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CHAPTER 1   INTRODUCTION 
 
 
An expert system can be defined as a computer program which uses artificial intelligence techniques 
to perform or to guide a task that a human expert can do.  
Feigenbaum (1977) shifts the emphasis from techniques and formalisms to the knowledge that an 
expert system contains. The expert knowledge seems to be a necessary and a nearly sufficient condi-
tion for developing an expert system (Hayes-Roth et al. 1983, p.7). 
It seems to be clear that the acquisition of this knowledge as a technique (or is it still an art?) is an 
important field of study within the knowledge-engineering process.  
 
Most authors of articles about knowledge acquisition quote Feigenbaum (1977) or Hayes-Roth et al. 
(1983) that knowledge acquisition is the bottleneck in the process of developing expert systems. 
They also complain that little has been published about it. 
 
In the early years of expert-systems development - DENDRAL and HEARSAY-1 in the second half 
of the 1960s, MYCIN in the early 1970s - the knowledge engineer and the domain expert worked 
closely together over a long period of time. Sometimes the knowledge engineer possessed the 
relevant expertise himself1  and could perform the role of domain expert as well. Working on an 
expert system usually took place in an academic setting where priority was given to the overall 
methodology of development rather than to efficiency and speed of production. 
The more practical question of how to acquire all the relevant knowledge for a well-performing 
expert system came up in the 1980s. When construction of expert systems for commercial purposes 
began, the knowledge-acquisition process had to be efficient. The domain expert had to be available 
for interviewing and to be willing to go deeply into his field of expertise. At the same time another 
aspect in introducing expert systems became important. In the academic and research environment 
the domain expert was part of the team that was building the expert system. He was acknowledged 
in the research paper or article. After his participation he went back to his own work again. But 
when knowledge engineers started building expert systems within a company or other organization 
with the explicit intention to replace  (at least partly) the domain expert with a computer program, 
the situation became different. The threat of losing jobs or losing prestige became apparent. 
Cooperation and, even more, enthusiasm of the domain expert could not be expected. In Welbank 
(1983) these problems are mentioned in detail. 
 
It has become common knowledge that when the domain expert can directly communicate with a 
system, he is less reluctant to provide his expertise. One reason can be that he has a stronger, even 
more, physical, relation with the system-to-be. 
The feedback of the knowledge-acquisition part of the system can give the impression that the 
system is understanding the input of the domain expert.2  He can have the feeling that he is actually 
building the system and so accomplishing an important task (which is true for his part of the job). 

                     
    1The use of "he" and "him" includes "she" and "her". 

    2Not unlike the ELIZA-effect: instead of being a dumb machine, the computer turns out to be a sympathetic 
conversation partner to whom it is easy talking. (Weizenbaum 1966) 
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This is in contrast with manual knowledge-acquisition methods. The most common method is 
interviewing by the knowledge engineer. The domain expert may have the impression that he is 
giving away his expertise without knowing how well this intermediate knowledge engineer is able to 
build an expert system that can stand up to his expectations. Yet worse may be the method of 
protocol analysis where the distance between expert and the finished expert system seems even 
larger.  
 
An advantage of automated knowledge acquisition - especially in combination with other 
knowledge-engineering tools - in avoiding reluctance on the part of the domain expert is to construct 
its prototype at a very early stage of the building of the expert system.  Many authors (e.g., Nii, in 
Feigenbaum and McCorduck 1983) mention that the expert should remain interested in the project. 
Seeing a prototype of the system within a short period of time will sustain his interest and can easily 
evoke improvements and extensions from him. 
Another advantage of automated knowledge acquisition is that the process of elicitation can be 
structured in advance in order to build up a better structured knowledge base. Protocols, used in 
manual knowledge acquisition, on the other hand, are mostly unstructured. Less unstructured are 
interviews, where the knowledge engineer can follow certain guidelines. But even then he can easily 
be distracted by details that the expert wants to mention. 
 
So far we may conclude that the field of automated knowledge acquisition is worth extensive 
exploration. 
 
The complaint about the lack of literature becomes less severe. As publications about artificial 
intelligence per se tended to shift to expert systems, current articles about expert systems tend to be 
about special applications and about tools for building expert systems. In fact, during the last three 
years the amount of articles on (automated) knowledge acquisition has avalanched. Several issues of 
the International Journal of Man-Machine Studies are dedicated to papers presented at the Knowl-
edge Acquisition Conferences in Banff, Canada. Also in Europe an annual conference on knowledge 
acquisition takes place. Several books (Kidd 1987, Hart 1986, and others) devoted exclusively to 
knowledge acquisition appeared during the last few years. The most recent publications are "The 
Knowledge Acquisition for Knowledge-Based Systems Newsletter" and "Knowledge Acquisition; 
An International Journal of Knowledge Acquisition for Knowledge-Based Systems". Both are edited 
by John Boose and Brian Gaines. A book series by Academic Press consisting of 2 volumes so far 
has also been published. (Gaines and Boose 1988, and Boose and Gaines 1988). These books 
contain reprints of articles about knowledge acquisition from the International Journal of Man-
Machine Studies. A book that only appeared after the main part of this paper was written (Marcus 
1988) gives an overview of six automated knowledge-acquisition systems. The last issue of the 
SIGART Newsletter (108, April 1989) contains an extensive overview of knowledge-acquisition 
systems and a bibliography with more than 400 entries. 
 
Hayes-Roth et al. (1983) is one of the earliest books that devotes an entier chapter to knowledge 
acquisition. The Handbook of Artificial Intelligence (Barr, Cohen, and Feigenbaum 1981) contains 
relatively little on knowledge acquisition. 
Notwithstanding the increasing amount of new literature about knowledge acquisition, real 
breakthroughs in method and technique are still not covered. Knowledge acquisition seems to 
remain a bottleneck in the knowledge-engineering process. 
 
In this paper I propose to examine the problems of knowledge acquisition and more particularly the 



 
 
 5

possibilities of automated knowledge-acquisition systems. 
 
In the second chapter the problems of knowledge acquisition and expert-system building are 
cataloged. 
 
The third chapter gives an overview of automated knowledge-acquisition systems that are already 
operational or still in development, or probably even aborted. 
 
The fourth chapter evaluates the outcome of the previous chapters. 
 
 
The study of literature for this paper was completed in April 1989. 
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CHAPTER 2  KNOWLEDGE ACQUISITION AND THE BUILDING OF 
EXPERT SYSTEMS 
   

2.1 INTRODUCTION 
 
Reminded by Feigenbaum (1977) that the power of an expert system is the knowledge it possesses, 
most of the emphasis in expert- system developing should go to the knowledge-acquisition part of it. 
 
In the classic book on expert-system building, Hayes-Roth et al. 1983, the building process is 
described as the process of knowledge acquisition (Buchanan et al. 1983). Throughout this section I 
follow their guidelines. 
 
 
******************************************************************************* 
 
EXPERT 
     
 
 
 
 
 
                
 
 
 
 
EXPERT SYSTEM 
 
 
 
 
  
 
                                          
 
 
 

KNOWLEDGE ENGINEER 
or 
INTELLIGENT EDITING PROGRAM
or 
INDUCTION PROGRAM 

INFERENCE ENGINE 

       database  
KNOWLEDGE BASE 
                           
                   rulebase 

                                                                
******** The structure of an expert-system-building process ******************* 
 figure 2.1 
                                                                 
The basic rule is that knowledge acquisition and expert-system building is an interactive process. 
The two should not be separated. 
Some other basic rules for the  expert-system-building process are also important: 
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1. Get acquainted with the domain, using textbooks or an initial interview with the domain expert, 
and 

2. Start building a prototype of the expert system as soon as possible. 
 
The work scheme should be as follows: 
1. Problem outline. The tasks and subtasks of the expert system must be clear. 
2. Domain concepts. The major concepts of the domain must be acquired and arranged in a 

semantic way. 
3. Strategy. Another kind of knowledge are the rules the domain expert uses. Start with the main 

strategies. 
4. Formalization. The acquired knowledge should be arranged in a certain kind of representation. It 

is important to know at an early stage how this representation looks like.  
5. At this point the conditions are fulfilled to construct a prototype. 
6. Then the knowledge engineer can continue to deepen and refine the knowledge acquisition and 

test the prototype. This can be seen as a cyclical process of conceptualization, formalization, 
implementation and testing. 

 
For the sake of clarity something must be said about the terminology. Throughout this paper I use 
the term "knowledge acquisition" to mean the acquisition of knowledge for a special purpose, e.g., 
the expert's answer to a certain question. "Knowledge elicitation" is the unstructured revelation of 
knowledge without a presupposed plan, e.g., thinking aloud protocols or textbook knowledge. 
A different meaning of knowledge acquisition was found in Avignon 1987 where articles on 
information retrieval were arranged under the heading of knowledge acquisition. It should be clear 
that "knowledge retrieval" is normally used for getting knowledge from a knowledge base, that is to 
say knowledge acquisition from the other end of the system. 
 
 
The identification stage 
 
In the identification stage the basic aspects of the problem are characterized. 
The domain expert, the informant, is chosen. Although the knowledge engineer is the one who 
directs the knowledge-acquisition process, the relationship between knowledge engineer and domain 
expert is one of student-teacher. The problem and its supporting knowledge structure must be 
characterized. This can be divided into the following questions: 
- What class of problems will the expert system be expected to solve? 
- How can these problems be characterized or defined? 
- What are important subproblems and partitioning of tasks? 
- What are the data? 
- What are important terms and their interrelations? 
- What does a solution look like and what concepts are used in it?  
- What aspects of human expertise are essential in solving these problems? 
- What is the nature and extent of "relevant knowledge" that underlies the human solutions? 
- What situations are likely to impede solutions? 
- How will these impediments affect an expert system? 
In this stage it must also be clear what resources the knowledge engineer can use. Resources are 
knowledge sources, time, computing (hardware and software) and financial resources. And finally 
the goal and use of the expert system should be specified. 
The conceptualization stage 
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Buchanan et al. (1983) lists several questions that should be covered. 
The following questions need to be answered before proceeding with the conceptualization process: 
- What types of data are available? 
- What is given and what is inferred? 
- Do the subtasks have names? 
- Do the strategies have names? 
- Are there identifiable partial hypotheses that are commonly used? What are they? 
- How are the objects in the domain related? 
- Can you diagram a hierarchy and label causal relations, set inclusion, part-whole relations,etc? 

What does it look like? 
- What processes are involved in problem solution? 
- What are the constraints on these processes? 
- What is the information flow? 
- Can you identify and separate the knowledge needed for solving a problem from the knowledge 

used to justify a solution? 
 
The key concepts and their relations must be made explicit. In this stage the basis of a framework of 
the final system should be made. The problem and subproblems need to be sufficiently analyzed 
before proceeding to the next stage. 
 
 
The formalization stage 
 
In the formalization stage concepts, rules, etc. are mapped in a formal framework. Three aspects are 
important. 
First the hypothesis space. After the concepts are formalized one has to determine how they link to 
form hypotheses.  
The second aspect is the uncovering of an underlying model of the process used to generate 
solutions in the domain. 
And third, the understanding of the characteristics of the data that helps to understand the structure 
of the problem space. 
 
By following these stages the knowledge engineer has specified the contents of the data structures, 
the inference rules and the control strategies. 
 
 
The implementation stage 
 
The formalized knowledge is mapped into the representational framework. This framework specifies 
the form of the data gathered in the previous stage. At this point a prototypical system can be built. 
 
 
The testing, refining, and debugging stage 
 
The prototype system can be evaluated, and when it is proven to be inadequate, new tools can be 
chosen. 
Further testing can be done by a number of different and challenging examples to find weak spots in 
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the knowledge base and the inference structure. Incompleteness and inconsistency will appear in this 
stage. This means that the knowledge base needs refining. Reasoning errors mean faults in the 
inference rules. 
 
Throughout all the stages it is necessary to gather knowledge from the expert. Knowledge 
acquisition is a continuous process during the building of an expert system, although the purposes 
are different (initial knowledge, refinement, etc.). 
We should be aware that automated knowledge-acquisition systems  - the issue of this paper - are 
more than "interview machines". They should be able to cover a range of various techniques and 
understand their different roles in the expert system building process. 

 

2.2  THE MISMATCH PROBLEM 
 
The methods of knowledge acquisition and the building of expert systems seem to be 
straightforward and easy to apply. But in fact many problems arise while working with knowledge 
acquisition. Often we read about knowledge acquisition as the bottleneck of expert system building. 
 
What is that bottleneck called knowledge acquisition? 
The metaphor is well-chosen. We can regard human knowledge as a tangled mass of information 
stored in a not too wide necked bottle. The expert system is a container with compartments of 
various sorts. In the knowledge acquisition process the knowledge engineer must try to get hold of 
the human knowledge and to put it in the appropriate modes at the appropriate places in the expert 
system. 
With this picture in mind we can see the problems of the knowledge-acquisition process more 
clearly.  
 
 
The knowledge mismatch 
 
The most fundamental difficulty seems to be the mismatch between human and machine knowledge. 
First of all there exists a mismatch between the organization of knowledge. Human knowledge is 
stored in a yet unknown way. The most commonly used hypothesis is the idea of mental models (see 
section 2.12). Using knowledge is for a human not a conscious process of retrieval and applying of 
facts and rules, but an unconscious involvement with objects and state of affairs (or their descrip-
tions). The analogy between a mental model and the real-world state of affairs gives the solution of 
what kind of knowledge should be applied. In this process of "applying" knowledge there is no need 
to verbalize the knowledge. When talking about an expert who "knows" about his field, we are 
talking about something vague. Knowledge is only shown in the behavior of this expert, but the 
logic or justification behind his actions is not shown. The applied rules remain unrevealed too. What 
we want to have is a sort of materializing of knowledge: a representation of knowledge. Only in a 
representation knowledge is transferable, can be understood, can be manipulated, etc. Verbal 
representation is a good solution. As a matter of fact it is the most commonly used kind of 
representation in human communication. But there seems to be an obstruction when it comes to 
verbalize knowledge in all its details. 
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The representation mismatch 
 
There is seldom a need for an expert to verbalize his knowledge to non-experts. In the exchange of 
knowledge between experts (and even between skilled and less-skilled experts) a great deal of the 
information is presupposed. That is the common-sense knowledge about the world but also the 
general knowledge about the specific domain, such as vocabulary, concepts, general rules. Even in 
the situation of knowledge exchange in teaching a great part of knowledge is already presupposed. 
 
In the knowledge-acquisition process - when expert knowledge has to be transferred into a system 
that does not contain any knowledge - the domain expert encounters great difficulty when he has to 
verbalize his knowledge.  
The expert system, on the other hand, uses also a system of knowledge representation. Most 
commonly used are representations by frames for declarative knowledge and production rules for 
procedural knowledge. Essential is the formal mode of these forms of representation. 
 
So far I have mentioned human knowledge represented by mental models, by behavior, by 
verbalizing (in a natural language that is difficult to formalize). At the expert-system side knowledge 
is represented, among others, by frames and production rules written in programming languages. 
This incompatibility between man and machine can be called the representational mismatch. 
 
 
The completeness mismatch 
 
Tacit knowledge, the knowledge that cannot be represented at all, causes another difficulty. The 
human expert is not aware of all the knowledge he possesses. Only when he is explicitly asked about 
it, or when he is engaged in a particular section of his expertise, can he verbalize this knowledge.  
The expert system needs all the knowledge involved to solve the problems for which it will be built. 
This gap between the expert and the system is the completeness mismatch. 
 
 
The category mismatch 
 
An obvious, but less mentioned difference is the disparity between human and machine as two 
totally different systems. We are not talking about aspects such as difference in representation, but 
the integrated system of a man as problem solver versus the expert system as a problem solver. The 
overall approach is so different that comparing aspects seems fruitless. Even the above mentioned 
differences in representation are incongruent: vague, not verbalized versus formalized; incomplete 
versus complete. These differences are more profound than a difference, e.g., among programming 
languages, between frames and scripts, or between the knowledge of expert A and expert B in a 
particular field. 
The system of human information processing is of a different category than machine information 
processing. We can call this the category mismatch. 
 
 
These four mismatches return at the other end of the expert system: the interface with the end-user. It 
is less of an obstacle for human beings to understand the output of a computer system. Still some 
difficulties in understanding remain. The better designed expert systems have explanation facilities 
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to assure the user of its reasoning. Although this is not so much a knowledge-acquisition problem as 
a problem of expert system designing, it is worth mentioning. 
 
So far we have given the knowledge-acquisition bottleneck a name: the mismatch problem. 
From this brief analysis of human versus machine knowledge, we can draw two conclusions. 
First, during the knowledge acquisition process we should constantly be aware of the mismatch in 
approach between man and machine. Second, knowledge acquisition is not a part of expert-system 
building, but an integrated aspect of the whole knowledge engineering/expert-system building 
enterprise. 
 
In the following sections several problems in knowledge acquisition are reviewed. 
 
 

2.3  THE STATE OF THE ART 
 
Jackson (1986) says that knowledge engineering is still an art and not a science. The knowledge 
engineer is therefore still handicapped by the lack of guidelines for a maximum use of the available 
technology. Knowledge acquisition is an empirical exercise, guided by trial and error and common 
sense. While handling formal systems is not an uncommon field, handling human knowledge and 
formal systems together is still a difficult task - despite centuries of exploration in the theory of 
knowledge. 
A large amount of articles on knowledge acquisition diminish this lack of guidelines for the 
knowledge engineer. I think that during the last few years, since Jackson wrote his book, knowledge 
engineering became more a skill than an art.  Probably in the next couple of years we can speak of 
knowledge engineering as a science. 
Since this paper is about automated knowledge-acquisition I shall focus my attention on the 
problems of knowledge acquisition. If we can analyze these problems, maybe we can give solutions, 
or rather, directions to solutions. We might be able to give better suggestions for automated 
knowledge-acquisition. 
 
From the preceding section we can make a list of features that knowledge acquisition should 
encompass: 
- elicit knowledge from multiple sources 
- recognize structures to decompose and to build up in a knowledge base; the analysis and 

conceptualization process 
- process declarative knowledge (facts) and procedural knowledge  (rules)  
- validate the knowledge base for consistency 
- handle uncertain knowledge 
- find omissions, expand, and refine the knowledge base 
- make consistent changes throughout a large knowledge base 
- give guidance to the entire process 
Some of these features need metalevel knowledge. The knowledge engineer is directing the 
knowledge-acquisition process and possesses this metalevel knowledge. He is aware what he is 
doing. In an automated knowledge-acquisition system this ability must be built into the system. 
We should also be aware that expert systems are built to solve various problems. One can 
distinguish analytical problems (such as classification and diagnosis), synthetical problems (configu-
ration, design and planning), encyclopedic problems (facts finding) and combinations of these 
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problems (control, monitoring, prediction and repair). The knowledge for these expert systems differ 
from each other in structure. The techniques to elicit these various kinds of knowledge are therefore 
also different. 
 
In the initial stage of expert-system building the structure of the domain should be clear. On the 
other hand the structure can only be revealed after one gets started with an initial knowledge acquisi-
tion session. The knowledge engineer must decide somewhere between planning and getting started 
how he tackles this problem.  
Planning means looking for structures. They may be fixed by the nature of the domain, but also be 
embodied by the outlines of an expert-system shell that will be used. Further it is important what 
kind of representation will be used. On the one side it is important to choose a representation that 
corresponds to the knowledge that the domain expert reveals; on the other side the representation 
should be chosen in such way that the expert system works efficiently. 
 
At a certain point in the expert-system-building process the knowledge engineer will encounter 
problems with incomplete knowledge. Special techniques are used to find omissions in the knowl-
edge base and to elicit them from the domain expert. Another problem is inconsistencies in the 
knowledge base. Specially in this case automated systems can trace these faults and repair them. 
 
It seems that a whole new branch of knowledge-acquisition methods has been developed, different 
from the interviewing approach. It is called machine learning or machine induction. Reactions vary 
to some extent. Some positive aspects are certainly present, but machine learning will probably 
never be the single method in a knowledge-acquisition process. 
Throughout the knowledge-acquisition process the knowledge engineer encounters the typical 
characteristics of human knowledge. In the last couple of years more research has been done in 
cognitive science. The results will help understanding human information processing. 
 
In the next sections I shall discuss these problems in more depth. 
 
 

2.4  TRANSFER OF KNOWLEDGE 

2.4.1  Human expert thinking 
 
To get a better understanding of the problems of knowledge transfer it is necessary to know more 
about the way an expert deals with his expertise. From cognitive psychology we know several facts 
about cognitive processes. 
 
