development of AI systems or expert systems and during the consultation of the 
finished system there is a lot of interaction between man and system. It is this interaction that will 
be an essential part of the whole AI enterprise. Therefore it is also essential that human-
information processing is compatible with the machine and the other way around. AI theories 
should incorporate human-information processing together with other methods. In this paper I 
want to stress this problem in various ways. 
 
 
Controversies 
 
A basic controversy in AI points of view can be found in Dennett (1986). He points out the 
contrast between what he calls the High Church Computationalism (HCC) kind of working in AI 
and cognitive science (CS), mainly located at MIT; and the Zen Holism approach, employed by 
AI workers West of MIT. Although the geographic boundary is not that straight, the best 
exponents of the Zen Holism, Winograd, Dreyfus, and Sellars, are working in the West at 
Berkeley and Stanford. The HCC point of view is that thinking is information processing, which 
is computation, which is symbol manipulation, which is strictly formal (e.g., Fodor, Pylyshyn). 
The Zen Holists show a sceptic attitude towards the possibility of AI to start with; and when they 
do go beyond that attitude, they see AI programs much more extended than only logic programs. 
They feel that other things are involved in order to make sound AI programs. 
 
Another way to stress different attitudes towards AI are the Scruffies and the Neats (in Sowa 
1984). Sowa uses Bundy's categorization of scruffies and neats: 
 

                                                 
    9 Because the Turing test originated in 1950, it needs reconsidering. See the discussion in SIGART Bulletin 3 
(1992) nr 4. 

 8



"The neat view of AI assumes that a few elegant principles underlie all the manifestations of 
human intelligence. Discovery of those principles would provide the magic key to the workings of 
the mind. The scruffy view is that intelligence is a kludge10: people have so many ad hoc 
approaches to so many different activities that no universal principle can be found." (p. 23) 
 
and: 
 
"The scruffies dismiss symbolic logic as psychologically unrealistic and linguistically worthless. 
For them, the important topic is common-sense reasoning, and formal systems are misguided or 
at least irrelevant. The neats, on the other hand, regard the "network hackers" as developing, at 
best, trivial variants of first-order logic and, at worst, confused notations with no denotation. 
Both sides are partly correct. The neats are right in criticizing some of the scruffy programs, but 
they overlook the importance of a smooth mapping to natural language and the heuristic value of 
schemata." (p. 137/8) 
 
I agree with the Zen Holists and the Scruffies, since they sustain my previous arguments that in 
AI much more is involved than formal-symbol manipulating. This is actually the topic of this 
paper. 
 
 
My definition of AI 
 
Returning to Rich's definition of AI. Of course, there will be numbers of jobs that can be done 
better by human beings, but for the many jobs that can be done by computers I would like to give 
my definition of AI: 
 
AI is the theory of making computer programs that perform certain tasks that can be 
regarded as involving a certain kind of ingenuity and which cope and interact with human 
intelligence. 
These programs have their own status and merits and should not be confused with human 
intelligence. 
 
This is not a "nice" definition, according to the rules of how a definition should look like. It 
serves merely as a framework for this paper. 
 
 
(In the coming chapters I will use terms that elsewhere sometimes are used in different ways. 
"Programs" are software programs that can run on a computer. "Machines" are software 
programs and hardware, like digital or parallel computers. "Robots" are machines and devices 
that can interact within their environment, can move, perceive, etc.) 

                                                 
    10 "Kludge" is a term used in engineering and computer science to describe something that, from a pure (i.e., a-
historical), design-oriented viewpoint, looks messy and inefficient. But it gets the job done. And it may even count 
as an elegant solution once all the constraints (e.g., the available skills and resources) are taken into account. (In 
Clark 1989 p. 69) 
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1.3  THE MISMATCH PROBLEM                        
 
The methods of knowledge acquisition and the building of expert systems are often presented to 
be straightforward and easy to apply. But as stated in the next section, in fact many problems rise 
while working with knowledge acquisition. Often we read about knowledge acquisition as the 
bottleneck of expert system building. 
 
What is that bottleneck called knowledge acquisition? The metaphor is well-chosen. We can 
regard human knowledge as a tangled mass of information stored in a not too wide necked bottle. 
The expert system is a container with compartments of various sorts. In the knowledge-
acquisition process the knowledge engineer must try to get hold of the human knowledge and to 
put it in the appropriate modes at the appropriate spaces in the expert system. With this picture in 
mind we can see the problems of the knowledge-acquisition process more clearly.  
 
To substantiate these problems I introduce four hypotheses about mismatches between man and 
machine. 
 
 
The knowledge mismatch 
 
The most fundamental difficulty seems to be the mismatch between human and machine 
knowledge. First of all, a discrepancy exists between the organization of knowledge. Human 
knowledge is stored in a yet unknown way. The most commonly used hypothesis is the idea of 
mental models (see chapter 3). Using knowledge is for a human not a conscious process of 
retrieval and applying of facts and rules, but an unconscious involvement with objects and state 
of affairs (or their descriptions). The analogy between a mental model and the real world state of 
affairs gives the solution of what kind of knowledge should be applied. In this process of 
"applying" knowledge there is no need to verbalize the knowledge. When talking about an expert 
who "knows" about his field, we are talking about something vague. Knowledge is partly shown 
in the behavior of this expert, but the logic or justification behind his actions is not shown. The 
applied rules remain unrevealed too. What we want to have is a sort of materialization of 
knowledge: a representation of knowledge. Only in a representation knowledge is transferable, 
can be understood, can be manipulated, etc. Verbal representation is a good solution. As a matter 
of fact it is the most commonly used kind of representation in human communication. But there 
seems to be an obstruction when it comes to verbalize knowledge in all its details. 
 
 
The representation mismatch 
 
There is not always need for an expert to verbalize all his knowledge to non-experts. In the 
exchange of knowledge between experts (and even between skilled and less-skilled experts) the 
information is partly presupposed. That is the common-sense knowledge about the world but also 
the general knowledge about the specific domain, such as vocabulary, concepts, general rules. 
Even in the situation of knowledge exchange in teaching a great part of knowledge is already 
presupposed. 
 
In the knowledge-acquisition process - when expert knowledge has to be transferred into a 
system that does not contain any knowledge - the domain expert encounters great difficulty when 
he has to verbalize his knowledge. The expert system, on the other hand, uses also a system of 
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knowledge representation. Most commonly used are representation by frames for declarative 
knowledge and production rules for procedural knowledge. Essential is the formal mode of these 
forms of representation. 
 
So far we have mentioned human knowledge represented by mental models, by behavior, by 
verbalizing (in a natural language that is difficult to formalize). At the expert-system side 
knowledge is represented by frames and production rules written in programming languages. 
This incompatibility between man and machine can be called the representational mismatch. 
 
The completeness mismatch 
 
Tacit knowledge, the knowledge that cannot be represented at once, causes another difficulty.11  
The human expert is not aware of all the knowledge he possesses. Only when he is explicitly 
asked about it, or when he is engaged in a particular section of his expertise, he can verbalize this 
knowledge. The expert system needs all the knowledge involved to solve the problems for which 
it will be built. This gap between the expert and the system is the completeness mismatch. 
 
 
The category mismatch 
 
An obvious, but less mentioned difference, is the disparity between human and machine as two 
totally different systems. We are not talking about aspects such as difference in representation, 
but the integrated system of man as an information-processing system (e.g., problem solver) 
versus the expert system as an information-processing system. The overall approach is so 
different that comparing aspects seems fruitless. Even the above mentioned differences in 
representation are incongruent: vague, not verbalized versus formalized; incomplete versus 
complete. These differences are more profound than a difference, e.g., between programming 
languages, between frames and scripts, or between the knowledge of expert A and expert B in a 
particular field. This is summarized by saying that the system of human-information processing 
is of a different category than machine-information processing. We can call this the category 
mismatch. 
 
These four mismatches return at the other end of the expert system: the interface with the end-
user. It is less of an obstacle for human beings to use successfully the output of a computer 
system. Still some difficulties in its use remain. The better designed expert systems have 
explanation facilities to assure the user of its reasoning. Although this is not so much a 
knowledge-acquisition problem as a problem of expert-system designing, it is worth mentioning. 
 
So far we have given the knowledge-acquisition bottleneck a name: the mismatch problem.  
 
From this brief analysis of human versus machine knowledge, we can conclude that during the 
knowledge-acquisition process we should constantly be aware of the mismatch in approach 
between man and machine. Actually, this means for the knowledge engineer that a) he should 
have a good understanding of human-knowledge processing, and b) he must change, or at least 
adjust, machine-knowledge representation, so that human knowledge can be better incorporated.  
 

                                                 
    11 Polanyi (1967) deals with tacit knowledge in a philosophical way. Here, tacit knowledge is regarded as a 
practical problem. 
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1.4 KNOWLEDGE ACQUISITION 
 
In this section I will give an abstract of the chapter on knowledge acquisition and the building of 
expert systems from my previous paper to place the topic of the present paper in the right 
context. 
 
An expert system is a computer program that a) reasons with domain-specific knowledge that is 
symbolic as well as mathematical; b) uses domain-specific methods that are heuristic (plausible) 
as well as algorithmic (certain); c) performs as well as specialists in its problem area; d) makes 
understandable both what it knows and the reasons for its answers; and e) retains flexibility. 
(Buchanan and Smith 1988) 
 
According to Buchanan et al. (1983) the expert-system-building process has the following 
outline: 
                                                              
***************************************************************************** 
 
EXPERT 
     
 
 
 
 
 
                
 
 
 
 
EXPERT SYSTEM 
 
 
 
 
 
 
  
 
                                          
 
 

KNOWLEDGE ENGINEER 
or 
INTELLIGENT EDITING PROGRAM
or 
INDUCTION PROGRAM 

INFERENCE ENGINE 

 
                                         database 
KNOWLEDGE BASE 
        rulebase 

 
 
*********** fig. 1.1  The structure of an expert system-building process **************** 
 
 
It is very important to notice that knowledge acquisition and expert-system building is an 
interactive process. It would be preferable to draw in figure 1.1 also an arrow from the lower to 
the upper box. 
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The sequence of tasks of a knowledge engineer is as follows: 
Acquiring a basic knowledge of the domain subject and the goal, or tasks and subtasks, of the 
expert system. Then, in his encounters with the domain expert he must acquire more precise 
knowledge, such as the domain concepts. These are the semantic constituents of the domain. 
Further, the main rules and the subrules, or the strategies of the domain should be made explicit. 
From here on he can construct a prototype of the expert system. With the prototype the 
knowledge engineer can expand, deepen and, correct the knowledge with the help of the domain 
expert. In short, this process is a cyclical process of conceptualization, formalization, implemen-
tation, and testing. 
 
In the identification stage the structure of knowledge needs explicitation: 
- What class of problems will the expert system be expected to solve. 
- How can these problems be characterized or defined? 
- What are important subproblems and partitioning of tasks? 
- What are the data? 
- What are important terms and their interrelations? 
- What does a solution look like and what concepts are used in  it?  
- What aspects of human expertise are essential in solving these  problems? 
- What is the nature and extent of "relevant knowledge" that  underlies the human solutions? 
- What situations are likely to impede solutions? 
- How will these impediments affect an expert system? 
 
In the conceptualization stage the following questions precede the explicit questions about 
conceptualization: 
- What types of data are available? 
- What is given and what is inferred? 
- Do the subtasks have names? 
- Do the strategies have names? 
- Are there identifiable partial hypothesis that are commonly used? What are they? 
- How are the objects in the domain related? 
- Can you diagram a hierarchy and label causal relations, set inclusion, part-whole relations, etc? 

What does it look like? 
- What processes are involved in problem solution? 
- What are the constraints on these processes? 
- What is the information flow? 
- Can you identify and separate the knowledge needed for solving a problem from the knowledge 

used to justify a solution? 
 
Depending on the goal of the expert system, the concepts, their relations, the rules and strategies, 
and the total framework of the domain should be elicited. 
 
In the formalization stage concepts, rules, etc., are mapped in a formal framework (still following 
Buchanan et al. 1983). Three aspects are important. First the hypothesis space: after the concepts 
are formalized one has to determine how they link to form hypotheses. The second aspect is the 
uncovering of an underlying model of the process used to generate solutions in the domain. And 
third, the understanding of the characteristics of the data that helps to understand the structure of 
the problem space. Then the implication stage follows from the prototyping and the testing, 
refining and debugging stage. In these stages no new aspects with the domain expert - knowledge 
engineer interaction will appear. 
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Summary 
 
To summarize this section, we can expand the conclusion of the previous section: 
1. There is a mismatch between the human and machine approach of knowledge,with 
2. Knowledge acquisition is not a part, but an integrated aspect of knowledge-base building. 
3. There is a discrepancy between knowledge acquisition and knowledge representation. 
4. Questions and answers need to be analyzed on a cognitive as well on a linguistic level. 
5. How much of the knowledge is still "hidden" or "tacit"? 
6. The various levels of knowledge should be monitored. 
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7. CHAPTER 2   PHILOSOPHY AND AI 
 

2.1 INTRODUCTION 
 
The answers from traditional philosophy of questions about the nature and extension of our 
knowledge are unsatisfactory so far we need them for artificial-intelligence theories. (Visser 
1985) 
  
 
Philosophical theories of knowledge are sound and well accounted for. But they serve obviously 
other purposes than knowledge engineering. It is like using ontology as a base for building 
houses. The civil engineer needs to know other essential facts about "beings", about the world, 
than philosophical theories can provide. Fortunately, the civil engineer can switch from 
metaphysics to physics, but to what can the knowledge engineer switch? The best option seems 
to be cognitive science. Chapter 3 will deal extensively with cognitive science. However, it 
seems to be a fair trial for certain theories in epistemology to examine them and see if they can 
give useful hypotheses for the knowledge engineer.  
 
The sequence of philosophical problems we encounter in the following section is  

1. the problem of knowledge, 
2. language, 
3. meaning, and  
4. understanding. 

  
Various kinds of philosophical theories like theories about representation and about language 
can provide various applicable solutions. In sections 2.3 and 2.4 I will elaborate more on the 
topic of "understanding" and show in which aspects the machine differs from man. 
 

2.2. PHILOSOPHICAL PROBLEMS 
 
The questions and answers in philosophy are very general and abstract. The theory of knowledge 
is concerned with academic discussions such as whether knowledge is possible; how knowledge 
claims can be justified; the difference between knowledge and belief, etc. Theory of knowledge 
is less interested in the practical questions a knowledge engineer will encounter. However, 
several philosophers have analyzed knowledge in terms which can be used for our purpose. 
 
The following choice of philosophers and themes is based on personal acquaintance and 
interests. I am well aware of the fact that many other entries could have been chosen for the 
purpose of this paper. 
 
 
Pre-Kantian epistemology 
 
Descartes' method of doubt leads him to accept clear and distinct ideas as a priori truths. 
Furthermore, Descartes takes God's benevolence as guarantee that our senses would not be 
deceived. Thus the truth of knowledge, even through perception, is fully based on rationality. 
Spinoza distinguishes three kinds of knowledge: sense experience, reason, and intuition. Unlike 

 15



Descartes' philosophy, sense experience which is derived from experience can be false; not so 
much because we are deceived, but because we are not able to overlook the whole. We can only 
grasp the nature of a part if we want to grasp the nature of the whole.  Reason and intuition must 
always be true because the mind understands these matters in a pure and necessary way. This 
idea of rational understanding Spinoza shares with Descartes. Leibniz also emphasizes the 
distinction between knowledge from senses and knowledge from understanding or reason. 
Although the basis for these kinds of knowledge are both innate ideas, the difference is caused 
by a degree of clarity between the ideas. 
 
Opposed to Spinoza's and Leibniz' rationalism stands the British empiricism of Locke, Berkeley, 
and Hume. They differ in certain aspects but they all reject the principle of innate ideas. All 
ideas and knowledge thereof are basically derived from sense perception. Innateness would be a 
superfluous assumption since perception and human reasoning can account for all knowledge.  
Locke derives knowledge from two sources: sensation and reflection. Reflection is the case 
when the mind observes its own operations and thus forms new ideas. With Locke, theory of 
language becomes part of the theory of knowledge. He sees knowledge as making judgements, 
like agreeing and disagreeing. These judgements are in the form of mental or verbal 
propositions. Here, linguistic skill is a complementary part of knowledge.   
 
 
Kant 
 
With Kant, theory of knowledge turns into something more substantial for knowledge in 
artificial intelligence. Kant does not advocate the idea of innate ideas in the sense of his 
predecessors, but assumes an innate ability to organize our knowledge. Kant makes several 
useful distinctions. He distinguishes the world as it is in itself from the world as it appears to us. 
The way our senses work and the way our thought is organized determine the way the world 
appears to us. He introduces the concepts of space and time as transcendental forms that are 
innate and therefore precede experience. Originally, Kant has developed these ideas to explain 
our ability to deal with mathematics12. In his Kritik der reinen Vernunft Kant elaborates on the 
idea of transcendental concepts to solve the problem how we are able to acquire knowledge. 
Instead of proposing pure (static) ideas like space and time, he assumes that our mind bases its 
reasoning on Urteilsformen. Since the mind is in fact making connections and making 
judgments it seems a good idea to presuppose the innate presence of Urteilsformen in the mind. 
These forms function as molds for our thinking. From these forms the categories are named. 
These categories are similar to the ones Aristotle used for his logic. The difference is that 
Aristotle took the categories as static headings for a classification of ideas, while Kant takes 
them as concepts of judgmental acts and therefore as regulative concepts. The next move for 
Kant was to make sure that we had a reliable guideline for using the judgments forms. This is 
elaborated in his Urteilskraft. From here on Kant continues his construction in order to prove the 
possibility of "pure" natural science and even further to metaphysics.13 
 
In sum, we can state that the prerequisites for a human being to have knowledge, according to 
Kant, means: 
1. Sense experience given from the external world (Empfindungen) 
                                                 
    12 However, his proof for this prerequisite turned out to be unsatisfactory. Specially Gottlob Frege has criticized 
this point for arithmetic. 

