

AUTOMATED KNOWLEDGE ACQUISITION

FOR EXPERT SYSTEMS

 AN OVERVIEW

 Marie José Vlaanderen

1990

 2

ACKNOWLEDGMENTS

This paper is submitted as a partial requirement for a doctoral exam in philosophy and
information sciences at the Faculty of Philosophy, Erasmus University Rotterdam, supervised by
Prof.Dr.H.J.van den Herik, presently of the University of Limburg.
The Dr. Neher Laboratory in Leidschendam commissioned the research leading to this paper.

 1

CONTENTS

CHAPTER 1 INTRODUCTION 3

CHAPTER 2 KNOWLEDGE ACQUISITION AND THE BUILDING OF EXPERT
SYSTEMS 6
2.1 INTRODUCTION 6
2.2 THE MISMATCH PROBLEM 9
2.3 THE STATE OF THE ART 11
2.4 TRANSFER OF KNOWLEDGE 12

2.4.1 Human expert thinking 12
2.4.3 Interviews 14
2.4.4 Protocol analysis 16
2.4.5 Expertise from multiple experts 17

2.5 INTERACTION BETWEEN KNOWLEDGE ACQUISITION AND
KNOWLEDGE REPRESENTATION 17

2.6 STRUCTURES AND LEVELS 19
2.7 PROTOTYPING 20
2.8 UNCERTAIN KNOWLEDGE 21
2.9 KNOWLEDGE-BASE REFINEMENT 22
2.10 THE ULTIMATE KNOWLEDGE BASE 23
2.11 MACHINE LEARNING 24
2.12 COGNITIVE SCIENCE 29

CHAPTER 3 AUTOMATED KNOWLEDGE-ACQUISITION SYSTEMS I:
DESCRIPTIONS 32
3.1 AQUINAS 32
3.2 ASTEK 34
3.3 AutoIntelligence 35
3.4 BLIP 36
3.5 (Meta-)DENDRAL 38
3.6 ETS 38
3.7 INFORM 40
3.8 KADS 43
3.9 KAE 47
3.10 KAS 48
3.11 KEATS 48
3.12 KITTEN 49
3.13 KLAUS and NANOKLAUS 50
3.14 Kn

Ac 50
3.15 KNACK 51
3.16 KREME 52
3.17 KRITON 53
3.18 LEAP 56
3.19 MOLE 57
3.20 The knowledge-acquisition tool for MOLGEN 58

 2

3.21 MORE 59
3.22 OPAL 61
3.23 PROTOS 61
3.24 The knowledge-acquisition system for REX 63
3.25 ROGET 63
3.26 RuleMaster 65
3.27 SALT 65
3.28 SEAR 66
3.29 TDE 67
3.30 TEIRESIAS 68
3.31 TIMM 71
3.32 OTHER SYSTEMS 71

CHAPTER 4 AUTOMATED KNOWLEDGE-ACQUISITION SYSTEMS II:
EVALUATION 73
4.1 DEDICATED SYSTEMS 73
4.2 STAND-ALONE SYSTEMS 74
4.3 MACHINE-LEARNING METHODS 75
4.4 NATURAL-LANGUAGE PROCESSING 76
4.5 OTHER TYPES OF KNOWLEDGE ACQUISITION 77
4.6 KNOWLEDGE LEVELS 78
4.7 CONCLUSION 79

BIBLIOGRAPHY 81

 3

CHAPTER 1 INTRODUCTION

An expert system can be defined as a computer program which uses artificial intelligence techniques
to perform or to guide a task that a human expert can do.
Feigenbaum (1977) shifts the emphasis from techniques and formalisms to the knowledge that an
expert system contains. The expert knowledge seems to be a necessary and a nearly sufficient condi-
tion for developing an expert system (Hayes-Roth et al. 1983, p.7).
It seems to be clear that the acquisition of this knowledge as a technique (or is it still an art?) is an
important field of study within the knowledge-engineering process.

Most authors of articles about knowledge acquisition quote Feigenbaum (1977) or Hayes-Roth et al.
(1983) that knowledge acquisition is the bottleneck in the process of developing expert systems.
They also complain that little has been published about it.

In the early years of expert-systems development - DENDRAL and HEARSAY-1 in the second half
of the 1960s, MYCIN in the early 1970s - the knowledge engineer and the domain expert worked
closely together over a long period of time. Sometimes the knowledge engineer possessed the
relevant expertise himself1 and could perform the role of domain expert as well. Working on an
expert system usually took place in an academic setting where priority was given to the overall
methodology of development rather than to efficiency and speed of production.
The more practical question of how to acquire all the relevant knowledge for a well-performing
expert system came up in the 1980s. When construction of expert systems for commercial purposes
began, the knowledge-acquisition process had to be efficient. The domain expert had to be available
for interviewing and to be willing to go deeply into his field of expertise. At the same time another
aspect in introducing expert systems became important. In the academic and research environment
the domain expert was part of the team that was building the expert system. He was acknowledged
in the research paper or article. After his participation he went back to his own work again. But
when knowledge engineers started building expert systems within a company or other organization
with the explicit intention to replace (at least partly) the domain expert with a computer program,
the situation became different. The threat of losing jobs or losing prestige became apparent.
Cooperation and, even more, enthusiasm of the domain expert could not be expected. In Welbank
(1983) these problems are mentioned in detail.

It has become common knowledge that when the domain expert can directly communicate with a
system, he is less reluctant to provide his expertise. One reason can be that he has a stronger, even
more, physical, relation with the system-to-be.
The feedback of the knowledge-acquisition part of the system can give the impression that the
system is understanding the input of the domain expert.2 He can have the feeling that he is actually
building the system and so accomplishing an important task (which is true for his part of the job).

 1The use of "he" and "him" includes "she" and "her".

 2Not unlike the ELIZA-effect: instead of being a dumb machine, the computer turns out to be a sympathetic
conversation partner to whom it is easy talking. (Weizenbaum 1966)

 4

This is in contrast with manual knowledge-acquisition methods. The most common method is
interviewing by the knowledge engineer. The domain expert may have the impression that he is
giving away his expertise without knowing how well this intermediate knowledge engineer is able to
build an expert system that can stand up to his expectations. Yet worse may be the method of
protocol analysis where the distance between expert and the finished expert system seems even
larger.

An advantage of automated knowledge acquisition - especially in combination with other
knowledge-engineering tools - in avoiding reluctance on the part of the domain expert is to construct
its prototype at a very early stage of the building of the expert system. Many authors (e.g., Nii, in
Feigenbaum and McCorduck 1983) mention that the expert should remain interested in the project.
Seeing a prototype of the system within a short period of time will sustain his interest and can easily
evoke improvements and extensions from him.
Another advantage of automated knowledge acquisition is that the process of elicitation can be
structured in advance in order to build up a better structured knowledge base. Protocols, used in
manual knowledge acquisition, on the other hand, are mostly unstructured. Less unstructured are
interviews, where the knowledge engineer can follow certain guidelines. But even then he can easily
be distracted by details that the expert wants to mention.

So far we may conclude that the field of automated knowledge acquisition is worth extensive
exploration.

The complaint about the lack of literature becomes less severe. As publications about artificial
intelligence per se tended to shift to expert systems, current articles about expert systems tend to be
about special applications and about tools for building expert systems. In fact, during the last three
years the amount of articles on (automated) knowledge acquisition has avalanched. Several issues of
the International Journal of Man-Machine Studies are dedicated to papers presented at the Knowl-
edge Acquisition Conferences in Banff, Canada. Also in Europe an annual conference on knowledge
acquisition takes place. Several books (Kidd 1987, Hart 1986, and others) devoted exclusively to
knowledge acquisition appeared during the last few years. The most recent publications are "The
Knowledge Acquisition for Knowledge-Based Systems Newsletter" and "Knowledge Acquisition;
An International Journal of Knowledge Acquisition for Knowledge-Based Systems". Both are edited
by John Boose and Brian Gaines. A book series by Academic Press consisting of 2 volumes so far
has also been published. (Gaines and Boose 1988, and Boose and Gaines 1988). These books
contain reprints of articles about knowledge acquisition from the International Journal of Man-
Machine Studies. A book that only appeared after the main part of this paper was written (Marcus
1988) gives an overview of six automated knowledge-acquisition systems. The last issue of the
SIGART Newsletter (108, April 1989) contains an extensive overview of knowledge-acquisition
systems and a bibliography with more than 400 entries.

Hayes-Roth et al. (1983) is one of the earliest books that devotes an entier chapter to knowledge
acquisition. The Handbook of Artificial Intelligence (Barr, Cohen, and Feigenbaum 1981) contains
relatively little on knowledge acquisition.
Notwithstanding the increasing amount of new literature about knowledge acquisition, real
breakthroughs in method and technique are still not covered. Knowledge acquisition seems to
remain a bottleneck in the knowledge-engineering process.

In this paper I propose to examine the problems of knowledge acquisition and more particularly the

 5

possibilities of automated knowledge-acquisition systems.

In the second chapter the problems of knowledge acquisition and expert-system building are
cataloged.

The third chapter gives an overview of automated knowledge-acquisition systems that are already
operational or still in development, or probably even aborted.

The fourth chapter evaluates the outcome of the previous chapters.

The study of literature for this paper was completed in April 1989.

 6

CHAPTER 2 KNOWLEDGE ACQUISITION AND THE BUILDING OF
EXPERT SYSTEMS

2.1 INTRODUCTION

Reminded by Feigenbaum (1977) that the power of an expert system is the knowledge it possesses,
most of the emphasis in expert- system developing should go to the knowledge-acquisition part of it.

In the classic book on expert-system building, Hayes-Roth et al. 1983, the building process is
described as the process of knowledge acquisition (Buchanan et al. 1983). Throughout this section I
follow their guidelines.

EXPERT

EXPERT SYSTEM

KNOWLEDGE ENGINEER
or
INTELLIGENT EDITING PROGRAM
or
INDUCTION PROGRAM

INFERENCE ENGINE

 database
KNOWLEDGE BASE

 rulebase

******** The structure of an expert-system-building process *******************
 figure 2.1

The basic rule is that knowledge acquisition and expert-system building is an interactive process.
The two should not be separated.
Some other basic rules for the expert-system-building process are also important:

 7

1. Get acquainted with the domain, using textbooks or an initial interview with the domain expert,
and

2. Start building a prototype of the expert system as soon as possible.

The work scheme should be as follows:
1. Problem outline. The tasks and subtasks of the expert system must be clear.
2. Domain concepts. The major concepts of the domain must be acquired and arranged in a

semantic way.
3. Strategy. Another kind of knowledge are the rules the domain expert uses. Start with the main

strategies.
4. Formalization. The acquired knowledge should be arranged in a certain kind of representation. It

is important to know at an early stage how this representation looks like.
5. At this point the conditions are fulfilled to construct a prototype.
6. Then the knowledge engineer can continue to deepen and refine the knowledge acquisition and

test the prototype. This can be seen as a cyclical process of conceptualization, formalization,
implementation and testing.

For the sake of clarity something must be said about the terminology. Throughout this paper I use
the term "knowledge acquisition" to mean the acquisition of knowledge for a special purpose, e.g.,
the expert's answer to a certain question. "Knowledge elicitation" is the unstructured revelation of
knowledge without a presupposed plan, e.g., thinking aloud protocols or textbook knowledge.
A different meaning of knowledge acquisition was found in Avignon 1987 where articles on
information retrieval were arranged under the heading of knowledge acquisition. It should be clear
that "knowledge retrieval" is normally used for getting knowledge from a knowledge base, that is to
say knowledge acquisition from the other end of the system.

The identification stage

In the identification stage the basic aspects of the problem are characterized.
The domain expert, the informant, is chosen. Although the knowledge engineer is the one who
directs the knowledge-acquisition process, the relationship between knowledge engineer and domain
expert is one of student-teacher. The problem and its supporting knowledge structure must be
characterized. This can be divided into the following questions:
- What class of problems will the expert system be expected to solve?
- How can these problems be characterized or defined?
- What are important subproblems and partitioning of tasks?
- What are the data?
- What are important terms and their interrelations?
- What does a solution look like and what concepts are used in it?
- What aspects of human expertise are essential in solving these problems?
- What is the nature and extent of "relevant knowledge" that underlies the human solutions?
- What situations are likely to impede solutions?
- How will these impediments affect an expert system?
In this stage it must also be clear what resources the knowledge engineer can use. Resources are
knowledge sources, time, computing (hardware and software) and financial resources. And finally
the goal and use of the expert system should be specified.
The conceptualization stage

 8

Buchanan et al. (1983) lists several questions that should be covered.
The following questions need to be answered before proceeding with the conceptualization process:
- What types of data are available?
- What is given and what is inferred?
- Do the subtasks have names?
- Do the strategies have names?
- Are there identifiable partial hypotheses that are commonly used? What are they?
- How are the objects in the domain related?
- Can you diagram a hierarchy and label causal relations, set inclusion, part-whole relations,etc?

What does it look like?
- What processes are involved in problem solution?
- What are the constraints on these processes?
- What is the information flow?
- Can you identify and separate the knowledge needed for solving a problem from the knowledge

used to justify a solution?

The key concepts and their relations must be made explicit. In this stage the basis of a framework of
the final system should be made. The problem and subproblems need to be sufficiently analyzed
before proceeding to the next stage.

The formalization stage

In the formalization stage concepts, rules, etc. are mapped in a formal framework. Three aspects are
important.
First the hypothesis space. After the concepts are formalized one has to determine how they link to
form hypotheses.
The second aspect is the uncovering of an underlying model of the process used to generate
solutions in the domain.
And third, the understanding of the characteristics of the data that helps to understand the structure
of the problem space.

By following these stages the knowledge engineer has specified the contents of the data structures,
the inference rules and the control strategies.

The implementation stage

The formalized knowledge is mapped into the representational framework. This framework specifies
the form of the data gathered in the previous stage. At this point a prototypical system can be built.

The testing, refining, and debugging stage

The prototype system can be evaluated, and when it is proven to be inadequate, new tools can be
chosen.
Further testing can be done by a number of different and challenging examples to find weak spots in

 9

the knowledge base and the inference structure. Incompleteness and inconsistency will appear in this
stage. This means that the knowledge base needs refining. Reasoning errors mean faults in the
inference rules.

Throughout all the stages it is necessary to gather knowledge from the expert. Knowledge
acquisition is a continuous process during the building of an expert system, although the purposes
are different (initial knowledge, refinement, etc.).
We should be aware that automated knowledge-acquisition systems - the issue of this paper - are
more than "interview machines". They should be able to cover a range of various techniques and
understand their different roles in the expert system building process.

2.2 THE MISMATCH PROBLEM

The methods of knowledge acquisition and the building of expert systems seem to be
straightforward and easy to apply. But in fact many problems arise while working with knowledge
acquisition. Often we read about knowledge acquisition as the bottleneck of expert system building.

What is that bottleneck called knowledge acquisition?
The metaphor is well-chosen. We can regard human knowledge as a tangled mass of information
stored in a not too wide necked bottle. The expert system is a container with compartments of
various sorts. In the knowledge acquisition process the knowledge engineer must try to get hold of
the human knowledge and to put it in the appropriate modes at the appropriate places in the expert
system.
With this picture in mind we can see the problems of the knowledge-acquisition process more
clearly.

The knowledge mismatch

The most fundamental difficulty seems to be the mismatch between human and machine knowledge.
First of all there exists a mismatch between the organization of knowledge. Human knowledge is
stored in a yet unknown way. The most commonly used hypothesis is the idea of mental models (see
section 2.12). Using knowledge is for a human not a conscious process of retrieval and applying of
facts and rules, but an unconscious involvement with objects and state of affairs (or their descrip-
tions). The analogy between a mental model and the real-world state of affairs gives the solution of
what kind of knowledge should be applied. In this process of "applying" knowledge there is no need
to verbalize the knowledge. When talking about an expert who "knows" about his field, we are
talking about something vague. Knowledge is only shown in the behavior of this expert, but the
logic or justification behind his actions is not shown. The applied rules remain unrevealed too. What
we want to have is a sort of materializing of knowledge: a representation of knowledge. Only in a
representation knowledge is transferable, can be understood, can be manipulated, etc. Verbal
representation is a good solution. As a matter of fact it is the most commonly used kind of
representation in human communication. But there seems to be an obstruction when it comes to
verbalize knowledge in all its details.

 10

The representation mismatch

There is seldom a need for an expert to verbalize his knowledge to non-experts. In the exchange of
knowledge between experts (and even between skilled and less-skilled experts) a great deal of the
information is presupposed. That is the common-sense knowledge about the world but also the
general knowledge about the specific domain, such as vocabulary, concepts, general rules. Even in
the situation of knowledge exchange in teaching a great part of knowledge is already presupposed.

In the knowledge-acquisition process - when expert knowledge has to be transferred into a system
that does not contain any knowledge - the domain expert encounters great difficulty when he has to
verbalize his knowledge.
The expert system, on the other hand, uses also a system of knowledge representation. Most
commonly used are representations by frames for declarative knowledge and production rules for
procedural knowledge. Essential is the formal mode of these forms of representation.

So far I have mentioned human knowledge represented by mental models, by behavior, by
verbalizing (in a natural language that is difficult to formalize). At the expert-system side knowledge
is represented, among others, by frames and production rules written in programming languages.
This incompatibility between man and machine can be called the representational mismatch.

The completeness mismatch

Tacit knowledge, the knowledge that cannot be represented at all, causes another difficulty. The
human expert is not aware of all the knowledge he possesses. Only when he is explicitly asked about
it, or when he is engaged in a particular section of his expertise, can he verbalize this knowledge.
The expert system needs all the knowledge involved to solve the problems for which it will be built.
This gap between the expert and the system is the completeness mismatch.

The category mismatch

An obvious, but less mentioned difference is the disparity between human and machine as two
totally different systems. We are not talking about aspects such as difference in representation, but
the integrated system of a man as problem solver versus the expert system as a problem solver. The
overall approach is so different that comparing aspects seems fruitless. Even the above mentioned
differences in representation are incongruent: vague, not verbalized versus formalized; incomplete
versus complete. These differences are more profound than a difference, e.g., among programming
languages, between frames and scripts, or between the knowledge of expert A and expert B in a
particular field.
The system of human information processing is of a different category than machine information
processing. We can call this the category mismatch.

These four mismatches return at the other end of the expert system: the interface with the end-user. It
is less of an obstacle for human beings to understand the output of a computer system. Still some
difficulties in understanding remain. The better designed expert systems have explanation facilities

 11

to assure the user of its reasoning. Although this is not so much a knowledge-acquisition problem as
a problem of expert system designing, it is worth mentioning.

So far we have given the knowledge-acquisition bottleneck a name: the mismatch problem.
From this brief analysis of human versus machine knowledge, we can draw two conclusions.
First, during the knowledge acquisition process we should constantly be aware of the mismatch in
approach between man and machine. Second, knowledge acquisition is not a part of expert-system
building, but an integrated aspect of the whole knowledge engineering/expert-system building
enterprise.

In the following sections several problems in knowledge acquisition are reviewed.

2.3 THE STATE OF THE ART

Jackson (1986) says that knowledge engineering is still an art and not a science. The knowledge
engineer is therefore still handicapped by the lack of guidelines for a maximum use of the available
technology. Knowledge acquisition is an empirical exercise, guided by trial and error and common
sense. While handling formal systems is not an uncommon field, handling human knowledge and
formal systems together is still a difficult task - despite centuries of exploration in the theory of
knowledge.
A large amount of articles on knowledge acquisition diminish this lack of guidelines for the
knowledge engineer. I think that during the last few years, since Jackson wrote his book, knowledge
engineering became more a skill than an art. Probably in the next couple of years we can speak of
knowledge engineering as a science.
Since this paper is about automated knowledge-acquisition I shall focus my attention on the
problems of knowledge acquisition. If we can analyze these problems, maybe we can give solutions,
or rather, directions to solutions. We might be able to give better suggestions for automated
knowledge-acquisition.