The interaction between a knowledge engineer (and his tools) and the domain expert (and other 
sources of knowledge) is a delicate one. The knowledge needed for the expert system is more or less 
outlined by the knowledge engineer in broad terms. Let us assume that he knows he needs an 
amount of facts about the domain and an amount of rules used by the expert. He also has an idea of 
the inference mechanism of the system and the kind of representation he will probably use. The 
performance of experts depends on large quantities of domain knowledge. On the one hand, they are 
able to reflect on their own cognitive processes (meta-cognition) and on their own state of domain 
knowledge (meta-knowledge). But on the other hand, the domain expert possesses an amount of 
facts and rules of which he is usually not aware and thus, he does not know precisely what is needed 
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for the expert system. 
The expert cognition lacks also computational and representational power. 
Since there is no coherent theory yet, most cognitive psychologists adopt a common approach based 
on an information processing view of human cognition. Cognitive processes can be analyzed into 
sequences of ordered stages. This entails identifying the sequence of mental operations through 
which information flows (and is transformed) in the performance of a particular cognitive task. 
Expert thinking is studied within this framework.3 
People's awareness of their own mental processes is rather limited. The proceduralization of 
knowledge and automatization of cognitive skills that accompany the development of expertise, 
serve to make expert thinking even less accessible to introspection. 
The cognitive correlates of expertise, whether beneficial or otherwise, are essentially domain-
specific in effect. Thus outside his specialist area any cognitive advantage the expert may have 
enjoyed inside the domain quickly disappears. Another underlying theme in the development of 
expertise is a greater reliance on pattern recognition and memory (stored knowledge) at the expense 
of deductive reasoning. At another level, though, experts often show an impressive ability to reflect 
on, and flexibly control, their high-level task strategies. But precisely how automated skills and 
control strategies combine in expert problem solving remains poorly understood (Slatter 1987, p 41). 
 
 
2.4.2  Techniques for knowledge acquisition 
 
Slatter (1987) mentions six techniques for knowledge acquisition: 
 
1. Interviews - structured according to a plan or unstructured. 
   Advantages: - explicit knowledge is easy to obtain. 
   Disadvantages: - not for detailed or implicit and tacit knowledge. 
 
2. Verbal protocols - thinking aloud while doing a task. 
   Advantages: - reveals knowledge that is difficult to verbalize. 
   Disadvantages: - analysis of protocols is difficult. 
 
3. Machine induction - rules are automatically induced from given examples. 
   Advantages: - no knowledge engineer necessary. 
   Disadvantages: - needs a database with cases. 
                  - can be instable. 
                  - rules are often complex. 
 
4. Observational studies - observation of an expert doing his task. 
   Advantages: - avoids preconceived ideas. 
   Disadvantages: - time consuming for the knowledge engineer 
                  - cooperation from the domain expert can be difficult.  
   Further advantages and disadvantages are the same as with verbal protocols. 
     
5. Conceptual sorting - also called card sorting, a cognitive psychology technique. Concepts are 

gathered and the expert is asked to sort the concepts (written on cards) according to resem-
                     

    3See Welbank (1983) for reasons why experts usually do not know their expertise in an organized way. 
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blances, hierarchies, etc. 
   Advantages: - easy for organization of a lot of information. 
               - gives global structure of domain. 
   Disadvantages: - requires special skill of the knowledge engineer. 
                  - can produce artificial structures. 
 
6. Multidimensional scaling - often used as repertory grid method, where similarities and differences 
of sets of concepts are identified. 
Advantages: - can elicit well subtle or non verbal distinctions.     
Disadvantages: - time consuming for the domain expert, specially when larger numbers of concepts 
are involved. 
- expertise needed to understand the technique.    
 
In the next sections I go deeper into the problems the knowledge engineer encounters when he is 
trying to apply these techniques.  
Machine induction, or machine learning, is a typical technique in automated knowledge acquisition. 
It will be discussed later. 
 

2.4.3  Interviews 
 
Gaines (1987) gives from a psychologist's point of view an overview of the problems that occur 
when interviewing a domain expert. 
Psychologists know that knowledge transfer among experts raises problems. Not only the expert 
cannot express his knowledge but also he is not aware of its significance. 
There seems to be no necessary correlation between verbal data and mental behavior. So verbal 
reporting might be useless. 
The main problems identified in accessing an expert's knowledge are: 
- Expertise may be fortuitous. Results obtained may be dependent on features of the situation 

which the expert is not controlling. 
- Expertise may not be available to awareness. An expert may not be able to transmit the expertise 

by criticizing the performance of others because he is not able to evaluate it. 
- Expertise may not be expressible in language. An expert may not be able to transmit the expertise 

explicitly because he is unable to express it. 
- Expertise may not be understandable when expressed  in language. An apprentice may not be 

able to understand the language in which the expertise is expressed. 
- Expertise may not be applicable even when expressed in language. An apprentice may not be 

able to convert verbal comprehension of the basis of a skill into skilled performance. 
- Expertise expressed may be irrelevant. Much of what is learnt, particularly under random 

reinforcement schedules, is superstitious behavior that neither contributes nor distracts from per-
formance. 

- Expertise may be incomplete. There will usually be implicit situational dependencies that make 
explicit expertise inadequate for performance. 

- Expertise expressed may be incorrect. Experts may make explicit statements which do not 
correspond to their actual behavior and lead to incorrect performance (Gaines 1987). 
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In all cases of expert-system building some sort of interview on some level should take place.4  
The essence of interviewing is that the expert answers questions posed by an interrogator. Various 
kinds of interviews are possible. 
The first important step is the choice of expert. He must have the right capabilities, be available and 
give support. 
In selecting the domain expert one should not initially expect complete coverage. The task should be 
decomposable and the domain fairly stable. 
In getting background knowledge about the domain, the expert should make a sort of tutorial about 
the subject. 
The basis of an initial knowledge base can be formed by references, written material, handbooks, 
and so on. Begin the actual knowledge elicitation by having the expert go through the task, 
explaining each step in detail (Prerau 1987). 
 
For the purpose of getting a basic idea of the problem the knowledge engineer might perform the "20 
questions" method, a fast way to reveal the essence of the problem. From here he can do a "grand 
tour" to catch the main features of the domain in a wide meshed network. From these interviews the 
knowledge engineer can structure the plan for the next interviews. These should reveal the concepts 
and attributes, their relations, and the rules. This can be done by giving the domain expert cases to 
solve. ("Name a particular problem. How would you solve it?") The interviewer can direct this 
process in a strict way, or he can give the expert room to associate with other problems, and so on. 
The interviews with the domain expert should also include cross-checking questions ("What will 
happen if you don't do?") which can reveal more relevant facts (LaFrance 1987). 
It seems that people are better in describing procedures than recalling facts. So the interviews about 
cases are giving better results than asking for facts without a problem to solve.  
Experts are able to give knowledge in an explicit way when they are confronted with mistakes. The 
TEIRESIAS system uses this principle. Facts are usually better retrieved from handbooks. Although 
it is advised that an expert should check the textbook facts for accuracy. Sometimes books still use 
outdated methods or more theoretical ways than are used in daily practice. 
 
Another form of interviewing is on-site observation where the knowledge engineer watches the 
expert solving problems on the job. This could be augmented by a thinking aloud protocol from the 
domain expert (see section 2.4.4). Although experts find it difficult to identify the most appropriate 
aspects of problem solving components. The reason might be that he is usually not required to give 
explicit formulation of his expertise. It also has been shown that people tend to stop verbalizing 
when the task is difficult. (see also De Groot 1965) 
The problem of implicit knowledge is often not recognised by researchers. According to Berry 
(1987) there is a distinction between implicit knowledge which was once represented explicitly or 
declaratively and implicit knowledge which arises as a result of an implicit learning process and has 
never previously been explicitly represented. In the former kind of explicit knowledge declarative 
knowledge gets transformed into a procedural form. After a while the expert loses his ability to 
report it verbally. The second kind of implicit knowledge is the knowledge that is assembled by 
experience (perception etc.) and was never verbalized. 
 
A widely used form of interview, often used in automated knowledge acquisition, is the repertory 

                     
    4With the exceptional case that the expert himself builds the expert system or while using induction 
algorithms. 
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grid method (see section 3.6), or multidimensional scaling, used to classify and characterize a 
domain.  
Advantages of scaling techniques as knowledge-elicitation tools are: 
Scaling techniques can overcome the criticisms of interviewing and protocol analysis. Scaling 
techniques provide also information concerning the structure of knowledge that might serve as a 
basis for representing that knowledge in the system (Cooke and McDonald 1987). 
A negative aspect of the rating-technique method is that more is revealed about the expert's rating 
toward a series of objects or attributes without regard for the context. 
 

2.4.4  Protocol analysis 
 
In addition to or connected with interviewing the knowledge engineer might perform task analysis 
and protocol analysis. 
It is assumed that the knowledge engineer has sufficient knowledge about the domain to understand 
the protocol analysis. Protocols are often incomplete. Experts cannot verbalize as fast as they reason. 
They often omit things that seem obvious to them. Experts have no experience to think aloud and 
when they do, it might effect the task they are performing.  
In addition to this Ericsson and Simon (1984) give several negative aspects of protocol analysis: 
1. The subject has to change his thought processes if he is told to verbalize the information in a 

certain way.  
2. The reporting process may alter the task performance.  
3. The reports may yield a very incomplete record of the cognitive processes. 
4. Only the information that is reportable is heeded during the performance of a task. 
5. What cannot be reported are the cues that allow the subjects to recognize stimuli. Only the results 

of the process of recognition can be reported but not the intermediate steps. 
6. Some  reports are idiosyncratic  and reflect the unique experiences of individuals. 
7. Encoding  of verbal protocols cannot  be made objective and sound. 
 
In summary, task analysis and protocol analysis do not seem to be an effective method in knowledge 
acquisition. 
 
In general one can distinguish the different kinds of interviews. Formal (= structured) interviews 
about problem cases and protocol analysis can elicit procedural knowledge. Grid methods (= decom-
position) and multi-dimensional analysis reveal declarative knowledge. 
However a case study did not show that these techniques divided sharply declarative and procedural 
knowledge. In comparative studies these methods show some considerable shortcomings. First it 
was obvious that protocol analysis would not score very high, because the nature of the knowledge 
of the domain (in this case the identification of igneous rocks) is too declarative for this method.  
Second, the techniques gave varying results depending on the experts involved. Especially the time 
factor varies according to the personality of the expert involved. 
A positive finding might be that experts who were faced to put their knowledge in an unfamiliar 
format gave more useful results (Burton et al. 1988). 
 
Studies such as the above are not often published even today. It should be worthwhile to have larger 
scale comparisons of interview techniques, also in different kind of domains. In the study of Burton 
et al. the domain was typically classification oriented. One can conclude that the elicitation 
technique should depend on the type of problem involved. 
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It is clear that the interaction that takes place between the knowledge engineer and the domain expert 
must be guided or structured. This is in contrast with the unstructured flow of information that takes 
place in several kinds of elicitation techniques. 
 

2.4.5  Expertise from multiple experts  
 
The knowledge engineer should be aware that expert knowledge is more than one kind and not all 
this knowledge can be acquired from one person.  
Mittal and Dym (1985) suggest that interviewing multiple experts gives a broader result.  
Hawkins (1983) gives an example from the field of petroleum geology. There are two schools of 
thought. Hawkins calls them the "classificatory" and the "behavioral" schools. 
In the classificatory school the features of a particular described object are compared with the 
characteristics of well-known objects, called typical examples or prototypes. These prototypes are 
organized in a taxonomy.  
The behavioral school generally presents its results in the form of calculated values of critical 
properties. 
The knowledge base should be available for both ways of thought. 
Neither school by itself proves to be adequate to describe real and complex, geological objects. Each 
school has problems in communicating with the other because their knowledge of real-world objects 
is structured so differently. This forming of schools is applicable to most sciences. It is therefore 
advisable to acquire knowledge from various experts to understand the different attitudes. 
 
Another reason to take advice from multiple experts is the complementary of information. What one 
person lacks might be supplied by another. Winograd and Flores (1987) mention also the absence of 
formalized knowledge and the existence of prejudices. 
Experts do not need to have formalized representations in order to act. They may at times manipulate 
representations as one part of successful activity. However, it is fruitless to search for a full 
formalization of the pre-understanding that underlies all thought and action.  
Besides we never have a full explicit awareness of our prejudices. Even while working in technical 
and scientific fields we will sustain certain ideas that are formed on prejudices. By formal training 
prejudices will be formed ("schools") but also by incidents that make us believe something, rather 
than really know it. In these cases it is impossible to get a formalized representation of one's 
knowledge (Winograd and Flores 1987). 
 
The knowledge engineer should be aware of these problems throughout the knowledge-acquisition 
process. 
 
 

2.5  INTERACTION BETWEEN KNOWLEDGE ACQUISITION AND 
KNOWLEDGE REPRESENTATION 
 
Once knowledge is acquired, whether from experts or from other sources, it must be encoded in a 
knowledge-representation language. On the one hand, the knowledge representation affects the 
working of the system. On the other hand, the problem solving strategies of the system determine the 
knowledge representation. If we make the knowledge representation and our knowledge acquisition 
technique compatible then somehow the knowledge acquisition process should be easier.  
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Two conclusions can be drawn. 
1. The knowledge acquisition process should fit into the knowledge representation 
2. The knowledge representation should be adequate for the problem. 
 
A panel meeting at the conference of the AAAI in 1986 discussed these issues. Unfortunately, the 
results were not published in the proceedings. 
Moreover little has been published about the interaction of knowledge acquisition and knowledge 
representation. 
 
Usually the systems are rule-based, so the knowledge should be procedural. Human experts have no 
problem with stating their knowledge in procedural form. Disadvantages of production rules are the 
lack of structure in the case of large numbers of rules. Further there is still need for other kinds of 
knowledge. 
Shachter and Heckerman (1987) add to this that human experts find it easier to represent a rule in the 
form of IF <hypothesis> THEN <evidence> instead of IF <evidence> THEN <hypothesis>. 
Knowledge bases based on conceptual structures rather than inference rules have difficulties 
handling procedural knowledge. 
 
Suggestions have been made (Becker and Selman 1986) to extend the knowledge-representation 
system KRYPTON (see section 3.17) to facilitate the representing of expert knowledge. 
KRYPTON is a synthesis of frame-structures and logic. The frame-based language is used for 
forming descriptive terms, the logic-based language makes the assertions. A knowledge 
representation  based only on frames and networks lacks reasoning capability and can also be 
ambiguous. KRYPTON is made to be functional (Brachman et al. 1985). 
 
Another approach to bringing knowledge acquisition and knowledge representation together is made 
by Bylander and Chandrasekaran (1987). They emphasize not only the importance of knowledge 
representation but in particular the knowledge-base reasoning. They have developed a theory of 
generic tasks: 
Whether the knowledge is acquired by a knowledge engineer or by a program, ultimately the 
knowledge must be encoded in some knowledge representation. Consequently, knowledge 
acquisition cannot be separated from a broader theory of knowledge-based reasoning; a solution to 
knowledge acquisition must be compatible with a solution to the general problem of knowledge-
based reasoning. 
A theory of generic tasks identifies several types of reasoning that knowledge-based systems 
perform and provides an overall framework for the design and implementation of such systems. 
 
The interaction problem is this: 
Representing knowledge for the purpose of solving some problems is strongly affected by the nature 
of the problem and by the inference strategy to be applied to the knowledge. In other words, how 
knowledge is represented has a close relationship to how knowledge is used to solve problems; 
knowledge is dependent on its use. 
The interaction problem has serious implications for how knowledge acquisition should be done. 
Also, if different kinds of reasoning have different kinds of interactions, there is a need for a 
different knowledge-acquisition methodology for each kind of reasoning. 
 
1. Choice of knowledge. The knowledge-acquisition process must choose what knowledge to ask for 
and what knowledge to encode. The choice is driven by the need to gain leverage on the problem by 
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obtaining knowledge with high utility and to reduce complexity by avoiding or discarding 
knowledge with low utility. Not everything the domain expert knows has the same level of 
usefulness, and in any case, it is not feasible to acquire everything that the domain expert knows. 
 
2. Constraints of inference strategy. A knowledge representation requires some process that, given a 
description of a situation, can use (or interpret) the knowledge to make conclusions. It is this process 
which is called the "inference strategy" (or "inference engine"). The knowledge must be represented 
so that the inference reaches appropriate conclusions in a timely fashion. Consequently, the 
knowledge must be adapted to the inference strategy to ensure that certain inferences are made from 
the knowledge and not others. Also, given a choice of inference strategies, there will be an 
interaction between the strategy chosen and the form of knowledge. 
Generic tasks are basic combinations of knowledge structures and inference strategies that are 
powerful for dealing with certain kinds of problems. The generic tasks provide a vocabulary for 
describing problems, as well as for designing knowledge-based systems that perform them. 
 
It seems very important to elaborate more on this subject to facilitate the knowledge-acquisition 
process. 
 
 

2.6 STRUCTURES AND LEVELS 
 
In section 2.2 I have discussed  the discrepancy between human and machine information 
processing. One obvious difference is the structure of knowledge.  
The lack of structure in human knowledge is not so much due to its variety of expressions or to the 
complexity of the thought processes. The fact that much of human knowledge is compiled 
knowledge, resulting from more or less long experiential learning, seems to be a more powerful 
reason. 
A computer system needs structure, at least if we want it to work efficiently.  
In the previous section I went over the necessity of the compatibility of knowledge acquisition and 
knowledge representation. Structure is needed for adequate representation of knowledge. But the 
knowledge needs to be in a certain order for the system to run. The better the structure is, the better 
the performance of the system will be. 
Another necessity for structure is in the initial state of expert-system building. It seems fruitless to 
get started in a knowledge-acquisition process with the domain expert without a plan. The domain 
expert is usually not the right person to give outlines of designing a system. 
 
We can distinguish various kinds of structures: 
1. Structures can be found in the domain, but these are not explicitly known to the domain expert. It 

is up to the knowledge engineer to elicit these structures. 
2. There are structures of the system, whether expert-system shell or knowledge-representation 

language. If starting from scratch, the knowledge engineer should design one. 
3. There is also a structure in the knowledge acquisition process. 
All these structures have to do with the organization of knowledge in one way or the other. 
 
Structures in the domain can be revealed on certain levels. The most basic - and the only really 
necessary - level is the recognition of type of problem the domain covers (diagnosis, planning, 
repair, etc.). From here on one can use the proposed structure of the system to map the structure of 
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the domain. This system structure should be compatible with the domain problem structure. In this 
way the domain gets a more detailed structure from the system. It does not matter if this structure is 
unknown to the expert (or anyone else in that field), but it should at least become familiar to the 
domain expert. It is more important that the system can offer a structure in which the domain exper-
tise fits. This also means that the system structure should be flexible enough to adjust to the domain 
knowledge. The knowledge engineer does not need more than a library of problem structures to 
capture all kinds of domains. (see section 3.8) 
 
Since the system is highly structured I follow the principles of the knowledge-acquisition system 
KADS (Breuker and Wielinga 1985, 1987, De Greef and Breuker 1985, Wielinga and Breuker 1985, 
1987). 
KADS distinguishes four levels of expert knowledge, corresponding to different roles that 
knowledge plays in reasoning processes: 
On the domain level are concepts, relations and structures represented. On these objects the 
inference level can be applied. The task level controls the goals and tasks. The strategic level 
controls the whole process. 
In section 3.8 these levels are presented in a more elaborated way. 
 
In section 3.30 more will be said about knowledge levels and schemata of the knowledge acquisition 
system TEIRESIAS. 
 
 

2.7 PROTOTYPING 
 
First some remarks about the controversy between rapid prototyping and structured knowledge-
acquisition. Somehow two schools of knowledge engineering have evolved. The school of rapid 
prototyping claims that the best way to get along with the domain expert and to keep him interested 
is to make a prototype of the system in an early stage of development. This principle is used in the 
knowledge-acquisition technique described in section 2.1. 
The other school uses the structured approach. Structured knowledge-acquisition is mainly 
developed at the University of Amsterdam. It is based on the principle that the structure of a system 
should be outlined in detail before any knowledge acquisition can be done. In an interview 
(Thiemann 1989) Wielinga, one of the developers of KADS, states that they are not opposed to 
prototyping. He thinks that while prototyping one can use the techniques of KADS at the same 
time.5 
Prototyping is the implementation of a preview of the system that the knowledge engineer tries to 
build. It can be a significant part of the system or the whole system without all the details. There are 
advantages of prototyping for the domain expert and for the knowledge engineer.  
First, we can mention the psychological effect of visualizing a system that is so far only an abstract 
entity. The effect for the knowledge engineer will be that he gets a better insight in the procedure. 
The same insight influences the domain expert in this respect that he will get a better understanding 
of what is expected from him. Another effect for both is the recognition of still uncovered 
possibilities in the system. 
                     