    13 See Edwards 1972 Vol 4, p 310 
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2. Forms, innate in the mind: 
   a. Space and time, to order our sense experiences (Anschauungsformen) 
   b. Categories, to make judgments 
3. Urteilskraft, to make the right judgments. 
 
Through our consciousness the Verstand makes it possible to have experiences, and thus the 
world as it appears to us is partly a product of the knowing subject. 
 
Knowledge that we acquire by experience is partly a reflection of that experience and partly 
formed by the way we acquire that knowledge. For Kant, a concept is a rule that makes it 
possible to make a unity out of separate perceptions.14 
 
 
Wilhelm von Humboldt 
 
Humboldt (1767-1835) is primarily a philosopher of language. He regards language as the 
faculty by which man is identified as man. His philosophy of language is focused on the idea of 
innere Sprachformen (inner forms of language). This is a certain view of the world that controls 
the formation of concepts. There is a dependency between word and thought, as they show a 
particular outlook of the world. So there is more to a language than only representing the truth, 
but also a means of discovering previous not known truths. The word is not a copy of the object 
as such, but reflects the soul's image of the object. Thus, different languages have not the same 
synonyms in their meaning. Each language has its own characteristics. On this claim, Sapir and 
Whorf will later build their language-relativity theory. 
 
A synthesis of Kant's theory of knowledge and Von Humboldt's theory of language can be found 
in Cassirer. 
 
  
Cassirer 
 
Like Kant, Cassirer claims that the objective world is known by a priori principles. Cassirer 
assumes that these principles are not static, but dynamic or developing. Cassirer holds that the 
real world is not a unique and homogeneous thing because every organism has its own receptor 
system of perceiving the world. 
Man has an extra link between the world and himself: the essential function of the human 
consciousness is the ability of symbolic representation. Man is an animal symbolicum. Man 
does not deal with the things themselves but actually he is dealing with the linguistic forms, 
mythical symbols, etc., that are located in his consciousness. Here we find the influence of Von 
Humboldt. The symbols have no existence in the real world. They function as a connection 
between the perceived signs and their meaning. 
 
The symbolic representation transcends the perception and places it into a context. So the 
symbols, like Kant's categories, give an extra dimension to the real world and appear to us as a 
part of it, depending on the kind of symbol. Ordinary language forms the common-sense world, 
scientific language forms the sciences, mythical symbols form myths and religions. 
 

                                                 
    14 See Kitcher 1990 
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This philosophy of symbolic forms leads to an epistemology that is closely related to a 
phenomenological theory of knowledge: the real world is identical with this apprehensible 
world, "perception is apprehension". Cassirer (1975) gives the example of two different 
meanings of the word for moon. In Latin the word for moon is "luna" which means "the 
glittering", while the Greek use the word "mén", that is "the measurer". 
 
Conceptualization is a special form of symbolic representation. Concepts are formed after 
people have named individual varieties. Only the significant ones, e.g., the edible fruits and 
animals, and other useful object were given names, the rest was neglected. 
Cassirer does not construct a sound truth criterium. His objective is to construct a theory of 
knowledge with a critical approach of language as base. The richer, more differentiated a 
language is, the better is the knowledge. An explanation how and why a language develops as it 
does, is not given. But sense experiences and language are inseparable in the course of human 
evolution. Knowledge is an interlacement of an object, its presence, and its representation, 
grasped in a symbol function. To put it simple: when an object is experienced and has got a 
name then there is knowledge about this object. However, there is more to it. The basic problem 
of this philosophy of language lies in the relation between word and object. The object is not 
directly given by a word, the word is only a symbolic expression. The function of language is 
not to depict reality, but to represent by symbols. The symbols are to be understood from within, 
by inner intuition and related to the cultural environment. There is something which cannot be 
grasped in the relation thing and word due to the phenomenological position Cassirer has taken. 
 
In the third volume of The Philosophy of Symbolic Forms Cassirer projects these forms on a 
higher level to scientific knowledge. The symbolic representation is here pure concept function. 
It gives an ordering structure in which objects can fit in. 
 
 
Peirce 
 
Peirce is well-known for his doctrine of pragmatism. Pragmatism is a theory of meaning. This 
theory was originally based on his view on human thought and the uses of language, which 
yields into the concept of "signs". Signs are things that stand for other things. These 
representations are socially standardized. Thus signs presuppose a society with a system of 
communication. The pragmatic side of his theory of signs is the practical implication. It should 
be regarded as a theoretical device - schema or method - to understand the content of concepts. 
Peirce regards his pragmatic approach as a technique to get better solutions to problems in 
human communication. Successful communication lies in linguistic and conceptual clarity.15 
 
 
Ogden and Richards  -  Frege 
 
Peirce's theory was elaborated by Ogden and Richards. In their Meaning of Meaning (1972) 
Ogden and Richards laid out a theory of meaning. The things we sense are sensed as signs. 
Having sensations is the same as interpreting signs which is done by thinking. This knowledge 
from the world is the interpreting of signs. 
 
 

                                                 
    15 see Edwards 1972 vol 6, p 431 
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In the triangle 
 
 
 thought or act of reference 
 
                  symbolises                    refers to 
 
           symbol        is attributed to         referent (or object) 
 
 
 
the relation between symbol and referent is a contingent one (except with onomatopoeia). The 
relation is a social convention within a group of speakers of one language. Therefore it is a loose 
relation, subject to inaccuracy. Conclusion: the relation between symbol and object is a social 
one and between reference and referent is not a logical, but a psychological one. And so is 
meaning. 
 
The triangle above can be compared with another triangle that has been turned over by 120 
degrees. It depicts Frege's theory of meaning (Frege 1969): 
 
 symbol or word 
 
 
             "Sinn"                                "Bedeutung" 
               Connotation                       Denotation 
              Meaning                             Object 
 
 
 
Frege uses the example of Venus. "Morning star" and "Evening star" have two different 
meanings (Sinn) but only one object (Bedeutung). Where Ogden and Richards take thought - the 
use of a symbol - as starting point, Frege starts with the word. Frege's concern is the logical 
aspect; Ogden and Richards are pragmatists. Their theory of signs is empirical and behavioristic. 
Immediate knowledge emerges from sensations. But we sense the objects as signs. Having 
sensations is the same as interpreting signs which is done by thinking. Thinking is interpreting 
signs.  
 
The relation between thought and the object is not clear: this might be a cognitive relation. The 
way a person senses an object constructs a thought in his mind: the art of reference. But in the 
passage above Ogden and Richards talk about objects as signs. Here they don't clearly 
distinguish between objects and signs. This is a sort of extra interpretation. 
 
I will try to reformulate this theory in a probably phenomenological way. We assume that 
objects in the world have an objective, neutral status. Men have sensations of these objects, but 
since they see them as signs they interpret them in a certain way: the thought. Signs can vary for 
different persons. 
Words are symbols for the interpretation of things and so is knowledge an interpretation of the 
perceivable world. An object becomes for a person "an object in the way he interprets it" and 

 19



symbolizes this interpretation with a symbol or word. Interpretation is person-related and 
revealed in the use of language. 
 
Recently new approaches to the theory of knowledge have been developed, such as by Rorty. In 
his Philosophy and the Mirror of Nature (Rorty 1979) Rorty shows a sceptic attitude about the 
foundations of theories of knowledge. Knowledge cannot be "a mirror" of reality. It is 
determined by personal reflection and social context. Epistemology and philosophy of mind 
encounter. Man does not have adequate mental means to justify objective knowledge of the 
world. We are not able to distinguish between what is given from the outside world and what is 
added by our minds. Knowledge becomes hermeneutics: understanding and interpretation.  
 
Summary 
 
In "good old-fashioned" philosophy we are able to find several aspects that can be used for our 
purpose to understand human-knowledge processing. Since this is an arbitrary choice it should 
have no other status than a hypothetical assumption. 
 

1. Both sense experience and "reason" determine human knowledge. 
 

2. Man has the ability to organize his knowledge. He possesses categories that distinguish 
the various ways in which knowledge is presented. 

 
3. There is a distinction between the world as it is and the way it appears to us. 

 
4. There is an essential interaction between knowledge and language.16 

 
5. Man uses symbols to represent the world. Besides symbols there are also thoughts. 

 
6. One object can be regarded in various ways, which can sometimes be reflected in 

language. 
 

7. Knowledge is interpreting the world, through different descriptions.  
 

8. The problems of interpreting are treated in terms of understanding. 
 
 

2.3 ABOUT "UNDERSTANDING" 
 
I might have called this section "The Chinese Room revisited". But instead of criticizing Searle's 
Gedankenexperiment I want to use it as a starting point for more Gedankenexperimente. They 
might lead to more insight in the knowledge capacities of programs. 
 
In this section and the following, I want to explain the problems about the use of the term 
"understanding" 17. Searle's Chinese room example shows how easy it is to confuse one kind of 
"understanding" with another. By using other examples I want to show how to distinguish the 
                                                 
    16 These and the following assumptions can also be regarded as expansions of 3. 

    17 I shall use quotation marks because "understanding" has different meanings, as will be shown later.  
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various kinds of "understanding". Moreover, it leads to the conclusion that programs and 
machines have no "understanding"; and that robots can  "understand" in a certain way, although 
not in the way human beings can. 
 
 
The Chinese room 
 
Searle (1980) distinguishes strong and weak AI. Strong AI advocates (like Newell) claim that 
the computer is not only a tool in the study of mind, it is really a mind because programs can be 
said to understand and have other cognitive states. Weak AI, to which Searle does not object, is 
merely a strong tool, but not a replica of the mind. 
 
Searle's argument against strong AI is based on the scripts like the ones in Schank and Abelson 
(1977). A script is a set of possible states of affairs for a certain context. For example, the 
restaurant script contains the activities around a visit to a restaurant: the sequence of entering the 
restaurant, being seated and given the menu, ordering, eating, paying. Plus variations: the 
sequence in a self-serving restaurant, or what happens when the food does not taste well, or 
when the waiter is rude, etc. The script enables the machine, given a certain restaurant story, to 
answer questions about what has happened. 
 
In the script-case, the strong AI advocates claim that  

1. the machine can literally be said to "understand" the story and therefore can answer 
questions, and  

2. moreover, the machine explains the human ability to "understand" stories. 
 
With the Chinese room Gedankenexperiment Searle tries to attack these claims. His starting 
point is that theories about the mind are best tested if we test it on our own mind. Suppose a 
person, who does not read or speak Chinese, is locked in a room. He gets a batch of Chinese 
characters (compare with the restaurant script), then a second batch with Chinese characters and 
English rules to compare the first and the second batch (compare with the restaurant story and a 
language parsing program). Finally he receives a third batch with Chinese characters and 
English rules (compare the restaurant questions and parser). These rules enable him to produce a 
batch of Chinese characters (compare the answers). Now does this person in the room 
"understand" Chinese? It seems so to the outside world, but we can be sure that he does not. And 
so the script-program, the program or the machine for that matter, does not "understand" stories 
either. All that was going on is manipulation of not-interpreted symbols, in the room, as well in 
the machine. So the two claims vanish. The machine does not "understand" stories like the man 
in the room does not "understand" Chinese and since there is no "understanding" there is also no 
explanation of any human understanding. Moreover in the case of "understanding" an English 
conversation as a speaker of English, Searle does not think that this kind of human 
"understanding" follows a similar procedure as the script program. 
 
Many have criticized Searle's attack18. I want to elaborate on a fundamental aspect of 
understanding that Searle does not mention. With better examples the claims of strong AI might 
be better sustained. 
 

                                                 
    18 See the comments in The Behavioral and Brain Sciences 3 (1980) and further issues. See Anderson 1989 and 
Doorman 1989 for methodological critiques. 
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In the Chinese room only information processing is going on. Input A - program - output B. The 
operator does not "understand" Chinese, although it seems so. What is wrong? Something is 
missing. When we compare the data with the semiotic triangle (see 2.2) there are only words or 
symbols. There are no objects. There are no meanings. Story programs and restaurant scripts 
manipulate symbols, not meanings. A system that consists of internal symbols, rules and 
representations, is a system that only computes and compares. The symbols are meaningless to 
the system. 
 
The Chinese room is about handling syntax (no knowledge) and not about semantics 
(knowledge). Computer programs are entirely based on syntax, so, by definition, a computer 
program cannot have knowledge. The machine "understands" the syntax. If there is a frame 
representation, for example, it also "understands" a semantics related to this representation. But 
this representation is also formed by symbols. The machine semantics refers to other symbols. 
Human semantics refers to the real world.  
 
Sloman (1985) explains that strong AI means that the programmed computers can manipulate 
symbols that they understand. He argues that there is no clear boundary between things that do 
and things that do not understand symbols. The symbols do not need to be used for external 
communication. Meaning and understanding are often assumed to be essentially concerned with 
communication between language users. But representation is prior to communication. 
 
Woods (in Sloman 1983) makes a similar remark: "By this account, a system that reads stories 
and answers questions about them, based solely on the manipulation of internal representations 
with no experiential base, would, from its own perspective, be manipulating meaningless 
symbols. Similarly a pocket calculator would be a manipulator of symbols whose meanings were 
externally attributed (even though its internal structure does faithfully model the intended 
interpretation). On the other hand, a simple robot creature with primitive perceptions can be 
said to have meanings for its symbols that are not externally imposed if its symbols are tied to 
those perceptions by some distinguished mechanism equivalent to meaning rules." 
 
Meaning, as explained in the previous section, comes in when there is an interaction with the 
world and when this is represented by the system e.g., robots. I come back to robots later. 
 
 
Rapaport (1988) creates a Korean professor who does not understand English, but is an expert in 
Shakespeare. He has read everything in translation. Rapaport thinks that the man does 
"understand" something, although no English. Here we reach a point where two kinds of 
understanding are existing: "understanding a language" and "understanding Shakespeare". In the 
last case there is a value added that can be called "cultural" understanding or "aesthetic" 
understanding. The Korean professor understands to a certain level Shakespeare, but not to a full 
extent. Understanding a language is not just producing output. It is, in a sense, the ability to cope 
with the information it carries. That happened with the Korean professor. 
 
 
Now I am ready to make another Gedankenexperiment. I start with a real world situation in 
which we learn to understand Chinese. Learning is the basic process by which we can 
understand. 
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The Chinese restaurant. 
 
Chinese restaurants in this part of the world provide menus for its patrons. These menus are 
usually lists of courses: a call number, some (2 or 3) Chinese characters, often the Western 
transcript, so we can pronounce the Chinese, often the translation in our own language, and the 
price. Suppose we have a menu with only call numbers, Chinese characters and Western 
transcripts, but no translation. We order the dish by call number and we recall the transcript. The 
next time we order we pronounce the transcript but get another dish. We were not aware that 
similar transcripts may refer to different characters, hence a different meal. OK, so we recall the 
characters as well. After many visits to the restaurant trying out most of the dishes, we are able 
to make our orders, even by writing them in Chinese characters as well, anticipating certain 
dishes and, yes, getting the right dish. So we conclude that we understand Chinese, at least the 
food subset of Chinese. 19 
 
Conclusion: learning by trial and error in interaction with the world can make us understand a 
language. In Searle's Chinese room nothing was understood. In Rapaport's Korean room 
something about Shakespeare was understood, but no English. In our Chinese restaurant we do 
know the Chinese names for certain dishes given this particular restaurant. We know how to get 
along with information processing in this place. We might say we "understand" (the food subset 
of) Chinese. 
 
 
To compare our experiences in the Chinese restaurant I want to introduce the SHRDLU robot20. 
Winograd's PhD dissertation (1972) is an example of how machines (or systems as he calls 
them) are said to be able to "understand" language. Like students in biology start working with 
fruit flies which are rather simple creatures, workers in AI should start with very limited 
subjects. Winograd took a very small world (the blocks world) as subject for his language-
understanding program. (In 1972, AI research was still in its infancy.) SHRDLU is all about 
language understanding and so a perfect match for the Chinese room. The core of the book is a 
description of a set of language-understanding programs. To demonstrate this program a blocks 
world has been created. A robot is able to "understand" instructions like "Pick up a big red 
block" and then to carry out the instructions. Or it can reply with " I don't understand which big 
red block you mean" and so on. Winograd's program was never executed with a real robot. The 
system worked only on a machine. The robot-part was carried out on screen only. However, it is 
not so difficult to make this program work with a real robot that can see the blocks world with 
the blocks and pyramids. It can pick up blocks and put them down. The software attached to it 
can conduct the dialogue. It is obvious that there is a good deal of computation, comparing 
symbols, and applying rules going on, similar to the Chinese room. But there is also an extra 
dimension: the blocks world and the robot that is dealing with this world. There are objects, 
symbols, and the relation between them. There is meaning. Meaning can be defined as a 
complex relation between objects and their descriptions. 

                                                 
    19 On second thought, the Chinese restaurant is a more complicated example. When we try another restaurant and 
place our order - that is from a menu without translation -  we may get a quite different dish. It turns out that Chinese 
like to use fancy names for their dishes and what we thought was Chinese for fish and vegetable soup was literary 
"lotus flower in a fishpond". Another restaurant  may give another fancy name for this dish e.g., "green sea with 
fish". This is rather similar to Frege's "Morning Star" and "Evening Star". 

    20 SHRDLU is a meaningless name. It was made up from the 6 most frequently used letters in English texts after 
AEIO. 
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Meaning in this sense was lacking in the Chinese room and in the script program. Therefore it 
was a good example for Searle to attack strong AI. But in the Chinese restaurant case we could 
relate the Chinese characters to certain dishes, like SHRDLU can relate symbols to blocks. 
 