From the preceding section we can make a list of features that knowledge acquisition should
encompass:
- elicit knowledge from multiple sources
- recognize structures to decompose and to build up in a knowledge base; the analysis and

conceptualization process
- process declarative knowledge (facts) and procedural knowledge (rules)
- validate the knowledge base for consistency
- handle uncertain knowledge
- find omissions, expand, and refine the knowledge base
- make consistent changes throughout a large knowledge base
- give guidance to the entire process
Some of these features need metalevel knowledge. The knowledge engineer is directing the
knowledge-acquisition process and possesses this metalevel knowledge. He is aware what he is
doing. In an automated knowledge-acquisition system this ability must be built into the system.
We should also be aware that expert systems are built to solve various problems. One can
distinguish analytical problems (such as classification and diagnosis), synthetical problems (configu-
ration, design and planning), encyclopedic problems (facts finding) and combinations of these

 12

problems (control, monitoring, prediction and repair). The knowledge for these expert systems differ
from each other in structure. The techniques to elicit these various kinds of knowledge are therefore
also different.

In the initial stage of expert-system building the structure of the domain should be clear. On the
other hand the structure can only be revealed after one gets started with an initial knowledge acquisi-
tion session. The knowledge engineer must decide somewhere between planning and getting started
how he tackles this problem.
Planning means looking for structures. They may be fixed by the nature of the domain, but also be
embodied by the outlines of an expert-system shell that will be used. Further it is important what
kind of representation will be used. On the one side it is important to choose a representation that
corresponds to the knowledge that the domain expert reveals; on the other side the representation
should be chosen in such way that the expert system works efficiently.

At a certain point in the expert-system-building process the knowledge engineer will encounter
problems with incomplete knowledge. Special techniques are used to find omissions in the knowl-
edge base and to elicit them from the domain expert. Another problem is inconsistencies in the
knowledge base. Specially in this case automated systems can trace these faults and repair them.

It seems that a whole new branch of knowledge-acquisition methods has been developed, different
from the interviewing approach. It is called machine learning or machine induction. Reactions vary
to some extent. Some positive aspects are certainly present, but machine learning will probably
never be the single method in a knowledge-acquisition process.
Throughout the knowledge-acquisition process the knowledge engineer encounters the typical
characteristics of human knowledge. In the last couple of years more research has been done in
cognitive science. The results will help understanding human information processing.

In the next sections I shall discuss these problems in more depth.

2.4 TRANSFER OF KNOWLEDGE

2.4.1 Human expert thinking

To get a better understanding of the problems of knowledge transfer it is necessary to know more
about the way an expert deals with his expertise. From cognitive psychology we know several facts
about cognitive processes.

The interaction between a knowledge engineer (and his tools) and the domain expert (and other
sources of knowledge) is a delicate one. The knowledge needed for the expert system is more or less
outlined by the knowledge engineer in broad terms. Let us assume that he knows he needs an
amount of facts about the domain and an amount of rules used by the expert. He also has an idea of
the inference mechanism of the system and the kind of representation he will probably use. The
performance of experts depends on large quantities of domain knowledge. On the one hand, they are
able to reflect on their own cognitive processes (meta-cognition) and on their own state of domain
knowledge (meta-knowledge). But on the other hand, the domain expert possesses an amount of
facts and rules of which he is usually not aware and thus, he does not know precisely what is needed

 13

for the expert system.
The expert cognition lacks also computational and representational power.
Since there is no coherent theory yet, most cognitive psychologists adopt a common approach based
on an information processing view of human cognition. Cognitive processes can be analyzed into
sequences of ordered stages. This entails identifying the sequence of mental operations through
which information flows (and is transformed) in the performance of a particular cognitive task.
Expert thinking is studied within this framework.3
People's awareness of their own mental processes is rather limited. The proceduralization of
knowledge and automatization of cognitive skills that accompany the development of expertise,
serve to make expert thinking even less accessible to introspection.
The cognitive correlates of expertise, whether beneficial or otherwise, are essentially domain-
specific in effect. Thus outside his specialist area any cognitive advantage the expert may have
enjoyed inside the domain quickly disappears. Another underlying theme in the development of
expertise is a greater reliance on pattern recognition and memory (stored knowledge) at the expense
of deductive reasoning. At another level, though, experts often show an impressive ability to reflect
on, and flexibly control, their high-level task strategies. But precisely how automated skills and
control strategies combine in expert problem solving remains poorly understood (Slatter 1987, p 41).

2.4.2 Techniques for knowledge acquisition

Slatter (1987) mentions six techniques for knowledge acquisition:

1. Interviews - structured according to a plan or unstructured.
 Advantages: - explicit knowledge is easy to obtain.
 Disadvantages: - not for detailed or implicit and tacit knowledge.

2. Verbal protocols - thinking aloud while doing a task.
 Advantages: - reveals knowledge that is difficult to verbalize.
 Disadvantages: - analysis of protocols is difficult.

3. Machine induction - rules are automatically induced from given examples.
 Advantages: - no knowledge engineer necessary.
 Disadvantages: - needs a database with cases.
 - can be instable.
 - rules are often complex.

4. Observational studies - observation of an expert doing his task.
 Advantages: - avoids preconceived ideas.
 Disadvantages: - time consuming for the knowledge engineer
 - cooperation from the domain expert can be difficult.
 Further advantages and disadvantages are the same as with verbal protocols.

5. Conceptual sorting - also called card sorting, a cognitive psychology technique. Concepts are

gathered and the expert is asked to sort the concepts (written on cards) according to resem-

 3See Welbank (1983) for reasons why experts usually do not know their expertise in an organized way.

 14

blances, hierarchies, etc.
 Advantages: - easy for organization of a lot of information.
 - gives global structure of domain.
 Disadvantages: - requires special skill of the knowledge engineer.
 - can produce artificial structures.

6. Multidimensional scaling - often used as repertory grid method, where similarities and differences
of sets of concepts are identified.
Advantages: - can elicit well subtle or non verbal distinctions.
Disadvantages: - time consuming for the domain expert, specially when larger numbers of concepts
are involved.
- expertise needed to understand the technique.

In the next sections I go deeper into the problems the knowledge engineer encounters when he is
trying to apply these techniques.
Machine induction, or machine learning, is a typical technique in automated knowledge acquisition.
It will be discussed later.

2.4.3 Interviews

Gaines (1987) gives from a psychologist's point of view an overview of the problems that occur
when interviewing a domain expert.
Psychologists know that knowledge transfer among experts raises problems. Not only the expert
cannot express his knowledge but also he is not aware of its significance.
There seems to be no necessary correlation between verbal data and mental behavior. So verbal
reporting might be useless.
The main problems identified in accessing an expert's knowledge are:
- Expertise may be fortuitous. Results obtained may be dependent on features of the situation

which the expert is not controlling.
- Expertise may not be available to awareness. An expert may not be able to transmit the expertise

by criticizing the performance of others because he is not able to evaluate it.
- Expertise may not be expressible in language. An expert may not be able to transmit the expertise

explicitly because he is unable to express it.
- Expertise may not be understandable when expressed in language. An apprentice may not be

able to understand the language in which the expertise is expressed.
- Expertise may not be applicable even when expressed in language. An apprentice may not be

able to convert verbal comprehension of the basis of a skill into skilled performance.
- Expertise expressed may be irrelevant. Much of what is learnt, particularly under random

reinforcement schedules, is superstitious behavior that neither contributes nor distracts from per-
formance.

- Expertise may be incomplete. There will usually be implicit situational dependencies that make
explicit expertise inadequate for performance.

- Expertise expressed may be incorrect. Experts may make explicit statements which do not
correspond to their actual behavior and lead to incorrect performance (Gaines 1987).

 15

In all cases of expert-system building some sort of interview on some level should take place.4
The essence of interviewing is that the expert answers questions posed by an interrogator. Various
kinds of interviews are possible.
The first important step is the choice of expert. He must have the right capabilities, be available and
give support.
In selecting the domain expert one should not initially expect complete coverage. The task should be
decomposable and the domain fairly stable.
In getting background knowledge about the domain, the expert should make a sort of tutorial about
the subject.
The basis of an initial knowledge base can be formed by references, written material, handbooks,
and so on. Begin the actual knowledge elicitation by having the expert go through the task,
explaining each step in detail (Prerau 1987).

For the purpose of getting a basic idea of the problem the knowledge engineer might perform the "20
questions" method, a fast way to reveal the essence of the problem. From here he can do a "grand
tour" to catch the main features of the domain in a wide meshed network. From these interviews the
knowledge engineer can structure the plan for the next interviews. These should reveal the concepts
and attributes, their relations, and the rules. This can be done by giving the domain expert cases to
solve. ("Name a particular problem. How would you solve it?") The interviewer can direct this
process in a strict way, or he can give the expert room to associate with other problems, and so on.
The interviews with the domain expert should also include cross-checking questions ("What will
happen if you don't do?") which can reveal more relevant facts (LaFrance 1987).
It seems that people are better in describing procedures than recalling facts. So the interviews about
cases are giving better results than asking for facts without a problem to solve.
Experts are able to give knowledge in an explicit way when they are confronted with mistakes. The
TEIRESIAS system uses this principle. Facts are usually better retrieved from handbooks. Although
it is advised that an expert should check the textbook facts for accuracy. Sometimes books still use
outdated methods or more theoretical ways than are used in daily practice.

Another form of interviewing is on-site observation where the knowledge engineer watches the
expert solving problems on the job. This could be augmented by a thinking aloud protocol from the
domain expert (see section 2.4.4). Although experts find it difficult to identify the most appropriate
aspects of problem solving components. The reason might be that he is usually not required to give
explicit formulation of his expertise. It also has been shown that people tend to stop verbalizing
when the task is difficult. (see also De Groot 1965)
The problem of implicit knowledge is often not recognised by researchers. According to Berry
(1987) there is a distinction between implicit knowledge which was once represented explicitly or
declaratively and implicit knowledge which arises as a result of an implicit learning process and has
never previously been explicitly represented. In the former kind of explicit knowledge declarative
knowledge gets transformed into a procedural form. After a while the expert loses his ability to
report it verbally. The second kind of implicit knowledge is the knowledge that is assembled by
experience (perception etc.) and was never verbalized.

A widely used form of interview, often used in automated knowledge acquisition, is the repertory

 4With the exceptional case that the expert himself builds the expert system or while using induction
algorithms.

 16

grid method (see section 3.6), or multidimensional scaling, used to classify and characterize a
domain.
Advantages of scaling techniques as knowledge-elicitation tools are:
Scaling techniques can overcome the criticisms of interviewing and protocol analysis. Scaling
techniques provide also information concerning the structure of knowledge that might serve as a
basis for representing that knowledge in the system (Cooke and McDonald 1987).
A negative aspect of the rating-technique method is that more is revealed about the expert's rating
toward a series of objects or attributes without regard for the context.

2.4.4 Protocol analysis

In addition to or connected with interviewing the knowledge engineer might perform task analysis
and protocol analysis.
It is assumed that the knowledge engineer has sufficient knowledge about the domain to understand
the protocol analysis. Protocols are often incomplete. Experts cannot verbalize as fast as they reason.
They often omit things that seem obvious to them. Experts have no experience to think aloud and
when they do, it might effect the task they are performing.
In addition to this Ericsson and Simon (1984) give several negative aspects of protocol analysis:
1. The subject has to change his thought processes if he is told to verbalize the information in a

certain way.
2. The reporting process may alter the task performance.
3. The reports may yield a very incomplete record of the cognitive processes.
4. Only the information that is reportable is heeded during the performance of a task.
5. What cannot be reported are the cues that allow the subjects to recognize stimuli. Only the results

of the process of recognition can be reported but not the intermediate steps.
6. Some reports are idiosyncratic and reflect the unique experiences of individuals.
7. Encoding of verbal protocols cannot be made objective and sound.

In summary, task analysis and protocol analysis do not seem to be an effective method in knowledge
acquisition.

In general one can distinguish the different kinds of interviews. Formal (= structured) interviews
about problem cases and protocol analysis can elicit procedural knowledge. Grid methods (= decom-
position) and multi-dimensional analysis reveal declarative knowledge.
However a case study did not show that these techniques divided sharply declarative and procedural
knowledge. In comparative studies these methods show some considerable shortcomings. First it
was obvious that protocol analysis would not score very high, because the nature of the knowledge
of the domain (in this case the identification of igneous rocks) is too declarative for this method.
Second, the techniques gave varying results depending on the experts involved. Especially the time
factor varies according to the personality of the expert involved.
A positive finding might be that experts who were faced to put their knowledge in an unfamiliar
format gave more useful results (Burton et al. 1988).

Studies such as the above are not often published even today. It should be worthwhile to have larger
scale comparisons of interview techniques, also in different kind of domains. In the study of Burton
et al. the domain was typically classification oriented. One can conclude that the elicitation
technique should depend on the type of problem involved.

 17

It is clear that the interaction that takes place between the knowledge engineer and the domain expert
must be guided or structured. This is in contrast with the unstructured flow of information that takes
place in several kinds of elicitation techniques.

2.4.5 Expertise from multiple experts

The knowledge engineer should be aware that expert knowledge is more than one kind and not all
this knowledge can be acquired from one person.
Mittal and Dym (1985) suggest that interviewing multiple experts gives a broader result.
Hawkins (1983) gives an example from the field of petroleum geology. There are two schools of
thought. Hawkins calls them the "classificatory" and the "behavioral" schools.
In the classificatory school the features of a particular described object are compared with the
characteristics of well-known objects, called typical examples or prototypes. These prototypes are
organized in a taxonomy.
The behavioral school generally presents its results in the form of calculated values of critical
properties.
The knowledge base should be available for both ways of thought.
Neither school by itself proves to be adequate to describe real and complex, geological objects. Each
school has problems in communicating with the other because their knowledge of real-world objects
is structured so differently. This forming of schools is applicable to most sciences. It is therefore
advisable to acquire knowledge from various experts to understand the different attitudes.

Another reason to take advice from multiple experts is the complementary of information. What one
person lacks might be supplied by another. Winograd and Flores (1987) mention also the absence of
formalized knowledge and the existence of prejudices.
Experts do not need to have formalized representations in order to act. They may at times manipulate
representations as one part of successful activity. However, it is fruitless to search for a full
formalization of the pre-understanding that underlies all thought and action.
Besides we never have a full explicit awareness of our prejudices. Even while working in technical
and scientific fields we will sustain certain ideas that are formed on prejudices. By formal training
prejudices will be formed ("schools") but also by incidents that make us believe something, rather
than really know it. In these cases it is impossible to get a formalized representation of one's
knowledge (Winograd and Flores 1987).

The knowledge engineer should be aware of these problems throughout the knowledge-acquisition
process.

2.5 INTERACTION BETWEEN KNOWLEDGE ACQUISITION AND
KNOWLEDGE REPRESENTATION

Once knowledge is acquired, whether from experts or from other sources, it must be encoded in a
knowledge-representation language. On the one hand, the knowledge representation affects the
working of the system. On the other hand, the problem solving strategies of the system determine the
knowledge representation. If we make the knowledge representation and our knowledge acquisition
technique compatible then somehow the knowledge acquisition process should be easier.

 18

Two conclusions can be drawn.
1. The knowledge acquisition process should fit into the knowledge representation
2. The knowledge representation should be adequate for the problem.

A panel meeting at the conference of the AAAI in 1986 discussed these issues. Unfortunately, the
results were not published in the proceedings.
Moreover little has been published about the interaction of knowledge acquisition and knowledge
representation.

Usually the systems are rule-based, so the knowledge should be procedural. Human experts have no
problem with stating their knowledge in procedural form. Disadvantages of production rules are the
lack of structure in the case of large numbers of rules. Further there is still need for other kinds of
knowledge.
Shachter and Heckerman (1987) add to this that human experts find it easier to represent a rule in the
form of IF <hypothesis> THEN <evidence> instead of IF <evidence> THEN <hypothesis>.
Knowledge bases based on conceptual structures rather than inference rules have difficulties
handling procedural knowledge.

Suggestions have been made (Becker and Selman 1986) to extend the knowledge-representation
system KRYPTON (see section 3.17) to facilitate the representing of expert knowledge.
KRYPTON is a synthesis of frame-structures and logic. The frame-based language is used for
forming descriptive terms, the logic-based language makes the assertions. A knowledge
representation based only on frames and networks lacks reasoning capability and can also be
ambiguous. KRYPTON is made to be functional (Brachman et al. 1985).

Another approach to bringing knowledge acquisition and knowledge representation together is made
by Bylander and Chandrasekaran (1987). They emphasize not only the importance of knowledge
representation but in particular the knowledge-base reasoning. They have developed a theory of
generic tasks:
Whether the knowledge is acquired by a knowledge engineer or by a program, ultimately the
knowledge must be encoded in some knowledge representation. Consequently, knowledge
acquisition cannot be separated from a broader theory of knowledge-based reasoning; a solution to
knowledge acquisition must be compatible with a solution to the general problem of knowledge-
based reasoning.
A theory of generic tasks identifies several types of reasoning that knowledge-based systems
perform and provides an overall framework for the design and implementation of such systems.

The interaction problem is this:
Representing knowledge for the purpose of solving some problems is strongly affected by the nature
of the problem and by the inference strategy to be applied to the knowledge. In other words, how
knowledge is represented has a close relationship to how knowledge is used to solve problems;
knowledge is dependent on its use.
The interaction problem has serious implications for how knowledge acquisition should be done.
Also, if different kinds of reasoning have different kinds of interactions, there is a need for a
different knowledge-acquisition methodology for each kind of reasoning.

1. Choice of knowledge. The knowledge-acquisition process must choose what knowledge to ask for
and what knowledge to encode. The choice is driven by the need to gain leverage on the problem by

 19

obtaining knowledge with high utility and to reduce complexity by avoiding or discarding
knowledge with low utility. Not everything the domain expert knows has the same level of
usefulness, and in any case, it is not feasible to acquire everything that the domain expert knows.

2. Constraints of inference strategy. A knowledge representation requires some process that, given a
description of a situation, can use (or interpret) the knowledge to make conclusions. It is this process
which is called the "inference strategy" (or "inference engine"). The knowledge must be represented
so that the inference reaches appropriate conclusions in a timely fashion. Consequently, the
knowledge must be adapted to the inference strategy to ensure that certain inferences are made from
the knowledge and not others. Also, given a choice of inference strategies, there will be an
interaction between the strategy chosen and the form of knowledge.
Generic tasks are basic combinations of knowledge structures and inference strategies that are
powerful for dealing with certain kinds of problems. The generic tasks provide a vocabulary for
describing problems, as well as for designing knowledge-based systems that perform them.

It seems very important to elaborate more on this subject to facilitate the knowledge-acquisition
process.

2.6 STRUCTURES AND LEVELS

In section 2.2 I have discussed the discrepancy between human and machine information
processing. One obvious difference is the structure of knowledge.
The lack of structure in human knowledge is not so much due to its variety of expressions or to the
complexity of the thought processes. The fact that much of human knowledge is compiled
knowledge, resulting from more or less long experiential learning, seems to be a more powerful
reason.
A computer system needs structure, at least if we want it to work efficiently.
In the previous section I went over the necessity of the compatibility of knowledge acquisition and
knowledge representation. Structure is needed for adequate representation of knowledge. But the
knowledge needs to be in a certain order for the system to run. The better the structure is, the better
the performance of the system will be.
Another necessity for structure is in the initial state of expert-system building. It seems fruitless to
get started in a knowledge-acquisition process with the domain expert without a plan. The domain
expert is usually not the right person to give outlines of designing a system.