    5A similar solution is used by the Dutch software house BSO that exploits a technique that takes advantage of 
both techniques.  
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An extra effect upon the domain expert seems to be that he will be more interested in the system 
since it has obtained more shape. (Among many others, see Welbank 1983, Van Dijk et al. 1988, 
Hayes-Roth et al. 1983) 
 
In their "Practical Guide to Designing Expert Systems", Weiss and Kulikowski (1984) emphasize 
the importance of building a prototype as soon as possible. The reasons they give is that often 
knowledge engineers gather information about the domain over a long period of time without getting 
a good insight of that domain. The prototype allows the expert to give feedback and improvement 
will easily occur. They give some advice how this prototyping should take place: 
 
1. Design a model by focusing on a small set of hypotheses and include in a first prototype only 

those findings that are most predictive of these hypotheses. 
2. Identify clusters of findings that are most discriminating. 
3. In the decision rules, combine the smallest number of findings necessary to confirm or 

discriminate among hypotheses. Increase the number of conjunctive rules when the resulting rule 
will significantly increase the power of the system to confirm or deny the conclusion. There is 
potentially a large number of combinations of findings. A model should contain the smallest 
number of these that are sufficiently specific to confirm, deny, and discriminate. 

4. Include findings that may not be strongly predictive or discriminatory on their own, but which 
can significantly improve the quality of decisions by setting a context or focus of attention for 
the decision-making process. The prototype system at this stage becomes more realistic. 

5. Determine whether abstractions can be made. For example, some production rules can be 
satisfactory if one or more out of a list of findings are satisfied. 

6. See whether additional intermediate hypotheses can be introduced to simplify reasoning.  
7. Test the model on a data base of cases. 
 
Prototyping has many advantages. It seems that rapid prototyping can be combined with any other 
knowledge acquisition approach. The idea of omitting the prototyping and waiting till the system 
can be implemented does not seem to be successful. 
 
 

2.8  UNCERTAIN KNOWLEDGE 
 
In the knowledge-acquisition process the knowledge engineer has sometimes to deal with uncertain 
knowledge. Experts tend to be inaccurate and make errors when it comes to processing uncertain 
knowledge. A method to overcome this problem is to offer the domain expert a point of reference 
that divides the range of confidence into two parts. The domain expert can choose his confidence 
level. This procedure can be repeated several times. This method is called "providing anchor points" 
(Hink and Woods 1987). 
 
Probabilistic judgments are more often based on a positive or negative impression, or on prejudices, 
than on logic reasoning. Humans use heuristics to process uncertain information: 
1. Representativeness, which is based on the assumption that the more an object typifies a 

corresponding class, the higher the probability of a relationship between the two. 
2. Availability, where easily recallable information has higher associated probability than less 

recallable information. 
3. Adjustment and anchoring which cause over- and underestimation of usually infrequent and 
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frequent occurring events. 
The best way to reduce the effects is to avoid using probabilistic or statistical judgments by the 
domain expert as much as possible (Hink and Woods 1987). 
 
Another approach is suggested by Gruber and Cohen (1987). They have developed a medical expert 
system MUM (Manage Uncertainty in Medicine) that is designed to combine evidence and 
knowledge and to support control knowledge (knowledge about what to do). 
The combining knowledge helps to avoid uncertain conclusions from given uncertain knowledge. 
Combining knowledge specifies how belief in several pieces of evidence is combined to support a 
single conclusion. 
1. It replaces the real-valued numeric representation of uncertainty with symbolic states of belief 

that are meaningful in domain terms. 
2. It provides an explicit representation for clusters of evidence to encapsulate diagnostically 

significant subsets of evidence. 
3. It replaces the global numeric function with local combining functions, specified by the expert, 

for each cluster of evidence. 
MUM represents belief as ordinal values that characterize the expert's evaluation of evidential 
support (such as "confirmed", "supported", etc). 
MUM represents combinations of evidence with clusters (frames) that represent diagnostically 
significant groupings of evidence. (Diseases are clusters.) 
 
The representation of combining knowledge is designed to facilitate knowledge acquisition: 
The ordinal states of belief are chosen to be sufficient to characterize diagnostically significant 
situations, and nothing more. The symbolic combining functions are explicit, declarative 
representation of decisions about evidential support. Instead of representing degrees of belief and 
computing the results, the evidential judgments are represented. 
Some systems solve the uncertainty problem by using fuzzy logic. 
 
 

2.9  KNOWLEDGE-BASE REFINEMENT 
 
Knowledge-base refinement can be regarded as the second phase in the knowledge-acquisition 
problem. After the knowledge engineer has extracted the initial knowledge from the expert the 
knowledge has to be refined into a high performance knowledge base.  
 
Welbank (1983) enumerates the problems the knowledge engineer has to overcome: 
1. 1. There are gaps in the knowledge, particularly missing constraints. Rules may turn out to be 

applicable in the wrong circumstances. 
2. Rules overlap, leading to inconsistent or redundant conclusions.  
3. Rules interact in unexpected ways. 
4. New information could be put into several parts of the program. The knowledge engineer must 

decide the most appropriate place to put it. 
5. Changes should propagate through all parts of the program. 
6. The knowledge engineer loses his understanding of the knowledge base as a whole. 
7. Rules are not strictly independent. 
 
The system SEEK2 (Ginsberg et al. 1985) uses cases that are evaluated by the expert to refine the 
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rules involved. 
The fundamental assumption is that case knowledge can be used to drive a process involving 
empirical analysis of rule behavior in order to generate plausible suggestions for rule refinement. 
Case knowledge is given in the form of a data base of cases with an expert's conclusions. Empirical 
analysis of rule behavior involves gathering certain statistics concerning rule behavior with respect 
to the data base of cases; suggestions for rule refinements are generated by the application of 
refinement heuristics that relate the statistical behavior and structural properties of rules to 
appropriate classes of rule refinements. 
 
Semantic consistency checking helps to detect inconsistencies between the knowledge base and 
revisions. 
A system like TEIRESIAS (see section 3.30) can match new rules against other similar rules to 
check consistency and completeness. 
EXPERT and EMYCIN use automated testing of a large number of problems to see if the 
knowledge base is well revised. This reveals the best revisions and also the weak spots in the knowl-
edge base (Buchanan et al. 1983). 
 
Most of the automated knowledge-acquisition systems that are described in the next chapter have 
built-in facilities to refine and debug knowledge bases. In general it can be said that automated 
systems are the chosen tools to find inconsistencies and incompleteness. Specially when knowledge 
bases are large the knowledge engineer is unable to overview all rules and their intertwinements. 
 
 

2.10  THE ULTIMATE KNOWLEDGE BASE 
 
A distinctive solution to overcome the knowledge-acquisition bottleneck can be found in the CYC 
project (Lenat et al. 1986). 
The CYC project is the building of a large knowledge base of real world facts and heuristics and 
methods of efficiently reasoning over the knowledge base. Common sense reasoning and analogy 
can widen the knowledge-acquisition bottleneck. 
General knowledge can be broken down into a few types: 
1. The real world factual knowledge, the sort found in an encyclopedia. 
2. The common sense knowledge that an encyclopedia would assume the reader knew without 

being told. 
3. The general knowledge we have acquired might be a source for new knowledge by means of 

analogy or heuristics. 
The large knowledge base of general knowledge that CYC will hold helps to acquire knowledge in 
an easier way. We assimilate new information by finding similar things we already know about and 
recording the exceptions to that analogy. So, the more we know, the more we can learn. 
Causal meta-knowledge will play a key role in deciding how to find and extend analogies. One of 
the tasks is to taxonomize slots and build that hierarchy into CYC's knowledge base. 
Frames can have slots with identical names and values. Or frames can have identical slots but 
different values.  
An important part of CYC is its large, organized body of reasoning methods. These are being 
described declaratively in CYC in a network of frames spanning both problem-solving architectures 
and specific heuristics. Included are analogical and common sense reasoning methods as well as 
more traditional problem-solving techniques. 
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CYC's representation language is frame-based and is similar to RLL (Greiner and Lenat 1980) and 
KRL (Bobrow and Winograd 1977). 
 
It seems that this knowledge base will replace human reasoning processes, common sense 
knowledge and encyclopedic knowledge. It is not clear yet if this will be necessary to acquire expert 
knowledge and to build an expert system. 
 

2.11  MACHINE LEARNING 
 
The "Feigenbaum bottleneck" and the "Michie road"  
 
The bottleneck in the knowledge acquisition process is specifically present in the transfer or 
articulation of the expert knowledge (his know-how) into the formulation (his "say-how") of this 
knowledge (see figure 2.2). 
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In Michie (1987) is shown how this articulation problem can be by-passed by a rule induction 
program or induction algorithm. Here the human know-how is represented by examples of his 
expertise (the human "show-how"), such as the expert uses to teach his skills to new recruits in a 
tutor-apprentice situation. From these examples the induction program can produce the rules for the 
knowledge base, the machine "say-how" and the know-how (see figure 2.3). 
In a later stage of the process the "old route" can still be used. The human expert will be asked to 
refine the rules (the first refinement cycle). When the system is fully tested a second refinement 
cycle is necessary. The domain expert can debug, refine, and maintain the system (Michie 1987 and 
Van den Herik 1986). 
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******************* Knowledge engineer's route map: new style ***********************
 figure 2.3 (from Michie 1987) 
 
 
The induction principle originated in the ID3 algorithm (Quinlan 1979). 
This ID3 algorithm produces a decision tree for differentiating positive and negative instances, given 
a collection of instances of a concept described in terms of attributes or properties. 
The commercial version of ID3, Expert-Ease, is mentioned in section 3.32. RuleMaster (see section 
3.26) is an extended version of the original ID3 algorithm. 
A drawback of these induction programs is the absence of the necessary background knowledge to 
select the attributes and to determine the relations between attributes (Goodall 1985). 
 
In their 1983 contribution Buchanan et al. were rather skeptical about using machine-learning 
techniques in the knowledge-acquisition process. However, the Meta-DENDRAL program that 
could learn rules from cases was developed and successfully used about 20 years ago. 
Welbank (1983) also mentions the following limitations: 
1. An induction system would need a database of documented cases to examine. Many domains of 
human expertise cannot supply this. 2. The rules that are induced from a set of cases will not be the 
same as a human expert uses.  
Therefore this approach is not eliciting human knowledge at all. Human rules may be more 
computationally efficient than a random set of rules that completely covers the same domain. 
Human rules may also be more robust, whereas a set of rules induced by a machine from one 
collection of cases may account very poorly for a second set of cases. Some induction algorithms 
would produce a different rule every time a new case is added to the library. 
Machine-induced rules which do not correspond to the rules that human experts use could also be 
very difficult to grasp. They would have lost the advantage of transparency. 
As long as machine induction produces rules which split the domain up in different ways from those 
the expert uses, it has serious limitations as a knowledge-elicitation method. 
In the years afterwards several automated knowledge-acquisition systems using machine learning 
have been developed. They are discussed in the next chapter. 
 
There are many ways in which machine learning can be useful in the knowledge-acquisition process. 
First machine-learning systems might contribute to the initial construction of a knowledge base. 
Second, machine-learning systems might refine existing knowledge bases. Third, machine-learning 
systems might be helpful in adapting a knowledge-based system, for example, to accommodate user 
expertise or style. Finally, in general, machine learning might provide a principled method for 
constructing knowledge bases for expert systems, replacing the ill-defined engineer versus expert 
knowledge-acquisition interaction. Thus, it may provide a formalized mechanism for the knowledge-
acquisition process (Shalin et al. 1988). 
Michalski (1987) gives an overview of present-day machine-learning techniques for knowledge 
acquisition: 
Machine-learning strategies reflect the type of inference performed by the learner on the input 
information in order to derive the desired knowledge. They include learning from instruction, 
learning by deduction, learning by analogy and learning by induction. Special attention is given to 
two basic types of learning by induction: learning from examples (concept acquisition) and learning 
from observation (concept formation without teacher). A specific form of learning from observation 
is conceptual clustering. Conceptual clustering is a process of structuring given observations into a 
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hierarchy of conceptual categories. 
An inductive learning system generates knowledge by drawing inductive inferences from the given 
facts under the guidance of background knowledge. The background knowledge contains previously 
learned concepts, goals of learning, the criteria for evaluating hypotheses from the viewpoint of 
these goals, the properties of attributes and relations used to characterize observed events, and 
various inference rules for transforming concepts or expressing them at different levels of 
abstraction. 
 
A long-term solution for the knowledge-acquisition problem is seen in the development of machine 
learning. Knowledge acquisition is specially emphasized through inductive learning, learning from 
examples, and learning by observation and discovery. 
The knowledge-acquisition process can be greatly simplified if an expert system can learn decision 
rules from examples of decisions made by human experts, or from its own errors. This type of 
learning strategy is called learning from examples (or concept acquisition). 
Learning from examples is one of several fundamental learning strategies. These strategies are 
identified by viewing a learning system as an inference system. Namely, they are distinguished by 
the major type of inference the learning system (human or machine) performs on the information 
provided, in order to derive the desired knowledge. 
 
Learning strategies: 
1. Direct implanting of knowledge. 
2. Learning from instruction, also called learning by being told. A learner selects and transforms the 

knowledge from the input language to an internally-usable representation and integrates it with 
prior knowledge for effective retrieval and use. 

3. Learning by deduction: 
a. A learning system that uses this strategy conducts deductive (truth-preserving) inference on the 

knowledge it possesses and knowledge supplied to it. 
b. A form of deductive learning, called analytical or explanation-based learning, has recently 

become an active research area. In analytical learning, the system is already equipped with a de-
scription of the target concept, but the description is expressed at the level of abstraction too high 
to be directly usable. 

4. Learning by analogy. This strategy involves transforming or extending existing knowledge (or 
skill) applicable in one domain to perform a similar task in another domain. 

5. Learning from examples. Given a set of examples and (optionally) counter-examples of a 
concept, the learner induces a general concept description. The amount of inference performed 
by the learner is greater than in learning by deduction or analogy, because the learner does not 
have prior knowledge of the concept to be learned, or knowledge of a similar concept. Learning 
from examples is also called concept acquisition. When a system determines examples by a 
search or other active effort this is called learning by experimentation. Learning from examples 
is one form of inductive learning. Another form is:  

6. Learning by observation and discovery. 
a. Passive observation, where the learner builds a description of a given set of observations. 
b. Active experimentation, where the learner makes changes in the given environment and observes 

the results of those changes 
 
The learning strategies mentioned above were presented in order of increasing amounts of effort 
required from the learner and decreasing amounts of effort required from the teacher. They reflect 
the increasing complexity of the inference performed on the information given to a learning system 
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in order to derive the desired knowledge. 
There are lessons for machine knowledge-acquisition to be drawn from the above considerations. 
One is that if we know precisely how to solve a problem, we should tell the computer the solution 
directly (i.e., program it). Teaching by instruction will be simpler and more productive than using a 
deductive or inductive learning strategy. Such teaching will be facilitated by having an appropriate 
knowledge-representation language and debugging tools. As there are many areas in which precise 
solutions are known and relevant concepts can be defined, this strategy has wide applications. 
Therefore, the development of appropriate knowledge-representation languages and support tools 
(both general and specific to a given domain) constitutes a major research area. 
 
There are many application areas where precise concept definitions or algorithms are unknown or 
difficult to construct even in an abstract, non-operational form. Examples of such areas are technical, 
medical or agricultural diagnosis, visual pattern recognition, speech recognition, machine design, 
robot assembly, etc. Also, people often have difficulties in articulating their expertise, even when 
they know well how to perform a given task or are able to recognize a given concept without any 
difficulty. In such cases, applying an analogical or inductive machine-learning strategy seems quite 
desirable. 
Inductive learning is a process of acquiring knowledge by drawing inductive inferences from 
teacher- or environment-provided facts. Knowledge acquired through inductive learning cannot, in 
principle, except for special cases, be completely validated. This is a well-known predicament of 
induction. 
In order to perform inductive inference one can thus need some additional knowledge (background 
knowledge) to constrain the possibilities and guide the inference process toward one or a few most 
plausible hypotheses. In general, this background knowledge includes the goals of learning, 
previously learned concepts, criteria for deciding the preference among candidate hypotheses, the 
methods for interpreting the observations, and the knowledge-representation language with 
corresponding inference rules for manipulating representations in this language, as well as the 
knowledge of the domain of inquiry. 
 
Given: 
a) premise statements (facts), F, that represent initial knowledge about some objects, situations or 

processes; 
b) a tentative inductive assertion (which may be null); and 
c) background knowledge (BK) that defines the goal of inference, the preference criterion for 

ranking plausible hypotheses, assumptions and constraints imposed on the premise statements 
and the candidate inductive assertions, and any other relevant general or domain specific 
knowledge. 

Find: 
an  inductive assertion (hypothesis), H, that, together with background knowledge, BK, 
tautologically implies the premise statements. 
 
This form of knowledge acquisition relieves the expert from the tedious task of defining rules 
himself. Moreover, it requires the expert to do only what he can do best: make decisions. Experts are 
typically not trained to analyze and explain to others their decision making processes, especially if 
they must express them in a formal way. Therefore, such tasks are usually difficult for them to 
perform. Once rules are acquired from examples, experts can usually do a good job in evaluating 
them (Michalski 1987). 
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Shalin et al. (1988) give methods to find the right sort of machine-learning technique: 
This approach to identifying relevant machine learning systems for knowledge acquisition involves 
four steps: 
1. Characterize machine-learning systems according to a general framework so that these systems 

can be evaluated comparatively according to a standard set of issues. 
2. Characterize the general learning problems in an expert system that can be addressed by 

machine-learning systems. 
3. Assess the match between a machine-learning system and a learning problem according to a set 

of identified dependencies (attributes and relations) between features of machine learning 
systems and features of application domains. 

4. Evaluate a learning problem/machine learning system match based on the satisfaction of these 
dependencies. 

 
Despite its limitations machine learning as knowledge-acquisition technique should be considered 
when the conditions for machine learning are advantageous. 
 
 

2.12 COGNITIVE SCIENCE 
 
In section 2.2  I mentioned the mismatch between human and machine knowledge. Problems in 
expert-system building, and more particularly, in the knowledge-acquisition process, arise mainly 
from this mismatch. To grasp this problem we should know more about human knowledge.  
 
Cognitive science is a recently new expanding field that explores human knowledge. It is a typical 
interdisciplinary area combining aspects of artificial intelligence, psychology, linguistics, and 
philosophy. 
Here I refer to cognitive science as the study of human information processing. Human information 
processing deals with the acquisition and use of knowledge. 
Two issues are important in cognitive science. 
1. The representation: what is the nature of the knowledge structures. 
2. The process: what is the nature of the human information processing system. 
 
The human information processing system is the process of encoding, modifying and representing 
(storing) of information received by the various sense organs, the process that we call "thinking", 
and the verbal and motoric outputs based on the previous processes. 
It is still a controversial topic how information is obtained and stored in the brain. How are symbol 
structures represented in the mind and how are operations executed on them. 
In an attempt to explain more about the human information process system, cognitive scientists have 
introduced the hypothesis of mental models. 
Among others, Gentner and Stevens (1983) and Johnson-Laird (1983) give plausible bases for 
mental models and their functions as explanation for the process of human psychology. Mental 
models are also called conceptual models or schemata. 
With mental models we can explain the working of human thinking to a certain extent. Mental 
models can be formed about everything of which we have some sort of knowledge, perceptual or 
verbal. We can say that in mental models knowledge is encoded. A conceptual model is the problem 
space in which men considers understanding and dealing with the object of knowledge. 
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Interaction of a mental model of the environment with existing mental models of former experiences 
provide explanation for understanding new situations and how to deal with them. 
Conceptual models are formed through analogy with other existing conceptual models and result in 
identical understanding reactions (Gentner and Stevens 1983). 
 
Simon (1978) postulates that the brain operates basically as a system of labeled associations. The 
verbal representations are probably like the deep structures as postulated by the transformational 
linguists.  Visual representations hold or maybe even generate information about spatial figures. 
Conceptual representations are more abstract and can handle abstract meanings. Mental models are 
simpler - as models usually are - than the entities they represent. 
Mental models are analogical representations that are verbal or pictorical and in various degrees of 
abstraction. 
 
Haugeland (1981) thinks that the mind is a human information processing system that is not related 
to language. Language is an external mapping, while the mind, or the human information processing 
system, is a private internal mapping without relation to language. 
There are reports about children that have been deprived of any kind of language acquisition during 
their childhood but are able to tell later about their prelanguage experiences. More commonly known 
are studies in dyslexia about persons who cannot understand words, although they are known. This 
should prove that mental representations are not necessarily verbal. On the other hand it does not 
prove that mental representations are necessary nonverbal. Further experiments have shown that 
visualisation helps the understanding of verbal texts. Verbal recall without visualisation is seldom 
accurate.  
 
How does this fit in with knowledge acquisition? It seems that the study of human information 
processing is an integrated part of the study of knowledge acquisition.  
The transfer of knowledge is done by abstract concepts. The ability to formulate abstract concepts is 
a basic cognitive capacity. 
Man has learned to categorize while he is perceiving. In that process he loses the particulars and 
stores only the concepts. The process of thinking moves also on a level of abstraction, where the 
mind is swept clean of particulars, i.e. verbal and perceptual material, i.e., words and images. 
When he learns a skill he learns structures, rather than loose rules. He develops new structures by 
applying metaphors on structures he already knows. Experts are able to pick up knowledge patterns 
easier than novices. But also the knowledge engineers are not able to pick up these patterns as easily 
as the experts. 
The reproduction of acquired knowledge in words needs a kind of translation, from "mentalese"6 
into a natural language like English. Natural languages consist of concepts that have mental 
background as well. The mapping of structured knowledge into English sentences without losing too 
much information is a problem.  
If we transfer this process to the knowledge-acquisition process in expert-system building, the next 
step is the translation of these sentences by the knowledge engineer into his mentalese and from 
there he has to manipulate these structures to transform them in the right way in a knowledge-based 
system. 
 