An objection to the meaning claim might be that a robot does not see objects in the blocks 
world, but symbols: the zero's and one's on its perception device. What it is doing is matching 
symbols and applying rules and thus merely computing. If we sustain that claim then people see 
also symbols. We don't see the bowl of soup but a symbol that stands for a bowl of soup. But of 
course we don't eat symbols, but soup. So the SHRDLU robot might see symbols, it does not 
pick up symbols but objects. Objects might be heavy - too heavy to pick up, or made of wet sand 
and so on. The robot is confronted with an object and its description: not only there is an object, 
the symbol for it, but also its attributes21. 
 
Still, I cannot think of a system without a robot or other "real world" device that would be able 
to deal with meaning in the above sense.  And all the knowledge-based systems that are used as 
expert systems do not do anything more than computing symbols. That is why the weather 
simulator is not able to cause a rainstorm in the computer room. Ergo: expert systems do not 
understand what they are talking about! 
 
So it should be clear that programs compute symbols. Robots also compute symbols, but have 
an extra aspect in meaning. Meaning is a relation between object and symbol. 
 
Knowledge-representation systems that use frames as the meaning of words are described in 
chapter 4. Still, these programs are manipulating symbols. But we can speak of an internal 
representation of meaning. 
 
Although Winograd (1972) explains in his introduction to the program that "the system has a 
simple model of its own mentality it can remember and discuss its plans and actions as well as 
carrying them out" (p.1), there is not much more than in Schank's scripts. The SHRDLU robot is 
able to perceive, to learn about the objects it perceives and to apply its knowledge in 
forthcoming situations. Therefore I would not hesitate to claim that the SHRDLU robot (and not 
the program) understands the blocks world by itself. There is a relation between (outside) 
objects and the symbols and a representation. 
Yet, there is nothing to sustain, as the strong AI advocates do, that the robot understands in the 
same way as human beings do. 
 
 

                                                 
    21 or "Art des Gegebenseins" as Frege calls it 
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2.4 THE VARIOUS ASPECTS OF "UNDERSTANDING" 
 
In the previous section I have used the term understanding with quotation marks because the 
appropriate meaning was not always the same. In this section I want to explain these various 
levels of "understanding". 
 
In the restaurant script (Schank and Abelson 1977) the computer understood0 22 the story, 
because the answers turned out to be right. Searle's Chinese room analogy showed that this 
computer does not know English and neither the story involved. The SHRDLU robot 
understood1 English in the same sense as we could get along with Chinese in the Chinese 
restaurant. The situation was different: there were symbols and real objects. The robot could 
make connections: the symbols acquired meaning by the presence of objects. Understanding1 is 
involved when we know the relation between one thing and the symbol for which it stands, such 
that operations on the object can be performed. And also that the attributes of the objects are 
given in a certain way, to fit into the perspective of the actor. 
 
An expansion of understanding1 can be the kind of understanding that occurs in machine-
learning programs, in which the relation between object and symbol is grasped. In this situation 
also a similarity between an object 1 and a slightly different object 2 and their relation with a 
symbol can be recognized.  
 
A third kind of understanding completes the list: understanding2. This understanding is usually 
explained in dictionaries as "to perceive and comprehend the nature and significance of". We 
understand2 if we also know the rationale behind the relation between object and symbol.  
 
An example of all the 3 aspects of understanding is knowing to apply a2 + b2 = c2 for computing 
the length of the sides of a rectangular triangle: 
A computing program understands0 when applying rules upon the given data (symbols). 
A robot understands1 when relating a particular triangle (with all the imperfections that material 
things possess) to the formula. 
Man will understand2 when knowing how and why precisely this formula works. 
 
I have shown that the difference between a robot and a human being is given mainly by the facts 
that man can understand2, but robots can only understand1. Programs can only understand0. 
 
What is this extra ability of man to understand differently, probably on a different level. This is a 
difficult question. 
Given the literature on this subject, I think that the reasons must be found in the drive of living 
organisms to survive. On one hand is a teleological aspect: living things are on earth to fulfill an 
assignment, like producing offspring. In order to do this they need a driving force to meet the 
requirements. On the other hand is the philosophical aspect of intentionality. 
 
Winograd and Flores (1987) quote Maturana23: "Living systems are cognitive systems, and 
living, as a process, is a process of cognition." This organic, or living element, is an extra 
element that a computer or a robot lacks. Norman (1980) puts the same idea in another way: the 
                                                 
    22 I call this understand0 because actually it is not understanding in our common use of the word. 

    23 Humberto Maturana. Neurophysiology of cognition. In: P. Garvin, ed. Cognition: a multiple view. (New York 
1970) 
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human body is an organic mechanism in order to protect it, to find food, to deal with its 
environment.  
In other words: living, cognitive, organisms possess an intentionality that makes them live and 
survive in this point of view. 
 
The ability to understand2 is a property of human beings like the property of a chemical 
compound is to form a certain crystal form when under pressure. There are no blue prints of 
these properties but they can only be perceived when they manifest themselves. 
 
The term intentionality is used in various ways, depending on the context. For my purpose I 
follow Searle (in Norman 1980). Intentional states are directed at or about objects and states of 
affairs in the world - states such as beliefs, hopes, fears, desires and intentions. Intentional states 
consist of a content (e.g., "that you leave the room") and a psychological mode (e.g., "I fear...", 
"I hope...") corresponding with the kind of act. The content part is not a state of affairs, but a 
possible state of affairs that only "exists" in the mind of a person. Consider the sentence " John 
thought that Tom Sawyer is the author of Huckleberry Finn". The whole sentence might be true, 
but not the content part "Tom Sawyer is the author of Huckleberry Finn", since this does not 
correspond with a true statement. The psychological part "John thought" is more interesting for a 
cognitive science point of view. Psychological states can be described, but not fully explained. 
Like "he hopes …" and "he thinks …", knowing and understanding are also intentional states. 
These are lacking in the robot. There are only content-statements such as "Mark Twain is the 
author of Huckleberry Finn" or conditionals like "if the battery is low, get a new one". 
 
In the AI debate one can encounter the question whether we should grant voting rights to the so-
called intelligent robots. A sound answer should be: when the robots are aware of their status 
and ask for voting rights themselves. Then they show that they can understand2. So the question 
is whether there is a psychological state in the robot that makes it aware of its battery-
dependency, or of its possible voting rights. The answer is straightforward: the robot would not 
have any urge by itself to care a bit. Only when the conditional "if the battery is low, etc." is 
implemented and when a device is attached that triggers the conditional when the current gets 
too low, the robot will react. But the conditional and the device are purely on the content-level. 
A fortiori, programs will also lack intentional states. 
 
In the last 2 sections I have explicated the different meanings of "understanding". The 
conclusion that can be drawn from the Chinese room and the other parables is that programs are 
lacking meaning. The semantic relation between word and real-world object is missing and thus 
unknown to the program. A program can only operate on the level of symbol manipulation. I 
have called this "understanding0". In section 2.3 I have also shown that robots that operate on 
verbal instructions are able to relate words and objects. One can attribute "understanding1" to 
them. Our human way of understanding can be regarded as "understanding2". 
 
Extrapolating this conclusion to the mismatch problem between man and program, we see that 

1. Programs can only understand on a symbol level, i.e., without meaning, 
2. Man knows the relation between words and things, and moreover, 
3. Human beings can reason and understand on a higher, more abstract level. They also 

have intentional states. 
 
These arguments that man and programs understand on different levels affirm the claim of 
category mismatch in section 1.3. 
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CHAPTER 3  

ASPECTS OF HUMAN-INFORMATION PROCESSING 
 

3.1 INTRODUCTION 
 
 
************************************************************************* 
 
Winograd and Flores (1987) conclude from the writings of Heidegger and Gadamer that we 
cannot observe the world as it is. We only interpret the world with our prejudices. These 
prejudices are based in our thinking and our use of language. There is no question of 
abandoning the prejudices, but at least we can be aware of them. 
 
************************************************************************* 
 
 
I have stated that the mismatch between human and machine-information processing is the basic 
problem for a smoothly functioning knowledge acquisition. One solution is to treat human 
knowledge as machine knowledge, e.g., as proposition logic. But this will give the knowledge 
engineer a hard time to find all the necessary premises. Moreover, some knowledge will never 
be revealed. Another solution is to reform the knowledge-representation systems so that they are 
able to cope with human knowledge. In order to do so we must know much more about the way 
people deal with knowledge and how they store it. 
 
Cognitive science is particularly apt to reveal how the interpretations we have about the world 
are formed. It is a recently new expanding field that explores human knowledge. It is an 
interdisciplinary area between artificial intelligence, psychology, linguistics, and philosophy. 
Here I refer to cognitive science as the study of human-information processing. Human-
information processing deals with the acquisition, representation, and use of knowledge. The 
human-information processing system is the process of encoding, modifying, and representation 
(storage) of information received by the various sense organs, the process that we call 
"thinking", and the verbal and motor outputs based on the previous processes. 
 
It is still a controversial topic how information is obtained and stored in the brain. How are 
symbol structures represented in the mind and how are operations executed on them. But 
although theories about human-information processing are hypothetical, it is worthwhile to 
study them. At least we can try to understand what sort of problems are involved. Two issues are 
important in cognitive science. 

1. The representation: what is the nature of the knowledge structures. 
2. The process: what is the nature of the human-information processing system. 

Representation and process are probably interwoven parts of human-information processing. 
 
The mental representation depends on the way we perceive and process knowledge. The 
processing depends on the modes of representation. The hypotheses of human-information 
processing that are mentioned in the following sections are meant to show its complexity. I think 
that studying these hypotheses can elucidate our approach to the development of knowledge-
based systems and overcome the mismatches. 
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In this chapter I shall deal with the problems of the constraints on thinking.  
 
 

3.2 THE PHYSICAL-SYMBOL HYPOTHESIS 
 
A less likely (see chapter 1) hypothesis about human-information processing is the physical-
symbol hypothesis of Newell and Simon (1981). Essentially this hypothesis assumes that 
knowledge consists of symbols of reality and relationships between these symbols; and that 
intelligence is the appropriate logical manipulation of the symbols and their relations. Newell 
and Simon developed these ideas in the 1950s as a basis for AI: they assumed then that one 
would be able to obtain in some way, fundamental atoms of knowledge and the logical 
relationships between these atoms, and that from these constituents knowledge is reassembled; it 
has an essentially reductionist strategy. An extension of the physical-symbol hypothesis is the 
"knowledge principle". That is, the success of an expert system does not depend on the 
sophistication of its inferencing or reasoning strategy, but on the amount of information it 
contains on how symbols are interrelated; that is the amount of knowledge it contains 
(Feigenbaum 1977). 
 
In various publications (e.g., 1978 and 1989) Simon elaborates on the theme that ideas are 
represented in the mind. He claims that this can be given in an operational meaning and 
investigated by experiment. He distinguishes in the first place verbal and pictorial 
representations. Most of the information comes to a person in the form of natural language. If 
the sentences describe concrete objects they might be encoded as visual images, unlike linguistic 
strings. But since most information is abstract, it cannot be encoded in pictures. In experiments 
subjects were frequently unable to distinguish between having seen a particular sentence and 
having seen a picture whose content was approximately equivalent to that sentence. These 
experiments might be taken as evidence for the view that there is a single internal representation 
- a semantic or conceptual representation - into which all inputs, whatever their sensory modality 
or external coding, are translated.  
 
Simon concludes (1978, p.16): 
 
"I have tried to show that the question, "how are ideas represented in the mind?", can be given a 
perfectly operational meaning and can be investigated experimentally..... 
 
... The empirical evidence available ... leads me ... to believe that the brain operates basically as 
a system of labelled associations. 
...a plausible guess (how many representations there are): a verbal representation, perhaps not 
unlike the "deep structures" postulated by the transformational linguists; a visual 
representation, capable of holding, if not always generating, the information about spatial 
figures; and a conceptual representation, more "abstract" than the other two and particularly 
essential for handling abstract meanings. 
 
But whether this is a correct description of the human-representation system is not important. 
What is important is that we now have a variety of means for exploring representational issues 
empirically.... Identifying the representation used by the brain is an operational, researchable 
task." 
 
and still in (1989, p.447): 
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"The results support the view that pictures and sentences have very similar semantic systems, 
perhaps the same semantic systems, underlying them." 
 
With the physical-symbol hypothesis in mind it is easy to see the analogy between human-
information processing and an operating digital computer. Then it is also possible to attribute 
intelligence to machines because they operate similarly to human beings. However, studies in 
knowledge engineering mention that contrary to the expectation of a knowledge engineer, 
different experts not only talk about a common topic of expertise in quite different terms, but 
disagree on terminology, without necessarily making this explicit. They use the same 
terminology in conceptually different ways and would appear to have different knowledge 
structures. Although these findings might of course be made to fit with the physical-symbol 
hypothesis, they at least raise the question of knowledge is made up from some sort of absolute 
primitive elements. 
 
If the physical-symbol hypothesis would have been affirmed then there would be no mismatch 
problem. However, a number of cognitive scientists (see the next sections) have shown that the 
physical-symbol hypothesis could not possibly account for the many aspects of human-
information processing and thus strengthen the mismatch claims. 
 
 

3.3 MENTAL MODELS 
 
 
In an attempt to explain the working of the human-information-processing system, cognitive 
scientists have introduced the hypothesis of mental models. Among others, Gentner and Stevens 
(1983) and Johnson-Laird (1983) give bases for mental models and their functions as 
explanation for the process of human psychology. Mental models are also called conceptual 
models, schemata, schemes, etc. In general, mental modelers make the assumption that they can 
explain the working of human thinking to a certain extent. Mental models can be formed about 
everything of which we have some sort of knowledge, perceptual or verbal. We can say that in 
mental models knowledge is encoded. A conceptual model is the problem space in which one 
considers understanding and dealing with the object of knowledge. Interaction of a mental 
model of the environment with existing mental models of former experiences provides 
explanation for understanding new situations and how to deal with them. Moreover, conceptual 
models are formed through analogy with other existing conceptual models and result in identical 
understanding reactions. (Gentner and Stevens 1983) 
 
 
Simon (1978) postulates that the brain operates basically as a system of labeled associations. 
According to him the verbal representations are probably like the deep structures as postulated 
by the transformational linguists.  Visual representations hold or maybe even generate 
information about spatial figures. Conceptual representations are more abstract and can handle 
abstract meanings. Mental models are simpler - as models usually are - than the entities they 
represent. Mental models are analogical representations that are verbal or pictorial and in various 
degrees of abstraction. 
 
 
Norman's observations on mental models (Norman 1983) give several details of mental models 
that make them very limited, also very "human" in their shortcomings, and certainly different 
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from a clean and smoothly working computing system like Newell and Simon's. In interacting 
with the environment, people form internal, mental models of themselves and of the things with 
which they are interacting. These models provide predictive and explanatory power for 
understanding the interaction. However, as Norman argues, 

1. Mental models are incomplete. 
2. People's abilities to "run" their models are severely limited. 
3. Mental models are unstable: people forget the details of the system they are using, 

especially when those details (or the whole system) have not been used for some period. 
4. Mental models do not have firm boundaries: similar devices and operations get confused 

with one another. 
5. Mental models are "unscientific": people maintain "superstitious" behavior patterns even 

when they know they are unneeded because they cost little in physical effort and save 
mental effort. 

6. Mental models are parsimonious: Often people perform extra physical operations rather 
than do the mental planning that would allow them to avoid those actions: they are 
willing to trade-off extra physical actions for reduced mental complexity. This is 
especially true where the extra actions allow one simplified rule to apply to a variety of 
devices, thus minimizing the chances for confusion. 

 
Besides, people often feel uncertain of their own knowledge - even when it is in fact complete 
and correct and their mental models include statements about the degree of certainty they feel 
for different aspects of their knowledge. Thus, a person's mental model can include knowledge 
or beliefs that are thought to be of doubtful validity. 
The difference with Newell and Simon could hardly be greater. It is difficult to see how 
counterparts of human mental models could be designed for computer programs on the base of 
such analyses. 
 
 
Johnson-Laird 
 
Johnson-Laird (1983 and 1989b) has a more explicit theory about mental models. He bases the 
mental-model hypothesis (or theory, as he calls it) upon how people make inferences. His theory 
has several purposes. First, the mental-model theory can be used to refute the claim that people 
think in terms of a mental logic. Secondly, the mental-model theory can explain the nature of 
mental representation and also the relation between language and world. It can show the process 
by which the meanings of sentences are structured from the meaning of their parts, and on a 
higher level, how the meaning of sentences is part of a discourse.  
 
Mental models emerge as theoretical entities from man attempts to make sense of inferences, 
both explicit and implicit. They replace the formal rules of a hypothetical mental logic. Mental 
models might be artificial, acquired by learning, e.g., mathematical models. Other mental 
models are natural and acquired without explicit learning, such as language understanding and 
making inferences. Yet, Johnson-Laird also claims that there are arguments that the construction 
of mental models, the communication of their contents, and the reasoning on the basis of such 
representations, are nothing more than computational processes. And this claim is remarkably 
close to the physical-symbol hypothesis.  
 