We can distinguish various kinds of structures:
1. Structures can be found in the domain, but these are not explicitly known to the domain expert. It

is up to the knowledge engineer to elicit these structures.
2. There are structures of the system, whether expert-system shell or knowledge-representation

language. If starting from scratch, the knowledge engineer should design one.
3. There is also a structure in the knowledge acquisition process.
All these structures have to do with the organization of knowledge in one way or the other.

Structures in the domain can be revealed on certain levels. The most basic - and the only really
necessary - level is the recognition of type of problem the domain covers (diagnosis, planning,
repair, etc.). From here on one can use the proposed structure of the system to map the structure of

 20

the domain. This system structure should be compatible with the domain problem structure. In this
way the domain gets a more detailed structure from the system. It does not matter if this structure is
unknown to the expert (or anyone else in that field), but it should at least become familiar to the
domain expert. It is more important that the system can offer a structure in which the domain exper-
tise fits. This also means that the system structure should be flexible enough to adjust to the domain
knowledge. The knowledge engineer does not need more than a library of problem structures to
capture all kinds of domains. (see section 3.8)

Since the system is highly structured I follow the principles of the knowledge-acquisition system
KADS (Breuker and Wielinga 1985, 1987, De Greef and Breuker 1985, Wielinga and Breuker 1985,
1987).
KADS distinguishes four levels of expert knowledge, corresponding to different roles that
knowledge plays in reasoning processes:
On the domain level are concepts, relations and structures represented. On these objects the
inference level can be applied. The task level controls the goals and tasks. The strategic level
controls the whole process.
In section 3.8 these levels are presented in a more elaborated way.

In section 3.30 more will be said about knowledge levels and schemata of the knowledge acquisition
system TEIRESIAS.

2.7 PROTOTYPING

First some remarks about the controversy between rapid prototyping and structured knowledge-
acquisition. Somehow two schools of knowledge engineering have evolved. The school of rapid
prototyping claims that the best way to get along with the domain expert and to keep him interested
is to make a prototype of the system in an early stage of development. This principle is used in the
knowledge-acquisition technique described in section 2.1.
The other school uses the structured approach. Structured knowledge-acquisition is mainly
developed at the University of Amsterdam. It is based on the principle that the structure of a system
should be outlined in detail before any knowledge acquisition can be done. In an interview
(Thiemann 1989) Wielinga, one of the developers of KADS, states that they are not opposed to
prototyping. He thinks that while prototyping one can use the techniques of KADS at the same
time.5
Prototyping is the implementation of a preview of the system that the knowledge engineer tries to
build. It can be a significant part of the system or the whole system without all the details. There are
advantages of prototyping for the domain expert and for the knowledge engineer.
First, we can mention the psychological effect of visualizing a system that is so far only an abstract
entity. The effect for the knowledge engineer will be that he gets a better insight in the procedure.
The same insight influences the domain expert in this respect that he will get a better understanding
of what is expected from him. Another effect for both is the recognition of still uncovered
possibilities in the system.

 5A similar solution is used by the Dutch software house BSO that exploits a technique that takes advantage of
both techniques.

 21

An extra effect upon the domain expert seems to be that he will be more interested in the system
since it has obtained more shape. (Among many others, see Welbank 1983, Van Dijk et al. 1988,
Hayes-Roth et al. 1983)

In their "Practical Guide to Designing Expert Systems", Weiss and Kulikowski (1984) emphasize
the importance of building a prototype as soon as possible. The reasons they give is that often
knowledge engineers gather information about the domain over a long period of time without getting
a good insight of that domain. The prototype allows the expert to give feedback and improvement
will easily occur. They give some advice how this prototyping should take place:

1. Design a model by focusing on a small set of hypotheses and include in a first prototype only

those findings that are most predictive of these hypotheses.
2. Identify clusters of findings that are most discriminating.
3. In the decision rules, combine the smallest number of findings necessary to confirm or

discriminate among hypotheses. Increase the number of conjunctive rules when the resulting rule
will significantly increase the power of the system to confirm or deny the conclusion. There is
potentially a large number of combinations of findings. A model should contain the smallest
number of these that are sufficiently specific to confirm, deny, and discriminate.

4. Include findings that may not be strongly predictive or discriminatory on their own, but which
can significantly improve the quality of decisions by setting a context or focus of attention for
the decision-making process. The prototype system at this stage becomes more realistic.

5. Determine whether abstractions can be made. For example, some production rules can be
satisfactory if one or more out of a list of findings are satisfied.

6. See whether additional intermediate hypotheses can be introduced to simplify reasoning.
7. Test the model on a data base of cases.

Prototyping has many advantages. It seems that rapid prototyping can be combined with any other
knowledge acquisition approach. The idea of omitting the prototyping and waiting till the system
can be implemented does not seem to be successful.

2.8 UNCERTAIN KNOWLEDGE

In the knowledge-acquisition process the knowledge engineer has sometimes to deal with uncertain
knowledge. Experts tend to be inaccurate and make errors when it comes to processing uncertain
knowledge. A method to overcome this problem is to offer the domain expert a point of reference
that divides the range of confidence into two parts. The domain expert can choose his confidence
level. This procedure can be repeated several times. This method is called "providing anchor points"
(Hink and Woods 1987).

Probabilistic judgments are more often based on a positive or negative impression, or on prejudices,
than on logic reasoning. Humans use heuristics to process uncertain information:
1. Representativeness, which is based on the assumption that the more an object typifies a

corresponding class, the higher the probability of a relationship between the two.
2. Availability, where easily recallable information has higher associated probability than less

recallable information.
3. Adjustment and anchoring which cause over- and underestimation of usually infrequent and

 22

frequent occurring events.
The best way to reduce the effects is to avoid using probabilistic or statistical judgments by the
domain expert as much as possible (Hink and Woods 1987).

Another approach is suggested by Gruber and Cohen (1987). They have developed a medical expert
system MUM (Manage Uncertainty in Medicine) that is designed to combine evidence and
knowledge and to support control knowledge (knowledge about what to do).
The combining knowledge helps to avoid uncertain conclusions from given uncertain knowledge.
Combining knowledge specifies how belief in several pieces of evidence is combined to support a
single conclusion.
1. It replaces the real-valued numeric representation of uncertainty with symbolic states of belief

that are meaningful in domain terms.
2. It provides an explicit representation for clusters of evidence to encapsulate diagnostically

significant subsets of evidence.
3. It replaces the global numeric function with local combining functions, specified by the expert,

for each cluster of evidence.
MUM represents belief as ordinal values that characterize the expert's evaluation of evidential
support (such as "confirmed", "supported", etc).
MUM represents combinations of evidence with clusters (frames) that represent diagnostically
significant groupings of evidence. (Diseases are clusters.)

The representation of combining knowledge is designed to facilitate knowledge acquisition:
The ordinal states of belief are chosen to be sufficient to characterize diagnostically significant
situations, and nothing more. The symbolic combining functions are explicit, declarative
representation of decisions about evidential support. Instead of representing degrees of belief and
computing the results, the evidential judgments are represented.
Some systems solve the uncertainty problem by using fuzzy logic.

2.9 KNOWLEDGE-BASE REFINEMENT

Knowledge-base refinement can be regarded as the second phase in the knowledge-acquisition
problem. After the knowledge engineer has extracted the initial knowledge from the expert the
knowledge has to be refined into a high performance knowledge base.

Welbank (1983) enumerates the problems the knowledge engineer has to overcome:
1. 1. There are gaps in the knowledge, particularly missing constraints. Rules may turn out to be

applicable in the wrong circumstances.
2. Rules overlap, leading to inconsistent or redundant conclusions.
3. Rules interact in unexpected ways.
4. New information could be put into several parts of the program. The knowledge engineer must

decide the most appropriate place to put it.
5. Changes should propagate through all parts of the program.
6. The knowledge engineer loses his understanding of the knowledge base as a whole.
7. Rules are not strictly independent.

The system SEEK2 (Ginsberg et al. 1985) uses cases that are evaluated by the expert to refine the

 23

rules involved.
The fundamental assumption is that case knowledge can be used to drive a process involving
empirical analysis of rule behavior in order to generate plausible suggestions for rule refinement.
Case knowledge is given in the form of a data base of cases with an expert's conclusions. Empirical
analysis of rule behavior involves gathering certain statistics concerning rule behavior with respect
to the data base of cases; suggestions for rule refinements are generated by the application of
refinement heuristics that relate the statistical behavior and structural properties of rules to
appropriate classes of rule refinements.

Semantic consistency checking helps to detect inconsistencies between the knowledge base and
revisions.
A system like TEIRESIAS (see section 3.30) can match new rules against other similar rules to
check consistency and completeness.
EXPERT and EMYCIN use automated testing of a large number of problems to see if the
knowledge base is well revised. This reveals the best revisions and also the weak spots in the knowl-
edge base (Buchanan et al. 1983).

Most of the automated knowledge-acquisition systems that are described in the next chapter have
built-in facilities to refine and debug knowledge bases. In general it can be said that automated
systems are the chosen tools to find inconsistencies and incompleteness. Specially when knowledge
bases are large the knowledge engineer is unable to overview all rules and their intertwinements.

2.10 THE ULTIMATE KNOWLEDGE BASE

A distinctive solution to overcome the knowledge-acquisition bottleneck can be found in the CYC
project (Lenat et al. 1986).
The CYC project is the building of a large knowledge base of real world facts and heuristics and
methods of efficiently reasoning over the knowledge base. Common sense reasoning and analogy
can widen the knowledge-acquisition bottleneck.
General knowledge can be broken down into a few types:
1. The real world factual knowledge, the sort found in an encyclopedia.
2. The common sense knowledge that an encyclopedia would assume the reader knew without

being told.
3. The general knowledge we have acquired might be a source for new knowledge by means of

analogy or heuristics.
The large knowledge base of general knowledge that CYC will hold helps to acquire knowledge in
an easier way. We assimilate new information by finding similar things we already know about and
recording the exceptions to that analogy. So, the more we know, the more we can learn.
Causal meta-knowledge will play a key role in deciding how to find and extend analogies. One of
the tasks is to taxonomize slots and build that hierarchy into CYC's knowledge base.
Frames can have slots with identical names and values. Or frames can have identical slots but
different values.
An important part of CYC is its large, organized body of reasoning methods. These are being
described declaratively in CYC in a network of frames spanning both problem-solving architectures
and specific heuristics. Included are analogical and common sense reasoning methods as well as
more traditional problem-solving techniques.

 24

CYC's representation language is frame-based and is similar to RLL (Greiner and Lenat 1980) and
KRL (Bobrow and Winograd 1977).

It seems that this knowledge base will replace human reasoning processes, common sense
knowledge and encyclopedic knowledge. It is not clear yet if this will be necessary to acquire expert
knowledge and to build an expert system.

2.11 MACHINE LEARNING

The "Feigenbaum bottleneck" and the "Michie road"

The bottleneck in the knowledge acquisition process is specifically present in the transfer or
articulation of the expert knowledge (his know-how) into the formulation (his "say-how") of this
knowledge (see figure 2.2).

**
*

 execution

machine
SHOW- HOW

 programming &
 compilation

 ARTICULATION
 (the Feigenbaum bottleneck)

human
 KNOW-HOW

human
SAY-HOW

machine
KNOW-HOW

****************Knowledge engineer's route map: old style ********************
 figure 2.2 (from Michie 1987)

 25

In Michie (1987) is shown how this articulation problem can be by-passed by a rule induction
program or induction algorithm. Here the human know-how is represented by examples of his
expertise (the human "show-how"), such as the expert uses to teach his skills to new recruits in a
tutor-apprentice situation. From these examples the induction program can produce the rules for the
knowledge base, the machine "say-how" and the know-how (see figure 2.3).
In a later stage of the process the "old route" can still be used. The human expert will be asked to
refine the rules (the first refinement cycle). When the system is fully tested a second refinement
cycle is necessary. The domain expert can debug, refine, and maintain the system (Michie 1987 and
Van den Herik 1986).

**

machine
SHOW-HOW

 execution

 compilation

 second refinement cycle
 first refinement
 cycle

 rule induction
 execution

machine
KNOW-HOW

machine
SAY-HOW

human
SHOW-HOW

human │
KNOW-HOW

 26

******************* Knowledge engineer's route map: new style ***********************
 figure 2.3 (from Michie 1987)

The induction principle originated in the ID3 algorithm (Quinlan 1979).
This ID3 algorithm produces a decision tree for differentiating positive and negative instances, given
a collection of instances of a concept described in terms of attributes or properties.
The commercial version of ID3, Expert-Ease, is mentioned in section 3.32. RuleMaster (see section
3.26) is an extended version of the original ID3 algorithm.
A drawback of these induction programs is the absence of the necessary background knowledge to
select the attributes and to determine the relations between attributes (Goodall 1985).

In their 1983 contribution Buchanan et al. were rather skeptical about using machine-learning
techniques in the knowledge-acquisition process. However, the Meta-DENDRAL program that
could learn rules from cases was developed and successfully used about 20 years ago.
Welbank (1983) also mentions the following limitations:
1. An induction system would need a database of documented cases to examine. Many domains of
human expertise cannot supply this. 2. The rules that are induced from a set of cases will not be the
same as a human expert uses.
Therefore this approach is not eliciting human knowledge at all. Human rules may be more
computationally efficient than a random set of rules that completely covers the same domain.
Human rules may also be more robust, whereas a set of rules induced by a machine from one
collection of cases may account very poorly for a second set of cases. Some induction algorithms
would produce a different rule every time a new case is added to the library.
Machine-induced rules which do not correspond to the rules that human experts use could also be
very difficult to grasp. They would have lost the advantage of transparency.
As long as machine induction produces rules which split the domain up in different ways from those
the expert uses, it has serious limitations as a knowledge-elicitation method.
In the years afterwards several automated knowledge-acquisition systems using machine learning
have been developed. They are discussed in the next chapter.

There are many ways in which machine learning can be useful in the knowledge-acquisition process.
First machine-learning systems might contribute to the initial construction of a knowledge base.
Second, machine-learning systems might refine existing knowledge bases. Third, machine-learning
systems might be helpful in adapting a knowledge-based system, for example, to accommodate user
expertise or style. Finally, in general, machine learning might provide a principled method for
constructing knowledge bases for expert systems, replacing the ill-defined engineer versus expert
knowledge-acquisition interaction. Thus, it may provide a formalized mechanism for the knowledge-
acquisition process (Shalin et al. 1988).
Michalski (1987) gives an overview of present-day machine-learning techniques for knowledge
acquisition:
Machine-learning strategies reflect the type of inference performed by the learner on the input
information in order to derive the desired knowledge. They include learning from instruction,
learning by deduction, learning by analogy and learning by induction. Special attention is given to
two basic types of learning by induction: learning from examples (concept acquisition) and learning
from observation (concept formation without teacher). A specific form of learning from observation
is conceptual clustering. Conceptual clustering is a process of structuring given observations into a

 27

hierarchy of conceptual categories.
An inductive learning system generates knowledge by drawing inductive inferences from the given
facts under the guidance of background knowledge. The background knowledge contains previously
learned concepts, goals of learning, the criteria for evaluating hypotheses from the viewpoint of
these goals, the properties of attributes and relations used to characterize observed events, and
various inference rules for transforming concepts or expressing them at different levels of
abstraction.

A long-term solution for the knowledge-acquisition problem is seen in the development of machine
learning. Knowledge acquisition is specially emphasized through inductive learning, learning from
examples, and learning by observation and discovery.
The knowledge-acquisition process can be greatly simplified if an expert system can learn decision
rules from examples of decisions made by human experts, or from its own errors. This type of
learning strategy is called learning from examples (or concept acquisition).
Learning from examples is one of several fundamental learning strategies. These strategies are
identified by viewing a learning system as an inference system. Namely, they are distinguished by
the major type of inference the learning system (human or machine) performs on the information
provided, in order to derive the desired knowledge.

Learning strategies:
1. Direct implanting of knowledge.
2. Learning from instruction, also called learning by being told. A learner selects and transforms the

knowledge from the input language to an internally-usable representation and integrates it with
prior knowledge for effective retrieval and use.

3. Learning by deduction:
a. A learning system that uses this strategy conducts deductive (truth-preserving) inference on the

knowledge it possesses and knowledge supplied to it.
b. A form of deductive learning, called analytical or explanation-based learning, has recently

become an active research area. In analytical learning, the system is already equipped with a de-
scription of the target concept, but the description is expressed at the level of abstraction too high
to be directly usable.

4. Learning by analogy. This strategy involves transforming or extending existing knowledge (or
skill) applicable in one domain to perform a similar task in another domain.

5. Learning from examples. Given a set of examples and (optionally) counter-examples of a
concept, the learner induces a general concept description. The amount of inference performed
by the learner is greater than in learning by deduction or analogy, because the learner does not
have prior knowledge of the concept to be learned, or knowledge of a similar concept. Learning
from examples is also called concept acquisition. When a system determines examples by a
search or other active effort this is called learning by experimentation. Learning from examples
is one form of inductive learning. Another form is:

6. Learning by observation and discovery.
a. Passive observation, where the learner builds a description of a given set of observations.
b. Active experimentation, where the learner makes changes in the given environment and observes

the results of those changes

The learning strategies mentioned above were presented in order of increasing amounts of effort
required from the learner and decreasing amounts of effort required from the teacher. They reflect
the increasing complexity of the inference performed on the information given to a learning system

 28

in order to derive the desired knowledge.
There are lessons for machine knowledge-acquisition to be drawn from the above considerations.
One is that if we know precisely how to solve a problem, we should tell the computer the solution
directly (i.e., program it). Teaching by instruction will be simpler and more productive than using a
deductive or inductive learning strategy. Such teaching will be facilitated by having an appropriate
knowledge-representation language and debugging tools. As there are many areas in which precise
solutions are known and relevant concepts can be defined, this strategy has wide applications.
Therefore, the development of appropriate knowledge-representation languages and support tools
(both general and specific to a given domain) constitutes a major research area.

There are many application areas where precise concept definitions or algorithms are unknown or
difficult to construct even in an abstract, non-operational form. Examples of such areas are technical,
medical or agricultural diagnosis, visual pattern recognition, speech recognition, machine design,
robot assembly, etc. Also, people often have difficulties in articulating their expertise, even when
they know well how to perform a given task or are able to recognize a given concept without any
difficulty. In such cases, applying an analogical or inductive machine-learning strategy seems quite
desirable.
Inductive learning is a process of acquiring knowledge by drawing inductive inferences from
teacher- or environment-provided facts. Knowledge acquired through inductive learning cannot, in
principle, except for special cases, be completely validated. This is a well-known predicament of
induction.
In order to perform inductive inference one can thus need some additional knowledge (background
knowledge) to constrain the possibilities and guide the inference process toward one or a few most
plausible hypotheses. In general, this background knowledge includes the goals of learning,
previously learned concepts, criteria for deciding the preference among candidate hypotheses, the
methods for interpreting the observations, and the knowledge-representation language with
corresponding inference rules for manipulating representations in this language, as well as the
knowledge of the domain of inquiry.

Given:
a) premise statements (facts), F, that represent initial knowledge about some objects, situations or

processes;
b) a tentative inductive assertion (which may be null); and
c) background knowledge (BK) that defines the goal of inference, the preference criterion for

ranking plausible hypotheses, assumptions and constraints imposed on the premise statements
and the candidate inductive assertions, and any other relevant general or domain specific
knowledge.

Find:
an inductive assertion (hypothesis), H, that, together with background knowledge, BK,
tautologically implies the premise statements.

This form of knowledge acquisition relieves the expert from the tedious task of defining rules
himself. Moreover, it requires the expert to do only what he can do best: make decisions. Experts are
typically not trained to analyze and explain to others their decision making processes, especially if
they must express them in a formal way. Therefore, such tasks are usually difficult for them to
perform. Once rules are acquired from examples, experts can usually do a good job in evaluating
them (Michalski 1987).