This whole process is so tightly interwoven with cognitive processes in general and mental models 
                     

    6The language of the mental. 
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in particular that it seems to be of crucial importance for a better understanding of knowledge 
acquisition. 
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CHAPTER 3 

AUTOMATED KNOWLEDGE-ACQUISITION SYSTEMS I: 
DESCRIPTIONS 
 
 
In this chapter more than 30 knowledge-acquisition tools are described.  
 
The quantity and depth of information that has been obtained from each system vary greatly. 
TEIRESIAS is one of the best documented knowledge-acquisition systems (Davis and Lenat 1982). 
This should not be a surprise since TEIRESIAS is a member of the well published Stanford-based 
family of MYCIN. Other well described systems were found in journal articles, especially in the 
International Journal of Man-Machine Systems.  
Little material was gathered from the Proceedings of the AAAI and IJCAI conferences. The papers 
in these proceedings were often too short to give a full description of a system. Often only certain 
aspects of a system were mentioned. 
 
Bibliographic searches revealed an amount of reports on knowledge acquisition, but after closer 
investigation it turned out that most reports were working papers on recently started projects. I 
decided to include only those systems that were at least reviewed by an editorial board of a journal 
or conference committee. Notwithstanding this restriction, the articles do not always give sufficient 
information on all the questions one can ask. It was also not often clear whether a system was still in 
its infancy of development or already a successful tool, to mention the extremes. However, it should 
not be in conflict with the intention of this paper when only the method of a knowledge-acquisition 
system is described and not the actual working of an existing program. 
Literature about commercial available systems was surprisingly difficult to obtain. (see section 3.32) 
 
One can discuss the sequence of the systems. 
In several cases the chronological order of development, e.g., ETS before AQUINAS, would be 
preferable. In most cases however, the systems were developed independently from each other. 
Another way might have been grouping the systems according to their principles. But, as we shall 
see in Chapter 4, there are many ways to classify these systems. 
After ample consideration, the alphabetical enumeration of the systems was chosen for easy 
reference. 
 
To preserve the meaning of the authors their systems are described as much as possible in their own 
words. For the sake of readability quotation marks are omitted. 
 
 

3.1  AQUINAS  
 
AQUINAS is an expanded version of ETS (see section 3.6).  
It is able to handle better than ETS: 
- deep knowledge 
- causal knowledge 
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- relationship chains 
- different levels of abstraction in a single grid 
- the manipulation of large single grids. 
 
 
The tasks of AQUINAS are: 
- to elicit distinctions 
- to decompose problems 
- to give methods for combining uncertain information 
- to test knowledge 
- to make automatic expansion and refinement of the knowledge base 
- to use multiple sources of knowledge 
- to provide guidance to the knowledge-acquisition process. 
 
 
A knowledge base can be constructed along the following steps: 
1. Elicit cases and the initial grid (solutions, traits and ratings)7. 
2. Analyze and expand the initial, single grid. 
3. Test the knowledge in the single grid. 
4. Build hierarchies (structured as solutions and traits in multiple grids) from the first grid. 
5. Use several rating value types (transform ordinal ratings to nominal and interval ratings) to 

represent knowledge. 
6. List knowledge in hierarchies, test knowledge from multiple experts. 
7. Edit, analyze and refine the knowledge base, building new cases. 
8. Further expand and refine the knowledge base. 
9. Generate rules for expert system shells. 
  (Boose and Bradshaw 1987, Boose 1988) 
 
 
The Dialog manager, a subsystem of AQUINAS, provides guidance in the knowledge-acquisition 
process. It contains heuristics for the modeling of expertise and for the use of AQUINAS during 
knowledge acquisition. 
The Dialog Manager has been implemented as an expert system. Its domain knowledge is the 
effective use of AQUINAS. A rule-based approach to implementation was selected because of its 
flexibility, maintainability, and modifiability. Heuristics are encoded as rules directly within the 
AQUINAS system. 
In the automatic mode, the Dialog Manager applies knowledge acquisition heuristics to determine 
the best Aquinas operation to be performed next within the context of the current state of the 
knowledge base and the characteristics and preferences of the expert. The Dialog Manager displays 
the recommended command sequence, an explanation of what it is doing, and the reason it has 
chosen that option.   
 
Application areas 
 
Repertory grid-centered tools work best on analysis problems, or those portions of synthesis 
                     

    7see section 3.6 for the meaning of "grid" 
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problems that can be reduced to analysis problems. Analysis problems are those whose solutions can 
be comfortably enumerated (classification, interpretation, diagnosis), while synthesis problems are 
those whose solutions are built up from components (configuration, design, planning). Even with 
this limitation, these tools can be applied to a wide range of application problems. 
 
A general problem when modifying knowledge bases is that changes may degrade system 
performance. This is especially a problem when the knowledge base is large. It may be unclear how 
changing one item in a knowledge base containing thousands of items will affect overall system 
performance (Kitto and Boose 1987). 
In Shema and Boose (1988) some analyzing and refining mechanisms to control this problem are 
discussed. 
 
AQUINAS can be seen as representative of both repertory grid and general-purpose knowledge 
acquisition. Its strength is based in the variety of ways that experts are allowed into viewing their 
problem-solving knowledge (Kornell 1987). 
 
 

3.2 ASTEK  
 
ASTEK (Acquisition of STructured Expert Knowledge). 
 
The path that has been taken in knowledge-acquisition tools was to start with a simple natural-
language solution and extend it where the natural-language paradigm failed to meet the needs. This 
went in the direction of a form and editor paradigm of knowledge transfer. This paradigm better 
supports utterance planning, fragmented articulation and variations in the medium of articulation. 
The system looks much like OPAL (see section 3.22), except that form entries themselves may be 
complex structures or references to complex structures.  
Natural language plays a sufficiently important role in ASTEK. At the level of small knowledge 
fragments, natural language grammars support the medium of articulation when preferred. At a 
deeper level, ASTEK was designed with the realization in mind that automated knowledge 
acquisition is an extended dialog between a human expert and the computer. Drawing on work 
related to the needs of extended dialogs, features are added such as object reference and a 
recommendation function, which make knowledge acquisition more than the isolated editing of 
templates. The discourse tools help individual acts of articulation be performed as desired while 
bringing together the individually articulated knowledge fragments into a single, coherent 
knowledge base as the acquisition task reaches completion. 
 
A fundamental tenet of this approach to knowledge engineering is that effective knowledge-based 
systems can and should be built by designing cognitively appropriate knowledge structures, and 
implementing inference strategies as an operational semantics for these structures in a process called 
knowledge analysis. 
ASTEK is a multi-paradigm knowledge-acquisition tool. Unlike efforts directed at combining the 
tasks of knowledge analysis and knowledge acquisition and efforts towards machine learning, 
ASTEK is focused on the expressibility aspect of the acquisition problem. 
 
An acquisition tool must serve to: 
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1. Provide an external form for the knowledge that has clear, intuitive semantics to an expert in the 
domain. 

2. Mediate the knowledge transfer from the external form, that which is natural to the domain 
expert, to the internal form, that which is most easily manipulated by the inference engine. 

3. Support input of knowledge that is "correct by construction"; the acquired knowledge should be 
constrained to be correct at the earliest possible time. 

4. Support knowledge management, such as revision control, and incremental testing; the tool 
should act as a comprehensive knowledge-maintenance mechanism. 

 
ASTEK is an extension of INKA.  
The shift away from a pure language solution (as in INKA)  has been the need to describe procedural 
knowledge in a convenient manner. The tree-like structure of diagnostic procedures lies in stark 
contrast to the inherently linear nature of natural language. 
ASTEK is a general interface tool directed at aiding the user in efficiently communicating structured 
knowledge. As in OPAL the acquisition process in ASTEK is guided by a model of the domain 
knowledge. This model is constructed by specifying the types of knowledge structures for the 
domain in terms of their components and the appropriate editing mechanism to apply to each 
component. Also utilized by ASTEK in the diagnostic applications is a model of the system being 
diagnosed. 
 
 
ASTEK is implemented (Jacobson and Freiling 1988). 
 
 

3.3 AutoIntelligence 
 
AutoIntelligence is developed by IntelligenceWare Inc. It runs on an IBM-PC or compatible and 
costs $ 490.-.8 
 
AutoIntelligence allows the experts to alternately identify important factors as well as working from 
concrete examples. Rules are then inductively generated from the accumulated knowledge and 
examples. 
Designed to handle classification and diagnosis problems, AutoIntelligence enables an expert 
starting from selections or classes to define the characteristics of these selections, and to create 
examples using these definitions. These examples, coupled with the definitions, are then used to 
build a rule set, or expert system. 
 
The AutoIntelligence program consists of five modules: 
 
1. The Interview Manager interacts with the user, dynamically selecting the best interview style 

based on current progress. 
2. The Structure Discovery System identifies the key components in user decisions, checking for 

redundancy and inconsistency. 
3. The Example Manager tracks examples and handles the bookkeeping tasks for the user. 
                     

    8AutoIntelligence, IntelligenceWare, ExpertEase, and IBM-PC are trademarks. 
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4. The Induction System classifies and generalizes the data and examples fed in by the user. 
Classification produces rules capturing the example set; induction produces general rules. 

5. The Expert System Shell generates a working expert system which may be run or incorporated 
into another expert system shell. 

Earlier attempts included ExpertEase and others, but they were too restrictive for general 
application. Other automated knowledge-acquisition systems do not take into account multilevel 
interview techniques. 
With AutoIntelligence the user is cushioned with an interview-oriented technique, followed by rule-
based induction. 
 
 

3.4 BLIP 
 
BLIP (Berlin Learning by Induction Program) is mainly concerned with the construction of a 
domain theory as the first phase of the knowledge-acquisition process. BLIP is the learning part of 
LERNER. BLIP is an example of a machine-learning approach in knowledge acquisition. BLIP is 
implemented. 
The philosophy behind this kind of knowledge acquisition is adopted from cognitive science. A 
"sloppy" domain model entered by the user and general structures that reflect structures of human 
thought are used, rather than structures of the world. The learning process is guided by meta-
knowledge which can be viewed as the representation of cognitive structures that ease the 
knowledge-acquisition process. 
 
BLIP requires the user to specify a "sloppy" domain model by defining predicates and the sorts of 
their possible arguments entering facts about the domain expressed with those predicates. 
BLIP then discovers properties of these predicates and establishes relations between them, thus 
structuring the domain. 
Finally, the domain model is transformed into the systems formal rules (Morik 1987).  
 
Sloppy modeling is a paradigm for machine-supported knowledge acquisition that explicitly denies 
using structured elicitation dialogues for guiding the user through the knowledge acquisition 
process. Instead, by constructing an extremely flexible system, the user is provided a possibility to 
perform an unconstrained, exploratory first modeling phase with the help of the system. 
In the sloppy-modeling paradigm, knowledge acquisition is viewed as a cooperative modeling 
process between user and system. This means that the user is not required to develop a complete and 
well-structured model beforehand in order to transfer it later on into the machine. Instead, the 
modeling activity itself becomes part of the system-supported knowledge-acquisition process: 
selecting the proper abstraction/granularity level for the knowledge to be represented, choosing the 
right concepts, determining their interactions, etc. In that respect, sloppy modeling shares a common 
view with advanced knowledge-elicitation systems (e.g., AQUINAS), and machine-learning 
approaches, where the above tasks are system-supported as well. It differs from those approaches in 
its emphasis on a cooperative, mixed-initiative modeling process. In a knowledge-elicitation system, 
the user is guided through a more or less fixed dialogue, answering the questions posed by the 
system. There is no way for the user to take the initiative, to go back and reverse decisions made 
earlier. In the sloppy-modeling paradigm, the goal is a modeling style where the user and the 
system's structuring and learning routines are regarded as independent partners that both work 
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towards having a well-structured and complete model. 
 
As a knowledge-acquisition system, BLIP is designed to acquire encyclopedial knowledge. This is 
the basic problem-solving independent knowledge about a domain including terminology and simple 
empirical knowledge. BLIP can also be used directly with existing performance systems like 
HERACLES. 
BLIP offers comprehensive facilities for entering, inspecting, and manipulating encyclopedial 
knowledge. Sloppy modeling is supported by using machine-learning techniques that discover 
inferential relations between existing knowledge. 
 
BLIP's knowledge representation is based on a sorted logic augmented with selected higher-order 
constructs. The basic domain-level entities that a user works with are facts, predicates, and rules 
(Wrobel 1988). 
The main components of the learning process are the generation, rating and testing of hypotheses. 
 
Meta-knowledge in BLIP plays the central role in this approach to knowledge acquisition. Meta-
knowledge is used for checking consistency; including rules from facts (the learning process); and 
deducing rules from other rules. 
Meta-knowledge in BLIP (unlike that of AM, EURISKO, TEIRESIAS) refers to predicate constants, 
describing properties or relations of properties or relations. 
In order to verify whether or not a meta-predicate holds for certain predicates, the criteria for the 
validity of a meta-fact are represented in such a way that they can be used as pattern for a search 
process in the factual knowledge of the inference engine. These patterns are characteristic situations 
(Morik 1987). 
 
Design requirements for sloppy modeling systems: 
Flexibility. First, the interaction with the user is organized around independent commands that are 
available at any time, and not around extended structured dialogues. That lets the system easily 
follow sudden ideas on the part of the user. Second, and more important, the "agenda of open ends" 
allows the user to postpone treating integrity constraint violations and return to handle them later, 
thus making sure such tasks don't get in the way of domain modeling. 
 
Reversibility. BLIP is completely reversible with respect to the knowledge sources that are 
maintained by the inference engine, i.e., facts and rules at domain, meta, and metameta levels. For 
those knowledge sources, deletions and modifications are supported at any point. For other 
knowledge sources, those operations are supported, but not in the best possible way. 
 
Integrity and consistency maintenance. Consistency maintenance is guaranteed in BLIP by the 
reason-maintenance procedures of its inference engine. 
 
Transitionality. The BLIP system is transitional both in the traditional sense and in the sloppy-
modeling sense. First, it allows users to begin working in a domain-oriented style by just inputting 
facts, predicates, and rules. This is supported by providing tools that automatically reexpress rules in 
the metafact-representation needed by the system. Second, and perhaps more important, in BLIP, the 
same representations and knowledge sources are manipulated by the user and the learning 
algorithms that support the system's part of the sloppy-modeling process. That way, the interaction 
with the system is always the same, whether the automatic modeling tools are used or not (Wrobel 
1988). 
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3.5 (Meta-)DENDRAL 
 
The heuristic DENDRAL program is designed to help organic chemists determine the molecular 
structure of unknown compounds. 
 
Meta-DENDRAL 
Because of the difficulty of extracting domain-specific rules from experts for use by DENDRAL, a 
more efficient means of transferring knowledge into the program was sought. Two alternatives to 
"handcrafting" each new knowledge base have been explored: interactive knowledge-transfer 
programs and automatic theory-formation programs. In this enterprise the separation of domain-
specific knowledge from the computer programs themselves has been critical. Meta-DENDRAL has 
been constructed to help. 
One measure of the proficiency of Meta-DENDRAL is the ability of the corresponding performance 
program to predict correct spectra of new molecules using the learned rules (Buchanan and Feigen-
baum 1978). 
 
The rule-formation task that Meta-DENDRAL performs is similar to grammatical inference, 
sequence extrapolation, and concept formation and is known in AI as learning by example. 
In contrast to statistical approaches, Meta-DENDRAL utilizes a semantic model of the domain.  
 
The Meta-DENDRAL program itself is organized as a series of plan-generate-test steps, as found in 
many AI systems. After scanning a set of several hundred molecular structure/spectral data-point 
pairs, the program searches the space of fragmentation rules for plausible explanations and then 
modifies its rules on the basis of detailed testing. When rules generated from a training set are added 
to the model and another block of data is examined, the rule set is extended and modified further to 
explain the new data. The program iteratively modifies rules formed from the initial training set 
(adding to them), but it is currently unable to "undo" rules (Barr, Cohen, and Feigenbaum 1981). 
 
 

3.6 ETS 
 
The Expertise Transfer System (ETS) is a tool which: 
- interviews an expert 
- analyses the information gathered 
- produces production rule knowledge bases. 
 
ETS can help in the following ways during prototype development: 
1. Identification phase; data and terms. 
2. Conceptualization phase; key concepts and relations. 
3. Formalization phase; ETS automatically maps the key concepts into several representations that 

can be used for automatic rapid prototyping. 
4. Implementation phase; ETS automatically implements an initial prototype expert system by 

building a knowledge base for a target production rule expert system building tool. 
5. Testing phase; several tools and techniques are provided for incrementally improving ETS's 
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knowledge base, based on knowledge expansion methods and feedback from the prototype 
expert system. 

 
ETS uses interviewing methods based on the psychology of personal construct developed by George 
Kelly. His Repertory Grid Test can be used to list, compare and rate a collection of items. 
ETS helps the expert to construct and analyze the initial set of heuristics and parameters. The 
consistency of the method used by ETS guarantees a better result over manual methods. 
ETS uses an interview technique in which elements are elicited one at a time. The expert is asked to 
compare packages of elements, name attributes and name attributes that distinguishes members from 
each other. The knowledge remains in the expert's own terminology. 
ETS asks the expert to rate each element against each pair of traits. Thus a rating grid of values is 
formed. 
The system builds an entailment graph of implication relationships. The strength of the implications 
is listed numerically. The expert might add to and delete from these knowledge-base structures. 
ETS can now generate conclusion rules from ratings in the grid, after the expert has assigned 
concept names to each pair of traits. He is then asked to rate the relative importance of these 
concepts in his problem-solving behavior. 
The other kind of production rules that are generated are intermediate rules. These rules are 
implication rules based on the relations in the implication graph with their relative strength 
assignments. 
The expert may review these rules, improve them, and test the prototype. 
ETS is applicable to structured selection ( analytic) types of expert system problems, particularly 
classification problems. 
ETS has been used to build consultation systems that combine  expertise from multiple experts in the 
same domain. 
ETS has been used to build consultation systems that combine expertise from different domains and 
different aspects of the same general domain. 
ETS has been developed at the AI Center of Boeing Computer Services. Several hundred prototype 
consultation systems have been built using ETS (Boose 1985, Boose 1986b). 
 
 
The limits of ETS 
 
ETS can handle analysis class problems such as debugging, diagnosis, interpretation, and 
classification. 
The system cannot readily handle synthesis class problems (design and planning) or combinations of 
analysis and synthesis such as control, monitoring, prediction, and repair. 
 
ETS is not suitable for "deep" causal knowledge, procedural knowledge, or strategic knowledge. It is 
not about "how" and "when".  
AQUINAS (see section 3.1) can be regarded as an extension of ETS's possibilities. 
Further knowledge can be added manually. 
 
A combination with MDIS (Antonelli 1983), a maintenance, diagnostic, and information elicitation 
system is worth trying. 
The Maintenance and Diagnostics Information System (MDIS) is a multi-domain knowledge 
acquisition system that supports integrated diagnostics, maintenance, training, data collection and 
data analysis used for military systems. 
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It is not much more than a guide through the expert system(s). It asks the expert for information and 
review (Antonelli 1983). 
 
Others (Becker and Selman 1986) mention the following limitations: 
ETS can only make correlations between data, but not with the real world. 
The rules that ETS produces can only be accepted by production ruled systems. 
The system is not fully automated. It needs still augmentation with human interviewing.  
This last argument is presently not a relevant argument, because all the so called automated 
knowledge acquisition systems need manual intervention (monitoring, refining, etc.). 
 
Boose (1986a) mentions the desirability to get knowledge from various experts. A system has been 
developed that can combine expertise from several experts into one expert system with help of the 
ETS technique. The end user can choose which experts he wishes to consult. He can receive 
recommendations based on a majority opinion and a dissenting opinion among the selected experts. 
 
 
Appendix; Kelly's Personal Construct theory. 
 
Kelly's theory of a personal scientist (Kelly 1955) was that each individual seeks to predict and 
control events by forming theories, testing hypotheses, and weighing experimental evidence. 
Certain techniques for use in psychotherapy were developed by Kelly based on this philosophy. In a 
Repertory Grid Test for eliciting role models, Kelly asked his clients to list, compare, and rate role 
models to derive and analyze character traits. Aspects of these role models were used to build a 
rating grid. A non-parametric factor analysis method was then used to analyze the grid. The results 
helped Kelly and his client understand the degree of similarity between  the traits. He named a trait 
and its opposite, a construct, and hypothesized that each construct represented some internal concept 
for the client (Boose 1984). 
 