Johnson-Laird (1983) has experimented with people making inferences. Not only "abstract 
data", but also "realistic" knowledge were introduced in their problem task. This can be seen 
from Johnson-Laird's following descriptions: 
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"In one realistic condition in this experiment, there was a set of envelopes, including one that 
was face down and sealed, one that was face down and unsealed, one that was face up with a 50 
lire stamp on it, and one that was face up with a 40 lire stamp on it. The subjects were told that 
there was a general postal regulation: 'If a letter is sealed, then it has a 50 lire stamp on it' and 
they were asked to imagine that they were sorting letters to make sure they conformed to the 
regulation. Their task was to determine which envelopes it was necessary to turn over to find out 
whether or not they violated the rule. In this condition, the subjects, who were English, had no 
difficulty in appreciating that it was necessary to turn over the envelopes with the 40 lire stamp 
on it." ( p.31/32) 
 
But he also found out that:  
" A striking result with one and the same rule is that English subjects over the age of 45, who 
may remember the postal regulation concerning sealed envelopes, performed well in a recent 
replication of the envelope experiment, but subjects under the age of 45, who may never have 
encountered the regulation, performed no better than with abstract material." (p.33) 
   
The conclusion might be that, contrary to what Newell and Simon assumed, people use 
primarily analogies when dealing with logic problems. Only when they cannot relate the 
problem with a previous situation they probably tackle the problem as an abstract case. But then 
they use a kind of reasoning that does not necessarily lead them to the right answer! 
  
According to Johnson-Laird his theory of mental models assumes that comprehension is a two-
stage process: first, a superficial linguistic representation of an utterance is set up; secondly, this 
representation is used in the construction of a mental model of the state of affairs that the 
discourse describes. In general, a discourse is represented by just a single mental model, which 
is based on the meaning of the utterances in the discourse, relevant information about the 
context, and inferences from general knowledge. 
 
At the heart of the theory, in the opinion of Johnson-Laird, lies the following idea: mental 
models represent the extensions of assertions, i.e., the situations they describe, whereas the 
superficial linguistic representations, together with the machinery for constructing and revising 
models, represent the intensions of assertions, i.e. the sets of all possible situations that the 
assertions could describe. In effect, a mental model is a fragment of many possible worlds: all 
those possible worlds within which the model can be embedded because the discourse it 
represents is true in them. 
Thus, the structure of mental models corresponds to the structure of a state of affairs. A mental 
model is therefore different in structure from a semantic network, or a representation in the form 
of a syntactically structured string of symbols. Both these types of representation have structures 
quite remote from the states of affairs that they designate.  
(Johnson-Laird 1989b) 
 
On one hand, referring to the above described experiment, Johnson-Laird questioned the idea of 
mental logic: in experiments, it was obvious that people make fallacious inferences. So what sort 
of logic do they use? How is it formulated in the mind? Is it innate or developed during learning 
processes? On the other hand, the experiments seems to favor mental models: when individuals 
have a relevant mental model of a relation, they are more likely to reason about it validly. People 
follow extra-logical heuristics when they make spontaneous inferences. They appear to be 
guided by the principle of maintaining the semantic content of the premises but expressing it 
with greater linguistic economy. 
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Johnson-Laird gives a sample of mental models as they are supposedly used by people making 
inferences. 
 
According to Johnson-Laird the sentence  
"There are more a's than b's"  
is represented as 
a---------b 
a---------b 
a---------b 
a  
 
and the syllogism 
"All fascists are authoritarians. 
Most authoritarians are dogmatic." 
is represented as 
f = a 
f = a = d 
f = a = d 
f = a = d 
      a = d 
      a    d 
 
with the suggested - but incorrect - conclusion: 
"Most fascists are dogmatic." 
 
Then there are syllogism of the sort "All of the meetings were attended by at least one professor, 
etc". Euler en Venn are not able to represent these sentences. Also  "more than half of the...." 
cannot be represented this way. And yet people are able to "reason" with these data, although 
their conclusions are often incorrect from a logical point of view.   
 
Johnson-Laird mentions three kinds of mental representation: 

1. The mental models which are structural analogues of the world. They provide a basis for 
representing premises, and their manipulation makes it possible to reason without logic. 

2. The propositional representation which is the mental representation of a verbally 
expressible proposition, that can be true or false.24 

3. The images which represent objects. They are analogical so far as structural relations 
between their parts correspond to the perceptible relations between the parts of the 
objects represented, taken from a particular point of view. 

 
Johnson-Laird gives three constraints on possible models. 

1. Functionalism: The principle of computability: mental models, and the machinery for 
constructing and interpreting them, are computable. 

2. The brain is a finite organism. The principle of finitism: a mental model must be finite in 
size and cannot directly represent an infinite domain. 

3. The principle of constructivism: a mental model is constructed from tokens arranged in a 
particular structure to represent a state of affairs. 

                                                 
    24 In his article of 1980 Johnson-Laird elaborates on the distinctions between mental models and propositions. 
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When speculating about how mental models represent the world we should take into 
consideration that our view of the world is dependent both on the way the world is and on the 
way we are. All our knowledge of the world depends on our ability to construct models of it. 
Since this ability is a product of natural selection, our knowledge depends on our biological 
make-up as well as on the world as it is. 
 
There will be a structural resemblance between the world and our conception because the 
structure of a spatial model is related to the corresponding physical structure. The trouble is that 
we have no way of knowing what the structure is (or even of whether the notion makes sense) 
that is independent from the way in which we conceive the world. 
 
Johnson-Laird holds a functionalist explanation: 

1. The mind employs different levels of organization. This principle is easy to discern in 
language. Inferences from meanings lead to models of discourse. 

2. Mental processing at each level takes context into account. 
3. Processing at different levels is not autonomous, but interactive. 

The three phenomena - the different levels of organization, the dependence on context, and the 
interaction between levels of processing - all point to one essential principle that mental 
processes occur in parallel. Higher cognitive processes might depend on other forms of 
representation. 
 
 
Critique of mental models 
 
In 1989b Johnson-Laird mentions possible critiques of mental models: 
A mental model can be defined as a representation of a body of knowledge - either long-term or 
short-term - that meets the following conditions: 

1. Its structure corresponds to the structure of the situation that it represents. 
2. It can consist of elements corresponding only to perceptible entities, in which case it may 

be realized as an image, perceptual or imaginary. Alternatively it can contain elements 
corresponding to abstract notions; their significance depends crucially on the procedures 
for manipulating models. 

3. Unlike other proposed forms of representation, it does not contain variables.  
 
Another critique against mental models is that they are an unnecessary explanatory concept. 
Rips attacks mental models in a significantly titled article "Mental Muddles" (1986). He does not 
think that the mental-model hypothesis adds much to the understanding of human-cognitive 
processes: Mental models are claimed to mirror directly the structure of the domain they 
represent, but mental modelers themselves insist that models differ from both propositions and 
images. Images have less power than has been imputed to mental models. As an example, 
mental models (conceived as internal simulations) are supposed to be responsible for people's 
predictions about uncertain singular events. Moreover, mental models are seen as a "semantic" 
method that is inherently distinct from the "syntactic" method that is more usual in cognitive 
psychology. This "semantic" approach makes it difficult to find internal models to be fair 
substitutes. Furthermore, whatever mental models appear to be able to do in the line of 
explaining psychological semantics can already be done by the old notational systems. If mental 
models do have an advantage, it is more likely to be in explaining reasoning. But then, 
manipulation of mental models is not different from manipulation of mental propositions. To the 
extent that the rules that operate on the models are sensitive to these logical constants, they just 
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are inference rules. Johnson-Laird's contrast between mental models and mental logic 
disappears. 
 
 
My own criticism of mental models is the explicit form in which Johnson-Laird represents them. 
I was quite surprised by the representations that Johnson-Laird gives of syllogisms and I had a 
hard time to understand them. I found them highly sophisticated, not less artificial than Euler 
circles or Venn diagrams. Moreover, Johnson-Laird never gives account how he has obtained 
these forms of mental representations. And I am certain that only a very few people will use this 
kind of representation. 
On the contrary, Johnson-Laird rules out Venn diagrams and Euler circles as being 
sophisticated, not natural, mental models. But then, I suppose, everybody can create his own 
mental models. In a short introspective research I discovered that in cases of easy deductions I 
use the solution by using common sense. In "Human beings are mortal. Socrates is a human 
being.", I know how the conclusion will be. For other cases I might use analogies. In more 
complicated cases I imagine sorts of Euler circles and fill them with A's and B's and so on. I 
could see in my imagination how the circles overlap or not and could draw the conclusions 
easily - although not always flawlessly. But then I have had an undergraduate course in logic. I 
don't think that if your attention has never been drawn to Euler circles or Venn diagrams, you 
would be thinking of using them. 
 
In the field of (bibliographic) information retrieval an adaption of Venn diagrams is been used to 
combine key words. "Key word A AND key word B" means that A and B must appear in the 
same document. While "key word A OR key word B" means that they might appear in different 
documents. This sounds pretty straightforward. However, this procedure is not recommended, 
even dissuaded, in systems open to the general public, such as online catalogs of libraries, even 
in university libraries. Therefore, most library online-catalog systems lead the users through a 
step by step procedure. First they are asked to enter their first key word. The number of 
references is shown. Then they are asked if they want to reduce this set by entering another key 
word. Following this procedure they are not aware that the logical AND operator is used. 
 
Of course, drawing an inference in the form of a syllogism is highly sophisticated itself. People 
are seldom confronted with such inference problems. Do we ever in daily life have to make 
inferences of the sort "All artists are beekeepers. Some beekeepers ...etc"? They happen only in 
undergraduate logic class. By then we are also taught about the mental models that can cope 
with these syllogism, the Venn diagrams and Euler circles. 
 
 
 
Conclusion 
 
Notwithstanding the doubts that Johnson-Laird's inference example raises, the basic idea of 
mental models, in one form or another, might be a plausible hypothesis about the way human-
information processing works. The experiments in which Johnson-Laird speculates less about 
the exact construction of mental models show evidence that people use schemes or models, 
rather than separate bits of knowledge, to process information. This was confirmed by 
experiments done by Holland et al. (1986). Let us therefore conclude that, although we are not 
sure about the factual outline of mental models, people process information rather with models, 
schemes, or structures than with primitive symbols. 
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3.4 CATEGORIES AND CONCEPTS 
 
 
Another aspect of human-information processing is categorization. 
Categorization is a basic cognitive process. Man has learned to understand and to verbalize the 
objects and states of affairs he perceives. He categorizes while perceiving. Categorization is 
abstracting into concepts. Abstraction means to select the essentials and leave the fringes. Some 
information gets lost during categorization. This would not happen with a holistic approach in 
which all the knowledge components would be given as an integral image. Categorization is 
simply an economic solution for our cognitive tasks. 
 
 
What is a category 
 
Smith (1990) takes a category to be a class of objects that we believe belong together. Using the 
word "believe" suggests that we are dealing with a psychological concept. It turns out that the 
boundaries of categories are not that sharp and it is sometimes not clear to which category an 
object belongs. Categories can be made to assign objects with the same properties to one 
category. Suppose we assign all objects with the same weight and shape to one category. Golf 
balls and tangerines will then be in one category. The reason we prefer not to do this is because 
it does not serve any purpose. While objects that are physically not very similar like 
watermelons and - say - grains of rice are in the same category as food. This makes sense, 
because we might like to consider the various food products in terms of caloric value. Or we like 
to put them in the same category because we buy them in the same shop. Categorization is 
mainly a product of convenience.  
 
There are more pragmatic aspects that make us to use categories. 
We use categories as labels or codes for objects we have perceived or otherwise have 
experienced. It is more economic to remember objects as a member of a category then as an 
individual. Moreover, it is not only easier to remember something as a category but also to talk 
about it or to make inferences. If we know certain properties of one member of the category it is 
likely that other members have the same properties. Considering the conditions that make an 
object belonging to a certain category, that is, e.g., if we submit watermelon and rice under the 
category food it is because both are edible and can be digested by people. So if we assign caloric 
value to watermelon, which is a property of edible things, it is likely that we can do this with rice 
as well. 
 
There is also the aspect of similarity of objects in the same category. Usually there is a physical 
similarity, but sometimes not (as with watermelon and rice). Although the similarity helps a 
great deal to assign an object to a certain category in the first place, this may turn out 
dangerously. How do we distinguish between edible and poisonous mushrooms? Normally 
prototypes can be recognized as basic examples for a category. So apple will be a prototype for 
the category fruit. People tend to need more time to submit an object to a category the more it is 
defiant of the prototype, like date or raisin to the category fruit; ostrich versus robin to the 
category bird. On a higher level of cognitive faculties the word category is used for such abstract 
concepts as space and time. These categories can be regarded as prefab cognitive tools. 
Categories provide a sort of lattice to select aspects of knowledge.  
 

 35



In the philosophy of psychology categorization is brought forward by Pylyshyn (1978), who 
argues against mental images as internal representations. He prefers to use cognitive 
representations that are different from linguistic descriptions as well from images. According to 
Pylyshyn, the representation is rather selective: after seeing an object or scene we are not able to 
reproduce all the details. The same is true with reproducing a verbal report. This means that 
categorization is active. Pylyshyn uses the term structural description. Structural description 
should consist of concepts (in Kant's sense of categories of understanding). They should bear a 
referential relation to the objects they represent (rather than resembling). And they are not 
entirely part of the visual or linguistic information processing.   
In Pylyshyn's view it should be possible to explain human-information processing with machine-
information processing, but that makes his hypothesis of structural descriptions rather doubtful. 
However, his other arguments for this kind of mental representation are based on psychological 
experiments. 
 
 
A psychological approach is given by Miller (1981), who distinguishes between perceptual 
presentations and symbolic representations. The level of symbolic representation does not only 
build on the cognitive categories established at the level of perceptual presentation, but 
introduces many conventional categories that our ancestors have found useful. The two levels 
interact closely together. The symbolic representation influences the perceptual presentation in 
subtle ways - it influences what a person pays attention to and what perceptual distinctions will 
be drawn and remembered. The symbolic component does not simply label the output of the 
perceptual analyzer, but it also controls the input to it. 
 
There is no consensus whether categories should be considered as being verbal or pictorial. 
Haugeland (1981) thinks that the mind is a human-information-processing system that is not 
related to language. Language is an external mapping, while the mind, or the human-information 
processing system is a private internal mapping without relation to language. There are reports 
about children that have been deprived of any kind of language acquisition during their 
childhood but are able to tell later about their pre-language experiences. More common known 
are studies in dyslexia about persons who cannot understand words, although they do know 
them. This should prove that mental representations are not necessarily verbal. But it does not 
prove that mental representations are necessary non verbal. Further experiments have shown that 
visualisation helps the understanding of verbal texts. Verbal recall without visualisation is 
seldom accurate.  
 
 
Rosch (1978) adds an economic aspect of categories: She distinguishes two principles of 
categorization. The first is the principle of cognitive economy that implies that with a minimum 
of cognitive effort the maximum of information can be provided. The other principle is that the 
perceived world comes as structured information. This structure is already given at the human-
perceiver side by culture and language. Our perception is based upon partly what we predict or 
assume. 
 
 
 
Concepts 
 
Categories and concepts are closely related. One might say that a concept is the mental 
representation of a category.  
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Arnheim (1969) gives an account of how concepts play a major part in thinking. Thinking deals 
with objects and events only if they are available to the mind in some way. This can be 
accomplished by abstraction. 
Abstraction, which is mainly the formation of concepts, is a withdrawal from direct experience. 
This assumes a dichotomy between perceiving and thinking. One sees only particulars, but one 
thinks in generalities, and therefore, in order to think one must sweep the mind clean of 
perceptual material. Abstraction is supposed to perform this function. 
 
The study of concepts is central to every discipline of cognitive science. In cognitive psychology 
and philosophy of mind, concepts are assumed to be the basic constituents of thought and belief. 
In AI proposals about knowledge representation are proposals about concepts. Concepts 
promote cognitive economy (hence we can do with much less information). Concepts also allow 
us to bring to bear our past experience on present concerns. A third function of concepts is that 
they permit inductive inferences. 
 
Concepts can also be used in definitions or as prototypes: the best examples of a category with 
typical properties is called a prototype. Under the prototype view an object is categorized as an 
instance of a concept if it is sufficiently similar to the prototype. The similarity is being 
determined in part by the number of properties that the object and prototype share.25 
 
The similarity-to-prototype approach has been generalized to concepts other than natural kinds, 
especially artifact concepts like furniture and clothing. The phenomena for natural kinds hold for 
artifacts as well 1) people do not have fixed definitions of most artifacts; 2) the instances of any 
artifact concept vary in typicality with typical instances being easier to categorize, remember, 
name, and reason about; and 3) more typical instances of an artifact concept have non-necessary 
properties that occur frequently in other instances. 
 
 
Schemata 
 
The terms "schemata", "mental models", "mental representations", etc., are often 
interchangeably used. Some authors prefer not to use the word "mental model" at all, in order to 
avoid confusion with Johnson-Laird's theory of  mental models. Or, like most, they use the term 
that seems to be the most suitable. Some authors give different descriptions for the term schema 
and the term mental model. 
 
A schema can be seen as a format in which data get their assigned position. This enables us to 
interpret the data coherently, while irrelevant information will be ignored. In Neisser's (1976) 
view  schemata function as plans for finding out about objects and events to obtain more 
information. A schema with information can generate upon  this information another schema to 
obtain other information, e.g., increase, specify or alter. By acquiring more and more 
information the perceptual schemata alter in the same pace. So we never have the same 
perception more than once: the previous perception has altered the new schema. 
 
When we observe very young infants we must conclude that certain perceptive schemata are 
already present. When a baby hears a sound it turns his head toward the right direction. He can 

                                                 
    25 Categories can also be used as prototypes. See previous paragraph. 
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follow objects when moved or reach out to objects. So the suggestion that some schemata are 
innate is very strong. 
 