 29

Shalin et al. (1988) give methods to find the right sort of machine-learning technique:
This approach to identifying relevant machine learning systems for knowledge acquisition involves
four steps:
1. Characterize machine-learning systems according to a general framework so that these systems

can be evaluated comparatively according to a standard set of issues.
2. Characterize the general learning problems in an expert system that can be addressed by

machine-learning systems.
3. Assess the match between a machine-learning system and a learning problem according to a set

of identified dependencies (attributes and relations) between features of machine learning
systems and features of application domains.

4. Evaluate a learning problem/machine learning system match based on the satisfaction of these
dependencies.

Despite its limitations machine learning as knowledge-acquisition technique should be considered
when the conditions for machine learning are advantageous.

2.12 COGNITIVE SCIENCE

In section 2.2 I mentioned the mismatch between human and machine knowledge. Problems in
expert-system building, and more particularly, in the knowledge-acquisition process, arise mainly
from this mismatch. To grasp this problem we should know more about human knowledge.

Cognitive science is a recently new expanding field that explores human knowledge. It is a typical
interdisciplinary area combining aspects of artificial intelligence, psychology, linguistics, and
philosophy.
Here I refer to cognitive science as the study of human information processing. Human information
processing deals with the acquisition and use of knowledge.
Two issues are important in cognitive science.
1. The representation: what is the nature of the knowledge structures.
2. The process: what is the nature of the human information processing system.

The human information processing system is the process of encoding, modifying and representing
(storing) of information received by the various sense organs, the process that we call "thinking",
and the verbal and motoric outputs based on the previous processes.
It is still a controversial topic how information is obtained and stored in the brain. How are symbol
structures represented in the mind and how are operations executed on them.
In an attempt to explain more about the human information process system, cognitive scientists have
introduced the hypothesis of mental models.
Among others, Gentner and Stevens (1983) and Johnson-Laird (1983) give plausible bases for
mental models and their functions as explanation for the process of human psychology. Mental
models are also called conceptual models or schemata.
With mental models we can explain the working of human thinking to a certain extent. Mental
models can be formed about everything of which we have some sort of knowledge, perceptual or
verbal. We can say that in mental models knowledge is encoded. A conceptual model is the problem
space in which men considers understanding and dealing with the object of knowledge.

 30

Interaction of a mental model of the environment with existing mental models of former experiences
provide explanation for understanding new situations and how to deal with them.
Conceptual models are formed through analogy with other existing conceptual models and result in
identical understanding reactions (Gentner and Stevens 1983).

Simon (1978) postulates that the brain operates basically as a system of labeled associations. The
verbal representations are probably like the deep structures as postulated by the transformational
linguists. Visual representations hold or maybe even generate information about spatial figures.
Conceptual representations are more abstract and can handle abstract meanings. Mental models are
simpler - as models usually are - than the entities they represent.
Mental models are analogical representations that are verbal or pictorical and in various degrees of
abstraction.

Haugeland (1981) thinks that the mind is a human information processing system that is not related
to language. Language is an external mapping, while the mind, or the human information processing
system, is a private internal mapping without relation to language.
There are reports about children that have been deprived of any kind of language acquisition during
their childhood but are able to tell later about their prelanguage experiences. More commonly known
are studies in dyslexia about persons who cannot understand words, although they are known. This
should prove that mental representations are not necessarily verbal. On the other hand it does not
prove that mental representations are necessary nonverbal. Further experiments have shown that
visualisation helps the understanding of verbal texts. Verbal recall without visualisation is seldom
accurate.

How does this fit in with knowledge acquisition? It seems that the study of human information
processing is an integrated part of the study of knowledge acquisition.
The transfer of knowledge is done by abstract concepts. The ability to formulate abstract concepts is
a basic cognitive capacity.
Man has learned to categorize while he is perceiving. In that process he loses the particulars and
stores only the concepts. The process of thinking moves also on a level of abstraction, where the
mind is swept clean of particulars, i.e. verbal and perceptual material, i.e., words and images.
When he learns a skill he learns structures, rather than loose rules. He develops new structures by
applying metaphors on structures he already knows. Experts are able to pick up knowledge patterns
easier than novices. But also the knowledge engineers are not able to pick up these patterns as easily
as the experts.
The reproduction of acquired knowledge in words needs a kind of translation, from "mentalese"6
into a natural language like English. Natural languages consist of concepts that have mental
background as well. The mapping of structured knowledge into English sentences without losing too
much information is a problem.
If we transfer this process to the knowledge-acquisition process in expert-system building, the next
step is the translation of these sentences by the knowledge engineer into his mentalese and from
there he has to manipulate these structures to transform them in the right way in a knowledge-based
system.

This whole process is so tightly interwoven with cognitive processes in general and mental models

 6The language of the mental.

 31

in particular that it seems to be of crucial importance for a better understanding of knowledge
acquisition.

 32

CHAPTER 3

AUTOMATED KNOWLEDGE-ACQUISITION SYSTEMS I:
DESCRIPTIONS

In this chapter more than 30 knowledge-acquisition tools are described.

The quantity and depth of information that has been obtained from each system vary greatly.
TEIRESIAS is one of the best documented knowledge-acquisition systems (Davis and Lenat 1982).
This should not be a surprise since TEIRESIAS is a member of the well published Stanford-based
family of MYCIN. Other well described systems were found in journal articles, especially in the
International Journal of Man-Machine Systems.
Little material was gathered from the Proceedings of the AAAI and IJCAI conferences. The papers
in these proceedings were often too short to give a full description of a system. Often only certain
aspects of a system were mentioned.

Bibliographic searches revealed an amount of reports on knowledge acquisition, but after closer
investigation it turned out that most reports were working papers on recently started projects. I
decided to include only those systems that were at least reviewed by an editorial board of a journal
or conference committee. Notwithstanding this restriction, the articles do not always give sufficient
information on all the questions one can ask. It was also not often clear whether a system was still in
its infancy of development or already a successful tool, to mention the extremes. However, it should
not be in conflict with the intention of this paper when only the method of a knowledge-acquisition
system is described and not the actual working of an existing program.
Literature about commercial available systems was surprisingly difficult to obtain. (see section 3.32)

One can discuss the sequence of the systems.
In several cases the chronological order of development, e.g., ETS before AQUINAS, would be
preferable. In most cases however, the systems were developed independently from each other.
Another way might have been grouping the systems according to their principles. But, as we shall
see in Chapter 4, there are many ways to classify these systems.
After ample consideration, the alphabetical enumeration of the systems was chosen for easy
reference.

To preserve the meaning of the authors their systems are described as much as possible in their own
words. For the sake of readability quotation marks are omitted.

3.1 AQUINAS

AQUINAS is an expanded version of ETS (see section 3.6).
It is able to handle better than ETS:
- deep knowledge
- causal knowledge

 33

- relationship chains
- different levels of abstraction in a single grid
- the manipulation of large single grids.

The tasks of AQUINAS are:
- to elicit distinctions
- to decompose problems
- to give methods for combining uncertain information
- to test knowledge
- to make automatic expansion and refinement of the knowledge base
- to use multiple sources of knowledge
- to provide guidance to the knowledge-acquisition process.

A knowledge base can be constructed along the following steps:
1. Elicit cases and the initial grid (solutions, traits and ratings)7.
2. Analyze and expand the initial, single grid.
3. Test the knowledge in the single grid.
4. Build hierarchies (structured as solutions and traits in multiple grids) from the first grid.
5. Use several rating value types (transform ordinal ratings to nominal and interval ratings) to

represent knowledge.
6. List knowledge in hierarchies, test knowledge from multiple experts.
7. Edit, analyze and refine the knowledge base, building new cases.
8. Further expand and refine the knowledge base.
9. Generate rules for expert system shells.
 (Boose and Bradshaw 1987, Boose 1988)

The Dialog manager, a subsystem of AQUINAS, provides guidance in the knowledge-acquisition
process. It contains heuristics for the modeling of expertise and for the use of AQUINAS during
knowledge acquisition.
The Dialog Manager has been implemented as an expert system. Its domain knowledge is the
effective use of AQUINAS. A rule-based approach to implementation was selected because of its
flexibility, maintainability, and modifiability. Heuristics are encoded as rules directly within the
AQUINAS system.
In the automatic mode, the Dialog Manager applies knowledge acquisition heuristics to determine
the best Aquinas operation to be performed next within the context of the current state of the
knowledge base and the characteristics and preferences of the expert. The Dialog Manager displays
the recommended command sequence, an explanation of what it is doing, and the reason it has
chosen that option.

Application areas

Repertory grid-centered tools work best on analysis problems, or those portions of synthesis

 7see section 3.6 for the meaning of "grid"

 34

problems that can be reduced to analysis problems. Analysis problems are those whose solutions can
be comfortably enumerated (classification, interpretation, diagnosis), while synthesis problems are
those whose solutions are built up from components (configuration, design, planning). Even with
this limitation, these tools can be applied to a wide range of application problems.

A general problem when modifying knowledge bases is that changes may degrade system
performance. This is especially a problem when the knowledge base is large. It may be unclear how
changing one item in a knowledge base containing thousands of items will affect overall system
performance (Kitto and Boose 1987).
In Shema and Boose (1988) some analyzing and refining mechanisms to control this problem are
discussed.

AQUINAS can be seen as representative of both repertory grid and general-purpose knowledge
acquisition. Its strength is based in the variety of ways that experts are allowed into viewing their
problem-solving knowledge (Kornell 1987).

3.2 ASTEK

ASTEK (Acquisition of STructured Expert Knowledge).

The path that has been taken in knowledge-acquisition tools was to start with a simple natural-
language solution and extend it where the natural-language paradigm failed to meet the needs. This
went in the direction of a form and editor paradigm of knowledge transfer. This paradigm better
supports utterance planning, fragmented articulation and variations in the medium of articulation.
The system looks much like OPAL (see section 3.22), except that form entries themselves may be
complex structures or references to complex structures.
Natural language plays a sufficiently important role in ASTEK. At the level of small knowledge
fragments, natural language grammars support the medium of articulation when preferred. At a
deeper level, ASTEK was designed with the realization in mind that automated knowledge
acquisition is an extended dialog between a human expert and the computer. Drawing on work
related to the needs of extended dialogs, features are added such as object reference and a
recommendation function, which make knowledge acquisition more than the isolated editing of
templates. The discourse tools help individual acts of articulation be performed as desired while
bringing together the individually articulated knowledge fragments into a single, coherent
knowledge base as the acquisition task reaches completion.

A fundamental tenet of this approach to knowledge engineering is that effective knowledge-based
systems can and should be built by designing cognitively appropriate knowledge structures, and
implementing inference strategies as an operational semantics for these structures in a process called
knowledge analysis.
ASTEK is a multi-paradigm knowledge-acquisition tool. Unlike efforts directed at combining the
tasks of knowledge analysis and knowledge acquisition and efforts towards machine learning,
ASTEK is focused on the expressibility aspect of the acquisition problem.

An acquisition tool must serve to:

 35

1. Provide an external form for the knowledge that has clear, intuitive semantics to an expert in the
domain.

2. Mediate the knowledge transfer from the external form, that which is natural to the domain
expert, to the internal form, that which is most easily manipulated by the inference engine.

3. Support input of knowledge that is "correct by construction"; the acquired knowledge should be
constrained to be correct at the earliest possible time.

4. Support knowledge management, such as revision control, and incremental testing; the tool
should act as a comprehensive knowledge-maintenance mechanism.

ASTEK is an extension of INKA.
The shift away from a pure language solution (as in INKA) has been the need to describe procedural
knowledge in a convenient manner. The tree-like structure of diagnostic procedures lies in stark
contrast to the inherently linear nature of natural language.
ASTEK is a general interface tool directed at aiding the user in efficiently communicating structured
knowledge. As in OPAL the acquisition process in ASTEK is guided by a model of the domain
knowledge. This model is constructed by specifying the types of knowledge structures for the
domain in terms of their components and the appropriate editing mechanism to apply to each
component. Also utilized by ASTEK in the diagnostic applications is a model of the system being
diagnosed.

ASTEK is implemented (Jacobson and Freiling 1988).

3.3 AutoIntelligence

AutoIntelligence is developed by IntelligenceWare Inc. It runs on an IBM-PC or compatible and
costs $ 490.-.8

AutoIntelligence allows the experts to alternately identify important factors as well as working from
concrete examples. Rules are then inductively generated from the accumulated knowledge and
examples.
Designed to handle classification and diagnosis problems, AutoIntelligence enables an expert
starting from selections or classes to define the characteristics of these selections, and to create
examples using these definitions. These examples, coupled with the definitions, are then used to
build a rule set, or expert system.

The AutoIntelligence program consists of five modules:

1. The Interview Manager interacts with the user, dynamically selecting the best interview style

based on current progress.
2. The Structure Discovery System identifies the key components in user decisions, checking for

redundancy and inconsistency.
3. The Example Manager tracks examples and handles the bookkeeping tasks for the user.

 8AutoIntelligence, IntelligenceWare, ExpertEase, and IBM-PC are trademarks.

 36

4. The Induction System classifies and generalizes the data and examples fed in by the user.
Classification produces rules capturing the example set; induction produces general rules.

5. The Expert System Shell generates a working expert system which may be run or incorporated
into another expert system shell.

Earlier attempts included ExpertEase and others, but they were too restrictive for general
application. Other automated knowledge-acquisition systems do not take into account multilevel
interview techniques.
With AutoIntelligence the user is cushioned with an interview-oriented technique, followed by rule-
based induction.

3.4 BLIP

BLIP (Berlin Learning by Induction Program) is mainly concerned with the construction of a
domain theory as the first phase of the knowledge-acquisition process. BLIP is the learning part of
LERNER. BLIP is an example of a machine-learning approach in knowledge acquisition. BLIP is
implemented.
The philosophy behind this kind of knowledge acquisition is adopted from cognitive science. A
"sloppy" domain model entered by the user and general structures that reflect structures of human
thought are used, rather than structures of the world. The learning process is guided by meta-
knowledge which can be viewed as the representation of cognitive structures that ease the
knowledge-acquisition process.

BLIP requires the user to specify a "sloppy" domain model by defining predicates and the sorts of
their possible arguments entering facts about the domain expressed with those predicates.
BLIP then discovers properties of these predicates and establishes relations between them, thus
structuring the domain.
Finally, the domain model is transformed into the systems formal rules (Morik 1987).

Sloppy modeling is a paradigm for machine-supported knowledge acquisition that explicitly denies
using structured elicitation dialogues for guiding the user through the knowledge acquisition
process. Instead, by constructing an extremely flexible system, the user is provided a possibility to
perform an unconstrained, exploratory first modeling phase with the help of the system.
In the sloppy-modeling paradigm, knowledge acquisition is viewed as a cooperative modeling
process between user and system. This means that the user is not required to develop a complete and
well-structured model beforehand in order to transfer it later on into the machine. Instead, the
modeling activity itself becomes part of the system-supported knowledge-acquisition process:
selecting the proper abstraction/granularity level for the knowledge to be represented, choosing the
right concepts, determining their interactions, etc. In that respect, sloppy modeling shares a common
view with advanced knowledge-elicitation systems (e.g., AQUINAS), and machine-learning
approaches, where the above tasks are system-supported as well. It differs from those approaches in
its emphasis on a cooperative, mixed-initiative modeling process. In a knowledge-elicitation system,
the user is guided through a more or less fixed dialogue, answering the questions posed by the
system. There is no way for the user to take the initiative, to go back and reverse decisions made
earlier. In the sloppy-modeling paradigm, the goal is a modeling style where the user and the
system's structuring and learning routines are regarded as independent partners that both work

 37

towards having a well-structured and complete model.

As a knowledge-acquisition system, BLIP is designed to acquire encyclopedial knowledge. This is
the basic problem-solving independent knowledge about a domain including terminology and simple
empirical knowledge. BLIP can also be used directly with existing performance systems like
HERACLES.
BLIP offers comprehensive facilities for entering, inspecting, and manipulating encyclopedial
knowledge. Sloppy modeling is supported by using machine-learning techniques that discover
inferential relations between existing knowledge.

BLIP's knowledge representation is based on a sorted logic augmented with selected higher-order
constructs. The basic domain-level entities that a user works with are facts, predicates, and rules
(Wrobel 1988).
The main components of the learning process are the generation, rating and testing of hypotheses.

Meta-knowledge in BLIP plays the central role in this approach to knowledge acquisition. Meta-
knowledge is used for checking consistency; including rules from facts (the learning process); and
deducing rules from other rules.
Meta-knowledge in BLIP (unlike that of AM, EURISKO, TEIRESIAS) refers to predicate constants,
describing properties or relations of properties or relations.
In order to verify whether or not a meta-predicate holds for certain predicates, the criteria for the
validity of a meta-fact are represented in such a way that they can be used as pattern for a search
process in the factual knowledge of the inference engine. These patterns are characteristic situations
(Morik 1987).

Design requirements for sloppy modeling systems:
Flexibility. First, the interaction with the user is organized around independent commands that are
available at any time, and not around extended structured dialogues. That lets the system easily
follow sudden ideas on the part of the user. Second, and more important, the "agenda of open ends"
allows the user to postpone treating integrity constraint violations and return to handle them later,
thus making sure such tasks don't get in the way of domain modeling.

Reversibility. BLIP is completely reversible with respect to the knowledge sources that are
maintained by the inference engine, i.e., facts and rules at domain, meta, and metameta levels. For
those knowledge sources, deletions and modifications are supported at any point. For other
knowledge sources, those operations are supported, but not in the best possible way.

Integrity and consistency maintenance. Consistency maintenance is guaranteed in BLIP by the
reason-maintenance procedures of its inference engine.

Transitionality. The BLIP system is transitional both in the traditional sense and in the sloppy-
modeling sense. First, it allows users to begin working in a domain-oriented style by just inputting
facts, predicates, and rules. This is supported by providing tools that automatically reexpress rules in
the metafact-representation needed by the system. Second, and perhaps more important, in BLIP, the
same representations and knowledge sources are manipulated by the user and the learning
algorithms that support the system's part of the sloppy-modeling process. That way, the interaction
with the system is always the same, whether the automatic modeling tools are used or not (Wrobel
1988).

 38

3.5 (Meta-)DENDRAL

The heuristic DENDRAL program is designed to help organic chemists determine the molecular
structure of unknown compounds.

Meta-DENDRAL
Because of the difficulty of extracting domain-specific rules from experts for use by DENDRAL, a
more efficient means of transferring knowledge into the program was sought. Two alternatives to
"handcrafting" each new knowledge base have been explored: interactive knowledge-transfer
programs and automatic theory-formation programs. In this enterprise the separation of domain-
specific knowledge from the computer programs themselves has been critical. Meta-DENDRAL has
been constructed to help.
One measure of the proficiency of Meta-DENDRAL is the ability of the corresponding performance
program to predict correct spectra of new molecules using the learned rules (Buchanan and Feigen-
baum 1978).

The rule-formation task that Meta-DENDRAL performs is similar to grammatical inference,
sequence extrapolation, and concept formation and is known in AI as learning by example.
In contrast to statistical approaches, Meta-DENDRAL utilizes a semantic model of the domain.

The Meta-DENDRAL program itself is organized as a series of plan-generate-test steps, as found in
many AI systems. After scanning a set of several hundred molecular structure/spectral data-point
pairs, the program searches the space of fragmentation rules for plausible explanations and then
modifies its rules on the basis of detailed testing. When rules generated from a training set are added
to the model and another block of data is examined, the rule set is extended and modified further to
explain the new data. The program iteratively modifies rules formed from the initial training set
(adding to them), but it is currently unable to "undo" rules (Barr, Cohen, and Feigenbaum 1981).