 

3.7 INFORM 
 
INFORM (INfluence diagram FORMer) is an expert-directed knowledge-acquisition aid and 
interface for building knowledge-based systems in IDES (the Influence Diagram-based Expert 
System for probabilistic inference and planning). 
 
The INFORM architecture is based on information requirements and modeling approaches derived 
from both decision analysis and knowledge engineering. It is best suited to heuristic classification 
problem-solving, in particular domains with diagnosis or decision making under uncertainty. 
INFORM is a top down design aid using descriptions of the domain concepts and structure, rather 
than on examples of problem solving in the domain. 
The INFORM architecture falls between the technique of rapid prototyping and testing, and the 
structured knowledge-engineering approach, which guides and supports the initial knowledge-acqui-
sition phase. 
INFORM uses model refinement techniques from decision analysis and knowledge engineering in 
an environment that is predominantly structured knowledge acquisition. 
Decision analysis separates the process into deterministic structuring, probabilistic assessment, and 
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informational phases. Assessment and modelling procedures direct the formation of choices, 
information, and preferences into the decision set. 
Influence diagrams are conceptual and operational representations for domain expertise. They are 
used as a knowledge structure: an operational way of organizing knowledge, without cognitive 
claims. 
 
There are three hierarchical levels: relational, functional, and numerical.  
At the relational level the interdependence of uncertain events is represented. They superficially 
resemble semantic nets and frames.  
The functional level is a specification of the type of relationship between events.  
The numerical level is a quantitative measure of the "extent" of the relationship. The influence 
diagrams are based on Bayesian probability. 
 
INFORM applies best under heuristic classification problem-solving. The decision analysis 
approach may be a viable way to approximate expert performance. 
INFORM is responsible not only for meeting the information needs of the computational knowledge 
representation, the influence diagram, but for meeting the information needs of a knowledge 
engineering process: context definition, model structuring, model refinement, and process decision-
making. 
 
Three basic types of information INFORM must represent: 
 
1.Model information. 
Computational model of information: nodes, states, probabilities etc. - the representational 
requirements of the formal influence diagram. 
Structural model information - the influence diagram with context and assumptions. 
Uncertainty model information - people's numeric estimates of uncertainty do not accurately 
represent their underlying judgement without some structured revision and debiasing. 
2. Procedural information. 
This is information about the knowledge-engineering process. 
3. Insight about the model. 
"Insight" is the creation and revision of a mental picture of the domain and its processes. INFORM 
provides a medium for this insight. 
 
INFORM intends to achieve: 
sufficiency, getting the encoded information right in terms of 1. the influence diagram 
representation, 
2. correctness of expert judgement, and 
3. providing insight. 
 
Architecture of INFORM. There are 4 conceptual levels: The first level is to fill the diagram. The 
second is to capture the activities that decision analysis and knowledge engineering employ: diagram 
drawing, etc. The third level is the "heuristic" approach for the encoding process. The fourth level 
provides requests for explanation and reformulation. 
 
Finally, INFORM has two approaches to knowledge structuring 
and refinement: 
1. Short modeling at the most general level of precision. 
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2. Increase specificity only for the best improvements in model performance (Moore and Agogino 
1987). 
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3.8 KADS 
 
KADS (Knowledge Acquisition and Document Structuring)9 is both a methodology for structured 
knowledge acquisition and a system. 
 
The major purpose of the construction of the pilot version of the KADS system is to support the 
methodology construction. 
The aims for KADS as a knowledge-engineering tool are the following: 
Formalization, guidance, documentation support, consistency checking, on-line information 
retrieval, advise on feasibility, and automatic generation of parts of a knowledge-based system. 
KADS is a system with four layers or levels of knowledge. These layers correspond to the different 
roles of knowledge in the reasoning process. 
The first layer contains the static knowledge of the domain (concepts, relations, and structures). 
The second layer is the inference layer, in which is described what inferences can be made from the 
domain knowledge. In this layer two types of entities are represented: meta-classes and knowledge 
sources. Meta-classes describe the role that domain concepts can play in a reasoning process. 
Knowledge sources describe what type of inferences can be made on the basis of the relations in the 
domain layer. 
The third layer is the task layer with goals and tasks as basic objects. 
The fourth layer is the strategic layer. On this level plans are made (e.g., to create a task structure), 
the execution of tasks is controlled, and faults are repaired (Wielinga and Breuker 1987 and 
Hayward, Wielinga, and Breuker 1987). 
 
The KADS system consists of the following components: 
1. Knowledge base which contains knowledge about the analysis task, a number of domain 

independent concepts and the domain knowledge. In the center of KADS is a semantic network, 
based on KL-ONE. 

2. Inference machine. The KADS system has an inference machine in which rules can be 
formulated. The rules can be used for interpreting the obtained data. Rules can also be used to 
control input of data. The rules are part of the KL-ONE network. 

3. Lexicon which contains lexical entries for the domain. 
4. Analysis component which control the interactive analysis of the domain by instantiating and 

updating knowledge structures which represent the analysis task. 
5. Knowledge-base editor and browser which provides facilities for changing and updating the 

knowledge base. 
6. Document generator generates a document describing the content in the knowledge base and the 

lexicon for a particular domain. 
 
 
Knowledge acquisition consists of the collection, elicitation and interpretation of data on the 
functioning of expertise in some domain, in order to design, build, extend, adapt or modify a 
knowledge-based expert system. In this way knowledge acquisition is a permanent activity 
throughout all stages of designing, implementing and maintaining an expert system. 
Within the knowledge-acquisition task, two major subtasks can be distinguished:  
                     
    9Also known as Knowledge Acquisition and Design Support 
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1. The elicitation of data on expertise.  
2. The analysis of the (verbal) data. (Breuker and Wielinga 1985) 
 
The choice of conceptual structure of a knowledge-based system is the most crucial step in the 
development process. From the analysis of the static domain knowledge, the function and task analy-
sis, information is gathered to select and/or construct an interpretation model, using a library of 
standard models for prototypical domains. The particulars of the task at hand and the detailed 
analysis of expert knowledge are used to refine the model and to establish the detailed relations 
between the elements of the interpretation model, yielding the conceptual model of the prospective 
system. The decomposition of the knowledge-analysis task supports this incremental selection and 
construction of an interpretation model for a particular domain. The stages and sub-tasks outlined 
above can be seen as refinement of methodologies for building expert systems (Wielinga and 
Breuker 1985). 
 
Verbal data do not speak for themselves; they have to be interpreted. However, there are no ready-
made interpretation frameworks available that satisfy both the requirement that they should map 
(easily) onto some implementation formalism and that they should structure the data into a coherent 
description. 
Data interpretation and instruction are modality tasks rather than proper problem-solving tasks 
(Breuker and Wielinga 1987). 
The purpose of the interpretation process is to establish a mapping between verbal data and 
knowledge structures. This mapping can be performed on different levels, depending on the types of 
constructs that are used to express the knowledge. 
 
For the purpose of mapping verbal data onto knowledge, five levels representing a synthesis 
between Sloman's classification and Brachman's representational levels are proposed (Findler 1979). 
 
1. Knowledge identification. 
This level of analysis corresponds to simply recording what one or more experts report on their 
knowledge. Although the result may be in a formalised form, the representational primitives on 
which this formalization is based are linguistic (in the sense that Brachman uses this term). The same 
knowledge of different experts may have to be represented differently, because they use different 
terminology, or because their knowledge is structured in a different way. 
 
2. Knowledge conceptualization. 
Knowledge conceptualization aims at the formalization of knowledge in terms of conceptual 
relations, primitive concepts  and conceptual models. The knowledge of different experts, and possi-
bly of different subdomains, is unified within one conceptual framework. 
 
3. Epistemological analysis. 
At the epistemological level the analysis uncovers structural properties of the conceptual knowledge, 
formalised in an epistemological  framework. Such a framework is based on epistemological 
primitives representing types of concepts, types of knowledge sources, structuring relations (such as 
hierarchical relations, inheritance), and types of strategies. 
 
4. Logical analysis. 
This level of analysis applies to the formalisms in which the knowledge on higher levels is expressed 
and which is responsible for inference making. 



 
 
 45

 
5. Implementational analysis. 
At this level of analysis, mechanisms are uncovered on which higher levels are based. The 
representational primitives are the ones which are normally used when an implementation of an 
artificial intelligence program is described (e.g., matching, testing, slot-filling). 
 
Interpretation models 
An interpretation model consists of a typology of basic elements and structuring relations for a 
certain class of domains. The basic elements are distinguished as (cf. Clancey 1983): objects, 
knowledge sources, models and strategies. 
An object typology for a class of domains characterises the types of objects that have to be identified 
during the knowledge-acquisition process. 
 
Following Clancey (1985) a knowledge source is defined to be a piece of knowledge that derives 
(infers) new information from existing data. 
Models are knowledge structures which represent a set of complex relationships in a coherent 
structure, which can be used to predict new information.  
The structure of the knowledge base can support particular problem solving strategies. Different 
ways of structuring the knowledge base to support different strategies have been discussed by 
Clancey (Wielinga and Breuker 1985). 
 
The analysis process 
The overall analysis process is defined as consisting of three phases. In the initial phase, the 
knowledge engineer becomes acquainted with the domain and the expert. Creating the domain 
lexicon by listing the key concepts, and an initial interpretation model will be selected or 
constructed. Once the scope of the system has been specified, this defines in broad terms the func-
tion(s) of the system and its users. The aim is then to construct  
a detailed specification of the function the system has to perform. This specification includes the 
knowledge and strategies employed in the expertise. At this stage, processing of data becomes 
mainly model-driven. After a definition of the main- and sub-tasks involved in the performance of 
the systems's functions, the interpretation model may be refined and moves towards becoming the 
inference structure for the particular domain/task of interest. This involves fully specifying the meta-
classes in terms of domain concepts, and the knowledge sources using domain relations; plus 
defining the task structure adequate for the performance of the desired functionality. 
 
With an interpretation model identified, data can be collected and interpreted from expertise-in-
action. Thinking aloud protocols may provide these data more adequately than interviews. Such on-
line protocols are preferred to interviews or retrospective data, because there is ample evidence that 
experts  do not necessarily employ the types of strategies and knowledge they may claim to use. 
 
The interpretation model is used in such a way that the data from the domain and expert can be fitted 
within the structures provided by the model, thus producing a fully specified description of the 
expertise in a domain. 
It may also be noted that one may adopt a more synthetic approach to the definition of the task level, 
since the available inferences in the domain may be manipulated in a way which does not directly 
mirror their uses by an expert. This may be the primary distinction between cognitive modelling and 
expert-system building. 
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It should be noted that the analysis process must also include an analysis of the environment for the 
proposed system and of the characteristics of the intended users (Hayward, Wielinga, and Breuker 
1987). 
 
There are three types of knowledge-engineering tasks in KADS: 
1. An analysis of the functions, the environment and the users of the expertise to arrive at a 
definition of the operational characteristics of the prospective system. The functional analysis 
defines the modality of the expertise. A knowledge-based system contains two types of tasks: 
problem-solving tasks representing the expertise and communication tasks. The communication 
tasks are by no means trivial; they form the interface between the operational environment and the 
expertise. Modality may involve negotiating, explanation, coaching, documentation, etc. 
 
2. An analysis of the static domain knowledge, starting with the collection of a lexicon, ending with 
concepts structured in KL-ONE concept hierarchies. 
 
3. Analysis of expertise in action, i.e., the way problems are solved. This starts with a task-analysis: 
selection of one or more interpretation models that appear to represent the structure of the problem-
solving process. By matching the verbal data from interviews and in particular thinking aloud 
protocols, this initial model gets refined and modified into a detailed structure of knowledge objects, 
knowledge sources and strategies; much in the same way as ROGET's (see section 3.25) conceptual 
structures. The final conceptual structure of expert reasoning represents the basic architecture of the 
prospective system. In the conceptual structure the static knowledge and the actions performed on 
them become integrated (De Greef and Breuker 1985). 
 
The knowledge and expertise should be analyzed before design and implementation starts; i.e., the 
major efforts in knowledge acquisition should occur before an implementation formalism is chosen. 
Benefits are the following:  
1. Feasibility of the domain for constructing an expert system can be assessed with few costs and at 

an early time.  
2. The construction or choice of knowledge representation and inference formalisms can be 

motivated.  
3. The analysis provides a detailed overview of the architecture of the prospective system. 
 
Preferably, the analysis should be model-driven as early as possible. Models of expert problem 
solving not only enable the analysis of data but also provide references to known implementation 
solutions. 
To bridge the gap between verbal data on expertise and implementation a model of expert problem 
solving should be expressed at the epistemological level. 
The analysis should include the functionality of the prospective system; i.e., data on the environment 
and users should be collected and analyzed. These data are used for defining the communication 
tasks - modality - of the system. 
The analysis should proceed, preferably, in an incremental way. 
New data should be elicited only when previously collected data have been analyzed; i.e., elicitation 
and analysis should alternate. 
Collected data and interpretations should be documented. 
 
 
Differences with ROGET  



 
 
 47

 
In ROGET the data consist of direct answers from the user about concepts and facts of the domain. 
KADS however, also supports the elicitation and identification of knowledge.  
A second difference is that in ROGET the refinement strategy follows a depth-first course after 
selection of the interpretation model; in KADS the breadth-first refinement is the consequence of 
broadening the scope of the analysis so as to include the modality of the system (Breuker and 
Wielinga 1987). 
 
 
A valuation of KADS 
 
A real problem in KADS is the partial attention for what is called "the problem solver". Confusion 
has appeared in several case studies. In the analysis the problem solver gets unexpectedly several 
responsibilities in the interaction with the user. This is the reason why complicated and unclear 
decompositions of the task are created. Already in an early stage it becomes inevitable to think in a 
procedural manner about the way the tasks will be executed. The problem might be the absence of a 
separation between the analysis of the problem-solver task and the task assignment (De Greef, 
Schreiber, and Wielemaker 1988). 
 
KADS seems to be a highly structured methodology for expert-system building through verbal data 
interpretation. 
KADS is more a knowledge-modeling tool than a knowledge-acquisition tool. Certainly it has 
contributed to a methodology of knowledge engineering. 
 
The KADS system is implemented in PROLOG and runs. 
 
 

3.9 KAE 
 
KAE (Knowledge Acquisition Environment) helps capture expertise from domain experts involved 
in analyzing scenes from aerial imagery. The aim of KAE is to integrate the domain inputs, the 
translation into internal representations and the actual execution and feedback. 
 
Typical features: 
The knowledge is visually oriented. 
A tight coupling is required between the expert and the expert system being developed. Visual 
concepts are difficult to express, so interaction with the system is critical. 
Multiple types of expertise are often required and multiple experts are likely to be involved. 
 
The KAE architecture should provide support of a collection of computer-based tools facilitating: 
- viewing and editing domain knowledge in both textual and graphic format 
- translation of raw domain information onto an intermediate representation and finally translation 

into an executable format 
- knowledge base execution and testing 
- expert system performance analysis 
- knowledge-base management. 
 



 
 
 48

A goal of KAE is to maintain as much domain independence as possible and still be useful 
(Tranowski 1988). 
 

3.10 KAS 
 
KAS is the knowledge-acquisition system that was developed to facilitate the construction and 
maintenance of PROSPECTOR's and HYDRO's knowledge bases. PROSPECTOR is an expert 
system that was designed for decision-making problems in mineral exploration. HYDRO is a 
PROSPECTOR-based parameter estimation system.   
These two systems employ various kinds of networks to represent knowledge - inference networks 
for expressing judgmental knowledge, semantic networks for expressing the meaning of the proposi-
tions that correspond to nodes in the inference networks, and taxonomic networks for representing 
static knowledge about relationships among domain objects. 
 
The core of KAS is an "intelligent" network editor that can assist the user in building, testing, 
searching, and maintaining these networks. Its basic operations allow it to create, modify or delete 
various kinds of nodes and arcs. It knows, however, about the representation constructs and 
inference mechanisms employed by PROSPECTOR and can therefore protect the user against 
certain kinds of syntactic errors.  
It also includes a bookkeeping system that keeps track of incomplete data structures. Whenever he 
desires, the user can turn control over to KAS, which will systematically question him to fill in the 
missing parts of the structures.  A semantic network matcher gives the user a limited ability to access 
the knowledge base by content rather than by form. The matcher also supports features such as 
protecting against numerical inconsistencies in the inference networks, generating meaningful 
explanations, and enhancing the communication between the user and the system.  
Finally, because KAS contains PROSPECTOR's inference mechanism as one of its components, it 
permits controlled execution of individual sections of an inference network, enabling the knowledge 
engineer to monitor his progress in refining the knowledge base  
(Duda and Reboh 1984). 
  
 

3.11 KEATS 
 
The development of KEATS was motivated by the idea of building a knowledge engineering toolkit 
that could provide a comprehensive range of tools to help the knowledge engineer fill the gap be-
tween the raw data and the final system. 
Most toolkits for supporting the knowledge engineer are literally sets of tools rather than the 
implementation of a coherent theory of knowledge engineering. KEATS provides a semi-automated 
assistance throughout the knowledge-engineering process. At least it can facilitate knowledge 
elicitation and domain understanding. 
 
KEATS consists of 4 integrated subsystems: 
 
CREF is a dedicated editor that helps the knowledge engineer to organize the data gathered in 
protocol analyses. 
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KDL, a knowledge description language, is a frame-based representation language. It builds 
structures from atomic concepts and can draw links between concepts or concept structures. 
Properties of concepts can be described. The inheritance mechanism takes care of the sharing and 
deducing properties of the objects.  
 
A graphical interface system functions as a blackboard and supports the building of the knowledge 
base. It displays the structures between the data. 
 
A rule interpreter controls the integration in the knowledge base. 
 
 
KEATS is not an automated knowledge-acquisition system with which a domain expert can 
communicate. The domain expert provides protocols in the ordinary way by tapes and transcripts. 
After the interviewing of the expert KEATS can be used in analyzing the transcripts. The authors 
correctly call KEATS a knowledge "elicitation" system, rather than a knowledge "acquisition" 
system (Motta et al. 1988). 
 

3.12 KITTEN 
 
KITTEN (Knowledge Initiation & Transfer Tools for Experts and Novices) is an extension of 
PLANET (Shaw 1982). 
 
A typical sequence in KITTEN is text input followed by text analysis through TEXAN which 
clusters associated words leading to a scheme from which the expert can select related elements and 
initial constructs with which to commence grid elicitation. The resultant grids are analyzed by 
ENTAIL which induces the underlying knowledge structure as production rules that  can be loaded 
directly into an expert shell. 
An alternative route is to monitor the expert's behavior through a verbal protocol giving information 
used and decisions resulting and analyze this through ATOM which induces structure from behavior 
and again generates production rules.  
These two routes can be combined. KITTEN attempts to make each stage as explicit as possible, 
and, in particular, to make the rule base accessible as natural textual statements rather than technical 
production rules. 
 
The KITTEN implementation is an initial prototype offering a workbench with minimal integration 
of the knowledge base, but each of the tools has already proven effective, and their combination is 
proving very powerful in stimulating experts to think of the knowledge externalization process from 
a number of different perspectives (Shaw and Gaines 1987). 
 
Shaw and Woodward (1988) give a continuation of validation studies with multiple experts within 
the KITTEN environment. By knowledge acquisition from multiple experts there must be intra-
subjective consistency and intersubjective consistency. The objective validity can be accomplished 
by measuring the degree of convergence of knowledge support system output with established facts 
from reputable experts and or from reputable printed material.  
Another form of validity at this level concerns the usefulness of the output of the knowledge support 
system. Operative validity is defined as that knowledge which is necessary for accomplishing a task 



 
 
 50

or class of tasks. The usability of the system requires assessment. This refers to the ease of use and 
the understandability of the knowledge-acquisition tool by the expert. 
  
 

3.13 KLAUS and NANOKLAUS 
 
 
The problem is how to enable computer systems to acquire sets of facts about domains from experts. 
The type of acquisition process that is explored here is "learning by being told", in contrast to the 
more often used method of "learning by example". 
 
The feasibility of such ideas is explored by developing a series of Knowledge-Learning And -Using 
Systems (KLAUS). A KLAUS is an interactive computer system that possesses a basic knowledge 
of the English language, is capable of learning the concepts and vocabulary of new subject domains, 
and has sufficient expertise to apply its acquired knowledge effectively in problem-solving 
situations. 
Research issues: 
- a powerful natural-language processing capability 
- seed concepts and seed vocabulary 
- other linguistic abilities, such as pattern recognition and uses of analogy 
- a flexible scheme of knowledge representation. 
 
So far a pilot-KLAUS has been developed called NANOKLAUS. 
Most of the seed concepts in NANOKLAUS are classes of things and relations. 
A fundamental task of the deductive system is to determine whether or not a given entity belongs to 
a particular sort 
(Haas and Hendrix 1980). 
 