 
Language of thought 
 
Fodor (1975) conceived the idea of lumping categories, concepts, and schemata together in one 
"language of thought". He attempts to construct a mental - but non-linguistic - language, as part 
of his theory of cognitive processes. In the traditional view, the medium in which we think 
would be our native language, because that is also the language in which we express our 
thoughts. However, Fodor rejects this claim because of the existence of nonverbal organisms 
that are able to think, at least to show cognitive behavior. (Considering action, learning concepts, 
and integration of perception is also considered as "thinking".) Therefore he postulates that 
animals in general "contain" representational systems that are already active before a natural 
language is learned. Learning a language, even the first language, involves learning what the 
predicates of the language mean, that is to determine the extension of these predicates. Since 
these operations cannot be done in language (in case when learning a first language) there must 
be another kind of internal representation or language of thought as Fodor calls it. This cannot be 
learned, otherwise one falls in the pitfall of infinite regress. The language of thought must be 
"known", or at least must be present: it is innate. However, the richness of the mental 
representation and the ease by which human beings can communicate in language makes it very 
likely that their fully developed language of thought is close to natural language. In general, the 
internal representation is not a fixed one. It depends on factors such as task, motivation, and 
environment. If this environment is natural language (versus e.g., pre-language children) then 
the internal representation is correspondingly. This does not exclude mental images in pictorial 
form - these will be involved when the relevant information is given in pictures, or otherwise 
nonverbal.26 
 
Concluding remarks 
 
In this section I have elaborated on categories, concepts, and schemata, since they are believed 
to form basic elements in our cognitive faculties. The different approaches strengthen the idea 
that we process information in structures rather than in primitive elements, although the state of 
the art of the "theories" is still far from "explaining" how human beings process information. 
 
 
 
 
 
 
 
 
 
 

                                                 
    26 In Normore (1990) is explained how Ockham has already followed the same train of thoughts as Fodor about 
how a mental language is constituted. 
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3.5 PRACTICAL ASPECTS OF HUMAN-INFORMATION PROCESSING 
 
************************************************************************* 
 
An expert is one who does not have to think he knows 
(Frank Lloyd Wright). 
 
An expert is a person who has made all the mistakes which can be made in a very narrow field 
(Niels Bohr). 
 
************************************************************************* 
 
 
After having given an overview of approaches in cognitive science, I want to mention some of 
the problems in the context of practical interaction between human and machine-information 
processing. With these examples the mismatches will become more explicit. 
 
 
Human versus machine thinking 
 
Johnson-Laird (1989a) mentions five distinctions between human and computer expertise: 
 

1. Humans can treat errors not merely as cause for excuse but also as the occasion for a 
revision in their knowledge of theories. Expert systems are normally not confronted with 
their errors. 

2. Humans can do much more with their knowledge than systems can. They can use their 
knowledge in a flexible way to answer many different sorts of problems. 

3. Human experts have a large amount of tacit knowledge that they cannot readily 
articulate in words. 

4. There is a difference in semantics. Humans have knowledge about things, whereas 
expert systems merely have sets of conditional rules which are denotationally 
interpretable by the human user, but not by the program. 

5. Humans and systems make inferences using rather different mechanisms. 
And moreover, humans have mental models. 
 
If we want to make existing systems more like an expert then we have to bring expert and 
machine knowledge closer together and explore some new AI techniques. Johnson-Laird shows 
a logical rule that can be expanded by adding an exception. This is the sort of exception that is 
out of the question in traditional logics, but quite normal in common sense or expert reasoning. 
 
Consider an expert-system rule: 
"if p, then r" 
In logic no matter what is conjoined to the antecedent the resulting rule will still be true: 
"if p & q, then r" 
But: 
"If infection 1 is x and infection 2 is y, then administer penicillin" 
The rule will be rejected in: 
"If infection 1 is x and infection 2 is y and the patient is allergic to penicillin then do not 
administer penicillin, but......." 
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Now the inconsistency between the first and the second rule is only obvious at a deeper level of 
knowledge. People are used to crisscross through the various levels of knowledge, without 
noticing on what level they are. The machine is always at the same level, and if it is able to 
switch levels there must be a coordinator that keeps track. Therefore, non-monotonic logic 
would not be able to cope fundamentally with this type of reasoning. Moreover, the human 
expert has a more flexible way to deal with knowledge. He possesses knowledge, outside the 
domain that is directly involved, and this allows him to make more easily analogies and 
inductive reasoning. He possesses common-sense knowledge so he can avoid the traps of logic 
as in the penicillin case. He possesses a mixture of sensory experience and verbalized matters of 
fact. He has learned to be adaptive. 
 
 
In a reaction to McCarthy and Hayes27 in which they claim that AI programs should be written 
in a formal language, Sloman (1971) claims that, e.g., analogical reasoning, non-logical 
reasoning, and the use of non-linguistic representations, are good alternatives for formal 
languages. Specially when it comes to spatio-temporal environments. Sloman brought intuition, 
insight, apprehension of relations between universals in against the claim that only valid modes 
of reasoning are those which use logically valid inference patterns.  
Analytical philosophers would always work with the second, but they cannot account for 
intuition etc, the way people reach their conclusions. Sloman argues that true or false statements 
not only depend on their structure, but also on the facts. He also claims that changes in the 
configuration, represented in an analogical representation, can be indicated simply by moving a 
dot whereas very many changes in linguistic descriptions of relationships would be required. In 
sum: linguistic representation is not always the best representation.28 
 
 
Expert thinking and the knowledge engineer 
 
This and the following paragraphs are more explicitly about the cognitive processes in expert 
thinking. 
 
Woodward (1992) gives an overview of the knowledge-engineering process, using the KADS29 
methodology. The knowledge is acquired, transferred, captured, and modeled. This emphasis 
directs our attention away from the processes that produce, organize, and represent the 
knowledge: away from notions of learning, comprehending, and communicating. It is important 
to incorporate an understanding of cognitive processes in the development of theories of 
knowledge acquisition. The epistemic concepts must be clearly defined, the epistemic concepts 
must have a base in psychological processes and the representational formalism must reflect the 
intended epistemic and psychological meaning. Therefore, Woodward sees knowledge 
engineering  as a set of cognitive tasks rather than as a set of activities which acquires and 
models knowledge structures in one form or another. Summarizing: 
 

                                                 
    27 Some philosophical problems from the standpoint of AI. In: M.L.Ginsberg, ed. Readings in nonmonotonic 
reasoning. (Kaufmann 1987) 

    28 See also Haugeland's pictorial frames. 

    29 See for KADS, e.g., S.A.Hayward, B.J.Wielinga, and J.A.Breuker. Structured analysis of knowledge. 
International Journal of Man-Machine Studies 26 (1987) 
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1. Knowledge engineering represents an ordered collection of cognitive activities. 
2. The purpose of knowledge engineering is to use cognitive processes to produce a model. 

Emphasis is placed on the information-processing activities which lead to a final model 
rather than on the characteristics and content of the final model. 

3. Knowledge engineering is done in a cognitive environment. 
4. The cognitive environment is characterized by sites and levels of cognitive activity. 
5. An understanding of the cognitive environment acts as a basis for developing tools, 

techniques, and procedures to support and/or replace these processes. 
 
Rather than emphasize knowledge support a complementary view of cognition support as a basis 
for tool, technique, and procedure development is suggested. 
 
 
From his experiments with mental models, Johnson-Laird (1983) found data about the 
difference between conscious and unconscious knowledge. He thinks that the demarcation 
between what is accessible and what is inaccessible to consciousness is related to the difference 
between knowing that something is the case and knowing how to do something (as in Ryle). 
Knowing that p, implies that one has conscious access to the proposition that p is true. Knowing 
how to do p may depend on conscious access to some of the parameters controlling 
performance, but it also depends on low-level processors with internal operations that cannot be 
inspected by the operating system. To try to know (by the knowledge engineer) precisely what 
one is doing can be very difficult. 
 
 
Bechtel and Abrahamsen (1990) show us another approach to human cognition. The way we use 
categories determines also other cognitive activities. The way we deal with categories makes it 
not likely that our knowledge is memorized as propositions, but more as a framework of 
knowledge. That is also the way we perceive. The authors mention studies showing that when 
learning skills, students start with learning rules (in a propositional form) but once they have 
acquired expertise they recognize the situation and the action acquired as a pattern. The problem 
is that as soon knowledge must be communicated (which usually happens in language) it 
happens in propositions. But the experts have already left this "propositional" stage behind! This 
was the reason for Charniak & McDermott (1985) to consider the problems of the translation of 
mental images of knowledge into a verbal representation. They focus that experts recall usually 
cases, not rules, so the knowledge engineer should ask them about cases. 
 
 
Knowledge in context 
 
Compton and Jansen (1990) look at the relativity of knowledge. If all knowledge is only true in a 
context, then all knowledge is relative. It only exists in relation to other knowledge and there is 
no absolute underlying knowledge on which the rest of knowledge is built.  So much is clear 
from twentieth-century discussions in the theory of knowledge, that it is not likely that the 
underlying primitive knowledge is made up from sense data. On the contrary, in normal cases 
what we perceive depends on the contexts in which the perception takes place. This is for the 
building of knowledge-based systems a great problem. 
 
But even when it would be possible to specify underlying knowledge, the experts will always 
give knowledge in context, with rules that conflict, subsume, overlap etc. If the knowledge 
engineer insists, the experts can express knowledge that is more complete, consistent and 
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coherent. Although the danger might be that they are constructing something, making something 
up to satisfy the knowledge engineer. It is even suggested that the knowledge that experts 
provide is essentially a justification of why they are right, not the reasons why they reach this 
right conclusion. 
 
 
Cognitive emulation 
 
More about human-expert thinking is given by Slatter (1987): 
Expert performance depends on large amounts of domain knowledge. 
Experts know when a problem is outside their area of competence, or when to break general 
rules in order to handle exceptions. 
Experts can reorganize their knowledge into more appropriate forms. Experts are partly capable 
of reflecting on their own cognitive processes (meta-cognition), and about their own state of 
domain knowledge (meta-knowledge). Experts' reasoning and knowledge are frequently 
inaccessible. Expert cognition lacks both computational and representational power. People's 
awareness of their own mental processes is rather limited. The proceduralization of knowledge 
and automatization of cognitive skills, that accompany the development of expertise, serve to 
make expert thinking even less accessible to introspection. The cognitive correlates of expertise, 
whether beneficial or otherwise, are essential domain-specific in effect. Thus outside his 
specialist area any cognitive advantage the expert may have enjoyed inside the domain quickly 
disappears.  
 
Another underlying theme in the development of expertise is a greater reliance on pattern 
recognition and memory (stored knowledge) at the expense of deductive reasoning. At another 
level, though, experts often show an impressive ability to reflect on, and flexibly control, their 
high-level task strategies. But precisely how automated skills and control strategies combine in 
expert problem solving remains poorly understood. Tacit knowledge refers to the tacit inferences 
and global knowledge that provide a non-articulative framework for human reasoning, including 
expert reasoning. Slatter illustrates this with knowledge-oriented approaches in knowledge 
acquisition, like e.g., the levels of knowledge acquisition in KADS. 
 
The failure to analyze knowledge at any of these intervening levels - in particular, the 
epistemological level - may be at the root of several knowledge-engineering problems. From 
linguistic data to implementation language is too large a gap to have to bridge in a single step; 
and valuable additional knowledge may be lost by not analyzing at intermediate levels. 
Epistemological analysis can make explicit types of knowledge that are represented in expert 
cognition only in a highly proceduralized, highly inaccessible form. That is, for the expert such 
explicated knowledge may not in fact exist. Nevertheless, when one attempts to build expert 
systems one might take account of the following 
five key issues: 

1. The extent to which the standard three-element30 system architecture of expert systems 
corresponds to the architecture of human cognition. 

2. The psychological plausibility of particular knowledge representation formalisms and 
systems architectures. 

3. The requirements to make expert systems compatible with the limitations of human-
information processing. 

                                                 
    30 Static knowledge, dynamic or temporal knowledge, and knowledge to perform inferences. 
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4. The explicit representation of knowledge. 
5. The handling of uncertainty in expert systems inspired by cognitive psychology. 

 
 
Slatter concludes that, although there is no sound and commonly accepted theory in cognitive 
psychology, the best way is to adopt an approach based on an information-processing view of 
human cognition. 
 
 
The conceptual model 
 
An example of how mental models can explain our dealing with systems, such as a calculator, is 
given by Norman (1983). He distinguishes: 
 
The target system (= the system that the user is learning):  t. 
The conceptual model of that target system (invented):  C(t). 
The user's mental model of that target system (natural): M(t). 
The scientist's conceptualization of that mental model: C(M(t)). 
(These are often not verbally elicited.) 
 
The conceptual model is taught to the user and must fulfill 3 criteria: Learnability, functionality, 
and usability. 
 
M(t) reflects his belief about the physical system acquired through observation, instruction, 
inference, etc. There should be an observable correspondence between the system and C(M(t)). 
Also the C(M(t)) must have a model of the relevant human-information process and knowledge 
structures that make it possible to predict and understand the system. As a matter of fact, 
Norman claims that the major purpose of a mental model enabling the user to predict the 
operation of a target system. Although, conceptual models are devised as tools for the 
understanding or teaching of physical systems. Mental models are what people really have in 
their heads and that guides their use of things.  
 
Apparently, it is important for us to distinguish among several different kinds of models and 
conceptualizations and the different situations in which they are used. Our conceptualization of a 
target system should not be confused with the mental model that a user creates of that system. 
The designer's conceptualization may also differ from the image that the system itself presents to 
the user. In the ideal world, the system's image will be consistent with the designer's 
conceptualization, and the user's mental model will also be consistent with both. 
 
 
If we extrapolate these distinctive models to the building of expert systems it might be like this: 
 
- In this case the target system (t) is the task that must be implemented in an expert system or 

coherent part thereof. 
- The conceptual model of that system C(t). This is the way the task is conceptualized in the 

expert system. This conceptual model must also fulfill the criteria Norman mentions for his 
calculator: learnability, functionality, and usability. In case the expert system acquires 
special features like deductibility, fitting in the overall design of the system, these must be 
added. 

- The user's mental model of that task is M(t). 
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- The expert conceptualization is C(M(t)), as Norman says, this is often not verbally 
expressed. 

 
The assignment of the knowledge engineer, who has a mental model M'(t) of the task, is  

1. to elicit the expert's conceptualization, and 
2. to equalize the mental model of the domain expert, of the future user and his own. 

From these data he can construct his conceptualization of the mental model C'(M(t)), which 
should be on par with the domain expert and the requirements of the expert system. 
 
 
Summary 
 
Knowledge acquisition and cognitive modeling are necessarily interwoven. Knowledge 
acquisition shapes cognitive modeling because operational knowledge contains assumptions and 
directions for its use, that is, an implicit processing model. In return, problem solving models 
can profoundly shape knowledge acquisition by providing a framework for the articulation and 
creation of domain expertise.  

 

3.6 CONCLUSIONS 
 
 
In sections 3.3 and 3.4 I have shown views of human cognition from a theoretical point of view. 
In section 3.5 I have mentioned problems of human-information processing from a more 
practical standpoint. The last paragraphs were focused on the cognitive skills of experts. In this 
section some conclusions are drawn and several proposals of advice for the knowledge engineer 
are given. 
 
 
1. We cannot observe the world as it is without interpreting what we experience in our own way. 
The relation between the world and the knowledge about the world is a contingent and 
changeable one. 
 
 
2. Human-information processing deals with the acquisition, representation, and use of 
knowledge. How this is done is still not known and thus the theories about them are still 
hypothetical. 
 
 
3. The physical-symbol hypothesis would lead us to a simple solution of the mismatch problem: 
human-information processing is an operational, researchable task. There is a single internal 
representation of information in the mind, where knowledge is made up from primitive 
elements. Hence, there is no difference between the human and digital-information processes 
and there is no mismatch. The practice of the knowledge engineer, however, proves this to be 
untrue. 
 
 
4. Specially from Norman we learn the shortcomings of man's ability to deal with knowledge. 
People do not use mental logic, but mental models that are structural analogue to the world, or 
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that are propositional, or pictorially analogous. The idea is that all this is computable, but also 
that our knowledge of the world is according to our ability to structuralize it. 
 
5. The way Johnson-Laird presents his mental-models theory is not very convincing. On one 
hand, he postulates very precisely described but highly hypothetical representations in the case 
of inference making. On the other hand, he leaves much room for speculation when it comes to 
the way people make mental representations in general. I doubt very much the form in which 
Johnson-Laird presents them. 
 
The most useful lesson that can be drawn from Johnson-Laird's work seems that mental models 
are black boxes in the human mind. 
We know that they exist, but we don't know how they work. 
People use their own mental model(s) according to their verbal or perceptual abilities and 
preferences. They also are dependent of education, social context, and background. 
 
 
6. It is also plausible that people have the ability to use categories as frameworks or schemata for 
perception and representation. They use concepts to form generalizations, to remember, to learn, 
to use analogue reasoning, to explain, etc. 
However, the situation is similar to the use of mental models, we do not know much about the 
way people deal with categories and concepts. Like mental models are subject dependent, so are 
categories and concepts. They are subjective and uncontrollable. One categorization of the same 
perception is interchangeable for any other, depending on the point of view. Categorization is, 
while perceiving, abstracting into concepts. It is a pragmatic and economical way to deal with 
information. 
 
 
7. Schemata, or organized structures, seem to be used for storing information, but it is far from 
clear how. 
 
 
8. When looking at the practice of knowledge engineering, more differences between man and 
machine are obvious. Man is flexible when dealing with knowledge. He has common sense 
which he uses most of the time without realizing. He uses a large stock of perceptions as well 
states of affairs. His knowledge is processed in patterns or schemata, rather than in atoms. And 
moreover, he has insight and intuition. Until now, it has been impossible to formalize or even 
structuralize these forms of knowledge. 
 
These findings correspond with the assumptions of the mismatch hypotheses. So far, we have 
only looked at the human side of the "match". In chapter 4 some knowledge-representation 
systems will be reviewed. Only then final conclusions about the mismatches can be drawn. 
 