3.6 ETS

The Expertise Transfer System (ETS) is a tool which:
- interviews an expert
- analyses the information gathered
- produces production rule knowledge bases.

ETS can help in the following ways during prototype development:
1. Identification phase; data and terms.
2. Conceptualization phase; key concepts and relations.
3. Formalization phase; ETS automatically maps the key concepts into several representations that

can be used for automatic rapid prototyping.
4. Implementation phase; ETS automatically implements an initial prototype expert system by

building a knowledge base for a target production rule expert system building tool.
5. Testing phase; several tools and techniques are provided for incrementally improving ETS's

 39

knowledge base, based on knowledge expansion methods and feedback from the prototype
expert system.

ETS uses interviewing methods based on the psychology of personal construct developed by George
Kelly. His Repertory Grid Test can be used to list, compare and rate a collection of items.
ETS helps the expert to construct and analyze the initial set of heuristics and parameters. The
consistency of the method used by ETS guarantees a better result over manual methods.
ETS uses an interview technique in which elements are elicited one at a time. The expert is asked to
compare packages of elements, name attributes and name attributes that distinguishes members from
each other. The knowledge remains in the expert's own terminology.
ETS asks the expert to rate each element against each pair of traits. Thus a rating grid of values is
formed.
The system builds an entailment graph of implication relationships. The strength of the implications
is listed numerically. The expert might add to and delete from these knowledge-base structures.
ETS can now generate conclusion rules from ratings in the grid, after the expert has assigned
concept names to each pair of traits. He is then asked to rate the relative importance of these
concepts in his problem-solving behavior.
The other kind of production rules that are generated are intermediate rules. These rules are
implication rules based on the relations in the implication graph with their relative strength
assignments.
The expert may review these rules, improve them, and test the prototype.
ETS is applicable to structured selection (analytic) types of expert system problems, particularly
classification problems.
ETS has been used to build consultation systems that combine expertise from multiple experts in the
same domain.
ETS has been used to build consultation systems that combine expertise from different domains and
different aspects of the same general domain.
ETS has been developed at the AI Center of Boeing Computer Services. Several hundred prototype
consultation systems have been built using ETS (Boose 1985, Boose 1986b).

The limits of ETS

ETS can handle analysis class problems such as debugging, diagnosis, interpretation, and
classification.
The system cannot readily handle synthesis class problems (design and planning) or combinations of
analysis and synthesis such as control, monitoring, prediction, and repair.

ETS is not suitable for "deep" causal knowledge, procedural knowledge, or strategic knowledge. It is
not about "how" and "when".
AQUINAS (see section 3.1) can be regarded as an extension of ETS's possibilities.
Further knowledge can be added manually.

A combination with MDIS (Antonelli 1983), a maintenance, diagnostic, and information elicitation
system is worth trying.
The Maintenance and Diagnostics Information System (MDIS) is a multi-domain knowledge
acquisition system that supports integrated diagnostics, maintenance, training, data collection and
data analysis used for military systems.

 40

It is not much more than a guide through the expert system(s). It asks the expert for information and
review (Antonelli 1983).

Others (Becker and Selman 1986) mention the following limitations:
ETS can only make correlations between data, but not with the real world.
The rules that ETS produces can only be accepted by production ruled systems.
The system is not fully automated. It needs still augmentation with human interviewing.
This last argument is presently not a relevant argument, because all the so called automated
knowledge acquisition systems need manual intervention (monitoring, refining, etc.).

Boose (1986a) mentions the desirability to get knowledge from various experts. A system has been
developed that can combine expertise from several experts into one expert system with help of the
ETS technique. The end user can choose which experts he wishes to consult. He can receive
recommendations based on a majority opinion and a dissenting opinion among the selected experts.

Appendix; Kelly's Personal Construct theory.

Kelly's theory of a personal scientist (Kelly 1955) was that each individual seeks to predict and
control events by forming theories, testing hypotheses, and weighing experimental evidence.
Certain techniques for use in psychotherapy were developed by Kelly based on this philosophy. In a
Repertory Grid Test for eliciting role models, Kelly asked his clients to list, compare, and rate role
models to derive and analyze character traits. Aspects of these role models were used to build a
rating grid. A non-parametric factor analysis method was then used to analyze the grid. The results
helped Kelly and his client understand the degree of similarity between the traits. He named a trait
and its opposite, a construct, and hypothesized that each construct represented some internal concept
for the client (Boose 1984).

3.7 INFORM

INFORM (INfluence diagram FORMer) is an expert-directed knowledge-acquisition aid and
interface for building knowledge-based systems in IDES (the Influence Diagram-based Expert
System for probabilistic inference and planning).

The INFORM architecture is based on information requirements and modeling approaches derived
from both decision analysis and knowledge engineering. It is best suited to heuristic classification
problem-solving, in particular domains with diagnosis or decision making under uncertainty.
INFORM is a top down design aid using descriptions of the domain concepts and structure, rather
than on examples of problem solving in the domain.
The INFORM architecture falls between the technique of rapid prototyping and testing, and the
structured knowledge-engineering approach, which guides and supports the initial knowledge-acqui-
sition phase.
INFORM uses model refinement techniques from decision analysis and knowledge engineering in
an environment that is predominantly structured knowledge acquisition.
Decision analysis separates the process into deterministic structuring, probabilistic assessment, and

 41

informational phases. Assessment and modelling procedures direct the formation of choices,
information, and preferences into the decision set.
Influence diagrams are conceptual and operational representations for domain expertise. They are
used as a knowledge structure: an operational way of organizing knowledge, without cognitive
claims.

There are three hierarchical levels: relational, functional, and numerical.
At the relational level the interdependence of uncertain events is represented. They superficially
resemble semantic nets and frames.
The functional level is a specification of the type of relationship between events.
The numerical level is a quantitative measure of the "extent" of the relationship. The influence
diagrams are based on Bayesian probability.

INFORM applies best under heuristic classification problem-solving. The decision analysis
approach may be a viable way to approximate expert performance.
INFORM is responsible not only for meeting the information needs of the computational knowledge
representation, the influence diagram, but for meeting the information needs of a knowledge
engineering process: context definition, model structuring, model refinement, and process decision-
making.

Three basic types of information INFORM must represent:

1.Model information.
Computational model of information: nodes, states, probabilities etc. - the representational
requirements of the formal influence diagram.
Structural model information - the influence diagram with context and assumptions.
Uncertainty model information - people's numeric estimates of uncertainty do not accurately
represent their underlying judgement without some structured revision and debiasing.
2. Procedural information.
This is information about the knowledge-engineering process.
3. Insight about the model.
"Insight" is the creation and revision of a mental picture of the domain and its processes. INFORM
provides a medium for this insight.

INFORM intends to achieve:
sufficiency, getting the encoded information right in terms of 1. the influence diagram
representation,
2. correctness of expert judgement, and
3. providing insight.

Architecture of INFORM. There are 4 conceptual levels: The first level is to fill the diagram. The
second is to capture the activities that decision analysis and knowledge engineering employ: diagram
drawing, etc. The third level is the "heuristic" approach for the encoding process. The fourth level
provides requests for explanation and reformulation.

Finally, INFORM has two approaches to knowledge structuring
and refinement:
1. Short modeling at the most general level of precision.

 42

2. Increase specificity only for the best improvements in model performance (Moore and Agogino
1987).

 43

3.8 KADS

KADS (Knowledge Acquisition and Document Structuring)9 is both a methodology for structured
knowledge acquisition and a system.

The major purpose of the construction of the pilot version of the KADS system is to support the
methodology construction.
The aims for KADS as a knowledge-engineering tool are the following:
Formalization, guidance, documentation support, consistency checking, on-line information
retrieval, advise on feasibility, and automatic generation of parts of a knowledge-based system.
KADS is a system with four layers or levels of knowledge. These layers correspond to the different
roles of knowledge in the reasoning process.
The first layer contains the static knowledge of the domain (concepts, relations, and structures).
The second layer is the inference layer, in which is described what inferences can be made from the
domain knowledge. In this layer two types of entities are represented: meta-classes and knowledge
sources. Meta-classes describe the role that domain concepts can play in a reasoning process.
Knowledge sources describe what type of inferences can be made on the basis of the relations in the
domain layer.
The third layer is the task layer with goals and tasks as basic objects.
The fourth layer is the strategic layer. On this level plans are made (e.g., to create a task structure),
the execution of tasks is controlled, and faults are repaired (Wielinga and Breuker 1987 and
Hayward, Wielinga, and Breuker 1987).

The KADS system consists of the following components:
1. Knowledge base which contains knowledge about the analysis task, a number of domain

independent concepts and the domain knowledge. In the center of KADS is a semantic network,
based on KL-ONE.

2. Inference machine. The KADS system has an inference machine in which rules can be
formulated. The rules can be used for interpreting the obtained data. Rules can also be used to
control input of data. The rules are part of the KL-ONE network.

3. Lexicon which contains lexical entries for the domain.
4. Analysis component which control the interactive analysis of the domain by instantiating and

updating knowledge structures which represent the analysis task.
5. Knowledge-base editor and browser which provides facilities for changing and updating the

knowledge base.
6. Document generator generates a document describing the content in the knowledge base and the

lexicon for a particular domain.

Knowledge acquisition consists of the collection, elicitation and interpretation of data on the
functioning of expertise in some domain, in order to design, build, extend, adapt or modify a
knowledge-based expert system. In this way knowledge acquisition is a permanent activity
throughout all stages of designing, implementing and maintaining an expert system.
Within the knowledge-acquisition task, two major subtasks can be distinguished:

 9Also known as Knowledge Acquisition and Design Support

 44

1. The elicitation of data on expertise.
2. The analysis of the (verbal) data. (Breuker and Wielinga 1985)

The choice of conceptual structure of a knowledge-based system is the most crucial step in the
development process. From the analysis of the static domain knowledge, the function and task analy-
sis, information is gathered to select and/or construct an interpretation model, using a library of
standard models for prototypical domains. The particulars of the task at hand and the detailed
analysis of expert knowledge are used to refine the model and to establish the detailed relations
between the elements of the interpretation model, yielding the conceptual model of the prospective
system. The decomposition of the knowledge-analysis task supports this incremental selection and
construction of an interpretation model for a particular domain. The stages and sub-tasks outlined
above can be seen as refinement of methodologies for building expert systems (Wielinga and
Breuker 1985).

Verbal data do not speak for themselves; they have to be interpreted. However, there are no ready-
made interpretation frameworks available that satisfy both the requirement that they should map
(easily) onto some implementation formalism and that they should structure the data into a coherent
description.
Data interpretation and instruction are modality tasks rather than proper problem-solving tasks
(Breuker and Wielinga 1987).
The purpose of the interpretation process is to establish a mapping between verbal data and
knowledge structures. This mapping can be performed on different levels, depending on the types of
constructs that are used to express the knowledge.

For the purpose of mapping verbal data onto knowledge, five levels representing a synthesis
between Sloman's classification and Brachman's representational levels are proposed (Findler 1979).

1. Knowledge identification.
This level of analysis corresponds to simply recording what one or more experts report on their
knowledge. Although the result may be in a formalised form, the representational primitives on
which this formalization is based are linguistic (in the sense that Brachman uses this term). The same
knowledge of different experts may have to be represented differently, because they use different
terminology, or because their knowledge is structured in a different way.

2. Knowledge conceptualization.
Knowledge conceptualization aims at the formalization of knowledge in terms of conceptual
relations, primitive concepts and conceptual models. The knowledge of different experts, and possi-
bly of different subdomains, is unified within one conceptual framework.

3. Epistemological analysis.
At the epistemological level the analysis uncovers structural properties of the conceptual knowledge,
formalised in an epistemological framework. Such a framework is based on epistemological
primitives representing types of concepts, types of knowledge sources, structuring relations (such as
hierarchical relations, inheritance), and types of strategies.

4. Logical analysis.
This level of analysis applies to the formalisms in which the knowledge on higher levels is expressed
and which is responsible for inference making.

 45

5. Implementational analysis.
At this level of analysis, mechanisms are uncovered on which higher levels are based. The
representational primitives are the ones which are normally used when an implementation of an
artificial intelligence program is described (e.g., matching, testing, slot-filling).

Interpretation models
An interpretation model consists of a typology of basic elements and structuring relations for a
certain class of domains. The basic elements are distinguished as (cf. Clancey 1983): objects,
knowledge sources, models and strategies.
An object typology for a class of domains characterises the types of objects that have to be identified
during the knowledge-acquisition process.

Following Clancey (1985) a knowledge source is defined to be a piece of knowledge that derives
(infers) new information from existing data.
Models are knowledge structures which represent a set of complex relationships in a coherent
structure, which can be used to predict new information.
The structure of the knowledge base can support particular problem solving strategies. Different
ways of structuring the knowledge base to support different strategies have been discussed by
Clancey (Wielinga and Breuker 1985).

The analysis process
The overall analysis process is defined as consisting of three phases. In the initial phase, the
knowledge engineer becomes acquainted with the domain and the expert. Creating the domain
lexicon by listing the key concepts, and an initial interpretation model will be selected or
constructed. Once the scope of the system has been specified, this defines in broad terms the func-
tion(s) of the system and its users. The aim is then to construct
a detailed specification of the function the system has to perform. This specification includes the
knowledge and strategies employed in the expertise. At this stage, processing of data becomes
mainly model-driven. After a definition of the main- and sub-tasks involved in the performance of
the systems's functions, the interpretation model may be refined and moves towards becoming the
inference structure for the particular domain/task of interest. This involves fully specifying the meta-
classes in terms of domain concepts, and the knowledge sources using domain relations; plus
defining the task structure adequate for the performance of the desired functionality.

With an interpretation model identified, data can be collected and interpreted from expertise-in-
action. Thinking aloud protocols may provide these data more adequately than interviews. Such on-
line protocols are preferred to interviews or retrospective data, because there is ample evidence that
experts do not necessarily employ the types of strategies and knowledge they may claim to use.

The interpretation model is used in such a way that the data from the domain and expert can be fitted
within the structures provided by the model, thus producing a fully specified description of the
expertise in a domain.
It may also be noted that one may adopt a more synthetic approach to the definition of the task level,
since the available inferences in the domain may be manipulated in a way which does not directly
mirror their uses by an expert. This may be the primary distinction between cognitive modelling and
expert-system building.

 46

It should be noted that the analysis process must also include an analysis of the environment for the
proposed system and of the characteristics of the intended users (Hayward, Wielinga, and Breuker
1987).

There are three types of knowledge-engineering tasks in KADS:
1. An analysis of the functions, the environment and the users of the expertise to arrive at a
definition of the operational characteristics of the prospective system. The functional analysis
defines the modality of the expertise. A knowledge-based system contains two types of tasks:
problem-solving tasks representing the expertise and communication tasks. The communication
tasks are by no means trivial; they form the interface between the operational environment and the
expertise. Modality may involve negotiating, explanation, coaching, documentation, etc.

2. An analysis of the static domain knowledge, starting with the collection of a lexicon, ending with
concepts structured in KL-ONE concept hierarchies.

3. Analysis of expertise in action, i.e., the way problems are solved. This starts with a task-analysis:
selection of one or more interpretation models that appear to represent the structure of the problem-
solving process. By matching the verbal data from interviews and in particular thinking aloud
protocols, this initial model gets refined and modified into a detailed structure of knowledge objects,
knowledge sources and strategies; much in the same way as ROGET's (see section 3.25) conceptual
structures. The final conceptual structure of expert reasoning represents the basic architecture of the
prospective system. In the conceptual structure the static knowledge and the actions performed on
them become integrated (De Greef and Breuker 1985).

The knowledge and expertise should be analyzed before design and implementation starts; i.e., the
major efforts in knowledge acquisition should occur before an implementation formalism is chosen.
Benefits are the following:
1. Feasibility of the domain for constructing an expert system can be assessed with few costs and at

an early time.
2. The construction or choice of knowledge representation and inference formalisms can be

motivated.
3. The analysis provides a detailed overview of the architecture of the prospective system.

Preferably, the analysis should be model-driven as early as possible. Models of expert problem
solving not only enable the analysis of data but also provide references to known implementation
solutions.
To bridge the gap between verbal data on expertise and implementation a model of expert problem
solving should be expressed at the epistemological level.
The analysis should include the functionality of the prospective system; i.e., data on the environment
and users should be collected and analyzed. These data are used for defining the communication
tasks - modality - of the system.
The analysis should proceed, preferably, in an incremental way.
New data should be elicited only when previously collected data have been analyzed; i.e., elicitation
and analysis should alternate.
Collected data and interpretations should be documented.

Differences with ROGET

 47

In ROGET the data consist of direct answers from the user about concepts and facts of the domain.
KADS however, also supports the elicitation and identification of knowledge.
A second difference is that in ROGET the refinement strategy follows a depth-first course after
selection of the interpretation model; in KADS the breadth-first refinement is the consequence of
broadening the scope of the analysis so as to include the modality of the system (Breuker and
Wielinga 1987).

A valuation of KADS

A real problem in KADS is the partial attention for what is called "the problem solver". Confusion
has appeared in several case studies. In the analysis the problem solver gets unexpectedly several
responsibilities in the interaction with the user. This is the reason why complicated and unclear
decompositions of the task are created. Already in an early stage it becomes inevitable to think in a
procedural manner about the way the tasks will be executed. The problem might be the absence of a
separation between the analysis of the problem-solver task and the task assignment (De Greef,
Schreiber, and Wielemaker 1988).

KADS seems to be a highly structured methodology for expert-system building through verbal data
interpretation.
KADS is more a knowledge-modeling tool than a knowledge-acquisition tool. Certainly it has
contributed to a methodology of knowledge engineering.

The KADS system is implemented in PROLOG and runs.

3.9 KAE

KAE (Knowledge Acquisition Environment) helps capture expertise from domain experts involved
in analyzing scenes from aerial imagery. The aim of KAE is to integrate the domain inputs, the
translation into internal representations and the actual execution and feedback.

Typical features:
The knowledge is visually oriented.
A tight coupling is required between the expert and the expert system being developed. Visual
concepts are difficult to express, so interaction with the system is critical.
Multiple types of expertise are often required and multiple experts are likely to be involved.

The KAE architecture should provide support of a collection of computer-based tools facilitating:
- viewing and editing domain knowledge in both textual and graphic format
- translation of raw domain information onto an intermediate representation and finally translation

into an executable format
- knowledge base execution and testing
- expert system performance analysis
- knowledge-base management.

 48

A goal of KAE is to maintain as much domain independence as possible and still be useful
(Tranowski 1988).

3.10 KAS

KAS is the knowledge-acquisition system that was developed to facilitate the construction and
maintenance of PROSPECTOR's and HYDRO's knowledge bases. PROSPECTOR is an expert
system that was designed for decision-making problems in mineral exploration. HYDRO is a
PROSPECTOR-based parameter estimation system.
These two systems employ various kinds of networks to represent knowledge - inference networks
for expressing judgmental knowledge, semantic networks for expressing the meaning of the proposi-
tions that correspond to nodes in the inference networks, and taxonomic networks for representing
static knowledge about relationships among domain objects.

The core of KAS is an "intelligent" network editor that can assist the user in building, testing,
searching, and maintaining these networks. Its basic operations allow it to create, modify or delete
various kinds of nodes and arcs. It knows, however, about the representation constructs and
inference mechanisms employed by PROSPECTOR and can therefore protect the user against
certain kinds of syntactic errors.
It also includes a bookkeeping system that keeps track of incomplete data structures. Whenever he
desires, the user can turn control over to KAS, which will systematically question him to fill in the
missing parts of the structures. A semantic network matcher gives the user a limited ability to access
the knowledge base by content rather than by form. The matcher also supports features such as
protecting against numerical inconsistencies in the inference networks, generating meaningful
explanations, and enhancing the communication between the user and the system.
Finally, because KAS contains PROSPECTOR's inference mechanism as one of its components, it
permits controlled execution of individual sections of an inference network, enabling the knowledge
engineer to monitor his progress in refining the knowledge base
(Duda and Reboh 1984).