Several years later the authors added the following: NANOKLAUS is best described as a fragile, 
proof-of-concept system that was built to establish the feasibility of achieving the broader KLAUS 
goals.  NANOKLAUS has no provision for learning by analogy, acquiring or reasoning about the 
internal structures of processes, dealing with causality, handling mass terms, allowing users to 
change their minds about previously asserted "facts", or dealing with multiple senses of words (Haas 
and Hendrix 1983). 
 
The natural language research group at SRI-International is now implementing MICROKLAUS that 
will cover a broader range of English. 
In MICROKLAUS the parsing and translation system has been redesigned to provide for a 
declarative semantics that is easier both to extend and to maintain.  
Also significant progress has been made on several fundamental problems of natural-language 
semantics (Grosz and Stickel 1983). 
 
 

3.14 Kn
Ac 
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Kn
Ac is a system that modifies an existing knowledge base through a discourse with a domain expert. 

 
An often overlooked aspect of knowledge acquisition is the assimilation of information into an 
existing knowledge base. Kn

Ac accomplishes this assimilation by:  
1. Comparing entity descriptions provided by the domain expert with existing knowledge-base 

descriptions,  
2. evaluating these matches in the context of the knowledge-acquisition discourse,  
3. making the modifications to the existing descriptions implied by the expert's information, and  
4. generating (and managing) expectations of further changes to the knowledge base. 
This knowledge-acquisition task may be viewed as a recognition problem. 
 
 
Kn

Ac supports the domain expert by trying to assume much of the responsibility for assimilating the 
expert's information. To accomplish this, Kn

Ac models the knowledge engineer's role by anticipating 
modifications to the existing knowledge base using heuristic information about the knowledge-
acquisition process. These anticipated modifications allow Kn

Ac to focus on "relevant" portions of 
the knowledge base and provide a context in which to integrate the information provided by the 
domain expert. 
 
The descriptions obtained from the expert must be presented to the matcher in the knowledge base's 
representation language.  
Kn

Ac provides a context in which to interpret information provided by a domain expert by 
anticipating modifications to an existing knowledge base. These anticipated modifications, or 
expectations, are derived from Kn

Ac's heuristic information about the knowledge-acquisition process. 
Examples of typical heuristics: "Fields with too few components will be augmented" for dealing 
with  incomplete knowledge. 
Modification heuristics when a new entity description is added: "Detailed information usually 
follows the introduction of a new entity", etc. 
 
The Kn

Ac system is implemented, but still in experimental use (Lefkowitz and Lesser 1988). 
 
 

3.15 KNACK 
 
KNACK is a knowledge-acquisition tool for building expert systems, called WRINGERs that 
evaluate the design of electro-mechanical systems.  
KNACK's knowledge-acquisition approach is based on the assumption that an expert can adequately 
present his knowledge in the form of a skeletal report and report fragments. The skeletal report 
provides a framework around which report fragments relevant to the design of a specific electro-
mechanical system can be organized. KNACK also elicits knowledge about how to customize the 
selected report fragments for a particular application. 
In order to acquire the knowledge necessary to solve the information gathering and the evaluation 
tasks, KNACK exploits a WRINGER's problem-solving methods and knowledge roles to guide the 
expert through the knowledge-acquisition process. KNACK determines what an expert has to 
provide to define the knowledge. Finally KNACK uses heuristics to infer additional knowledge. 
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The problem-solving method and the knowledge roles the WRINGERs use to solve the evaluation 
problem can be summarized as follows: 
1. Check the gathered information for consistency and completeness. 
2. Evaluate the design description for possible flaws by using a worst-case analysis.  
3. Evaluate the parts of the design description which showed indications of flaws again, this time 

using a precise analysis. 
4. Make constructive suggestions about which pieces of information need to be modified or 

completed. Gather any missing information. Generate worst-case values for any required pieces 
of information still missing. 

5. Integrate the gathered information into the associated report phrases, assemble the report phrases, 
include any evaluation messages, and write the report to an output device. 

 
KNACK uses object-attribute-value tuples and relations as basic elements to represent knowledge. 
Each object may have multiple attributes. Dependencies between objects are represented by 
relations. These basic elements, object-attribute-value tuples and relations, are used to build the 
condition parts and the action parts of OPS5 rules. An OPS5 rule represents a piece of knowledge. 
The pieces of knowledge are organized into knowledge roles. A knowledge role is described by a 
corresponding knowledge role template. 
In detail, the skeletal report defines the outline of an actual report and the order of report fragments 
within an actual report. KNACK assumes that the expert knows what information is needed, how to 
evaluate this information and how a designer should present this information. 
 
KNACK uses heuristics to infer additional knowledge. The heuristics can be specific to infer 
additional knowledge for a particular knowledge role or they can be applicable to more than one 
knowledge role. 
KNACK uses heuristics to insert conditions and relations between the objects of conditions into the 
question rule. These conditions and relations define the circumstances in which asking that question 
is appropriate. 
KNACK proceeds through the stages of knowledge acquisition that are similar to the conventional 
approach of a knowledge engineer (Klinker et al. 1987). 
 
In Klinker et al. (1988) it is described how KNACK can evaluate systems that are designed by 
multiple experts. 
 
 

3.16 KREME 
 
KREME (Knowledge Representation, Editing and Modeling Environment) is built for developing 
large knowledge bases which future expert systems will require. Within KREME different kinds of 
representations (initially frames, rules, and procedures) can be used.  
 
The approach to consistency maintenance has been to develop a knowledge integration subsystem 
that includes an automatic frame classifier and facilities for inter-language consistency maintenance. 
The frame classifier automatically maintains logical consistency among all the frames or conceptual 
class definitions in a KREME database. 
Another area of investigation in developing KREME is the attempt to provide facilities for large-
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scale revisions of portions of a knowledge base. 
Finally, techniques for automatic generalization of concepts defined in a knowledge base have been 
investigated. 
 
KREME attempts to deal with the inextricably related problems of knowledge representation and 
knowledge acquisition in a unified manner by organizing multiple representation languages and 
multiple knowledge editors inside a coherent global environment. Underlying the entire system is a 
strong notion of meta-level knowledge about knowledge representation and knowledge acquisition. 
 
A central component of the KREME system design is that it incorporates tools for consistency 
maintenance both within and across representation languages. These tools are collectively referred to 
as the knowledge integrator. When new knowledge is entered or existing knowledge modified it is 
the task of the knowledge integrator to propagate, throughout the knowledge base, the changes that 
this new or modified knowledge entails, and to report any inconsistencies that have been caused by 
the change. 
The knowledge integration subsystem for frames is basically an extension of the classification 
algorithm developed for the NIKL (the frame language component of KL-ONE) representation 
language. 
 
Knowledge extension. 
Experts have difficulties to formulate abstract classifications of problem types which are often 
unconscious generalizations about their domains of expertise. Currently KREME's frame general-
ization algorithm is able to search for sets of concept features that are shared by several unrelated 
concepts. 
 
The goal is to explore a number of approaches to knowledge acquisition and knowledge editing that 
could be incorporated into existing and future development environments (Abrett and Burstein 
1987). 
 

3.17 KRITON 
 
KRITON is a hybrid system for automatic knowledge acquisition. 
Artificial intelligence and cognitive science are employing different knowledge-representation 
formalisms to construct knowledge bases. 
Automated interview methods are used for elicitation of human declarative knowledge. 
Protocol-analysis techniques are used for acquisition of human procedural knowledge. 
Incremental text analysis is used for textbook knowledge. 
The goal structure of KRITON is an intermediate knowledge representation language on which 
frame, rule and constraint generators operate to build up the final knowledge bases. 
The overall knowledge-acquisition process consists of three levels: 
- knowledge elicitation 
- intermediate knowledge representation 
- knowledge-base generation. 
 
Methods for knowledge elicitation: 
1.Interviewing techniques for rule acquisition (Grover 1983): 
- forward scenario simulation 
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- goal decomposition 
- procedural simulation (= protocol analysis) 
- pure reclassification 
- laddering (not mentioned in Grover) 
 
Interviewing technique is the repertory grid approach (Kelly 1955, see section 3.6): triples of 
semantic related concepts are presented and the expert is asked to ascribe attributes to distinguish 
two concepts from a third. 
 
2. Protocol analysis. Analysis of thinking-aloud protocols. It is still difficult to analyze verbal data. 
 
3. Text analysis according to context analysis. 
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ation of the acquired knowledge depends on the quality of the existing knowledge: 
idance of the acquisition process through discovery of incompleteness. 
mpletion of domain-dependent deep models. 
ployment as an Interpretation Model for the discovery of new situations (see Breuker and 
ielinga 1985). 

intermediate knowledge-representation level works as a blackboard for frame, rule and 
raint generation. 
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The purposes are: 
- openness for extensions 
- knowledge acquisition for different knowledge-representation tools 
- storage of incomplete knowledge for the ongoing elicitation process 
- integration and employment of acquisition knowledge bases 
- maintaining information closer to the sources (e.g., expert utterances) 
- management of knowledge bases with varying degrees of completeness in different knowledge 

representation languages. 
 
Knowledge-guided knowledge elicitation deals with incomplete knowledge. A "watcher" plays a 
significant role by controlling the intermediate knowledge representation for missing components. 
 
Knowledge-base generation. 
The task of the frame generator is to translate the information from the protocol analysis stored in 
structured objects and their relation into a frame language (using the BABYLON frame) 
(Diederich et al. 1987). 
 
 

3.18 LEAP 
 
A new class of knowledge-based consultant systems designed to overcome the knowledge-
acquisition bottleneck has been proposed. Recently developed machine-learning  methods to 
automate the acquisition of new rules are incorporated, in particular a LEarning APprentice system 
for VLSI circuit design. 
One key aspect of these systems is that they are designed to continually acquire new knowledge 
without an explicit "training mode". 
LEAP is currently being constructed as an augmentation to a knowledge-based VLSI design 
assistant called VEXED.  
 
A fundamental feature of LEAP is that it embeds a learning component within an interactive 
problem-solving consultant. This allows it to collect training examples that are closely suited to 
refining its rule base. In particular, training examples collected by a Learning Apprentice have two 
attractive properties: 
1. Training examples focus only on knowledge that is missing from the system. The need for the 

user to intervene in problem-solving occurs only when the system is missing knowledge relevant 
to the task at hand, and the resulting training examples therefore focus specifically on this 
missing knowledge. 

2. By working with training examples that are single steps, LEAP circumvents many difficult issues 
of credit assignments that arise in cases where the training example corresponds to a chain of 
several rules. 

 
A second significant feature of the design of LEAP is that it uses analytical methods to form general 
rules from specific training examples, rather than more traditional empirical, data-intensive methods.  
LEAP's explain-then-generalize method, based on having an initial domain theory for constructing 
the explanation of the example, allows LEAP to produce justifiable generalizations from single 
training examples. 
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While analytical generalization methods offer a number of advantages, they require that the system 
begin with a domain theory that it can use to explain/validate the training examples. This 
requirement, then, constrains the kind of domain for which our approach can be used. In the domain 
of digital circuit design, the required domain theory corresponds to a theory for verifying the 
correctness of circuits. In certain other domains such a theory may be difficult to come by. 
 
A third significant feature in the design of LEAP is the partitioning of its knowledge base into:  
1. Implementation rules that characterize correct (though not necessarily preferred) circuit 

implementations, and  
2. control knowledge for selecting the preferred implementation from among multiple legal options. 

This partitioning is important because it helps in dealing with the common problem that when 
one adds a new rule to a knowledge base one must often adjust existing rules as well (Mitchell et 
al. 1985). 

 
 

3.19 MOLE  
 
MOLE is the successor of MORE (see section 3.21). 
MOLE can help domain experts build a heuristic problem-solver by working with them to generate 
an initial knowledge base and then detect and remedy deficiencies in it. The problem-solving 
method presupposed by MOLE makes several heuristic assumptions about the world, which MOLE 
is able to exploit when acquiring knowledge and by allowing covering knowledge to drive the 
knowledge-acquisition process. MOLE is able to disambiguate an under-specified knowledge base 
and to interactively refine an incomplete knowledge base. 
 
MOLE is an expert-system shell that can be used in building systems that do heuristic classification. 
MOLE belongs to a family of knowledge-acquisition tools which get their power by paying close 
attention to the problem-solving method used by their performance systems. Examples are 
TEIRESIAS, ETS, MORE, KNACK, SALT and SEAR. MOLE differs from them in that its 
problem-solving method incorporates certain explicit assumptions about the world which, along 
with several assumptions about how experts express themselves, are exploited during the knowl-
edge-acquisition process. 
The goal has been to make MOLE smart, i.e., to enable it to build a reasonable knowledge base with 
a minimal amount of information elicited from the expert. 
MOLE the knowledge-acquisition tool gets its power from its knowledge of the problem-solving 
method of MOLE the performance system. 
MOLE's problem-solving method is a variant of heuristic classification. Central to MOLE's method 
is the distinction between evidence that needs to be explained or covered by some hypothesis and 
evidence that helps differentiate among hypotheses. 
The hard problem in knowledge acquisition is eliciting the right sort of knowledge from the expert. 
The first step is to identify explicitly the appropriate problem-solving method for the task and the 
types of knowledge roles relevant for this method. From here one can go with an automated system. 
Next is the problem of indeterminateness: the expert tends to be vague about the nature of these 
associations of events. Finally one has the problem of incompleteness. 
The incompleteness problem is the problem of how to identify missing or incorrect knowledge. Two 
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problems dominate the two phases of knowledge acquisition:  
1. The gathering of information for constructing the initial knowledge base; and  
2. the iterative refinement of this knowledge base.  
During the first phase, MOLE mainly relies upon static techniques of analysis. MOLE examines 
specific associations and events in the light of the context provided by the surrounding structures. 
MOLE concentrates on disambiguating the information provided by the expert, although MOLE 
also tries to recognize areas where the expert interacts in order to refine the knowledge base. 
 
Constructing the initial knowledge base. 
MOLE initiates the knowledge-acquisition process by asking the expert to list the events, i.e., 
hypotheses and evidence  that are commonly relevant to the expert's domain and to draw associa-
tions between pairs of events.  
Additional information that is needed: type of event; the type of evidence an association provides; 
the direction of an association (does e1 explain e2, or vice versa); and the numeric support value 
attached to an association. However experts are not very good in supplying numeric support values. 
Fortunately, it turns out that the support values do not have to be very accurate. MOLE can assign 
default support values, that are just as good if not better, than those assigned by the expert. 
 
Differentiating knowledge. 
If MOLE's diagnosis does not match that supplied by the expert, MOLE first determines whether or 
not the diagnosis would have been reachable if the hypotheses had been differentiated differently. 
 
Covering knowledge. 
If differentiating is not the problem, MOLE looks for missing covering knowledge. 
 
MOLE illustrates how much power a knowledge-acquisition tool can obtain from a set of domain 
independent heuristics about the knowledge-acquisition process and the nature of the world as it 
relates to diagnosis. MOLE plays the role of an experienced knowledge engineer who is able to 
work in conjunction with a domain expert and build a diagnostic system, even though the knowledge 
engineer has little or no knowledge of the domain. By interpreting its assumptions about the world in 
terms of explicit knowledge roles that guide heuristic classification and by exploiting a few 
heuristics about how domain experts are likely to express themselves, MOLE is able to extract 
intelligently from the expert information relevant for building a reasonable knowledge base for 
performing the given diagnostic task (Eshelman et al. 1987). 
 
In Eshelman (1988) it is described how MOLE handles uncertain knowledge. MOLE is thus able to 
be flexible in the knowledge-acquisition process. 
 
  

3.20 The knowledge-acquisition tool for MOLGEN 
 
This tool is a system which allows domain experts to enter themselves procedural knowledge into a 
knowledge base. The system, a stylized form of scientific English embodied within the Unit System 
for knowledge acquisition and representation, has been used successfully within the domain of 
molecular biology, i.e., the MOLGEN expert system. 
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Expert knowledge comes in two forms: declarative and procedural. Acquisition of declarative 
knowledge seems reasonably well understood. However, a significant component of expertise takes 
a procedural form, ranging from low-level rules for data manipulation to abstract strategies for 
problem-solving.  
Procedural knowledge for MOLGEN are: data manipulation procedures, simulation procedures, 
selection heuristics, and experiment design strategies. 
The MOLGEN knowledge bases have been built by the domain experts themselves. The accuracy 
and completeness of the knowledge bases might suffer when the expertise is channeled first through 
a knowledge engineer and the authority of first hand knowledge is higher esteemed. 
The trick is in making the domain expert comfortable in his new mode of expression. 
The description of the procedural knowledge is done in RULE Language within the Unit System 
(Friedland 1981). 
 
 

3.21 MORE  
 
MORE is a tool that assists in eliciting knowledge from domain experts. The acquired information is 
added to a domain model of qualitative causal relations that may hold among hypotheses, symptoms, 
and background conditions. After generating diagnostic rules from the domain model, MORE 
prompts for additional information that would allow a stronger set of diagnostic rules to be 
generated.  
MORE's primary value lies in its understanding of what kind of knowledge is likely to be 
diagnostically significant. By formulating its questions in a way that focuses on such knowledge, it 
makes the most effective use of the domain experts' time. 
MORE elicits diagnostically significant knowledge from domain experts; it is similar in spirit to 
systems like TEIRESIAS (see section 3.30) and ETS (see section 3.6). 
 
MORE provides a mechanism for interviewing. MORE differs with the others in that it takes a 
model-theoretic approach to the acquisition of diagnostic knowledge. It uses a qualitative model of 
causal relations together with a theory of how causal knowledge can be used to achieve more 
accurate diagnostic conclusions to guide the interview process. 
MORE has the capacity to build domain models from a fixed  set of qualitative relations that may 
hold among hypotheses, symptoms and background conditions. MORE generates rules from the 
domain model. After a rule is constructed, the user is asked to associate positive- and negative-
support values with each rule. 
Once an initial knowledge base is built up, MORE looks for weaknesses in the rules it has generated. 
In another role, MORE looks for potential inconsistencies in the way a user has assigned confidence 
factors to diagnostic rules. 
MORE uses strategies for improving diagnostic performance such as: differentiation, frequency 
conditionalization, symptom distinction, symptom conditionalization, path division, path differ-
entiation, test differentiation, and test conditionalization. 
MORE has been applied to parts of a drilling fluids domain (MUD) as well as to diagnostic 
problems provided by a physician. The next step is to use MORE to develop a number of 
knowledge-based consultation systems in a wide variety of domains (Kahn et al. 1984, 1985a, and 
1985b). 
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MOLE (see section 3.19) is a more recent extension of MORE. 
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3.22 OPAL 
 
An effective paradigm may be to use the semantics of the application domain itself to govern access 
to an expert system's knowledge base. This approach has been explored in a program called OPAL, 
which allows medical specialists working alone to enter and review cancer treatment plans for use 
by an expert system called ONCOCIN. 
 
The approach is to provide the experts with some type of knowledge editor to aid in updating and 
reviewing the contents of the knowledge base. 
OPAL is based on a more abstract kind of conceptual model - that of the structure of the domain 
itself. This structural characterization of the application area is referred to as a domain model. 
The ONCOCIN knowledge base is encoded heterogeneously using three basic representations.  
First, a hierarchy of frames encoded using an object-oriented language defines the various structural 
entities for each protocol in the knowledge base. 
Production rules, the second form of knowledge representation in ONCOCIN, are linked to each 
object in the planning hierarchy. 
The procedure-oriented knowledge is represented in finite state tables - lists of potential states in the 
treatment plan and the conditional transitions that define how one state may be followed by others. 
Defining knowledge of a new protocol for ONCOCIN therefore requires:  
1. Creating an object hierarchy describing the component elements;  
2. linking appropriate production rules (and the parameters they include) to the various objects; and  
3. specifying the temporal sequence of chemotherapies and radiation treatments in terms of a finite-

state table.  
Each of these representational issues is handled transparently by OPAL.  
 
The conceptual model used in OPAL, based on the domain model itself, is perhaps the most 
categorical way in which the contents of a knowledge base can be viewed. Unlike previous 
knowledge-acquisition tools, OPAL's model is simply one of what knowledge should be expected. 
As a result, the user is not given the flexibility found in other systems to specify new concepts. The 
domain model tends to be sufficient because of the highly structured, stylized nature of oncology 
treatment plans. 
 
The goal in OPAL is to maximize the knowledge that experts can enter independently by providing 
a conceptual model that matches the way oncologists seem to think about the application area. The 
model then serves as the basis for a visual language that makes it easy for experts to express ideas 
relevant to their domain (Musen et al. 1987). 
 