 
Advice for the knowledge engineer 
 
In the knowledge-acquisition process, the knowledge engineer should be familiar with these 
aspects and possess a fair amount of psychological insight, in order to be able to ask the 
following questions. 
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In the initial state of knowledge acquisition, the mental models of the domain expert should be 
revealed:  
 
Does he have a verbal, pictorial, or analogue representation of his knowledge?  
In what way does he structuralize his knowledge when he communicates about it? 
How much common-sense knowledge, intuition, and insight does he use? 
Are there particular structures he uses preferably, such as telling cases, drawing flow charts, etc? 
 
 
In summary, the domain expert's mental models of his expertise must be revealed before the 
actual knowledge-acquisition process can start. The psychological theories that could be of 
assistance are still in their infancy, but the foregoing attempts of theory formation have at least 
pointed out the direction in which expert-system development should continue.  
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CHAPTER 4 KNOWLEDGE REPRESENTATION 
 

4.1 INTRODUCTION  
 
 
In the previous chapter human aspects of knowledge have been shown. In order to make both 
ends of the mismatch problem clear, the topic of this chapter is about knowledge on the machine 
side.  
 
Since the early years that expert systems were developed, something called "knowledge 
representation" has been a subject of study. Knowledge representation is the description or 
image-like reproduction of a state of affairs. In AI programs the way knowledge is represented is 
crucial for the functioning of the program. The program should be able to draw sound inferences 
and true and meaningful conclusions. It also must be able to use the knowledge in an intelligent 
way. These aspects are the main guidelines for a well-formulated knowledge representation. 
 
 
This chapter's outline will be as follows:  
 
In the next section I shall mention the various methods of knowledge representation. This is 
necessary, first, to make the reader familiar with the aspects that are involved in knowledge 
representation. Secondly, it is interesting to see how some theories about knowledge 
representation are developed with the idea of human-information processing in mind, while 
others (e.g., logic) regard knowledge representation in terms of powerful inference tools. 
 
This is followed by some of the debates about these methods. As in most young sciences, 
debates around very basic topics are necessary to pave the way for further research. I have 
chosen for the logic versus knowledge controversy because it illuminates the mismatch problem 
from the side of knowledge representation well. 
 
The existence of knowledge representation as an isolated subject might lead us to wrong 
directions. In 1.4 I have followed Buchanan who says that knowledge acquisition is an ongoing 
and interactive process in the building of an expert system. From these observations one might 
conclude that knowledge representation is also a theme that must be regarded in connection with 
other subjects in AI and the expert-system-building enterprise. In the last section I will elaborate 
on some new methods in knowledge representation that try to overcome the isolation problem 
and also look promising regarding the mismatch problems. 
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4.2 REPRESENTING KNOWLEDGE31 
 
 
"Knowledge" in various forms of representation consists of "data" in various forms of 
representation. Data are only strings of signs. Data become only knowledge when some agent 
actively uses the data by giving meaning to the signs. This use can be facilitated according to the 
structure of the data representation. 
 
The distinction between "data" and "knowledge" is not always sharply made. In the last part of 
this section I will go further into this matter. But first, I shall mention the various methods of 
knowledge representation: logic as representation and procedural and declarative representation. 
 
Three kinds of knowledge manipulation can be distinguished in AI: 

1. Knowledge acquisition;  
2. Retrieving relevant knowledge from the database; 
3. Reasoning about it. 

These acts are goal directed in order to solve problems. 
 
New data can be added unstructuredly, but it is much better for future retrieval to classify the 
data and adapt or link them with the existing data. In this way it is easier to retrieve knowledge 
and to reason about it. 
 
The different kinds of representation reflect the different kinds of reasoning: 
Formal reasoning on a syntactic level needs logic as base for representation, but analogous 
reasoning or inductive reasoning can only be done on a different level in which adequate 
representations are available. Meta-level knowledge keeps track of the underlying reasoning 
processes and relevant knowledge, like humans do. 
 
 
Logic as representation 
 
Logic has been one of the first modes of knowledge representation in AI. Propositional and 
predicate calculus are being used. Also other kinds of logic, that can express more complicated 
sentences, are used. 
 
For formal reasoning the representation of facts is made in the form of statements or, better, 
sentences. Logic is about the form or syntax of statements. The constituents of the sentences can 
be manipulated so that inferences can be made. All that can be said about the sentences is that 
they are true or false. 
 
An extension of proposition logic is predicate calculus. With the use of quantifiers one can make 
inferences about individuals or sets of individuals. Predicates or functions can be used in 
combination with individuals to represent more complicated expressions, like "city A is between 
city B and city C". 
 

                                                 
    31 In this paragraph I rely upon the chapters on knowledge representation in Barr, Cohen, and Feigenbaum (1981 
and 1989) and in Rich (1983). 
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Other kinds of logic are also used for knowledge representation. 
E.g., non-monotonic logic that allows to alter statements or to add statements that might 
contradict others. 
In probabilistic logic uncertain statements can be represented. 
Fuzzy logic, although not often used in AI programs, can represent properties that are not 
sharply defined. 
Representation of beliefs or sets of beliefs can be given in belief spaces. 
 
Logic programs are very useful as processing tools for solving semi-mathematical problems 
(e.g., the tower of Hanoi puzzle). It is, however, not a way to represent knowledge when it 
comes to a heuristic approach to the database. Another disadvantage is that knowledge can 
seldom be so neatly described that it fits in a logic representation.  
 
 
Procedural representation 
 
In order to implement heuristic searching, procedural representations in the form of AI 
programming languages (like LISP) were developed together with extensions in the form of 
production systems. These systems are made of production rules of the form: 
"If <condition> (and <another condition>), then <action>". 
The context, or data, or short-term memory buffer, provides the data for the "if" condition. The 
whole procedure is directed by an interpreter. 
 
Production systems are specially apt to represent knowledge about "how to do". Examples can 
be found in speech-understanding systems and (medical) diagnosis systems, e.g., MYCIN. 
Because the rules can be changed independently from the context database the flexibility of the 
system is better than in network-like systems. In larger systems, like in procedural 
representation, efficiency and control might decrease. 
 
 
In sum, logic can hardly be considered as an adequate means of representation. It is only a 
representation of form. The content or meaning is lost. In the procedural representation is, in 
addition to the form (If...then...), also represented the content.  
 
A more structured form of meaning representation can be found in networks, frames, and scripts. 
 
 
Declarative representation 
 
Networks, frames, and scripts are representations that describe objects and their properties. 
These representations are also known as slot-and-filler structures. By using the human memory 
as a model, semantic networks give more structure to databases. 
In a semantic network it is possible to connect various facts into one scheme of representation. It 
is easy to add new knowledge to the network by adding objects in nodes and the relations in 
links. These new facts inherit the properties of the node to which they are attached. For special 
cases extra information can be added without influencing the other nodes. 
 
The value of such systems can be augmented when the words that are used have a sort of 
meaning frame. Wilks (1977) uses a set of semantic primitives that defines the words that can be 
submitted to them. That means that main properties are defined specially for translation. A 
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system, based on the same principle, but with more applications such as the description of 
action, can be found in Schank and Abelson's (1977) conceptual-dependency theory. 
 
 
To grasp complex bodies of knowledge, the idea of representing them in frames or scripts has 
been developed. According to their proponents, representing events as scripts is similar to the 
way humans organize their knowledge. Whatever this may be, it is certainly the case that this 
form of organization of the knowledge has its advantage over other systems: "chunks" of 
knowledge are easy at hand for recall, inference, and in particular for expectations. Frames are 
pieces of knowledge, built up with slots that have to be filled with specific knowledge. The 
frames form together a framework. An example is the Restaurant Frame in which typical 
restaurant situations are represented. The slots are filled with possible objects and procedures 
and usually with a default value. Whereas frames consist of declarative knowledge, the slots 
might be filled with procedures (if...then...). 
 
Frames can be compared with semantic nets, where semantic nets operate on a semantic level, 
frames can be regarded as being on a pragmatic level. This means that frames are able to deal 
with the contextual use of language.  Frameworks that represent story-like events are called 
scripts. Scripts represent common sense knowledge about certain events. They can also 
understand stories, written in natural language, provided that the script and the story are about 
the same topic. 
 
 
Analogical representation 
 
Direct or analogical forms of representation, like maps, diagrams, and models, are schemes in 
which properties such as relations are given as structures. Such representations were already 
used in Gelernter's Geometry Theorem Prover and other problem solvers with graphic or 
maplike data. Analogical reasoning is often used in learning programs. 
Presently the above mentioned forms are still the basic methods in knowledge representation. 
Over the years many additions and refinements have been added. They vary according various 
aspects of knowledge. Some might emphasis the recognition of natural language, others claim 
better access to the system. Some systems favor logical consistency over heuristic searching. 
There are also systems with various levels of knowledge to keep control over the process.     
 
In section 4.3 I will go deeper into the discussions about the various methods of knowledge 
representation. 
 
 
The knowledge level 
 
The practice of knowledge representation with the methods mentioned above, looks very much 
straightforward. However, if we focus on the philosophical issues, we see the same problem 
occurring with "knowledge" as we did with "understanding" in chapter 2. Therefore this section 
will be concluded by some remarks on the "knowledge level", an interesting view on the 
data/knowledge distinction, formulated by Newell in 1982. 
 
To put the various knowledge representation methods in the right view for the mismatch 
problem, it is necessary to say something more about data and knowledge. Data can be described 
as passive and uninterpreted "chunks" of symbols. Data can be distinguished from information 

 50



which, though also passive, is interpreted, like information we find in books. Knowledge is an 
extra dimension to information. It is active in the sense that it can transform one or more bits of 
information into new information, depending on the goal. Knowledge is data plus their 
processing. In all knowledge-representation systems data and information are represented on a 
symbol level. Knowledge, however, in this interpretation does not exist on this level. For that 
reason Newell (1982) introduced the knowledge level as the principle of rationality, that is in 
terms of a hypothesis, because its existence is so far only a point of view: 
 
"There exists a distinct computer-systems level, lying immediately above the symbol level, which 
is characterized by knowledge as the medium and the principle of rationality as the law of 
behavior." (p.99) 
 
New in this approach is the appeal to "rationality". Quoting Newell's explanations: 
 
" - Knowledge is intimately linked with rationality. Systems of which rationality can be posited 
can be said to have knowledge. It is unclear in what sense other systems can be said to have 
knowledge. 
- Knowledge is a competence-like notion, being a potential for generating action. 
- The knowledge level is an approximation. Nothing guarantees how much of a system's 
behavior can be viewed as occurring at the knowledge level. Although extremely useful, the 
approximation is quite imperfect, not just in degree but in scope. 
- Representations exist at the symbol level, being systems (data structures and processes) that 
realize a body of knowledge at the knowledge level. 
- Knowledge serves as the specification of what a symbol structure should be able to do. 
- Logics are simply one class of representations among many, though uniquely fitted to the 
analysis of knowledge and representation." (p.100) 
 
Apparently, the knowledge level is conceived as an agent with bodies of knowledge and is goal 
oriented. Therefore it can be regarded as an intentional level like Dennett and Searle32 do. 
Actually, they mean something slightly differently, but it might help in understanding what 
Newell means by his knowledge level (see Newell 1993).  
First, he does not hesitate to focus on "intelligence": 
A system can only exhibit intelligent behavior if it is described in terms of a symbol and a 
knowledge level. From this follows the principle of rationality: 
 
" If an agent has knowledge that one of its actions will lead to one of its goals, then the agent 
will select that action."  (p.102) 
 
So his definition of knowledge is: 
 
"Whatever can be ascribed to an agent, such that its behavior can be computed according to the 
principle of rationality." (p.105) 
 
Finally, Newell defines representation as knowledge plus access to that knowledge. A 
representation is the structure at the symbol level that realizes knowledge, i.e., it is the reduction 
of knowledge to the next lower computer-system level. 

                                                 
    32 see Daniel C. Dennett, The intentional stance (MIT Press (1987) 1989) and John R. Searle, The rediscovery of 
the mind (MIT Press 1992). 
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In Newell's definition knowledge is still an abstract concept, but Clancey (1989 and 1991) tries 
to place the knowledge level in a better perspective. He states that only by observing a knowing 
agent and the description of that knowledge, knowledge turns into a state that can commonly be 
observed. In other words, knowledge-level descriptions are relative to the observer's point of 
view: 
Interpretation is done by an outside agent. Therefore, knowledge representation is not the 
knowledge of the agent, and not of the observer. It is a representation of the observer's 
knowledge of the agent's knowledge. Or in terms of knowledge engineering: representation is 
the knowledge engineer's knowledge of the domain expert's knowledge. I return to this approach 
in chapter 5. Here it is sufficient to say that Clancey's investigations on the base of Newell's 
distinctions result in guidelines which expert-system builders should follow before they proceed 
to the stage of implementation. 
 
In this section an overview of the possibilities in knowledge representation was given. In the 
next section I go deeper into the controversies that have occurred between the various ways of 
knowledge representation. 
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4.3 THE DEBATES 
 
 
According to the Handbook of Artificial Intelligence33 "...there is no theory of knowledge 
representation." That is, questions why some representations are better for certain tasks while 
others are not, are still unsettled. In the last 13 years after this statement was made, it is still not 
clear why some representations are better than others for certain tasks. Although many 
publications about topics on theoretical aspects of knowledge representation have been 
appeared. 
 
In this section I give a sequel to the previously mentioned methods on knowledge representation 
and the debates that were caused by them. The choice of these debates is also motivated by my 
interest for the mismatch between human and machine knowledge.  
 
 
The knowledge-representation hypothesis 
 
Smith (1982) formulates the following hypothesis: 
"Any mechanically embodied intelligent process will be comprised of structural ingredients that 
a) we as external observers naturally take to represent a propositional account of the knowledge 
that the overall process exhibits, and b) independent of such external semantical attribution, 
play a formal but causal and essential role in engendering the behaviour that manifest that 
knowledge." 
 
Knowledge of any sort is always theory relative. The representation hypothesis implies that 
these theories must be explicit. One should consider the fact that computers do not have our 
implicit (tacit) understanding. As stated in the previous section, it is more and more stressed that 
the knowledge is at the observer's side. Moreover, knowledge is created by the observer and is 
itself open to interpretation. This stress of construction of knowledge leads to the constructive 
view of knowledge. 
 
In the light of these remarks I want to present one of the hottest debates in AI: logic versus 
knowledge representation. 
 
 
Logic versus knowledge 
 
A common description of logic is the study of truth preserving inference. Defining a logic is 
given by a precise specification of the meanings of the well-formed expressions of the logical 
language. This is done in the semantics of the logic. The meaning of a sentence is the truth value 
of the sentence, that is, whether the sentence is true or false. Thus, given a possible state of 
affairs in the world, the semantics determines whether a sentence is true or not. 
 
Logicians, originally, wanted a language such as Frege's within which they could express a set 
of basic mathematical truths or axioms, from which all the rest could be generated by applying a 
finite set of precisely prescribed rules of proof that could be shown to be truth-preserving. The 

                                                 
    33 Barr, Cohen, and Feigenbaum 1981, Vol 1, p. 147 
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languages of the various types of logic were not meant for general use. Their developers did not 
claim these were universal symbolisms for unrestricted application - that is that everything 
thinkable could be adequately expressed in them. 
 
Thus, as a representational formalism, a logical language is just a tool. The effectiveness of this 
tool in carrying out a certain task depends on how it is used. This role of logic as an analytic tool 
became widely recognized. But many workers in AI rejected the view that logic should also be 
used as a knowledge-representation language. Applying the definitions of Newell (1982), an 
intelligent system's behavior is governed by a principle of rationality according to which it will 
always select those actions that will lead to the attainment of one or more of its goals. 
Thus, Newell says that logic is not even the appropriate formalism at the symbol level. He 
concludes this because of the efficiency problems that led to the failure of the early experiments 
with the use of logic for knowledge representation.  
 
It is true that logic can give a greater expressive power because there is a large number of logics, 
each of which allows the formulation of a special type of knowledge. But not all kinds of 
knowledge can easily be implemented in a certain kind of logic. Notably the predicate calculus, 
the tool of the mathematical logicians, is basically a context-free formalism; in other words, the 
meaning of an expression is independent of the context in which it is uttered. 
Many of our everyday inferences are also not deductive. In fact, many different kinds of 
reasoning can be named: inductive, model-based, probabilistic, approximate truth, abduction, 
which is inference to the best explanation, analogical, default, reducing the number of 
independent phenomena, counterfactual, etc.34 
Predicate calculus also cannot make distinctions concerning the closeness of an answer to the 
truth. Therefore the "notational efficacy" of predicate logic is questioned as will be shown in the 
following paragraph. 
 
 
Notational efficacy 
 
Way (1991) discusses in more detail the argument of notational efficacy. She says that the 
notational efficacy of a representation language concerns not only the actual shape and structure 
of the representation with respect to its computational efficiency, but also how easy the language 
is for people to understand and work with (conceptual efficiency). According to Way two 
aspects of knowledge representation must be considered: 
 
1. Expressive adequacy has to do with the expressive power of the representation - that is, what 
it can say. Two components of expressive adequacy are the distinctions a representation can 
make and the distinctions it can leave unspecified to express partial knowledge.  
 
2. Notational efficacy concerns the actual shape and structure of the representation as well as the 
impact this structure has on the operations of a system. Notational efficacy, in turn, breaks down 
into such components as computational efficiency, conceptual clarity, conciseness of 
representation, and ease of modification. 
 
Way endorses the claim that logic does not capture human-reasoning processes. The assumption 
made by the logicians that a significant amount of thought is deductive is not true. 