3.11 KEATS

The development of KEATS was motivated by the idea of building a knowledge engineering toolkit
that could provide a comprehensive range of tools to help the knowledge engineer fill the gap be-
tween the raw data and the final system.
Most toolkits for supporting the knowledge engineer are literally sets of tools rather than the
implementation of a coherent theory of knowledge engineering. KEATS provides a semi-automated
assistance throughout the knowledge-engineering process. At least it can facilitate knowledge
elicitation and domain understanding.

KEATS consists of 4 integrated subsystems:

CREF is a dedicated editor that helps the knowledge engineer to organize the data gathered in
protocol analyses.

 49

KDL, a knowledge description language, is a frame-based representation language. It builds
structures from atomic concepts and can draw links between concepts or concept structures.
Properties of concepts can be described. The inheritance mechanism takes care of the sharing and
deducing properties of the objects.

A graphical interface system functions as a blackboard and supports the building of the knowledge
base. It displays the structures between the data.

A rule interpreter controls the integration in the knowledge base.

KEATS is not an automated knowledge-acquisition system with which a domain expert can
communicate. The domain expert provides protocols in the ordinary way by tapes and transcripts.
After the interviewing of the expert KEATS can be used in analyzing the transcripts. The authors
correctly call KEATS a knowledge "elicitation" system, rather than a knowledge "acquisition"
system (Motta et al. 1988).

3.12 KITTEN

KITTEN (Knowledge Initiation & Transfer Tools for Experts and Novices) is an extension of
PLANET (Shaw 1982).

A typical sequence in KITTEN is text input followed by text analysis through TEXAN which
clusters associated words leading to a scheme from which the expert can select related elements and
initial constructs with which to commence grid elicitation. The resultant grids are analyzed by
ENTAIL which induces the underlying knowledge structure as production rules that can be loaded
directly into an expert shell.
An alternative route is to monitor the expert's behavior through a verbal protocol giving information
used and decisions resulting and analyze this through ATOM which induces structure from behavior
and again generates production rules.
These two routes can be combined. KITTEN attempts to make each stage as explicit as possible,
and, in particular, to make the rule base accessible as natural textual statements rather than technical
production rules.

The KITTEN implementation is an initial prototype offering a workbench with minimal integration
of the knowledge base, but each of the tools has already proven effective, and their combination is
proving very powerful in stimulating experts to think of the knowledge externalization process from
a number of different perspectives (Shaw and Gaines 1987).

Shaw and Woodward (1988) give a continuation of validation studies with multiple experts within
the KITTEN environment. By knowledge acquisition from multiple experts there must be intra-
subjective consistency and intersubjective consistency. The objective validity can be accomplished
by measuring the degree of convergence of knowledge support system output with established facts
from reputable experts and or from reputable printed material.
Another form of validity at this level concerns the usefulness of the output of the knowledge support
system. Operative validity is defined as that knowledge which is necessary for accomplishing a task

 50

or class of tasks. The usability of the system requires assessment. This refers to the ease of use and
the understandability of the knowledge-acquisition tool by the expert.

3.13 KLAUS and NANOKLAUS

The problem is how to enable computer systems to acquire sets of facts about domains from experts.
The type of acquisition process that is explored here is "learning by being told", in contrast to the
more often used method of "learning by example".

The feasibility of such ideas is explored by developing a series of Knowledge-Learning And -Using
Systems (KLAUS). A KLAUS is an interactive computer system that possesses a basic knowledge
of the English language, is capable of learning the concepts and vocabulary of new subject domains,
and has sufficient expertise to apply its acquired knowledge effectively in problem-solving
situations.
Research issues:
- a powerful natural-language processing capability
- seed concepts and seed vocabulary
- other linguistic abilities, such as pattern recognition and uses of analogy
- a flexible scheme of knowledge representation.

So far a pilot-KLAUS has been developed called NANOKLAUS.
Most of the seed concepts in NANOKLAUS are classes of things and relations.
A fundamental task of the deductive system is to determine whether or not a given entity belongs to
a particular sort
(Haas and Hendrix 1980).

Several years later the authors added the following: NANOKLAUS is best described as a fragile,
proof-of-concept system that was built to establish the feasibility of achieving the broader KLAUS
goals. NANOKLAUS has no provision for learning by analogy, acquiring or reasoning about the
internal structures of processes, dealing with causality, handling mass terms, allowing users to
change their minds about previously asserted "facts", or dealing with multiple senses of words (Haas
and Hendrix 1983).

The natural language research group at SRI-International is now implementing MICROKLAUS that
will cover a broader range of English.
In MICROKLAUS the parsing and translation system has been redesigned to provide for a
declarative semantics that is easier both to extend and to maintain.
Also significant progress has been made on several fundamental problems of natural-language
semantics (Grosz and Stickel 1983).

3.14 Kn
Ac

 51

Kn
Ac is a system that modifies an existing knowledge base through a discourse with a domain expert.

An often overlooked aspect of knowledge acquisition is the assimilation of information into an
existing knowledge base. Kn

Ac accomplishes this assimilation by:
1. Comparing entity descriptions provided by the domain expert with existing knowledge-base

descriptions,
2. evaluating these matches in the context of the knowledge-acquisition discourse,
3. making the modifications to the existing descriptions implied by the expert's information, and
4. generating (and managing) expectations of further changes to the knowledge base.
This knowledge-acquisition task may be viewed as a recognition problem.

Kn

Ac supports the domain expert by trying to assume much of the responsibility for assimilating the
expert's information. To accomplish this, Kn

Ac models the knowledge engineer's role by anticipating
modifications to the existing knowledge base using heuristic information about the knowledge-
acquisition process. These anticipated modifications allow Kn

Ac to focus on "relevant" portions of
the knowledge base and provide a context in which to integrate the information provided by the
domain expert.

The descriptions obtained from the expert must be presented to the matcher in the knowledge base's
representation language.
Kn

Ac provides a context in which to interpret information provided by a domain expert by
anticipating modifications to an existing knowledge base. These anticipated modifications, or
expectations, are derived from Kn

Ac's heuristic information about the knowledge-acquisition process.
Examples of typical heuristics: "Fields with too few components will be augmented" for dealing
with incomplete knowledge.
Modification heuristics when a new entity description is added: "Detailed information usually
follows the introduction of a new entity", etc.

The Kn

Ac system is implemented, but still in experimental use (Lefkowitz and Lesser 1988).

3.15 KNACK

KNACK is a knowledge-acquisition tool for building expert systems, called WRINGERs that
evaluate the design of electro-mechanical systems.
KNACK's knowledge-acquisition approach is based on the assumption that an expert can adequately
present his knowledge in the form of a skeletal report and report fragments. The skeletal report
provides a framework around which report fragments relevant to the design of a specific electro-
mechanical system can be organized. KNACK also elicits knowledge about how to customize the
selected report fragments for a particular application.
In order to acquire the knowledge necessary to solve the information gathering and the evaluation
tasks, KNACK exploits a WRINGER's problem-solving methods and knowledge roles to guide the
expert through the knowledge-acquisition process. KNACK determines what an expert has to
provide to define the knowledge. Finally KNACK uses heuristics to infer additional knowledge.

 52

The problem-solving method and the knowledge roles the WRINGERs use to solve the evaluation
problem can be summarized as follows:
1. Check the gathered information for consistency and completeness.
2. Evaluate the design description for possible flaws by using a worst-case analysis.
3. Evaluate the parts of the design description which showed indications of flaws again, this time

using a precise analysis.
4. Make constructive suggestions about which pieces of information need to be modified or

completed. Gather any missing information. Generate worst-case values for any required pieces
of information still missing.

5. Integrate the gathered information into the associated report phrases, assemble the report phrases,
include any evaluation messages, and write the report to an output device.

KNACK uses object-attribute-value tuples and relations as basic elements to represent knowledge.
Each object may have multiple attributes. Dependencies between objects are represented by
relations. These basic elements, object-attribute-value tuples and relations, are used to build the
condition parts and the action parts of OPS5 rules. An OPS5 rule represents a piece of knowledge.
The pieces of knowledge are organized into knowledge roles. A knowledge role is described by a
corresponding knowledge role template.
In detail, the skeletal report defines the outline of an actual report and the order of report fragments
within an actual report. KNACK assumes that the expert knows what information is needed, how to
evaluate this information and how a designer should present this information.

KNACK uses heuristics to infer additional knowledge. The heuristics can be specific to infer
additional knowledge for a particular knowledge role or they can be applicable to more than one
knowledge role.
KNACK uses heuristics to insert conditions and relations between the objects of conditions into the
question rule. These conditions and relations define the circumstances in which asking that question
is appropriate.
KNACK proceeds through the stages of knowledge acquisition that are similar to the conventional
approach of a knowledge engineer (Klinker et al. 1987).

In Klinker et al. (1988) it is described how KNACK can evaluate systems that are designed by
multiple experts.

3.16 KREME

KREME (Knowledge Representation, Editing and Modeling Environment) is built for developing
large knowledge bases which future expert systems will require. Within KREME different kinds of
representations (initially frames, rules, and procedures) can be used.

The approach to consistency maintenance has been to develop a knowledge integration subsystem
that includes an automatic frame classifier and facilities for inter-language consistency maintenance.
The frame classifier automatically maintains logical consistency among all the frames or conceptual
class definitions in a KREME database.
Another area of investigation in developing KREME is the attempt to provide facilities for large-

 53

scale revisions of portions of a knowledge base.
Finally, techniques for automatic generalization of concepts defined in a knowledge base have been
investigated.

KREME attempts to deal with the inextricably related problems of knowledge representation and
knowledge acquisition in a unified manner by organizing multiple representation languages and
multiple knowledge editors inside a coherent global environment. Underlying the entire system is a
strong notion of meta-level knowledge about knowledge representation and knowledge acquisition.

A central component of the KREME system design is that it incorporates tools for consistency
maintenance both within and across representation languages. These tools are collectively referred to
as the knowledge integrator. When new knowledge is entered or existing knowledge modified it is
the task of the knowledge integrator to propagate, throughout the knowledge base, the changes that
this new or modified knowledge entails, and to report any inconsistencies that have been caused by
the change.
The knowledge integration subsystem for frames is basically an extension of the classification
algorithm developed for the NIKL (the frame language component of KL-ONE) representation
language.

Knowledge extension.
Experts have difficulties to formulate abstract classifications of problem types which are often
unconscious generalizations about their domains of expertise. Currently KREME's frame general-
ization algorithm is able to search for sets of concept features that are shared by several unrelated
concepts.

The goal is to explore a number of approaches to knowledge acquisition and knowledge editing that
could be incorporated into existing and future development environments (Abrett and Burstein
1987).

3.17 KRITON

KRITON is a hybrid system for automatic knowledge acquisition.
Artificial intelligence and cognitive science are employing different knowledge-representation
formalisms to construct knowledge bases.
Automated interview methods are used for elicitation of human declarative knowledge.
Protocol-analysis techniques are used for acquisition of human procedural knowledge.
Incremental text analysis is used for textbook knowledge.
The goal structure of KRITON is an intermediate knowledge representation language on which
frame, rule and constraint generators operate to build up the final knowledge bases.
The overall knowledge-acquisition process consists of three levels:
- knowledge elicitation
- intermediate knowledge representation
- knowledge-base generation.

Methods for knowledge elicitation:
1.Interviewing techniques for rule acquisition (Grover 1983):
- forward scenario simulation

 54

- goal decomposition
- procedural simulation (= protocol analysis)
- pure reclassification
- laddering (not mentioned in Grover)

Interviewing technique is the repertory grid approach (Kelly 1955, see section 3.6): triples of
semantic related concepts are presented and the expert is asked to ascribe attributes to distinguish
two concepts from a third.

2. Protocol analysis. Analysis of thinking-aloud protocols. It is still difficult to analyze verbal data.

3. Text analysis according to context analysis.

 55

Knowledge sources

NATURAL LANGUAGE
DOCUMENTS

Utiliz
- gu
- co
- em

W
The
const
HUMAN
KNOWLEDGE
protocol
analysis

automated
interview

semantic text analysis

completion by inference

consistency check

intermediate knowledge representation

frame generator

constraint generator

rule generator

 KNOWLEDGE BASE

*************** the KRITON architecture *********************************
figure 3.1

ation of the acquired knowledge depends on the quality of the existing knowledge:
idance of the acquisition process through discovery of incompleteness.
mpletion of domain-dependent deep models.
ployment as an Interpretation Model for the discovery of new situations (see Breuker and
ielinga 1985).

intermediate knowledge-representation level works as a blackboard for frame, rule and
raint generation.

 56

The purposes are:
- openness for extensions
- knowledge acquisition for different knowledge-representation tools
- storage of incomplete knowledge for the ongoing elicitation process
- integration and employment of acquisition knowledge bases
- maintaining information closer to the sources (e.g., expert utterances)
- management of knowledge bases with varying degrees of completeness in different knowledge

representation languages.

Knowledge-guided knowledge elicitation deals with incomplete knowledge. A "watcher" plays a
significant role by controlling the intermediate knowledge representation for missing components.

Knowledge-base generation.
The task of the frame generator is to translate the information from the protocol analysis stored in
structured objects and their relation into a frame language (using the BABYLON frame)
(Diederich et al. 1987).

3.18 LEAP

A new class of knowledge-based consultant systems designed to overcome the knowledge-
acquisition bottleneck has been proposed. Recently developed machine-learning methods to
automate the acquisition of new rules are incorporated, in particular a LEarning APprentice system
for VLSI circuit design.
One key aspect of these systems is that they are designed to continually acquire new knowledge
without an explicit "training mode".
LEAP is currently being constructed as an augmentation to a knowledge-based VLSI design
assistant called VEXED.

A fundamental feature of LEAP is that it embeds a learning component within an interactive
problem-solving consultant. This allows it to collect training examples that are closely suited to
refining its rule base. In particular, training examples collected by a Learning Apprentice have two
attractive properties:
1. Training examples focus only on knowledge that is missing from the system. The need for the

user to intervene in problem-solving occurs only when the system is missing knowledge relevant
to the task at hand, and the resulting training examples therefore focus specifically on this
missing knowledge.

2. By working with training examples that are single steps, LEAP circumvents many difficult issues
of credit assignments that arise in cases where the training example corresponds to a chain of
several rules.

A second significant feature of the design of LEAP is that it uses analytical methods to form general
rules from specific training examples, rather than more traditional empirical, data-intensive methods.
LEAP's explain-then-generalize method, based on having an initial domain theory for constructing
the explanation of the example, allows LEAP to produce justifiable generalizations from single
training examples.

 57

While analytical generalization methods offer a number of advantages, they require that the system
begin with a domain theory that it can use to explain/validate the training examples. This
requirement, then, constrains the kind of domain for which our approach can be used. In the domain
of digital circuit design, the required domain theory corresponds to a theory for verifying the
correctness of circuits. In certain other domains such a theory may be difficult to come by.

A third significant feature in the design of LEAP is the partitioning of its knowledge base into:
1. Implementation rules that characterize correct (though not necessarily preferred) circuit

implementations, and
2. control knowledge for selecting the preferred implementation from among multiple legal options.

This partitioning is important because it helps in dealing with the common problem that when
one adds a new rule to a knowledge base one must often adjust existing rules as well (Mitchell et
al. 1985).

3.19 MOLE

MOLE is the successor of MORE (see section 3.21).
MOLE can help domain experts build a heuristic problem-solver by working with them to generate
an initial knowledge base and then detect and remedy deficiencies in it. The problem-solving
method presupposed by MOLE makes several heuristic assumptions about the world, which MOLE
is able to exploit when acquiring knowledge and by allowing covering knowledge to drive the
knowledge-acquisition process. MOLE is able to disambiguate an under-specified knowledge base
and to interactively refine an incomplete knowledge base.

MOLE is an expert-system shell that can be used in building systems that do heuristic classification.
MOLE belongs to a family of knowledge-acquisition tools which get their power by paying close
attention to the problem-solving method used by their performance systems. Examples are
TEIRESIAS, ETS, MORE, KNACK, SALT and SEAR. MOLE differs from them in that its
problem-solving method incorporates certain explicit assumptions about the world which, along
with several assumptions about how experts express themselves, are exploited during the knowl-
edge-acquisition process.
The goal has been to make MOLE smart, i.e., to enable it to build a reasonable knowledge base with
a minimal amount of information elicited from the expert.
MOLE the knowledge-acquisition tool gets its power from its knowledge of the problem-solving
method of MOLE the performance system.
MOLE's problem-solving method is a variant of heuristic classification. Central to MOLE's method
is the distinction between evidence that needs to be explained or covered by some hypothesis and
evidence that helps differentiate among hypotheses.
The hard problem in knowledge acquisition is eliciting the right sort of knowledge from the expert.
The first step is to identify explicitly the appropriate problem-solving method for the task and the
types of knowledge roles relevant for this method. From here one can go with an automated system.
Next is the problem of indeterminateness: the expert tends to be vague about the nature of these
associations of events. Finally one has the problem of incompleteness.
The incompleteness problem is the problem of how to identify missing or incorrect knowledge. Two

 58

problems dominate the two phases of knowledge acquisition:
1. The gathering of information for constructing the initial knowledge base; and
2. the iterative refinement of this knowledge base.
During the first phase, MOLE mainly relies upon static techniques of analysis. MOLE examines
specific associations and events in the light of the context provided by the surrounding structures.
MOLE concentrates on disambiguating the information provided by the expert, although MOLE
also tries to recognize areas where the expert interacts in order to refine the knowledge base.

Constructing the initial knowledge base.
MOLE initiates the knowledge-acquisition process by asking the expert to list the events, i.e.,
hypotheses and evidence that are commonly relevant to the expert's domain and to draw associa-
tions between pairs of events.
Additional information that is needed: type of event; the type of evidence an association provides;
the direction of an association (does e1 explain e2, or vice versa); and the numeric support value
attached to an association. However experts are not very good in supplying numeric support values.
Fortunately, it turns out that the support values do not have to be very accurate. MOLE can assign
default support values, that are just as good if not better, than those assigned by the expert.

Differentiating knowledge.
If MOLE's diagnosis does not match that supplied by the expert, MOLE first determines whether or
not the diagnosis would have been reachable if the hypotheses had been differentiated differently.

Covering knowledge.
If differentiating is not the problem, MOLE looks for missing covering knowledge.

MOLE illustrates how much power a knowledge-acquisition tool can obtain from a set of domain
independent heuristics about the knowledge-acquisition process and the nature of the world as it
relates to diagnosis. MOLE plays the role of an experienced knowledge engineer who is able to
work in conjunction with a domain expert and build a diagnostic system, even though the knowledge
engineer has little or no knowledge of the domain. By interpreting its assumptions about the world in
terms of explicit knowledge roles that guide heuristic classification and by exploiting a few
heuristics about how domain experts are likely to express themselves, MOLE is able to extract
intelligently from the expert information relevant for building a reasonable knowledge base for
performing the given diagnostic task (Eshelman et al. 1987).

In Eshelman (1988) it is described how MOLE handles uncertain knowledge. MOLE is thus able to
be flexible in the knowledge-acquisition process.

3.20 The knowledge-acquisition tool for MOLGEN

This tool is a system which allows domain experts to enter themselves procedural knowledge into a
knowledge base. The system, a stylized form of scientific English embodied within the Unit System
for knowledge acquisition and representation, has been used successfully within the domain of
molecular biology, i.e., the MOLGEN expert system.