 

3.23 PROTOS  
 
The major contribution of this research is a theory of the acquisition and application of domain 
knowledge for heuristic classification. The goal of building PROTOS, an inquisitive learner which 
evolves into an expert, forces a thorough analysis of three fundamental issues in concepts formation.  
First, how are ill-defined, "fuzzy" concepts learned and represented? Induction is not believed to be 
the primary learning mechanism since classical and probabilistic representations are inappropriate 
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for most concepts. PROTOS adopts an exemplar-based representation to support the inherent 
variation in natural concepts.  
Second, what functions must learned knowledge support? Traditionally the task of object 
classification has been supported to the exclusion of other tasks. The range of functions that should 
be supported by concept formation includes summarization of training instances, generation of 
examples of a concept, prediction of unseen features of a new object, interpretation of "fuzzy" 
examples, and explanation. PROTOS supports these important applications of learned knowledge by 
de-emphasizing the role of generalization in concept formation.  
Third, what is the role of teacher-supplied explanations in the learning process? Learning from 
classified examples alone is an artificially difficult task. This research examines broadening the 
channel of communication between the teacher and the learner to include explanations of the 
examples. This reduces reliance on large training sets and allows the construction of a domain 
theory. 
 
PROTOS interacts with a human expert to elicit knowledge. PROTOS then independently applies 
this knowledge to perform the expert task.  
 
PROTOS learns by attempting to solve problems posed by a domain expert; focused interaction with 
the expert uncovers the causes of problem-solving failures and guides learning. 
The problem-solving task for PROTOS is classification. Clancey (1985) defines heuristic 
classification to be the  use of non-hierarchical, uncertain inference application of domain 
knowledge for heuristic classification. 
 
Research on concept formation usually makes the simplifying assumption that a concept can be 
represented by a classical definition. A classical concept definition is a set of necessary and 
sufficient conditions for an object to be an instance of the concept.  
Benefits from assuming a classical definition of concepts: 
The first is that concept formation is reduced to induction. The second benefit is that object 
identification is reduced to deduction. The identification is all or none; unclear classifications are not 
considered because of the restrictive nature of classical concept definitions. Unfortunately, classical 
concept definitions only work in artificial domains.  
The shortcomings are:  
1. The defining features of most natural concepts cannot be enumerated.  
2. Classification of some objects is unclear.  
3. Many concepts are disjunctive.  
4. There are variations in typicality among instances of a concept.  
 
Rather than attempting to describe category members using necessary and sufficient features, a 
probabilistic representation uses weighted features and a threshold for identification. For example, a 
vehicle might be represented as: 
(engine(.5), steering wheel(.3), pedals(.4), handlebars(.2)). 
 
Classification of a new object is performed by finding the exemplars in the knowledge base which 
match it most closely and assigning the new object to the same category. Explanation of a 
classification is facilitated by reporting a similar, known exemplar. Prediction of unseen features of 
an object is based on feature correlations in the closest matching exemplar(s). Example generation 
simply involves exemplar retrieval (perhaps ordered by typicality). 
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PROTOS1 is an implemented system which demonstrates knowledge-based pattern matching to 
support the identification task. PROTOS1 learns and uses exemplars as models for guiding iden-
tification. 
PROTOS2 indexes exemplars according to their appropriate uses as models and learns how much 
effort to expend on knowledge based pattern matching.  
PROTOS1 learns the requisite knowledge and provides a richer language for explanations (Porter 
and Bareiss 1986, Bareiss et al. 1988). 
 
Further studies: 
The explanation language by learning the semantics of relations is expanded. Each domain requires 
a special vocabulary of relations for use in explanations.  
Another issue is learning event sequences. Event sequences direct the acquisition of data for object 
descriptions (Porter et al. 1986). 
 
 

3.24 The knowledge-acquisition system for REX 
 
Knowledge-based knowledge acquisition means restricting the domain of knowledge that can be 
acquired and developing a conceptual model of the domain. This system is for the domain of data 
analysis. 
REX is a consultation program in regression analysis, a statistical technique for data analysis. 
Knowledge-based knowledge acquisition in this context means specifying how the contents of each 
slot will be acquired. 
The preponderance of cases was handled by interviewing. 
With knowledge-based knowledge acquisition, the statistician is encouraged to think of optional 
inputs at the beginning of the construction process, thus avoiding the costs of reprogramming. 
A conceptual framework is necessary. In building a first, ground-level, system it will help to seek 
regularity and common cases. A frame based programming system helps to identify these com-
monalities. 
The framework must be readily presentable. The subject matter specialists may need to be 
encouraged to think within the specific framework provided, even if it is natural (Gale 1987). 
 
 

3.25 ROGET 
 
ROGET helps a domain expert perform several critical design tasks during the early phases of 
knowledge-base design. The most important of these tasks is the design of the conceptual structure 
of the target consultation system, a description of the kinds of domain-specific inferences that the 
consultant will perform and the facts that will support these inferences. Finally the conceptual 
structure should fit into the EMYCIN system. 
The initial dialogue that ROGET conducts with the expert to acquire the conceptual structure is 
based on abstract categories that are independent from a particular domain.  
The representation of a problem can be viewed as having two primary components, one structural 
and the other inferential. 
The expert system must capture both components: the vocabulary and the rules. 
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ROGET claims that it assists in the proper selection of the domain terms and the organization of the 
knowledge. 
A comparison of several expert systems designed for diagnostic consultation shows a similarity in 
the kinds of concepts that these systems employ and that they are essentially the same. 
Each kind of diagnostic problem-solving task has an associated subset of abstract categories. After 
identifying the primary problem-solving task, ROGET interacts with the expert to identify a set of 
domain-specific counterparts to these categories. These terms form a skeletal design for the new 
conceptual structure. 
The advice that ROGET can provide is based on the classification of the type of diagnostic problem-
solving tasks the new expert system will perform. This classification serves as the basis for strong 
expectations about the types of expertise the expert will need to identify and represent. The 
knowledge about problem types and the general structure of expert system that solve these problems 
provides ROGET with a domain-independent method of understanding the specific expertise in a 
new application domain and acquiring a conceptual structure for that domain. 
 
A ROGET consultation consists of four major steps: 
1. Determine the problem-solving task type of the expert system. 
2. Acquire the conceptual structure for the system. 
3. Rescope the conceptual structure. 
4. Reformulate the conceptual structure for a particular knowledge-engineering tool. 
 
ROGET contains an enumeration of several diagnostic problem-solving tasks that an expert system 
might perform. ROGET maintains an association between the names of different, well-known expert 
systems and their primary problem-solving task type.   
One other method that ROGET employs to determine the problem task type is to provide the expert 
with examples of previous expert systems. 
After determining the primary problem-solving task for the new consultant, ROGET begins the 
acquisition of the conceptual structure. First, the problem task type identified at the beginning of the 
consultation suggests an initial set of tasks and goals that might be applicable to this kind of 
consultant. Then the conceptual structure is elaborated by the selection of catagories of advice and 
evidence that the expert and ROGET determine are applicable and appropriate for this application. 
The initial skeletal configuration can be thought of as made up of generic conceptual structures that 
are suggested by ROGET and that are specialized by the expert. 
 
The design of ROGET is based on the assumption that domain-specific examples from other 
applications, coupled with simple, descriptive phrases associated with each of the categories, are 
sufficient to guide the expert's choice, by analogy, of the proper domain-specific counterparts in the 
new application. 
In the stage of pruning the conceptual structure the expert is given the opportunity to check each 
instance in the conceptual structure. 
The final step in a ROGET consultation is the conversion of the conceptual structure into a form 
suitable for operation with the system building tool.  
At present, ROGET is only able to perform this conversion for expert systems in the EMYCIN 
system (Bennett 1985). 
 



 
 
 65

3.26 RuleMaster 
 
RuleMaster is a knowledge system application generator.  
RuleMaster appears to be better suited to classification than to construction problems, although it is 
claimed to be useful for both. It provides a language for representing reasoning patterns, but 
provides no assistance to the knowledge engineer in identifying and acquiring those patterns. It is 
based on induction rules (see section 2.11) (Kornell 1987). 
 
The two principal components of RuleMaster2 are RuleMaker, an automatic rule generator, and 
Radial, a block-structured rule language. Two forms that knowledge can take are declarative and 
procedural. Knowledge can be entered either in example format or directly in rules.  
The RuleMaker feature automatically induces rules from sets of examples supplied by the expert. In 
this way, declarative knowledge is easily integrated into the knowledge base. 
Knowledge that already exists in a procedural form can be entered directly in a rule format via the 
Radial language. 
 
RuleMaster2 is commercially available. It is developed by Radian Corp. and can be used on IBM-
PC or compatible10 (RuleMaster2 1987). 
 
 

3.27 SALT 
 
SALT (kNowledge ACquisition Language) is a knowledge-acquisition tool for generating expert 
systems that can use a propose-and revise problem-solving strategy. 
So far little attention has been paid to automated knowledge acquisition for systems that solve 
problems by constructing solutions.  
SALT was developed as a knowledge-acquisition tool for VT, an elevator system configurer. The 
input to the configurer was to include functional requirements for the completed configuration, 
preferences for specific parts and a description of the spatial structure within which the configured 
system must fit. The system's output was to consist of quantities, descriptions and model numbers of 
parts selected and a specification of spatial relationships among parts and between parts and 
structural landmarks (Marcus et al. 1985). 
   
The system will start incrementally constructing a design by proposing values for design parameters. 
The system will also identify constraints on design parameters. Whenever it detects a constraint 
violation, the system will use domain expertise to consider past decisions that could be revised, 
choose the most preferred revision that remedies the violation, remove anything potentially 
inconsistent with that change, and continue extending the design from that point. 
At the start of a SALT interview, the user is shown the menu for indicating the type of knowledge to 
be entered or viewed. Three basic kinds of knowledge make up a propose-and-revise system: 
1. Procedures for proposing values for the pieces of the design the system will output. 
2. Identification of constraints on individual pieces of the design. 
3. Suggestions for ways of revising the design if the constraints are not met. 
Once the user enters these procedures, SALT stores that knowledge within a dependency network. 
                     

    10RuleMaster, RuleMaker, Radial, and IBM-PC are trademarks. 
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Conclusion 
SALT makes a strong commitment to the nature of the problem-solving strategy that will be used for 
any task it will acquire. This allows SALT to represent domain knowledge according to the role it 
will play in finding a solution for any task that can use this basic strategy. This commitment gives 
SALT considerable power in guiding its interrogation of domain experts in the area where they most 
need guidance - in making decisions that require consideration of the potential interactions of a 
single piece of knowledge with everything else in the knowledge base. 
 
SALT currently understands only a few variations of a problem-solving strategy. The ideal 
knowledge-acquisition tool would be a true knowledge-engineering expert that understands a large 
range of AI techniques. A research strategy that makes progress toward a goal of developing such a 
tool is the one followed so far for SALT: 
1. Focus the knowledge-acquisition tool on the problem-solving strategy that will be used by the 

system it creates for one domain. 
2. Try the tool on another domain for which the problem-solving strategy looks promising. 
3. When the problem-solving strategy breaks down, identify characteristics of the domain that made 

it break. This task will be tractable if the knowledge-acquisition tool makes explicit what the 
problem-solving strategy is and how knowledge is used by the strategy. 

4. Automate the analysis of the knowledge base to diagnose the breakdown and treat it (Marcus 
1987). 

 
In Stout et al. (1988) a more general use of SALT is described. 
 
 

3.28 SEAR 
 
R1 is an expert system to configure computer systems. It contains a very large amount of 
knowledge. SEAR is a knowledge-acquisition tool for R1.  
Knowledge acquisition tools like TEIRESIAS, ETS and MORE are tools for classification problem-
solvers. SALT and SEAR are different. The problem is how a problem-solving method can influ-
ence the development of a knowledge acquisition tool. 
Knowledge has been represented in R1 in various ways; regulari-ties, to the extent they exist, have 
gone unnoticed. One has to know R1 well to modify its behavior in some desired fashion. 
The primary problem-solving method used by Rime has been derived from work done on R1-SOAR 
- an experiment in knowledge intensive programming using a general problem architecture called 
SOAR 
(see Rosenbloom et al. 1986). 
 
SOAR can create new productions, or chunks, based on the results of its goal-based problem solving 
and then use these chunks to speed up its performance on subsequent goals. Because each new 
chunk is logically entailed by the pre-existing knowledge base, this technique has been considered 
symbol-level learning. It can also use this chunking mechanism to learn at the knowledge level, that 
is, to acquire new knowledge (Greiner et al. 1988). 
It is easier to add knowledge to Rime. The problem-solving method used by Rime provides more 
direction to someone adding knowledge than does R1's method. This is in part because Rime's 
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method integrates explicitly defined knowledge roles and in part because the person adding the 
knowledge can specify the conditions under which one piece of knowledge should be applied in 
preference to another. 
 
SEAR as a knowledge collector and organizer.  
The problem of knowledge acquisition can be more appropriately viewed as the problem of 
knowledge maintenance. After eliciting the knowledge from a domain expert the knowledge is put 
into an intermediate representation. This is a storehouse of domain knowledge in a declarative form. 
The SEAR  rule generator converts the intermediate representation into OPS5 rules that "pro-
ceduralize" the knowledge; that is, the knowledge is represented in a way that tailors its usefulness to 
a problem-solving method so that there is no need to search the knowledge base when solving a 
problem. 
In SOAR, expertise can be added to a base system either by hand crafting a set of expertise-level 
rules or by automatic acquisition of knowledge. Automatic acquisition of new rules is accomplished 
by chunking, a mechanism that has been shown to provide a model of human practice, but is 
extended here to much broader types of learning (Van de Brug 1986, Rosenbloom et al. 1984). 
 
 

3.29 TDE 
 
The TEST Development Environment (TDE) enables knowledge engineers and trained domain 
experts to interactively build knowledge bases representing troubleshooting knowledge. TEST is an 
application shell. 
 
Expert-systems developers typically find that their knowledge-acquisition techniques change with 
the course of system development. In first approaching a new problem, knowledge acquisition tends 
to be exploratory. The goal is not only to acquire knowledge but, more important, to identify a 
representational format and control strategy of sufficient power to capture domain-specific problem-
solving behavior and domain-specific knowledge. Once this is done, knowledge acquisition 
becomes constrained by the target architecture.  
Diminishing the knowledge-acquisition bottleneck thus requires two interlocked solutions. First, a 
packaged problem-solving architecture which allows developers to focus on knowledge acquisition, 
rather than on knowledge-base design and problem-solving control, and issues of typically greater 
complexity. Second, a high-productivity workbench aimed at reducing the time it takes to build and 
maintain knowledge bases.  
In this vein, TEST provides an application shell for troubleshooting systems, while TDE provides 
the high-productivity workbench domain experts use to build and maintain knowledge bases. 
TDE continues a line of previous systems, including ROGET, MORE, SALT. TDE differs in two 
ways: first, it uses a problem-solving strategy that is more comprehensible to domain experts in the 
manufacturing and customers service domains. Second, TDE addresses the need for knowledge-
acquisition systems to conform to a developer's desire to provide information as it comes to mind. 
 
The problem-solving architecture. 
Knowledge acquisition is largely a matter of mapping the knowledge which supports expert 
decision-making into the representations required by a problem-solving system. When there is a 
conceptual correspondence between these representational units and the terms with which experts 
understand their task and domain, mapping becomes a straightforward operation. In addition, 
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conceptual correspondence makes direct-manipulation techniques readily available, and permits the 
system to easily guide users engaged in knowledge-base development. 
TEST uses semantic networks of schematic objects, or frames, to represent its key concepts. 
The failure-mode represents a deviation of the unit under test from its standard of correct 
performance. Within TEST, the failure-mode prototype describes the characteristics which must be 
provided for each failure-mode instance, such as a broken cooling unit. 
Other prototype objects within TEST include questions, tests, test-procedures, repair-procedures, 
rules, decision-nodes,  and parts.  
Since the failure-mode is the key concept in most trouble-shooting tasks, such aggregates provide an 
easily understood and readily accessible structure. 
The search space can be dynamically altered by rules sensitive to information acquired during a 
diagnostic session.  
 
By providing a mixed-initiative multi-task environment, TDE allows knowledge engineers and 
domain experts the option of directing or being directed by the underlying knowledge-acquisition 
system. By providing a graphic interpretation of the underlying knowledge base as it changes with 
respect to user input, users are provided with a context in which to understand the impact of replies 
to system prompts.  
TDE supports knowledge-based enhancement by providing tools that support knowledge-based 
browsing, modification and debugging. 
The TEST architecture greatly aided the development of the TDE workbench. In particular, the 
choice of a schematic as opposed to rule-based representation led to a knowledge base characterized 
by the use of domain-familiar concepts, and sufficient conceptual structure to facilitate several TDE 
features (Kahn et al. 1987). 
 
 

3.30 TEIRESIAS 
 
TEIRESIAS is a program designed to function as an assistant in the task of building large 
knowledge-based systems. It embodies a particular model of interactive transfer of knowledge from 
a human expert to the system, and makes possible knowledge transfer in a high level dialog 
conducted in a restricted subset of natural language.  
Of the major problems, the weakness of the natural-language-understanding techniques presents the 
largest barrier to better performance. 
Knowledge acquisition in the context of a shortcoming in the knowledge base, for instance, has 
proved to be a useful technique for achieving transfer of expertise, offering advantages to both the 
expert and TEIRESIAS (Davis 1977). 
 
Two major goals were used as guidelines in creating a set of tools for the construction, maintenance, 
and use of large, domain specific knowledge bases. First, it should be possible for an expert in the 
domain of application to "educate" the performance program interactively, commenting on and 
correcting its behavior. Second, it should be possible for the expert to assemble and maintain a large 
body of knowledge. 
 
The central theme of the development of TEIRESIAS is the exploration and use of what is labeled 
meta-level knowledge. This concept is about "knowing what you know".  
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MYCIN provided the context in which TEIRESIAS was developed. MYCIN was designed to 
provide consultative advice on diagnosis and therapy for infectious diseases.                          
TEIRESIAS is written in INTERLISP, an advanced dialect of LISP. 
 
There are two major forms of knowledge representation in use in the performance program:  
1. The attributes, objects, and values which form a vocabulary of domain-specific conceptual 

primitives.   
2. The inference rules expressed in terms of these primitives.  
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problem or may challenge the final result. This process may uncover a fault in the student's 
knowledge of the subject (the debugging phase) and result in the transfer of information to correct it 
(the knowledge acquisition phase). 
Knowledge acquisition is emphasized in the context of shortcomings in the knowledge base. 
 
The schemata are the primary vehicles for describing representations. They were developed as a 
generalization of the concept of record structures and strongly resemble them in both organization 
and use. 
 
Levels of knowledge and schemata. 
0. The base of domain-specific knowledge consists of the collection of all instances of each 

representation. 
1. The base of representation-specific knowledge consists of the schemata, which are, in effect, the 

declarations of the extended data types. These have a degree of domain independence since they 
describe what an attribute is, what a value is, etc., without requiring a priori knowledge of the 
domain in which those descriptions will be instantiated. 

2. The base of representation-independent knowledge - the schema-schema - describes what a 
declaration looks like. At this level resides knowledge about representations in general and about 
the process of specifying them via declarations. 

 
 
The inability to deal with more complex interrelationships of representations is currently the 
system's primary shortcoming. 
The knowledge-acquisition capabilities of the schemata offer a very organized and thorough 
assistance that can: 
- Attend to many routine details. Some of these are details of data structure management, and having 
the system attend to them means the expert need to know nothing about programming. 
- Show how knowledge should be specified.  
- Make sure that the user is reminded of all the items he has to supply. 
 
Summary 
Knowledge acquisition was described as a process of interactive transfer of expertise from an expert 
to a performance program, in which TEIRESIAS's task was to "listen" as attentively and intel-
ligently as possible. The process was set in the context of a shortcoming in the knowledge base, as 
an aid for the expert. He is faced with a specific consultation whose results he finds incorrect and has 
available to him a set of tools that will allow him to uncover the extent of the system's knowledge 
and the rationale behind his performance. His task is then to specify the particular difference 
between the system's knowledge and his own that accounts for the discrepancy in results (Davis and 
Lenat 1982). 
 
TEIRESIAS aids a human expert in monitoring the performance of a knowledge-based system. 
When the human expert spots an error in the program's performance, in either the program's 
conclusions or its line of reasoning, TEIRESIAS assists in finding the source of the error in the 
database by explaining the program's conclusions - retracing the reasoning steps until the faulty or 
missing rule is identified. At this point, TEIRESIAS assists in knowledge acquisition, modifying 
faulty rules or adding new rules to the database.  
Meta-level knowledge about the kinds of rules and concepts in the database is applied to build 
expectations in TEIRESIAS's model-based understanding process.  



 
 
 71

Meta-level knowledge is also used to encode problem-solving strategies, in particular, to order the 
invocation of rules so that those that are most likely to be useful are tried first (Barr, Cohen and 
Feigenbaum 1981). 
 
 
 
 
 
 
 

3.31 TIMM 
 
The expert system TIMM/Tuner has been developed to tune VAX's11.  
Two features of the development of this system merit the attention of artificial intelligence 
application engineers. The first is a simple and rapid automated knowledge-acquisition strategy. The 
second is an atypical inference procedure which maintains the strength of standard forward chaining 
while providing for program sensitivity to gradation of meaning within rule clauses. 
 