                                                 
    34 See McDermott. A critique of pure reason. Computational intelligence (3) 1987 
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In general, many researchers argue that the structure of semantic networks provides more 
information and facilitates inferences better than a corresponding representation in first-order 
predicate logic. Semantic networks explicitly organize information according to a generalization 
scheme, something which is not clear from a list of implications. Or, as Zadeh (1984) 
formulated it: logic is of limited or no relevance to AI. First order logic is too limited to be able 
to deal effectively with the complexity of human cognitive processes. They use ad hoc 
techniques and heuristic procedures.  
 
 
Logic versus language 
 
Another difficulty arises in translating natural language into logic. Interesting is that there have 
never been any claims, at least from logicians, that everything sayable in a natural language 
could be expressed in predicate calculus. Arguments to the contrary were always countered by 
"true" logicians, such as Bar-Hillel (1970) who has repeatedly expressed his amazement about 
the fact that during 2300 years logic has submitted so little to a better formal "grip" on natural 
language.  
 
Also Israel and Brachman (1986) mention this problem: 
Programs for formulating formal semantic account for natural languages use formal languages 
that are different from that of first-order logic, e.g., Montague or Barwise and Perry's situation 
semantics. They do not know of any attempt that a fragment of natural language has been 
semantically analyzed by way of a systematic translation into a standard first-order language.  
 
 
 
Conclusion 
 
I conclude recalling Buchanan and Smith' (1988) definition of an expert system: 
 
"An expert system is a computer program that a) reasons with domain-specific knowledge that is 
symbolic as well as mathematical; b) uses domain-specific methods that are heuristic (plausible) 
as well as algorithmic (certain); c) performs as well as specialists in its problem area; d) makes 
understandable both what it knows and the reasons for its answers; and e) retains flexibility." 
 
Even this definition makes it plausible that logic  is at most a subsystem of an expert system. 
What these sections should have made clear is that the variety of possible other subsystems is 
still large. This conclusion can also be elucidated with the help of the trade-off between the 
expressiveness and the tractability of a knowledge-representation system, as explained by 
Levesque and Brachman (1985). 
Neither expressiveness nor tractability by itself can determine the value of a representation 
language. There is no single best language. 
 

 

4.4 FRAMES 
 
One of the conclusions of chapter 3 is that humans do not use any kind of formal logic in order 
to reason. Rather, they use mental models and that sort of pattern-like schemata. 
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In the previous section I have given enough reasons from within AI for choosing a method of 
knowledge representation that is more than just logic. From these points of view it seems 
reasonable to focus our attention to knowledge-representation methods that show more - what I 
would call - semantic power. Therefore, I shall discuss frames in more detail. They were earlier 
described as more structured forms of semantic representation. Specially the development of the 
frame-based language KRL has initiated the success of frames as knowledge representation for 
knowledge-based systems. In this section frames in general, KRL, and its successors will be 
discussed. 
 
Normally "frames", "schemes", "schemata", and sometimes "semantic networks" are used 
without distinction. Sometimes, authors do distinguish them to stress technical differences. 
 
 
Quillian 
 
Quillian (1968) introduced, as one of the first, semantic networks. His basic idea was to 
construct a formal representation that could simulate human-semantic memory. In his account of 
semantic schemes we find nodes or units that represent objects and links that represent 
information about the nodes. In his PhD dissertation Quillian applied the semantic-network ideas 
in the field of natural-language understanding: "What sort of representational format can permit 
the meanings of words to be stored, so that a human-like use of these meanings is possible?" 
Unfortunately Quillian's semantic-memory nets, as he had called them, never served the purpose 
that was intended. 
 
 
Minsky 
 
Minsky's contribution (1975) is an early theoretical account of frames. He defines a frame as a 
data-structure for representing a stereotyped situation. A frame is like a network of nodes and 
relations. The top levels of a frame are fixed, and represent things that are always true about the 
supposed situation. The lower levels have terminals, or slots, that must be filled by specific 
instances or data. Collections of related frames are linked together into frame-systems. Different 
frames of a system share the same terminals; this is the critical point that makes it possible to 
coordinate information gathered from different viewpoints. The frame-systems are linked by an 
information-retrieval network. Thus, when one frame does not fit the situation, another frame 
that does fit may be found. Minsky argued that an important function of a frame is to represent a 
stereotype. The stereotype is an intuitively plausible model of the process by which people fill in 
information about a situation that is not explicitly mentioned.  
 
In an appendix35, Minsky states that the development of a well functioning knowledge base is a 
major intellectual research problem. 
He mentions several points of concern ( which are partly also reasons why not to use logic): 

1. Formalizing the required knowledge. Besides formalizing data also the system must 
know meta-knowledge facts which are usually common sense, such as cause-and-effect, 
time, purpose, locality, and types of knowledge. 

                                                 
    35 This appendix is sometimes omitted in later editions of this article. 
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2. Relevancy and monotonicity. The system must be able to operate with relevant data. It 
must also be able to select these data in the first place. (This is what is later discussed as 
the "frame problem" or the "qualification problem".) 

3. Procedure-controlling knowledge. A simple deduction cannot deal with a non-transitive 
concept like nearness: (A near B) & (B near C ) does not imply (A near C).  If we want 
to find out about the distance between A and C something like quantification should be 
applied. The point is that a fixed system can prevent the drawing of simple conclusions.  

4. Consistency and completeness. These properties are not necessary for the goals of an 
intelligent system. 

 
To summarize: 

1. Logical reasoning is not flexible enough to serve as a basis for thinking. 
2. Minsky doubts the feasibility of representing ordinary knowledge effectively in the form 

of many small, independently true statements. 
3. We need direct ways for linking fragments of knowledge to advice about how they are to 

be used. 
4. Instead of declarative statements we need procedural and structural descriptions. 
5. Frames, chunks of knowledge, can represent knowledge better than logic can. 

 
 
Minsky's theory of frames is based on his view of human thinking. 
Thinking begins first with suggestive but defective plans and images that are slowly (if ever) 
refined and replaced by better ones. When one encounters a new situation (or makes a change in 
one's view of a problem), one selects from memory a structure called a frame. This is a 
remembered framework to be adapted to fit reality by changing details as necessary. Minsky 
does not distinguish between human and machine thinking because neither of them have a 
soundly explaining theory. 
 
 
Quillian's and Minsky's approaches, among others, are based on human-information processing. 
Some of the networks have been proposed as models of human memory and meaning 
representation, while others are used as components of language understanding and reasoning 
systems. 
 
 
The epistemological level of frames 
 
Implementing frames as working systems has encountered difficulties. Brachman (1977) shows 
the shortcomings of these nets in general. He proposes a better epistemological foundation. The 
notation of nets does not give a correct reflection of the meanings of the nodes. Therefore, he has 
tried to add more information and structure explicitly for semantic nets. This work can also be 
seen as the predecessor of KL-ONE (see p. 60). Moreover, Brachman distinguishes five levels of 
semantic networks:  

1. The implementational level; the level of atoms or mere data, without semantic content. 
Questions like "What data structures are best suited for representation" are treated on this 
level. 

2. The logical level; the propositions in logical representations, with as extra feature the 
network topology. Thus, nodes represent predicates and propositions, links represent the 
logical relationships between these nodes. 
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3. The epistemological level; this level was specially created by Brachman to describe 
concept types and knowledge structures. 

4. The conceptual level of semantic or conceptual relations. The relation with natural 
language is close. Nodes represent word-concepts like object, action, or event types. 

5. The linguistic level, which is natural language itself. 
 
The formal structure of conceptual units and their relationships forms an epistemology. This 
epistemological level lies between the logical and conceptual level, that accounts for the internal 
structures of concepts, their relations and inheritance. 
The epistemological level in semantic networks can be described as the set of concept types, 
inheritance, and structuring relations. This epistemological level should not be confused with 
Newell's knowledge level which is abstract and relative to the observer. 
The epistemological level is independent of the content of the concepts. Concepts represent 
objects, specially their intensions. 
 
 
 
The declarative - procedural controversy 
 
In the same year as Minsky (1975) wrote his theoretical account of frames, Winograd and 
Bobrow attempted to develop a frame-like representation language, KRL (see Bobrow and 
Winograd 1977). Before KRL was developed another debate was going on in the AI 
community. It was about the declarative - procedural controversy. Terry Winograd has 
straighten out this debate in his 1975 article. 
 
At that time, one could divide the AI community into people who claimed that our knowledge is 
mainly "knowing that" and others who hold that our knowledge is mainly "knowing how". The 
declaratives state that we think in data-like structures and the procedurals believe that we think 
in procedures. 
 
As Hayes (1979) will argue later, Winograd acknowledges here already that in programming 
languages, like LISP, procedures are taken as data. Or, the other way around, data can be 
regarded as procedures. So, actually there is no distinction between procedural and declarative 
statements. 
Winograd aims here at the mismatch problem, because he asks the question what we would gain 
with either of these viewpoints. 
"What kind of representation do people use?", and "What kind of representation is best for 
machine intelligence?" Or better: "What kind do both use?" 
 
The different benefits of declarative and procedural representations are basically that factual 
knowledge can easily represented in declarative statements and procedures in procedural 
representations respectively. Thus, both representations, when implemented, work satisfactory in 
their way. Yet, declarative statements are flexible and economical in use, whereas procedures 
offer the advantage of interaction between chunks of knowledge and thus more reasoning power. 
So Winograd's question was how representations can take advantage of both the abilities of 
decomposing knowledge in "what" and in "how" and also use the reasoning power. His answer 
was that this would be possible in frames as representation. From that moment a steady process 
of constructions of knowledge-representation languages started. Therefore I go more into the 
details of this process.  
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KRL 
 
First of all, Bobrow and Winograd (1977) developed KRL, a representation language using 
frames. It is one of the first systems that mixed procedural and declarative knowledge. 
It was originally built as part of a natural-language-understanding system. Its significance lies in 
the basic intuitions about how knowledge should be organized (p.5): 
 

1. Knowledge should be organized around conceptual entities with associated descriptions 
and procedures. 

2. A description must be able to represent partial knowledge about an entity and 
accommodate multiple descriptors which can describe the associated entity from 
different viewpoints. 

3. A method of description is a comparison with a known entity, with further specification 
of the described instance with respect to the prototype. 

4. Reasoning is dominated by a process of recognition in which new objects and events are 
compared to stored sets of expected prototypes, and in which specialized reasoning 
strategies are keyed to these prototypes. 

5. Intelligent programs will require multiple active processes with explicit user-provided 
scheduling and resource-allocation heuristics. 

6. Information should be clustered to reflect use in processes whose results are affected by 
resource limitation and differences in information accessibility. 

7. A knowledge-representation language must provide a flexible set of underlying tools, 
rather than embody specific commitments about either processing strategies or the 
representation of specific areas of knowledge.  

 
 
Thus, declarative knowledge is organized around conceptual entities with associated 
descriptions. (The authors rely on Rosch' theory of concepts.) Conceptual entities are objects, 
relations, and events. The system has operations that can augment a description with new 
knowledge, matching two descriptions, and seeking referents for entities with a specified 
description. 
 
An - intensional - description is a set of independent descriptors that describe the object from all 
sorts of viewpoints. It is necessary to sum up all possible descriptors because they will be used 
in various reasoning processes. The more descriptors the better the system functions. One or 
several descriptors can serve as prototypical and thus as a default descriptor. The idea behind 
using prototypes is that people also process their knowledge in prototypes rather than in abstract 
concepts. Descriptions are clustered into units. A unit or category functions like a concept. The 
procedure that can be related to a category depends on the category type. 
 
KRL can also represent knowledge about knowledge in the form of meta-descriptors that tell 
something about a unit of descriptions. Reasoning within these frames is possible by searching 
for matching descriptors. The descriptors are written in a LISP-like format. Procedures are 
specified in LISP. This makes KRL a procedural-like language, although the representation is 
merely declarative. Thus, KRL serves two goals: a programming language (as substitute for 
LISP) and as a knowledge representation. 
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Natural language and knowledge representation 
 
In the early '70s much attention was paid to natural-language processing (such as SHRDLU, 
Winograd 1972). Winograd and Bobrow's KRL was also developed from case grammar. The 
success semantic networks had in natural-language understanding made these structures so 
important. But frames became even more important after the conceptual-dependency theory was 
developed by Schank (1980). This theory enabled the development of an inference engine for 
Schank's memory structures which was able to handle a much larger and wider range of 
language than any of the earlier systems. Without going into details, Schank's results were seen 
as a major step forward in the language-understanding tradition. 
AI research became divided into two quite different trends: 
Many researchers in language comprehension adopted some form of frame representation, while 
problem-solving people tended to use predicate calculus. Problem solvers are primarily 
concerned with deep inferences in narrow domains, while language comprehenders are more 
concerned with shallow inference in broader areas.  
But already in 1981 Charniak suggests a compromise position in which both frames and 
predicate calculus are used. The advantages of frames that made them so popular for language-
comprehension researchers are retained: 

1. Frames give a natural way to partition knowledge. 
2. A reduction in depth of inference needed during language comprehension. 
3. Frames offer a way to make the representation of inferential knowledge more natural. 

 
 
Critique 
 
In the context of the two different trends in the AI tradition, Hayes' (1979) attack on frames in 
particular should be mentioned here. His critical analysis of frames boils down to his statement 
that frames are only another syntax of first-order predicate logic. According to Hayes, all 
descriptions of concepts can be placed in lists or other kinds of representations and still be part 
of predicate calculus. 
He also mentions problems like different meanings of words according to their frame and the 
possibility of using defaults. Hayes offers suggestions for the possible solutions, which he calls 
as "nothing more than syntactic sugar". 
 
Hayes' remarks might be right. However, I think that he misses the point of the rationale behind 
the frame representation. Frames are developed for representing knowledge, because they 
resemble - probably - structures in human-knowledge processing. By imitating human-
knowledge structures knowledge representation will be much easier and translucent. Moreover, 
it proved to be possible to develop better techniques for handling frames. I shall mention KL-
ONE and KRYPTON. 
 
 
KL-ONE 
 
Brachman and Schmolze (1985) develop KL-ONE as a result of ongoing research in finding 
better techniques. They took the advantage of the criticisms on frames. In KL-ONE it is possible 
to distinguish between descriptions of an object and assertions of their existence. Basic in KL-
ONE are the elements or concepts, the structured conceptual objects. Concepts are defined as 
formal objects used to represent objects, attributes, and relationships. Concepts are descriptions 
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of objects, and are thus intensional entities. They are distinguished in generic and individual 
objects. Individual objects are denoted by individual concepts, which are individuations of the 
appropriate generic concept. The internal structure of an object is defined in so-called roles for 
the subpieces of the concept, and in structural descriptions for the internal relations. 
 
Expressive adequacy is an important driving force in KL-ONE research, emphasizing the 
semantics of the representation and its adequacy to make the kinds of subtle distinctions that 
people make when conceptualizing complex ideas. 
 
 
KRYPTON 
 
KL-Two, derived from KL-ONE, is also a hybrid system  and uses propositional and 
quantificational reasoning. KRYPTON is their successor. In successful commercial available 
systems like ART, KEE, and KnowledgeCraft36 these various representation languages are 
implemented. They take advantage of all aspects of knowledge representation. 
 
The reasons for their success are made clear by Reichelt (1991): 

1. They offer several knowledge-representation languages 
2. They offer naturalness of expression 
3. They combine frames with logic-based representation which gives the system extra 

reasoning power. 
In addition, KRYPTON has the advantage of being based on a clear epistemology. 
 
One of the features of KRYPTON is the ability to represent data that are not easy to store. 
KRYPTON offers abstract data structures, with constructors that construct other data structures 
and selectors which allow to select specified parts thereof. So this language is flexible and can 
be adjusted for specific data. 
 
Another item is the distinction between assertion and definition. Descriptions can contain 
information that can be true of a concept like facts (the ABox). They can also give information 
that serves as a definition or as terminological data (the TBox). 
In short, KRYPTON represents the terminology or data information in frame structures. The 
assertive knowledge is derived from these frames and is put in first-order-predicate calculus. 
Reasoning can be done using these logical statements. 
 
 
Conceptual structures 
 
Finally, a representation method should be mentioned that uses schemata and logic in a 
transparent fashion: conceptual structures. This semantic network-like representation language is 
one of the few that is not based on KL-ONE. It was Sowa (1984) who presented a theory of 
conceptual graphs as a method of representing mental models. His claim is: 
 
"Conceptual graphs form a knowledge-representation language based on linguistics, 
psychology, and philosophy. In the graphs, concept nodes represent entities, attributes, states, 
and events, and relation nodes show how the concepts are interconnected." (p.69) 
                                                 
    36 Presently, ART and KEE have been succeeded by new products, based on similar principles. KnowledgeCraft 
has been discontinued, due to lack of support. 
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Although the notation is the most visible aspect of conceptual graphs, the complete system is 
more than a notation: it includes standard operations for logic and computation, conventions for 
mapping language to and from the graphs, and a semantic theory that relates graphs to real-
world situations. As a representation scheme it draws on and integrates ideas from previous 
work. The result is a more flexible, more extensive and more precisely defined knowledge 
system than any of its predecessors. The notation gives the full representational power of first-
order logic and the mapping onto logic is precisely defined. The notation can also cope with 
higher order and modal statements. 
 
It was Peirce who invented the existential graph as a system of notation for symbolic logic. In 
various forms these graphs have been used to represent semantic knowledge in AI. Sowa calls 
them conceptual graphs and uses them to replace symbolic logic by a more natural notation. 
They are considered the semantic basis of natural language, representing (mental) models of the 
world or possible worlds. Sowa's program also tries to formalize the scruffy (see 1.2) kind of AI 
approach, including a representation for common-sense knowledge, with the use of conceptual 
graphs. 
 