 59

Expert knowledge comes in two forms: declarative and procedural. Acquisition of declarative
knowledge seems reasonably well understood. However, a significant component of expertise takes
a procedural form, ranging from low-level rules for data manipulation to abstract strategies for
problem-solving.
Procedural knowledge for MOLGEN are: data manipulation procedures, simulation procedures,
selection heuristics, and experiment design strategies.
The MOLGEN knowledge bases have been built by the domain experts themselves. The accuracy
and completeness of the knowledge bases might suffer when the expertise is channeled first through
a knowledge engineer and the authority of first hand knowledge is higher esteemed.
The trick is in making the domain expert comfortable in his new mode of expression.
The description of the procedural knowledge is done in RULE Language within the Unit System
(Friedland 1981).

3.21 MORE

MORE is a tool that assists in eliciting knowledge from domain experts. The acquired information is
added to a domain model of qualitative causal relations that may hold among hypotheses, symptoms,
and background conditions. After generating diagnostic rules from the domain model, MORE
prompts for additional information that would allow a stronger set of diagnostic rules to be
generated.
MORE's primary value lies in its understanding of what kind of knowledge is likely to be
diagnostically significant. By formulating its questions in a way that focuses on such knowledge, it
makes the most effective use of the domain experts' time.
MORE elicits diagnostically significant knowledge from domain experts; it is similar in spirit to
systems like TEIRESIAS (see section 3.30) and ETS (see section 3.6).

MORE provides a mechanism for interviewing. MORE differs with the others in that it takes a
model-theoretic approach to the acquisition of diagnostic knowledge. It uses a qualitative model of
causal relations together with a theory of how causal knowledge can be used to achieve more
accurate diagnostic conclusions to guide the interview process.
MORE has the capacity to build domain models from a fixed set of qualitative relations that may
hold among hypotheses, symptoms and background conditions. MORE generates rules from the
domain model. After a rule is constructed, the user is asked to associate positive- and negative-
support values with each rule.
Once an initial knowledge base is built up, MORE looks for weaknesses in the rules it has generated.
In another role, MORE looks for potential inconsistencies in the way a user has assigned confidence
factors to diagnostic rules.
MORE uses strategies for improving diagnostic performance such as: differentiation, frequency
conditionalization, symptom distinction, symptom conditionalization, path division, path differ-
entiation, test differentiation, and test conditionalization.
MORE has been applied to parts of a drilling fluids domain (MUD) as well as to diagnostic
problems provided by a physician. The next step is to use MORE to develop a number of
knowledge-based consultation systems in a wide variety of domains (Kahn et al. 1984, 1985a, and
1985b).

 60

MOLE (see section 3.19) is a more recent extension of MORE.

 61

3.22 OPAL

An effective paradigm may be to use the semantics of the application domain itself to govern access
to an expert system's knowledge base. This approach has been explored in a program called OPAL,
which allows medical specialists working alone to enter and review cancer treatment plans for use
by an expert system called ONCOCIN.

The approach is to provide the experts with some type of knowledge editor to aid in updating and
reviewing the contents of the knowledge base.
OPAL is based on a more abstract kind of conceptual model - that of the structure of the domain
itself. This structural characterization of the application area is referred to as a domain model.
The ONCOCIN knowledge base is encoded heterogeneously using three basic representations.
First, a hierarchy of frames encoded using an object-oriented language defines the various structural
entities for each protocol in the knowledge base.
Production rules, the second form of knowledge representation in ONCOCIN, are linked to each
object in the planning hierarchy.
The procedure-oriented knowledge is represented in finite state tables - lists of potential states in the
treatment plan and the conditional transitions that define how one state may be followed by others.
Defining knowledge of a new protocol for ONCOCIN therefore requires:
1. Creating an object hierarchy describing the component elements;
2. linking appropriate production rules (and the parameters they include) to the various objects; and
3. specifying the temporal sequence of chemotherapies and radiation treatments in terms of a finite-

state table.
Each of these representational issues is handled transparently by OPAL.

The conceptual model used in OPAL, based on the domain model itself, is perhaps the most
categorical way in which the contents of a knowledge base can be viewed. Unlike previous
knowledge-acquisition tools, OPAL's model is simply one of what knowledge should be expected.
As a result, the user is not given the flexibility found in other systems to specify new concepts. The
domain model tends to be sufficient because of the highly structured, stylized nature of oncology
treatment plans.

The goal in OPAL is to maximize the knowledge that experts can enter independently by providing
a conceptual model that matches the way oncologists seem to think about the application area. The
model then serves as the basis for a visual language that makes it easy for experts to express ideas
relevant to their domain (Musen et al. 1987).

3.23 PROTOS

The major contribution of this research is a theory of the acquisition and application of domain
knowledge for heuristic classification. The goal of building PROTOS, an inquisitive learner which
evolves into an expert, forces a thorough analysis of three fundamental issues in concepts formation.
First, how are ill-defined, "fuzzy" concepts learned and represented? Induction is not believed to be
the primary learning mechanism since classical and probabilistic representations are inappropriate

 62

for most concepts. PROTOS adopts an exemplar-based representation to support the inherent
variation in natural concepts.
Second, what functions must learned knowledge support? Traditionally the task of object
classification has been supported to the exclusion of other tasks. The range of functions that should
be supported by concept formation includes summarization of training instances, generation of
examples of a concept, prediction of unseen features of a new object, interpretation of "fuzzy"
examples, and explanation. PROTOS supports these important applications of learned knowledge by
de-emphasizing the role of generalization in concept formation.
Third, what is the role of teacher-supplied explanations in the learning process? Learning from
classified examples alone is an artificially difficult task. This research examines broadening the
channel of communication between the teacher and the learner to include explanations of the
examples. This reduces reliance on large training sets and allows the construction of a domain
theory.

PROTOS interacts with a human expert to elicit knowledge. PROTOS then independently applies
this knowledge to perform the expert task.

PROTOS learns by attempting to solve problems posed by a domain expert; focused interaction with
the expert uncovers the causes of problem-solving failures and guides learning.
The problem-solving task for PROTOS is classification. Clancey (1985) defines heuristic
classification to be the use of non-hierarchical, uncertain inference application of domain
knowledge for heuristic classification.

Research on concept formation usually makes the simplifying assumption that a concept can be
represented by a classical definition. A classical concept definition is a set of necessary and
sufficient conditions for an object to be an instance of the concept.
Benefits from assuming a classical definition of concepts:
The first is that concept formation is reduced to induction. The second benefit is that object
identification is reduced to deduction. The identification is all or none; unclear classifications are not
considered because of the restrictive nature of classical concept definitions. Unfortunately, classical
concept definitions only work in artificial domains.
The shortcomings are:
1. The defining features of most natural concepts cannot be enumerated.
2. Classification of some objects is unclear.
3. Many concepts are disjunctive.
4. There are variations in typicality among instances of a concept.

Rather than attempting to describe category members using necessary and sufficient features, a
probabilistic representation uses weighted features and a threshold for identification. For example, a
vehicle might be represented as:
(engine(.5), steering wheel(.3), pedals(.4), handlebars(.2)).

Classification of a new object is performed by finding the exemplars in the knowledge base which
match it most closely and assigning the new object to the same category. Explanation of a
classification is facilitated by reporting a similar, known exemplar. Prediction of unseen features of
an object is based on feature correlations in the closest matching exemplar(s). Example generation
simply involves exemplar retrieval (perhaps ordered by typicality).

 63

PROTOS1 is an implemented system which demonstrates knowledge-based pattern matching to
support the identification task. PROTOS1 learns and uses exemplars as models for guiding iden-
tification.
PROTOS2 indexes exemplars according to their appropriate uses as models and learns how much
effort to expend on knowledge based pattern matching.
PROTOS1 learns the requisite knowledge and provides a richer language for explanations (Porter
and Bareiss 1986, Bareiss et al. 1988).

Further studies:
The explanation language by learning the semantics of relations is expanded. Each domain requires
a special vocabulary of relations for use in explanations.
Another issue is learning event sequences. Event sequences direct the acquisition of data for object
descriptions (Porter et al. 1986).

3.24 The knowledge-acquisition system for REX

Knowledge-based knowledge acquisition means restricting the domain of knowledge that can be
acquired and developing a conceptual model of the domain. This system is for the domain of data
analysis.
REX is a consultation program in regression analysis, a statistical technique for data analysis.
Knowledge-based knowledge acquisition in this context means specifying how the contents of each
slot will be acquired.
The preponderance of cases was handled by interviewing.
With knowledge-based knowledge acquisition, the statistician is encouraged to think of optional
inputs at the beginning of the construction process, thus avoiding the costs of reprogramming.
A conceptual framework is necessary. In building a first, ground-level, system it will help to seek
regularity and common cases. A frame based programming system helps to identify these com-
monalities.
The framework must be readily presentable. The subject matter specialists may need to be
encouraged to think within the specific framework provided, even if it is natural (Gale 1987).

3.25 ROGET

ROGET helps a domain expert perform several critical design tasks during the early phases of
knowledge-base design. The most important of these tasks is the design of the conceptual structure
of the target consultation system, a description of the kinds of domain-specific inferences that the
consultant will perform and the facts that will support these inferences. Finally the conceptual
structure should fit into the EMYCIN system.
The initial dialogue that ROGET conducts with the expert to acquire the conceptual structure is
based on abstract categories that are independent from a particular domain.
The representation of a problem can be viewed as having two primary components, one structural
and the other inferential.
The expert system must capture both components: the vocabulary and the rules.

 64

ROGET claims that it assists in the proper selection of the domain terms and the organization of the
knowledge.
A comparison of several expert systems designed for diagnostic consultation shows a similarity in
the kinds of concepts that these systems employ and that they are essentially the same.
Each kind of diagnostic problem-solving task has an associated subset of abstract categories. After
identifying the primary problem-solving task, ROGET interacts with the expert to identify a set of
domain-specific counterparts to these categories. These terms form a skeletal design for the new
conceptual structure.
The advice that ROGET can provide is based on the classification of the type of diagnostic problem-
solving tasks the new expert system will perform. This classification serves as the basis for strong
expectations about the types of expertise the expert will need to identify and represent. The
knowledge about problem types and the general structure of expert system that solve these problems
provides ROGET with a domain-independent method of understanding the specific expertise in a
new application domain and acquiring a conceptual structure for that domain.

A ROGET consultation consists of four major steps:
1. Determine the problem-solving task type of the expert system.
2. Acquire the conceptual structure for the system.
3. Rescope the conceptual structure.
4. Reformulate the conceptual structure for a particular knowledge-engineering tool.

ROGET contains an enumeration of several diagnostic problem-solving tasks that an expert system
might perform. ROGET maintains an association between the names of different, well-known expert
systems and their primary problem-solving task type.
One other method that ROGET employs to determine the problem task type is to provide the expert
with examples of previous expert systems.
After determining the primary problem-solving task for the new consultant, ROGET begins the
acquisition of the conceptual structure. First, the problem task type identified at the beginning of the
consultation suggests an initial set of tasks and goals that might be applicable to this kind of
consultant. Then the conceptual structure is elaborated by the selection of catagories of advice and
evidence that the expert and ROGET determine are applicable and appropriate for this application.
The initial skeletal configuration can be thought of as made up of generic conceptual structures that
are suggested by ROGET and that are specialized by the expert.

The design of ROGET is based on the assumption that domain-specific examples from other
applications, coupled with simple, descriptive phrases associated with each of the categories, are
sufficient to guide the expert's choice, by analogy, of the proper domain-specific counterparts in the
new application.
In the stage of pruning the conceptual structure the expert is given the opportunity to check each
instance in the conceptual structure.
The final step in a ROGET consultation is the conversion of the conceptual structure into a form
suitable for operation with the system building tool.
At present, ROGET is only able to perform this conversion for expert systems in the EMYCIN
system (Bennett 1985).

 65

3.26 RuleMaster

RuleMaster is a knowledge system application generator.
RuleMaster appears to be better suited to classification than to construction problems, although it is
claimed to be useful for both. It provides a language for representing reasoning patterns, but
provides no assistance to the knowledge engineer in identifying and acquiring those patterns. It is
based on induction rules (see section 2.11) (Kornell 1987).

The two principal components of RuleMaster2 are RuleMaker, an automatic rule generator, and
Radial, a block-structured rule language. Two forms that knowledge can take are declarative and
procedural. Knowledge can be entered either in example format or directly in rules.
The RuleMaker feature automatically induces rules from sets of examples supplied by the expert. In
this way, declarative knowledge is easily integrated into the knowledge base.
Knowledge that already exists in a procedural form can be entered directly in a rule format via the
Radial language.

RuleMaster2 is commercially available. It is developed by Radian Corp. and can be used on IBM-
PC or compatible10 (RuleMaster2 1987).

3.27 SALT

SALT (kNowledge ACquisition Language) is a knowledge-acquisition tool for generating expert
systems that can use a propose-and revise problem-solving strategy.
So far little attention has been paid to automated knowledge acquisition for systems that solve
problems by constructing solutions.
SALT was developed as a knowledge-acquisition tool for VT, an elevator system configurer. The
input to the configurer was to include functional requirements for the completed configuration,
preferences for specific parts and a description of the spatial structure within which the configured
system must fit. The system's output was to consist of quantities, descriptions and model numbers of
parts selected and a specification of spatial relationships among parts and between parts and
structural landmarks (Marcus et al. 1985).

The system will start incrementally constructing a design by proposing values for design parameters.
The system will also identify constraints on design parameters. Whenever it detects a constraint
violation, the system will use domain expertise to consider past decisions that could be revised,
choose the most preferred revision that remedies the violation, remove anything potentially
inconsistent with that change, and continue extending the design from that point.
At the start of a SALT interview, the user is shown the menu for indicating the type of knowledge to
be entered or viewed. Three basic kinds of knowledge make up a propose-and-revise system:
1. Procedures for proposing values for the pieces of the design the system will output.
2. Identification of constraints on individual pieces of the design.
3. Suggestions for ways of revising the design if the constraints are not met.
Once the user enters these procedures, SALT stores that knowledge within a dependency network.

 10RuleMaster, RuleMaker, Radial, and IBM-PC are trademarks.

 66

Conclusion
SALT makes a strong commitment to the nature of the problem-solving strategy that will be used for
any task it will acquire. This allows SALT to represent domain knowledge according to the role it
will play in finding a solution for any task that can use this basic strategy. This commitment gives
SALT considerable power in guiding its interrogation of domain experts in the area where they most
need guidance - in making decisions that require consideration of the potential interactions of a
single piece of knowledge with everything else in the knowledge base.

SALT currently understands only a few variations of a problem-solving strategy. The ideal
knowledge-acquisition tool would be a true knowledge-engineering expert that understands a large
range of AI techniques. A research strategy that makes progress toward a goal of developing such a
tool is the one followed so far for SALT:
1. Focus the knowledge-acquisition tool on the problem-solving strategy that will be used by the

system it creates for one domain.
2. Try the tool on another domain for which the problem-solving strategy looks promising.
3. When the problem-solving strategy breaks down, identify characteristics of the domain that made

it break. This task will be tractable if the knowledge-acquisition tool makes explicit what the
problem-solving strategy is and how knowledge is used by the strategy.

4. Automate the analysis of the knowledge base to diagnose the breakdown and treat it (Marcus
1987).

In Stout et al. (1988) a more general use of SALT is described.

3.28 SEAR

R1 is an expert system to configure computer systems. It contains a very large amount of
knowledge. SEAR is a knowledge-acquisition tool for R1.
Knowledge acquisition tools like TEIRESIAS, ETS and MORE are tools for classification problem-
solvers. SALT and SEAR are different. The problem is how a problem-solving method can influ-
ence the development of a knowledge acquisition tool.
Knowledge has been represented in R1 in various ways; regulari-ties, to the extent they exist, have
gone unnoticed. One has to know R1 well to modify its behavior in some desired fashion.
The primary problem-solving method used by Rime has been derived from work done on R1-SOAR
- an experiment in knowledge intensive programming using a general problem architecture called
SOAR
(see Rosenbloom et al. 1986).

SOAR can create new productions, or chunks, based on the results of its goal-based problem solving
and then use these chunks to speed up its performance on subsequent goals. Because each new
chunk is logically entailed by the pre-existing knowledge base, this technique has been considered
symbol-level learning. It can also use this chunking mechanism to learn at the knowledge level, that
is, to acquire new knowledge (Greiner et al. 1988).
It is easier to add knowledge to Rime. The problem-solving method used by Rime provides more
direction to someone adding knowledge than does R1's method. This is in part because Rime's

 67

method integrates explicitly defined knowledge roles and in part because the person adding the
knowledge can specify the conditions under which one piece of knowledge should be applied in
preference to another.

SEAR as a knowledge collector and organizer.
The problem of knowledge acquisition can be more appropriately viewed as the problem of
knowledge maintenance. After eliciting the knowledge from a domain expert the knowledge is put
into an intermediate representation. This is a storehouse of domain knowledge in a declarative form.
The SEAR rule generator converts the intermediate representation into OPS5 rules that "pro-
ceduralize" the knowledge; that is, the knowledge is represented in a way that tailors its usefulness to
a problem-solving method so that there is no need to search the knowledge base when solving a
problem.
In SOAR, expertise can be added to a base system either by hand crafting a set of expertise-level
rules or by automatic acquisition of knowledge. Automatic acquisition of new rules is accomplished
by chunking, a mechanism that has been shown to provide a model of human practice, but is
extended here to much broader types of learning (Van de Brug 1986, Rosenbloom et al. 1984).

3.29 TDE

The TEST Development Environment (TDE) enables knowledge engineers and trained domain
experts to interactively build knowledge bases representing troubleshooting knowledge. TEST is an
application shell.

Expert-systems developers typically find that their knowledge-acquisition techniques change with
the course of system development. In first approaching a new problem, knowledge acquisition tends
to be exploratory. The goal is not only to acquire knowledge but, more important, to identify a
representational format and control strategy of sufficient power to capture domain-specific problem-
solving behavior and domain-specific knowledge. Once this is done, knowledge acquisition
becomes constrained by the target architecture.
Diminishing the knowledge-acquisition bottleneck thus requires two interlocked solutions. First, a
packaged problem-solving architecture which allows developers to focus on knowledge acquisition,
rather than on knowledge-base design and problem-solving control, and issues of typically greater
complexity. Second, a high-productivity workbench aimed at reducing the time it takes to build and
maintain knowledge bases.
In this vein, TEST provides an application shell for troubleshooting systems, while TDE provides
the high-productivity workbench domain experts use to build and maintain knowledge bases.
TDE continues a line of previous systems, including ROGET, MORE, SALT. TDE differs in two
ways: first, it uses a problem-solving strategy that is more comprehensible to domain experts in the
manufacturing and customers service domains. Second, TDE addresses the need for knowledge-
acquisition systems to conform to a developer's desire to provide information as it comes to mind.

The problem-solving architecture.
Knowledge acquisition is largely a matter of mapping the knowledge which supports expert
decision-making into the representations required by a problem-solving system. When there is a
conceptual correspondence between these representational units and the terms with which experts
understand their task and domain, mapping becomes a straightforward operation. In addition,

 68

conceptual correspondence makes direct-manipulation techniques readily available, and permits the
system to easily guide users engaged in knowledge-base development.
TEST uses semantic networks of schematic objects, or frames, to represent its key concepts.
The failure-mode represents a deviation of the unit under test from its standard of correct
performance. Within TEST, the failure-mode prototype describes the characteristics which must be
provided for each failure-mode instance, such as a broken cooling unit.
Other prototype objects within TEST include questions, tests, test-procedures, repair-procedures,
rules, decision-nodes, and parts.
Since the failure-mode is the key concept in most trouble-shooting tasks, such aggregates provide an
easily understood and readily accessible structure.
The search space can be dynamically altered by rules sensitive to information acquired during a
diagnostic session.