To approach the problem of automated knowledge acquisition, TIMM separates knowledge into 
declarative and procedural sections, much like frame-based systems which allow attached 
procedures. 
The declarative foundation allows for an action-oriented approach to the development of procedural 
knowledge. The action-oriented approach is based on the belief that most experts are better at doing 
than at describing. TIMM uses the domain description in the declarative knowledge section to 
synthesize realistic example problems. 
These are the basis of an interactive dialog with the expert, oriented toward making decisions 
(doing), rather than explaining how decisions are made (describing). 
 
TIMM greatly reduced the need for knowledge engineering assistance in building TIMM/Tuner. 
Some need for knowledge engineering principles remain. 
TIMM has low cost for turning around or starting over in the early stages of development (Kornell 
1984). 
TIMM is commercially developed by General Research Corp. for use on an IBM-PC12  or 
compatible. 
 
 

3.32 OTHER SYSTEMS 
 
It is not feasible in the scope of this paper to give a complete overview of all the systems that 
possibly exist. In the preceding sections only the most important and often the best documented 
systems are described. In the following list I enumerate several systems that are worth mentioning, 
                     

    11TIMM and TIMM/Tuner are trademarks. 

    12IBM-PC is a trademark. 
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although little literature about them is available. 
 
The Advice Taker/Inquirer (AT/I) is a domain-independent program that is used to construct, 
monitor, and improve an expert system. 
In the learning phase, the Advisor teaches a strategy to the AT/I by providing it with general 
principles, specific examples, and assertions. Advice consists of a description of a situation and a 
recommended set of actions (possibly tagged with a certainty factor) to be performed. The system 
requests the expert for clarification whenever his advice is inconsistent, incomplete, or vague. 
During execution of the expert system, the AT/I enters the operational phase, in which it monitors 
and suggests improvements to the expert's strategy by analyzing its performance with respect to the 
current environmental situation and previous experience. Weaknesses in the strategy are detected 
and corrected automatically by the AT/I whenever possible (Cromp 1985). 
 
The CONSUL system is an expert system that supports interactions between users and online 
services. CONSUL is designed as a general framework in which a wide variety of services can be 
embedded. One component of the CONSUL system is made to acquire the necessary knowledge in a 
semiautomatic way (Wilczynski 1981). 
 
EXPERT is a system for designing and building models for consultation. EXPERT is an expert-
system shell rather than a knowledge-acquisition tool. The EXPERT system allows for efficient 
testing of changes due to particular knowledge-base revisions. 
Part of the program evaluates the current rules according to how many correct and incorrect problem 
solutions they are involved in over a large set of test cases. This program finds weak rules in the 
knowledge base (Weiss and Kulikowski 1979, Hayes-Roth et al. 1986). 
 
EXPERT-EASE is a commercial version of ID3, which is an algorithm that can make decision trees 
with positive and negative instances of a concept (Michie 1987). 
 
HERACLES is an expert-system shell for solving heuristic-classification problems and ODYSSEUS 
is an apprenticeship learning program. Both are used in combination with the expert systems of the 
MYCIN family (Wilkins et al. 1987). 
 
MUM (Manage Uncertainty in Medicine) is an expert system that combines knowledge in order to 
avoid uncertain conclusions, given uncertain knowledge. It is also able to make decisions in diagno-
sis, based on control rules (Gruber and Cohen 1987). 
 
SEEK is an interactive system that provides a unified framework for designing and testing expert 
models, and is applied to the development of a diagnostic consultation system in rheumatology 
(Politakis 1985). 
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CHAPTER 4 

AUTOMATED KNOWLEDGE-ACQUISITION SYSTEMS II: EVALUATION 
 
In this chapter the  automated knowledge-acquisition systems are evaluated in terms of their formal 
structure. It is impossible to assess these systems for their quality only using their descriptions. 
Comparing these systems in action would give a substantial evaluation of their performances, but 
that is not within the scope of this paper. Moreover, evaluations of systems are rarely found in the 
literature. 
 
The main conclusion that can be drawn from the previous chapter is that automated knowledge 
acquisition is not a univocal choir of singers, but it is easy to distinguish the various systems. 
 
 

4.1 DEDICATED SYSTEMS 
 
The most obvious distinction that can be found is between automated knowledge-acquisition 
systems that are specially designed for a certain expert system and the general-purpose systems. This 
distinction can also be called dependent versus independent automated knowledge-acquisition 
systems. 
 
The specially dedicated systems are Meta-DENDRAL, INFORM, KAE, KAS, KNACK, LEAP, the 
automated knowledge-acquisition system for MOLGEN, OPAL, the automated knowledge-
acquisition system for REX, ROGET, SALT, SEAR, TEIRESIAS, and TIMM. 
The essence of these systems is that they use the same structure(s) as the expert system for which 
they are constructed. The knowledge-acquisition system can consist of a model of the domain; it can 
use the same sort of representation as the knowledge base uses; it can also use the inference system 
of the expert system; or a combination of these. We can say that the knowledge-acquisition system 
operates analogously to its expert system. 
Thus, the dedicated systems have a great advantage over the independent systems. They do not need 
to acquire the domain structure which is more difficult to obtain than the data and rules that fill the 
slots.  
 
Both in ROGET and TEIRESIAS the technique of the MYCIN expert systems is very explicitly 
present. 
TEIRESIAS exploits meta-level knowledge, i.e., knowledge about the knowledge base of the expert 
systems. With this knowledge TEIRESIAS is able to trace shortcomings in the knowledge base, but 
also to explain the conclusions of the program. In its capacity as a knowledge-acquisition tool, 
TEIRESIAS is able to communicate between the knowledge base and the domain expert. 
ROGET is also able to acquire knowledge for expert systems of the MYCIN family. In the initial 
stage of knowledge acquisition ROGET method is to provide the domain expert examples from 
other existing expert systems. Thus the conceptual structure of the new expert system is chosen from 
an existing system, according to the task for which it will be used. ROGET operates with analogy. 
 
TEIRESIAS and ROGET are dedicated to MYCIN-like expert systems but not only to one system. 
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The following knowledge-acquisition systems are specially built to facilitate the expansion of one 
particular expert system: 
 
Meta-DENDRAL works only for DENDRAL. It uses in its knowledge-acquisition process a 
semantic model of the DENDRAL domain. 
 
KAS, the knowledge-acquisition system for PROSPECTOR, knows the representation structure of 
the main system. A semantic network matcher is used to compare the input by the expert and the 
system. KAS also contains the PROSPECTOR inference engine. 
 
KNACK uses the problem solving methods and knowledge roles of the expert systems it can build. 
 
LEAP has an initial domain theory that enables it to derive generalizations from examples. 
 
OPAL uses a domain model of ONCOCIN for which it acquires knowledge. The domain model is 
constructed in such way that it matches the course of thinking that oncologists follow in their field. 
 
The knowledge-acquisition system for REX contains a conceptual framework of the prototyped 
expert system. This enables the expert to formulate his knowledge in terms of the knowledge base of 
the expert system. 
 
SALT is the knowledge-acquisition system for VT which is an expert system that can configure 
elevator systems.  
SEAR is the knowledge-acquisition system for R1, a computer system configurer. Both use the 
problem-solving strategies of their expert system to acquire domain knowledge. 
 
TIMM uses the domain description to conduct a dialog with the domain expert. 
 
TDE is not dedicated to a particular expert system, but is meant for building expert systems that 
utilize trouble shooting knowledge. TDE uses semantic networks of schematic objects or frames. 
INFORM operates in the same way. 
 
KAE is typical for acquiring knowledge about interpreting aerial imagery. In this list of automated 
knowledge-acquisition systems KAE is the only system that is built for solving visually related 
problems. 
 
The knowledge-acquisition system for MOLGEN is somewhat different since it is not a separate 
system. It provides a direct access to the knowledge base by ways of a stylized form of natural lan-
guage. MOLGEN's knowledge base is built by domain experts themselves using declarative and 
procedural knowledge. Since they know the structure of the system there is no need for a separate 
construction of the knowledge-acquisition system. 
 
 

4.2 STAND-ALONE SYSTEMS 
 
The automated knowledge-acquisition systems that are not dedicated to certain expert systems have 
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their own methods of acquiring knowledge. 
 
Repertory grid method 
Most common is the repertory grid method. This is used in AQUINAS, its predecessor ETS, 
KITTEN, KRITON (and its predecessor PLANET). 
In the repertory grid method the expert is asked to list, compare and rate series of items. The system 
is able to build hierarchical and relational structures from these ratings. This method serves well in 
areas with classification and diagnosis problems. Design and planning areas that are built up from 
components rather than broken down, are not suited for the repertory grid method. 
Repertory grid is only one of the components of KRITON's method. The combination with other 
methods makes KRITON more powerful than AQUINAS and the others. 
Goodall (1985) points out that repertory grid analysis is time consuming if there are more than 6 
domain objects. 
 
Structured knowledge acquisition 
Structured knowledge acquisition is the knowledge-acquisition approach used in KADS. It serves as 
an example in the European versus American controversy about whether expert-system building 
should be done by careful planning or by rapid prototyping.  
KADS uses a library of standard models of prototypical domains. This choice gives the advantages 
of the dedicated systems. Analysis of the elicited data from the expert knowledge leads to a 
conceptual model of the system to be built. This interpretation model can collect and interpret data 
from the expert. 
The drawbacks of this system is the time-consuming preparation before the actual expert system 
building process. The risk that the structured plan does not serve well enough the purpose is too high 
to implement in an early stage. Often this shows in a much later phase of the expert system 
development and thus causes waste of time and effort. On the contrary, in rapid prototyping wrong 
directions can easily be corrected in an early stage. On the other hand a well structured plan in 
advance leads towards a more consistent and complete built knowledge base. 
The more examples of KADS are developed the more structures are available to choose from. Thus 
it becomes similar to a multi-dedicated automated knowledge-acquisition system. 
A difficulty with KADS seems to be that the interpretation and structuring process start working 
after the verbal data have been submitted. The interpretation model for interpreting verbal protocols 
gives room for misinterpretation. It is an extra burden to the system.  While on the other hand 
structured interviewing by the system, using the structured outline of the knowledge base, avoids an 
extra phase in the knowledge-acquisition process. 
 
 

4.3 MACHINE-LEARNING METHODS 
 
Several automated knowledge-acquisition principles are not related to the fact that the system is 
independent or dependent of an existing expert system or family of systems. 
 
A promising technique in automated knowledge acquisition is the method of machine learning. The 
essence of machine learning is that the system can generate rules from given samples. (For more 
details and possibilities see section 2.11.) 
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KLAUS and its derivatives use the machine-learning technique that is known as "learning by being 
told". 
It has the capability to process natural language in various ways (including recognizing patterns and 
analogy). Its pilot system, NANOKLAUS contains seed concepts such as classes of things and 
relations. The input consists of concepts and vocabulary of the domain. KLAUS is able to transfer 
these concepts into different knowledge representation systems. 
 
LEAP is a dedicated automated knowledge-acquisition system. It collects training examples to make 
generalizations, but it uses also the domain theory of the expert system to validate the examples. 
 
PROTOS learns by asking the expert about facts and rules and the explanation of them. Then it is 
able to classify them and to detect missing information. 
 
RuleMaster and EXPERT-EASE are systems that use algorithms to induce rules from given 
examples. 
 
BLIP learns from the expert to specify a "sloppy" domain model by asking about definitions of the 
concepts. There is explicitly no structure involved. This allows the expert and the system to be as 
flexible as possible. 
 
The knowledge acquisition system Meta-DENDRAL is an example of learning by example. It uses a 
huge quantity of examples of molecular structures (DENDRAL determines molecular structures) to 
generate rules. These rules are added to the domain model. Meta-DENDRAL has proven to be able 
to discover new rules. 
 
When domains get bigger and more complex, experts become unable to explain how they operate. 
However, they can still supply the knowledge engineer with suitable examples of problems and solu-
tions. Using rule-induction will allow expert systems to be used in these more complicated fields. On 
the other hand, rule-induction programs do not help select the attribute, or do not help discover that 
two attributes are functionally or causally related (Goodall 1985). 
 
 

4.4 NATURAL-LANGUAGE PROCESSING 
 
An approach that is used in several systems is natural-language processing. The reason why research 
is done in this direction is that domain experts and end-users are not accustomed to working with 
formalisms. To ease this problem the use of natural language in the dialog with the domain expert is 
proposed. 
 
Natural-language processing is only part of the knowledge-acquisition process. However, in some 
European publications on knowledge acquisition, the main focus is on natural language, assuming 
that the problem of knowledge acquisition would be solved as long as the system could deduct rules 
from sentences in natural language.  
 
Some, like ALICE (Fum 1985), plan to be a full automated knowledge-acquisition system that 
models the cognitive processes that occur in humans when they learn descriptive texts and are able 
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to reason about it.  
 
Automated language understanding is still a difficult subject. In this stage of automated knowledge-
acquisition research, it seems only to narrow the knowledge-acquisition bottleneck when extra 
problems such as language processing are part of the system. In TEIRESIAS natural language is also 
a barrier in its performance. 
 
The systems that use natural language as part of their system are doing this to ease the dialog with 
the domain expert. 
 
ASTEK, like OPAL,  uses natural language in the knowledge-acquisition process. The automated 
knowledge acquisition is regarded as an extension of the dialog between a human expert and the 
knowledge representation of the expert system. A fundamental part of this approach is that ASTEK 
is guided by a model of the domain knowledge by specifying the types of knowledge structures. 
 
In KITTEN the analysis of natural language is integrated with the repertory grid method. It can 
construct a prototype with statements in natural language. This has been proven to stimulate experts 
to submit knowledge from different perspectives. 
 
KLAUS is able to process natural language in a machine-learning system. The latest literature on 
KLAUS dates from 1983 (Grosz and Stickel) in which it was mentioned that more emphasis on 
natural language was stressed. 
 
 

4.5 OTHER TYPES OF KNOWLEDGE ACQUISITION 
 
Data analysis 
As mentioned before, KADS needs data analysis to convert the verbal data of protocols into data and 
rules for the knowledge base. Actually it is much more than conversion. The verbal data should map 
into the knowledge structure. For this purpose KADS uses a hierarchy of levels of knowledge. 
 
KRITON employs a set of different methods for different aspects of the knowledge-acquisition 
process. For the interpretation of verbal data it also uses data analysis. The authors admit that data 
analysis is still a difficult task. 
 
KEATS is a tool that helps the knowledge engineer to organize the raw data of the protocols. 
(KEATS is not a genuine automated knowledge-acquisition system.) KEATS has a frame-based 
knowledge representation and uses a graphic interface that functions as a blackboard and controls 
the knowledge base. On this basis it is able to analyze the protocols. 
 
Mixed approaches  
Several systems are combinations of automated knowledge-acquisition subsystems. 
 
KRITON is a typical mixed approach automated knowledge-acquisition system. Expert knowledge 
is obtained by automated interview methods (such as repertory grid) and protocol analysis. Textbook 
knowledge is gathered by text-analysis techniques. Then the acquired knowledge is represented in 
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an intermediate knowledge representation. This serves as a blackboard to generate the desired 
representation of the knowledge base and check the knowledge for consistency and completeness. 
 
Other systems 
MORE is a stand alone system, but only used for diagnostic problem-solving expert systems. Its 
knowledge-acquisition process is based on a domain model. Using the pattern of relations between 
hypotheses and symptoms MORE is able to build a domain model from which it generates rules. 
MORE is able to look for inconsistencies and deficiencies. MOLE, the successor of MORE, uses a 
heuristic problem solver in interaction with the problem-solving method of the expert system. 
MOLE works with domain independent (although limited to diagnosis problems) heuristics about 
the knowledge-acquisition process and the context of diagnosis. 
 
Kn

Ac is a knowledge matcher. It is able to anticipate modifications, like incomplete knowledge, in 
the knowledge base. It works with heuristics about the knowledge-acquisition process like a 
knowledge engineer would do. 
 
KREME, a system for knowledge acquisition and knowledge editing is able to use different kinds of 
knowledge representation. The goal is to develop various knowledge-acquisition approaches. 
 
KLAUS is able to transfer its acquired knowledge into various knowledge representations. 
 
Knowledge acquisition from multiple experts 
KITTEN and KNACK gather knowledge from multiple experts. ETS can do the same, but the end 
user can evaluate the input from the various experts and can make a choice. 
 
 

4.6 KNOWLEDGE LEVELS 
 
The more complicated systems need to supervise the flow of knowledge. Therefore  "knowledge of 
knowledge" or meta-knowledge is introduced. With meta-knowledge the system knows what is 
going on. This metaknowledge may vary from sorts of bookkeeping or using blackboard methods. 
But also levels of knowledge are distinguished and used to serve the various kinds of knowledge. 
 
INFORM distinguishes 4 conceptual levels of knowledge: 
1. The diagram filling level. 
2. Knowledge about the knowledge-engineering activities. 
3. The heuristic approach for the encoding process. 
4. The level of providing explanation. 
 
KADS distinguishes four layers of expert knowledge, corresponding to the different roles that 
knowledge plays in reasoning processes: 
1. The domain level contains the static knowledge of the domain. 
2. The inference level applies this knowledge into rules. 
3. The task level describes the goals and tasks. 
4. The strategic level plans, controls, and debugs. 
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KADS uses 5 levels for mapping verbal data into the knowledge base: 
1. Knowledge identification; the recording of verbal data. 
2. Knowledge conceptualization; the formalization of the data into concepts, conceptual relations, 

etc. 
3. Epistemological analysis; the structural properties of the conceptual knowledge are uncovered by 

an epistemological framework. 
4. Logical analysis; this applies to the formalisms of the knowledge in the higher levels. 
5. Implementational analysis; the mechanisms are uncovered on which higher levels are based. 
 
Metalevel knowledge in TEIRESIAS is about knowing what you know. This knowledge takes care 
of the process of understanding the data and rules. From here it can develop strategies in the infer-
ence process. 
Other knowledge levels in TEIRESIAS in the knowledge-acquisition routine: 
1. Object level knowledge. 
2. Knowledge of the conceptual building blocks of the knowledge representation, such as attributes, 

values, rules. 
3. The description of the conceptual primitives behind the representations. 
 
 

4.7 CONCLUSION 
 
The many examples of automated knowledge-acquisition systems in various stages of sophistication 
give enough reason to predict a prosperous future for this sort of system. 
 
Dedicated knowledge acquisition systems for one particular expert system (or group of expert 
systems) seem to work very well. Also knowledge-acquisition systems that can handle not too 
complex tasks are satisfying. 
But all round systems that are usable during the whole process of expert-system building and for all 
kinds of expert systems are not feasible. The development of such a system will take a considerable 
amount of manpower over a long period of time (Bennett 1987).   
 
Many aspects of the knowledge-acquisition process are particularly apt for automation. Or, more 
precisely, several tasks in the knowledge-acquisition process will be performed better when they are 
automated than when they are done by a human knowledge engineer. 
The knowledge-engineering tasks that are specially difficult for human performance should anyhow 
be automated. For example knowledge-base refinement, consistency checking, machine learning are 
specially suitable. Also all the tasks that need constant tracking and overviewing are particularly 
appropriate for automation. 
 
Preliminary interviewing by the knowledge engineer seems a must to get himself acquainted with 
the domain. This is not so much knowledge acquisition for the expert system, but for the knowledge 
engineer to be able to direct the project. It does not seem relevant to automate this part of knowledge 
acquisition. But from here on it is possible to use automated techniques. 
Concepts, their hierarchies and their relations can be acquired by scaling and repertory grid methods.  
Experts are good in giving advice when confronted with cases. Using the concepts learned with the 
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previous methods, the system can guide the dialog with the expert to elicit production rules from 
problem cases. 
Automated refinement and debugging are already mentioned. 
 
An automated knowledge-acquisition system that can handle the entire process is not only able to do 
more, but also the different stages can benefit from each other.  
It is also worthwhile to generalize well-working dedicated systems or to expand multifunctional 
systems, such as KRITON. There is no point in reinventing the wheel. 
Systems that can handle various tasks seem to be better than one task systems. Real life expert 
problems are seldom of one kind, but mainly mixed. 
It is not unthinkable that systems that can handle different tasks are able to solve more creatively 
tasks than the knowledge engineer would do. 
 
Some serious problems remain to be solved. Several knowledge-acquisition tasks are particularly 
difficult for human knowledge engineering. I chose the ones that are mentioned in chapter 2, the 
ones that I find particularly interesting. 
The man-machine mismatch problem and the knowledge-representation versus knowledge-
acquisition problem are the crucial ones. So far not much has been done about these problems. 
Another problem is the recognition of structures in the various stages of the knowledge-acquisition 
process. The guidance of the knowledge-acquisition process on the system level seems solved by 
blackboard systems, but the guidance on a metalevel throughout the whole process is more 
complicated. 
 
In a forthcoming paper I shall go more extensively into the relations between knowledge 
representation, knowledge acquisition and mental models in the expert-system-building process.  
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