Sowa's advantage over other representation techniques is that he has ordered the frames and 
semantic nets in such a way that various sorts of logic can be applied to them. Thus semantic 
content and syntactic form are presented in one structure. 
Another memorable fact is that Sowa gives throughout his book theoretical backing for his 
findings. So far, only the logical representation methods were based on proofs. 
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- Look for links with canonical graphs. 
- Check dictionary definitions of the concept and try to complete it. 
In addition, one can think of tests to prove the analysis. E.g., by imagining how to teach the 
concept; how would statements of the concept be tested for their truth or falsehood? At the end a 
thorough testing for completeness is needed. 
 
The elegancy of conceptual graphs is, besides the representational completeness and the 
reasoning power, the way instantiations can be made in order to answer questions. 
 
Only in the last few years also implementations of this conceptual-structure representation in 
working expert systems have been made. Among the adherents of Sowa are Regoczei and 
Plantinga (1987) who propose the use of conceptual graphs as approximation of natural-
language processing. They give the following reasons: 
Conceptual graphs stay close to the structure of natural language used by both informant and 
analyst. And conceptual graphs are a clear notation in which to build models of mental models 
for public examination. (Like KL-ONE graphs.) Another advantage of Sowa's conceptual-graph 
notation is that the graphs (in their linear form) are directly machine representable. 
 
Moreover, the authors elaborate on the thought of building an automated-knowledge-acquisition 
tool using the conceptual-graph notation. 
Their hypotheses show a similarity to the psychological hypotheses with which are dealt in 
chapter 3: 
 

1. Cognitive agents, including computers, understand the world by forming mental models. 
2. Mental models have a structure. 
3. The structures of mental models can be modeled with conceptual graphs. 
4. The operations on mental models can be modeled using operations on conceptual 

graphs. 
They define knowledge as the semantic content of mental models.  
 
According to Regoczei and Plantinga, words "create" knowledge by causing a cogniting agent to 
form new mental models or altering existing mental models. During the knowledge-acquisition 
process, the mental models of both expert and knowledge engineer are harmonized; the mental 
models are "brought together" using language as a technology of harmonization. In this point of 
view, knowledge acquisition can be reduced to natural-language understanding. 
 
 
Conclusions 
 
The above mentioned frame-based knowledge-representation methods are just a selection. 
However, I have tried to make a selection of systems that are promising and, moreover, have set 
standards38. 
 
They lead to the following conclusions: 
 

                                                 
    38 Among others that are not reviewed is SOAR, (see J.E.Laird, A. Newell, and P.S.Rosenbloom. SOAR: An 
architecture for general intelligence. Artificial Intelligence 33 (1987)) and CENTAUR (see Janice Aikins. 
Prototypical knowledge for expert systems. Artificial Intelligence  20 (1983)). 
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1. Frames come closer to the way people deal with knowledge. People have certain 
concepts of things and events. Over a period of time they add new knowledge to these 
concepts and alter old knowledge. 

 
2. Frames can be given a rather exact characterization as structures in LISP. In addition, 

schemata are theoretical psychological entities postulated to explain a variety of 
observed phenomena of human cognition. So, we cannot expect an exact definition of 
schemata. A schema is a large, complex unit of knowledge expressing what is typical of 
a group of instances. In contrast to frames in which both particular objects and general 
concepts can be represented, schemata involve some sort of abstraction and 
generalization. 

 
3. When we consider semantic nets as model for human memory and recall the fact that 

Minsky's theory of frames was built upon the idea how humans think, then we may 
conclude that frames are  - in a way - one of the earlier solutions to the mismatch 
problem. 
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CHAPTER 5   SOLUTIONS AND CONCLUSIONS 
 

5.1 BRIDGING THE GAP 
 
The focus of this chapter is aimed at bridging the gap between human and machine knowledge. 
 
In chapter 3 we have seen which aspects are considered significant for human-information 
processing, such as mental models. In chapter 4 some prominent knowledge-representation 
methods for AI have been mentioned. 
In the last 5 to 7 years a combined research has been accomplished. Some of this work will be 
reviewed in this chapter. 
 
  
Given on one side our opaque and vague knowledge about human-information processing and 
the formal knowledge-representation methods on the other side, all our attention should be 
drawn to good knowledge-acquisition methods. Knowledge acquisition can be regarded as the 
intermediate between expert knowledge and the knowledge-based system. 
 
The knowledge engineer has the difficult task to integrate human knowledge into a formal 
system. Therefore, one of the main tasks of a knowledge engineer is to model the knowledge 
from the domain expert to the knowledge base. (The other main task is solving problems that 
arise in the quality of expertise and the communication problems such as resistance, 
misunderstanding, and access and time constraints with the experts.) 
 
 
Expert thinking analysis 
 
Regoczei and Hirst (1992) think that it is likely that psychologists will play an active role in the 
knowledge-acquisition process. Human beings perceive the world around them in a particular 
and also subjective way. From this perception and the knowledge they already possess, they 
shape and reshape their knowledge. Here knowledge is built subjectively from parts and pieces 
of sources unknown to an outsider. The end product of this procedure is the only given fact to 
the knowledge engineer. 
The system on the other hand may store only the end product - in a formalized way - without the 
previous procedure how it was formed. So far, knowledge is considered to be objective, and the 
knowledge engineer is expected to be an objective observer. 
 
Knowledge acquisition is not discovery, but more something like creation. The knowledge 
engineer does not acquire some ready-made knowledge that is available in the head of the 
domain expert. This means that psychological techniques should be used in knowledge 
engineering. Fortunately, in the last years a "cognitive shift" has been shown in knowledge 
engineering. 
Besides the classic methods such as interview techniques, protocol analysis, more attention has 
been drawn to the way of how experts think and reason. 
 
For example, Cooke (1992) proposes that methods from cognitive psychology should be used to 
retrieve expert knowledge, that is, both the content and representation of expert knowledge. She 
thinks that in addition to other methods a descriptive approach to knowledge engineering is 
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necessary. There are many advantages to modeling human expertise. Also, it may be necessary 
to simulate human cognition in an expert system.  
 
In short, research in cognitive psychology on human expertise points out: 

1. The strengths and limitations of expert performance that are relevant to the development 
of artificial expertise.  

2. Expert-novice differences in knowledge representation and search strategies that have 
implications for the architecture of expert systems.  

3. Issues relevant to the expert-system-user interface, such as explanation and automated-
knowledge acquisition.  

4. Methods applicable to knowledge elicitation. Increased communication between the 
areas of knowledge engineering and cognitive psychology would not only advance 
expert-system technology but would also provide a test bed for cognitive theories of 
expertise. (p.55) 

 
 
Knowledge-level analysis 
 
As we have seen, an operational definition of knowledge is Newell's knowledge level (1982). He 
identifies knowledge with goals, aims, objectives, plans, and purposeful behavior (see 4.2). 
Clancey (1984 and 1989) uses the knowledge level as base for analyzing problems 
independently from the implementation language that will be used to build the expert system. In 
his view, knowledge-level analysis is how observers describe and explain the recurrent 
behaviors of a situated system, that is, some system interacting with an embedding environment. 
The knowledge level describes the product of an evolving, adaptive interaction between the 
situated systems and its environment, not the internal, physical processes of an isolated system. 
This analysis is in contrast to implementational-level analysis. 
 
Knowledge-level descriptions cannot be reduced to mechanisms in individual agents: they are 
relative to the observer's point of view and characterize the total system of agent plus its 
environment. Knowledge-level descriptions are attributions made by the knowledge engineer 
involving his own selective interactions with the domain expert, his own perceptions, and his 
point of view. The knowledge level is not realized as a state-like physical structure, "running 
counter to the common feature at all levels of a passive medium". A knowledge-level 
description is an observer's description and explanation for how a situated system interacts with 
its environment; it does not correspond to physical structures stored and manipulated inside 
isolated agents. 
 
Given a knowledge-level analysis, it is possible to devise a better representation language that 
allows us to make terms, relations, and search procedure explicit. The essence of a knowledge-
level analysis is making distinctions - finding patterns - and relating them to the computational 
process. Rather than talking about goals, they talk about findings (input) and hypotheses 
(output). Rather than talking about rules, they talk about subtype and causality. 
 
Knowledge-level analysis is a structured way for identifying terms and relations. Clancey's 
(1984) guidelines: 

1. List all possible solutions the program may output; organize into classes and hierarchies 
if appropriate. Be clear about what the solutions are: plans, processes, configurations, 
etc. 

2. List classes of data that will be input to the program. 
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3. Identify relations among the data: generalizations, definitions, and qualitative 
abstraction. 

4. Establish the heuristics that link data to solutions after establishing the network of 
solutions. 

5. Treat the search process separately. It is essential to model the expert's inference 
structure (terms and relations), but not as important to model the search process he uses. 

 
 
Mental-model analysis 
 
Littman (1989) proposes that we should be able to build intelligent tools to assist the knowledge 
engineer in building expert systems, if we understand how humans build the kinds of mental 
models that are represented in the world as expert systems. His research has resulted in three 
findings: 

1. Software designers build and use multiple mental representations when they design 
software. 

2. Software designers make extensive use of mental simulations during the design process 
to coordinate their multiple mental representations. 

3. Expert-system designers exhibit several recurrent mental activities which appear directed 
toward the construction of mental models. 

 
 
Not only the designers of systems, but also experts in general use mental models. This use of 
mental models of the experts to build an expert system is developed by Schumacher and 
Czerwinski (1992). They have found enough evidence that experts use mental models when 
dealing with problem solving. A specific feature of mental models is that they schematize 
knowledge by organizing the knowledge in a special way. The use of mental models implies a 
better understanding and explaining of a system. 
 
It is not clear whether an expert has one or more mental models of a system or device. The 
knowledge engineer should pay attention to discovering if there is a mental model and then 
which mental model the domain expert is using. A mental model is not something that can be 
put into words, so the knowledge engineer has to look for clues that reveal the mental model(s). 
Then the mental model needs to be described. To this purpose Schumacher and Czerwinski 
develop a theory of mental-model acquisition. They base their ideas on memory theories such as 
found in psychology. In short, they distinguish 3 stages of mental-model acquisition: 

1. The pre-theoretical stage, 
2. The experiential stage, and 
3. The expert stage. 

 
The pre-theoretic stage is the understanding of a system based on recall from memory of 
superficial similar instances of previously learned systems. In this stage the mental models are a 
collection of memorized previous experiences.39 In the experiential stage understanding of 
causal relationships becomes clearer. In this stage abstraction begins to emerge.40 In the expert 

                                                 
    39 The authors use among others the categorization theories of Medin and Schaffer to describe how instances are 
organized in memory. ( D.Medin and M.Schaffer. A context theory of classification learning. Psychological Review 
85 (1978)) 

    40 These assumptions are based on MINERVA, a model of memory: D. Hintzman. "Schema abstraction" in a 
multiple-trace memory model. Psychological Review 93 (1986) 
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stage the user is able to make abstractions. He can recognize patterns and structures of the 
system's behavior. 
The more a user has accumulated system structures, the easier he can retrieve and compare new 
systems. His attention has shifted from superficial features towards structural and relational 
features. The authors propose to use mental models that people have of systems in the design of 
systems or in user interfaces thereof. 
 
 
Conceptual analysis 
 
The methods mentioned above are grouped around psychological aspects of expertise 
knowledge. Whereas these methods depend on psychological insight of the observer, another 
approach focuses on the linguistic behavior of the expert. This approach, the conceptual 
analysis, can be regarded as the offspring of conceptual-structures representation (see 4.4). 
 
Sowa (1992) uses conceptual analysis as an aid to formalization. It provides general techniques 
for analyzing knowledge on any subject. In the formalization stage, the knowledge engineer 
must encode the knowledge acquired from the expert in the rules of a representation language. 
Before he can formalize he needs to apply conceptual analysis: the task of analyzing the 
concepts expressed in natural language and making their implicit relationships explicit. 
 
Understanding of logic and language is a prerequisite for conceptual analysis. Logic is essential 
because every knowledge-representation language is based on logical rules; language is essential 
because the primary means of communication between the expert and the knowledge engineer is 
natural language. In the end, conceptual analysis determines the general principles that define an 
expert system. 
 
 
Meaning analysis 
 
In addition to the above mentioned analyses, I propose another form of (conceptual) analysis by 
decomposing knowledge using the meaning triangle (as in Ogden and Richards, see 2.2) 
 
Three entities or aspects are distinguished: 

1. The object or state of affairs as real world entity; the ontological aspect. 
2. The name or symbol for this object; the linguistic aspect. 
3. The (conceptual) meaning of the object; the conceptual aspect. 

We can conceive knowledge as the interrelation between these three aspects. 
 
These entities or aspects can be extended when we regard the object or state of affairs as the 
representation of that object. 
Expert systems are not dealing with the concrete objects, but with representations thereof. 
Referring to the name of symbol can cause ambiguity. Referring to an object as a representation 
of that object simulates the perceptive properties. The meanings and intensions people have 
about objects are the items about which we are communicating. During the knowledge-
acquisition process all the three aspects need to be elicited and analyzed. Basically is that the 
ontological, linguistic, and conceptual approach might differ from person to person. 
 
The conceptual meaning can be compared to the expert's mental model of an object. It serves 
often as an operational device in problem solving. The expert's conceptual meaning may not be 
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the same as the user's. So conceptual meanings should be explicitly described in the framework 
of a knowledge-representation system and also be traceable in the explanation mode of an expert 
system. Moreover, the conceptual meanings need to be modular as to keep them flexible and 
conceivable for alteration. Thus, an object can be represented as a frame with slots for attributes 
and quantitative data. This can be regarded as an internal scheme of the object. The conceptual 
meaning of an object, the intensions that describe how one regards that object, can also be 
represented in a frame as the intensional representation of the object. Internal scheme and 
intensional representation can be placed in one frame but should be distinguished by using 
labeled slots. 
 
I have not seen knowledge-representation methods that recognize the distinction between a 
description of an object and its intensional meaning. The attractiveness of representing all 
aspects lies in the possibility to represent the expert's mental model of an object, his 
verbalization, as well the description of his perceptual concept of an object. A knowledge-
representation method that uses all these aspects forces the knowledge engineer to analyze the 
knowledge of the expert in a more profound way than systems that do not make this distinction. 
It will represent more and better (hidden) knowledge of the expert and it is likely that it will 
perform better. 
 
 
Summary 
 
Besides the methods that determine the psychology of (expert) thinking in a general way, four 
other methods look more promising in order to solve the mismatch problem between man and 
machine, especially in the knowledge-acquisition process. 
 

1. The knowledge-level analysis offers a structured method for revealing terms and 
relations used by the experts. 

2. The mental-model analysis is developed on the evidence that experts use mental models 
when solving problems. The outcome of the analysis can be used in the knowledge-
acquisition process and also in the user interface of the system. 

3. A result of the conceptual-structures representation is the use of concepts as cognitive 
elements in the expert as well in the system. 

4. Meaning analysis considers the expert's knowledge from a language (words) and 
cognitive (meaning) view at the same time. 

 

5.2 CONCLUSIONS 
 
Throughout this paper I have presented evidence that might affirm the mismatch hypothesis. 
This can be summarized in the following. 
 
 
The knowledge mismatch 
 
When humans process knowledge in a yet unknown way, how can we know that this knowledge 
will match constructed knowledge-representation systems? Ample evidence (see chapter 3) has 
been shown that humans do not use formal rules like inference rules in logic. Most likely they 
use scheme-like representations or mental models. 
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In the last years representation languages have been developed that also use scheme-like 
representations. The initiative for developing frames was in fact human-information processing. 
So this common base would lead to approximate human and machine knowledge. However, 
there is much left open. Regarding justification of human reasoning little can be said. 
Knowledge-representation systems are still operating with logic as inference machine. On this 
point the mismatch will probably remain until more flexible kinds of logic are available. The 
question when  and which logic should be used is depended on the situation. 
 
The knowledge mismatch is partly solved by frame representation and conceptual graphs. The 
methods of reasoning are still on different tracks. 
 
 
The representation mismatch 
 
Two important aspects are here prevalent: common-sense knowledge and the verbalization of 
knowledge. Since the system CYC (Lenat and Feigenbaum 1991) is supposed to be a general 
data-base for common-sense knowledge, future machines can be provided with that kind of 
knowledge. Yet, questions about the effectiveness and easiness of access will remain (the frame 
problem). 
 
Natural language, specially the relation between language and thinking can never be formalized 
without the aid of a human interpreter. Though, with techniques such as conceptual and meaning 
analysis less misunderstanding will occur. 
 
I have left open the question if machine-learning methods and connectionism might develop into 
a solution. 
 
 
The completeness mismatch 
 
This mismatch is specially relevant in automated-knowledge-acquisition systems. The hidden or 
tacit knowledge of an expert will never be revealed unless it is explicitly asked. But how can the 
system (or even the human analyst) know for what to ask? Special interviewing techniques are 
needed. Also during the testing of an expert system in development this hidden knowledge can 
be revealed. Not only tacit knowledge is a typical human attribute that is hard to reveal, also 
insight and intuition are forms of knowledge that can hardly be expressed. The completeness 
mismatch looks like an essential discrepancy between man and machine. 
 
 
The category mismatch 
 
The category mismatch is another essential discrepancy between man and machine. In chapter 2 
I have elaborated on one of the basic differences: the lack of understanding and, moreover, the 
lack of intentionality in machines. The twain shall never meet. 
 
 
Solutions 
 
Solutions work only in limited and definable areas of information processing. As is shown in 
section 5.1, knowledge-representation methods that simulate approximately human-knowledge 
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representation are promising examples. In addition to representation methods, analysis of human 
thinking is of crucial importance. This analysis can be distinguished in the analysis of the 
subjectivity and relativity of human knowledge; and the analysis of human knowledge in terms 
of the language and the meaning he uses in his dealing with knowledge.  
In these techniques man and machine reach out and touch. 
 
 
 ******* 
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