By providing a mixed-initiative multi-task environment, TDE allows knowledge engineers and
domain experts the option of directing or being directed by the underlying knowledge-acquisition
system. By providing a graphic interpretation of the underlying knowledge base as it changes with
respect to user input, users are provided with a context in which to understand the impact of replies
to system prompts.
TDE supports knowledge-based enhancement by providing tools that support knowledge-based
browsing, modification and debugging.
The TEST architecture greatly aided the development of the TDE workbench. In particular, the
choice of a schematic as opposed to rule-based representation led to a knowledge base characterized
by the use of domain-familiar concepts, and sufficient conceptual structure to facilitate several TDE
features (Kahn et al. 1987).

3.30 TEIRESIAS

TEIRESIAS is a program designed to function as an assistant in the task of building large
knowledge-based systems. It embodies a particular model of interactive transfer of knowledge from
a human expert to the system, and makes possible knowledge transfer in a high level dialog
conducted in a restricted subset of natural language.
Of the major problems, the weakness of the natural-language-understanding techniques presents the
largest barrier to better performance.
Knowledge acquisition in the context of a shortcoming in the knowledge base, for instance, has
proved to be a useful technique for achieving transfer of expertise, offering advantages to both the
expert and TEIRESIAS (Davis 1977).

Two major goals were used as guidelines in creating a set of tools for the construction, maintenance,
and use of large, domain specific knowledge bases. First, it should be possible for an expert in the
domain of application to "educate" the performance program interactively, commenting on and
correcting its behavior. Second, it should be possible for the expert to assemble and maintain a large
body of knowledge.

The central theme of the development of TEIRESIAS is the exploration and use of what is labeled
meta-level knowledge. This concept is about "knowing what you know".

 69

MYCIN provided the context in which TEIRESIAS was developed. MYCIN was designed to
provide consultative advice on diagnosis and therapy for infectious diseases.
TEIRESIAS is written in INTERLISP, an advanced dialect of LISP.

There are two major forms of knowledge representation in use in the performance program:
1. The attributes, objects, and values which form a vocabulary of domain-specific conceptual

primitives.
2. The inference rules expressed in terms of these primitives.

TEIRESIAS

N

ENGINE INFERENCE DOMAIN
EXPERT

There are, correspon
primitives - to expand
2. The acquisition of n

Knowledge levels in k
The first level of the h
organisms, drugs, etc.
by an extensive collec
The next level is conc
the predicate functions
Knowledge at the thir
general. The second-o

The most general te
knowledge base, as in
been established or is
interprets the same pi
explanation is thus con
information (the templ

The interaction betwe
transfer of expertise".
with new problems to
interrupt to request a
EXPLANATIO
KNOWLEDGE BASE
KNOWLEDGE
ACQUISITION
*********The TEIRESIAS architecture ***************************
figure 3.2

dingly, two forms of knowledge acquisition: 1. The acquisition of new
 the performance program's vocabulary of concepts.
ew rules expressed in terms of existing primitives.

nowledge-acquisition routines.
ierarchy contains the object-level knowledge - medical knowledge of cultures,
 High performance on the task of diagnosis and therapy selection is supported
tion of knowledge about objects in the medical domain.
erned with the conceptual building blocks of the knowledge representation -
, attributes, values, rules, and so on.
d level is concerned with the conceptual primitives behind representations in
rder system can be used to acquire knowledge about a representation.

chnique involves having TEIRESIAS directly examine the rules in the
 the use of the templates to determine whether a premise clause has already
 still untested. In doing this, TEIRESIAS's explanation facility examines and
ece of code that the performance program is about to execute. The resulting
structed with reference to the content of the rule, and this referral is guided by
ates) contained in the rule components themselves.

en the domain expert and the performance program is viewed as "interactive
 This can be seen in terms of a teacher who continually challenges a student
 solve and carefully observes the student's performance. The teacher may

 justification of some particular step the student has taken in solving the

 70

problem or may challenge the final result. This process may uncover a fault in the student's
knowledge of the subject (the debugging phase) and result in the transfer of information to correct it
(the knowledge acquisition phase).
Knowledge acquisition is emphasized in the context of shortcomings in the knowledge base.

The schemata are the primary vehicles for describing representations. They were developed as a
generalization of the concept of record structures and strongly resemble them in both organization
and use.

Levels of knowledge and schemata.
0. The base of domain-specific knowledge consists of the collection of all instances of each

representation.
1. The base of representation-specific knowledge consists of the schemata, which are, in effect, the

declarations of the extended data types. These have a degree of domain independence since they
describe what an attribute is, what a value is, etc., without requiring a priori knowledge of the
domain in which those descriptions will be instantiated.

2. The base of representation-independent knowledge - the schema-schema - describes what a
declaration looks like. At this level resides knowledge about representations in general and about
the process of specifying them via declarations.

The inability to deal with more complex interrelationships of representations is currently the
system's primary shortcoming.
The knowledge-acquisition capabilities of the schemata offer a very organized and thorough
assistance that can:
- Attend to many routine details. Some of these are details of data structure management, and having
the system attend to them means the expert need to know nothing about programming.
- Show how knowledge should be specified.
- Make sure that the user is reminded of all the items he has to supply.

Summary
Knowledge acquisition was described as a process of interactive transfer of expertise from an expert
to a performance program, in which TEIRESIAS's task was to "listen" as attentively and intel-
ligently as possible. The process was set in the context of a shortcoming in the knowledge base, as
an aid for the expert. He is faced with a specific consultation whose results he finds incorrect and has
available to him a set of tools that will allow him to uncover the extent of the system's knowledge
and the rationale behind his performance. His task is then to specify the particular difference
between the system's knowledge and his own that accounts for the discrepancy in results (Davis and
Lenat 1982).

TEIRESIAS aids a human expert in monitoring the performance of a knowledge-based system.
When the human expert spots an error in the program's performance, in either the program's
conclusions or its line of reasoning, TEIRESIAS assists in finding the source of the error in the
database by explaining the program's conclusions - retracing the reasoning steps until the faulty or
missing rule is identified. At this point, TEIRESIAS assists in knowledge acquisition, modifying
faulty rules or adding new rules to the database.
Meta-level knowledge about the kinds of rules and concepts in the database is applied to build
expectations in TEIRESIAS's model-based understanding process.

 71

Meta-level knowledge is also used to encode problem-solving strategies, in particular, to order the
invocation of rules so that those that are most likely to be useful are tried first (Barr, Cohen and
Feigenbaum 1981).

3.31 TIMM

The expert system TIMM/Tuner has been developed to tune VAX's11.
Two features of the development of this system merit the attention of artificial intelligence
application engineers. The first is a simple and rapid automated knowledge-acquisition strategy. The
second is an atypical inference procedure which maintains the strength of standard forward chaining
while providing for program sensitivity to gradation of meaning within rule clauses.

To approach the problem of automated knowledge acquisition, TIMM separates knowledge into
declarative and procedural sections, much like frame-based systems which allow attached
procedures.
The declarative foundation allows for an action-oriented approach to the development of procedural
knowledge. The action-oriented approach is based on the belief that most experts are better at doing
than at describing. TIMM uses the domain description in the declarative knowledge section to
synthesize realistic example problems.
These are the basis of an interactive dialog with the expert, oriented toward making decisions
(doing), rather than explaining how decisions are made (describing).

TIMM greatly reduced the need for knowledge engineering assistance in building TIMM/Tuner.
Some need for knowledge engineering principles remain.
TIMM has low cost for turning around or starting over in the early stages of development (Kornell
1984).
TIMM is commercially developed by General Research Corp. for use on an IBM-PC12 or
compatible.

3.32 OTHER SYSTEMS

It is not feasible in the scope of this paper to give a complete overview of all the systems that
possibly exist. In the preceding sections only the most important and often the best documented
systems are described. In the following list I enumerate several systems that are worth mentioning,

 11TIMM and TIMM/Tuner are trademarks.

 12IBM-PC is a trademark.

 72

although little literature about them is available.

The Advice Taker/Inquirer (AT/I) is a domain-independent program that is used to construct,
monitor, and improve an expert system.
In the learning phase, the Advisor teaches a strategy to the AT/I by providing it with general
principles, specific examples, and assertions. Advice consists of a description of a situation and a
recommended set of actions (possibly tagged with a certainty factor) to be performed. The system
requests the expert for clarification whenever his advice is inconsistent, incomplete, or vague.
During execution of the expert system, the AT/I enters the operational phase, in which it monitors
and suggests improvements to the expert's strategy by analyzing its performance with respect to the
current environmental situation and previous experience. Weaknesses in the strategy are detected
and corrected automatically by the AT/I whenever possible (Cromp 1985).

The CONSUL system is an expert system that supports interactions between users and online
services. CONSUL is designed as a general framework in which a wide variety of services can be
embedded. One component of the CONSUL system is made to acquire the necessary knowledge in a
semiautomatic way (Wilczynski 1981).

EXPERT is a system for designing and building models for consultation. EXPERT is an expert-
system shell rather than a knowledge-acquisition tool. The EXPERT system allows for efficient
testing of changes due to particular knowledge-base revisions.
Part of the program evaluates the current rules according to how many correct and incorrect problem
solutions they are involved in over a large set of test cases. This program finds weak rules in the
knowledge base (Weiss and Kulikowski 1979, Hayes-Roth et al. 1986).

EXPERT-EASE is a commercial version of ID3, which is an algorithm that can make decision trees
with positive and negative instances of a concept (Michie 1987).

HERACLES is an expert-system shell for solving heuristic-classification problems and ODYSSEUS
is an apprenticeship learning program. Both are used in combination with the expert systems of the
MYCIN family (Wilkins et al. 1987).

MUM (Manage Uncertainty in Medicine) is an expert system that combines knowledge in order to
avoid uncertain conclusions, given uncertain knowledge. It is also able to make decisions in diagno-
sis, based on control rules (Gruber and Cohen 1987).

SEEK is an interactive system that provides a unified framework for designing and testing expert
models, and is applied to the development of a diagnostic consultation system in rheumatology
(Politakis 1985).

 73

CHAPTER 4

AUTOMATED KNOWLEDGE-ACQUISITION SYSTEMS II: EVALUATION

In this chapter the automated knowledge-acquisition systems are evaluated in terms of their formal
structure. It is impossible to assess these systems for their quality only using their descriptions.
Comparing these systems in action would give a substantial evaluation of their performances, but
that is not within the scope of this paper. Moreover, evaluations of systems are rarely found in the
literature.

The main conclusion that can be drawn from the previous chapter is that automated knowledge
acquisition is not a univocal choir of singers, but it is easy to distinguish the various systems.

4.1 DEDICATED SYSTEMS

The most obvious distinction that can be found is between automated knowledge-acquisition
systems that are specially designed for a certain expert system and the general-purpose systems. This
distinction can also be called dependent versus independent automated knowledge-acquisition
systems.

The specially dedicated systems are Meta-DENDRAL, INFORM, KAE, KAS, KNACK, LEAP, the
automated knowledge-acquisition system for MOLGEN, OPAL, the automated knowledge-
acquisition system for REX, ROGET, SALT, SEAR, TEIRESIAS, and TIMM.
The essence of these systems is that they use the same structure(s) as the expert system for which
they are constructed. The knowledge-acquisition system can consist of a model of the domain; it can
use the same sort of representation as the knowledge base uses; it can also use the inference system
of the expert system; or a combination of these. We can say that the knowledge-acquisition system
operates analogously to its expert system.
Thus, the dedicated systems have a great advantage over the independent systems. They do not need
to acquire the domain structure which is more difficult to obtain than the data and rules that fill the
slots.

Both in ROGET and TEIRESIAS the technique of the MYCIN expert systems is very explicitly
present.
TEIRESIAS exploits meta-level knowledge, i.e., knowledge about the knowledge base of the expert
systems. With this knowledge TEIRESIAS is able to trace shortcomings in the knowledge base, but
also to explain the conclusions of the program. In its capacity as a knowledge-acquisition tool,
TEIRESIAS is able to communicate between the knowledge base and the domain expert.
ROGET is also able to acquire knowledge for expert systems of the MYCIN family. In the initial
stage of knowledge acquisition ROGET method is to provide the domain expert examples from
other existing expert systems. Thus the conceptual structure of the new expert system is chosen from
an existing system, according to the task for which it will be used. ROGET operates with analogy.

TEIRESIAS and ROGET are dedicated to MYCIN-like expert systems but not only to one system.

 74

The following knowledge-acquisition systems are specially built to facilitate the expansion of one
particular expert system:

Meta-DENDRAL works only for DENDRAL. It uses in its knowledge-acquisition process a
semantic model of the DENDRAL domain.

KAS, the knowledge-acquisition system for PROSPECTOR, knows the representation structure of
the main system. A semantic network matcher is used to compare the input by the expert and the
system. KAS also contains the PROSPECTOR inference engine.

KNACK uses the problem solving methods and knowledge roles of the expert systems it can build.

LEAP has an initial domain theory that enables it to derive generalizations from examples.

OPAL uses a domain model of ONCOCIN for which it acquires knowledge. The domain model is
constructed in such way that it matches the course of thinking that oncologists follow in their field.

The knowledge-acquisition system for REX contains a conceptual framework of the prototyped
expert system. This enables the expert to formulate his knowledge in terms of the knowledge base of
the expert system.

SALT is the knowledge-acquisition system for VT which is an expert system that can configure
elevator systems.
SEAR is the knowledge-acquisition system for R1, a computer system configurer. Both use the
problem-solving strategies of their expert system to acquire domain knowledge.

TIMM uses the domain description to conduct a dialog with the domain expert.

TDE is not dedicated to a particular expert system, but is meant for building expert systems that
utilize trouble shooting knowledge. TDE uses semantic networks of schematic objects or frames.
INFORM operates in the same way.

KAE is typical for acquiring knowledge about interpreting aerial imagery. In this list of automated
knowledge-acquisition systems KAE is the only system that is built for solving visually related
problems.

The knowledge-acquisition system for MOLGEN is somewhat different since it is not a separate
system. It provides a direct access to the knowledge base by ways of a stylized form of natural lan-
guage. MOLGEN's knowledge base is built by domain experts themselves using declarative and
procedural knowledge. Since they know the structure of the system there is no need for a separate
construction of the knowledge-acquisition system.

4.2 STAND-ALONE SYSTEMS

The automated knowledge-acquisition systems that are not dedicated to certain expert systems have

 75

their own methods of acquiring knowledge.

Repertory grid method
Most common is the repertory grid method. This is used in AQUINAS, its predecessor ETS,
KITTEN, KRITON (and its predecessor PLANET).
In the repertory grid method the expert is asked to list, compare and rate series of items. The system
is able to build hierarchical and relational structures from these ratings. This method serves well in
areas with classification and diagnosis problems. Design and planning areas that are built up from
components rather than broken down, are not suited for the repertory grid method.
Repertory grid is only one of the components of KRITON's method. The combination with other
methods makes KRITON more powerful than AQUINAS and the others.
Goodall (1985) points out that repertory grid analysis is time consuming if there are more than 6
domain objects.

Structured knowledge acquisition
Structured knowledge acquisition is the knowledge-acquisition approach used in KADS. It serves as
an example in the European versus American controversy about whether expert-system building
should be done by careful planning or by rapid prototyping.
KADS uses a library of standard models of prototypical domains. This choice gives the advantages
of the dedicated systems. Analysis of the elicited data from the expert knowledge leads to a
conceptual model of the system to be built. This interpretation model can collect and interpret data
from the expert.
The drawbacks of this system is the time-consuming preparation before the actual expert system
building process. The risk that the structured plan does not serve well enough the purpose is too high
to implement in an early stage. Often this shows in a much later phase of the expert system
development and thus causes waste of time and effort. On the contrary, in rapid prototyping wrong
directions can easily be corrected in an early stage. On the other hand a well structured plan in
advance leads towards a more consistent and complete built knowledge base.
The more examples of KADS are developed the more structures are available to choose from. Thus
it becomes similar to a multi-dedicated automated knowledge-acquisition system.
A difficulty with KADS seems to be that the interpretation and structuring process start working
after the verbal data have been submitted. The interpretation model for interpreting verbal protocols
gives room for misinterpretation. It is an extra burden to the system. While on the other hand
structured interviewing by the system, using the structured outline of the knowledge base, avoids an
extra phase in the knowledge-acquisition process.

4.3 MACHINE-LEARNING METHODS

Several automated knowledge-acquisition principles are not related to the fact that the system is
independent or dependent of an existing expert system or family of systems.

A promising technique in automated knowledge acquisition is the method of machine learning. The
essence of machine learning is that the system can generate rules from given samples. (For more
details and possibilities see section 2.11.)

 76

KLAUS and its derivatives use the machine-learning technique that is known as "learning by being
told".
It has the capability to process natural language in various ways (including recognizing patterns and
analogy). Its pilot system, NANOKLAUS contains seed concepts such as classes of things and
relations. The input consists of concepts and vocabulary of the domain. KLAUS is able to transfer
these concepts into different knowledge representation systems.

LEAP is a dedicated automated knowledge-acquisition system. It collects training examples to make
generalizations, but it uses also the domain theory of the expert system to validate the examples.

PROTOS learns by asking the expert about facts and rules and the explanation of them. Then it is
able to classify them and to detect missing information.

RuleMaster and EXPERT-EASE are systems that use algorithms to induce rules from given
examples.

BLIP learns from the expert to specify a "sloppy" domain model by asking about definitions of the
concepts. There is explicitly no structure involved. This allows the expert and the system to be as
flexible as possible.

The knowledge acquisition system Meta-DENDRAL is an example of learning by example. It uses a
huge quantity of examples of molecular structures (DENDRAL determines molecular structures) to
generate rules. These rules are added to the domain model. Meta-DENDRAL has proven to be able
to discover new rules.

When domains get bigger and more complex, experts become unable to explain how they operate.
However, they can still supply the knowledge engineer with suitable examples of problems and solu-
tions. Using rule-induction will allow expert systems to be used in these more complicated fields. On
the other hand, rule-induction programs do not help select the attribute, or do not help discover that
two attributes are functionally or causally related (Goodall 1985).

4.4 NATURAL-LANGUAGE PROCESSING

An approach that is used in several systems is natural-language processing. The reason why research
is done in this direction is that domain experts and end-users are not accustomed to working with
formalisms. To ease this problem the use of natural language in the dialog with the domain expert is
proposed.

Natural-language processing is only part of the knowledge-acquisition process. However, in some
European publications on knowledge acquisition, the main focus is on natural language, assuming
that the problem of knowledge acquisition would be solved as long as the system could deduct rules
from sentences in natural language.

Some, like ALICE (Fum 1985), plan to be a full automated knowledge-acquisition system that
models the cognitive processes that occur in humans when they learn descriptive texts and are able

 77

to reason about it.

Automated language understanding is still a difficult subject. In this stage of automated knowledge-
acquisition research, it seems only to narrow the knowledge-acquisition bottleneck when extra
problems such as language processing are part of the system. In TEIRESIAS natural language is also
a barrier in its performance.

The systems that use natural language as part of their system are doing this to ease the dialog with
the domain expert.

ASTEK, like OPAL, uses natural language in the knowledge-acquisition process. The automated
knowledge acquisition is regarded as an extension of the dialog between a human expert and the
knowledge representation of the expert system. A fundamental part of this approach is that ASTEK
is guided by a model of the domain knowledge by specifying the types of knowledge structures.

In KITTEN the analysis of natural language is integrated with the repertory grid method. It can
construct a prototype with statements in natural language. This has been proven to stimulate experts
to submit knowledge from different perspectives.

KLAUS is able to process natural language in a machine-learning system. The latest literature on
KLAUS dates from 1983 (Grosz and Stickel) in which it was mentioned that more emphasis on
natural language was stressed.

4.5 OTHER TYPES OF KNOWLEDGE ACQUISITION

Data analysis
As mentioned before, KADS needs data analysis to convert the verbal data of protocols into data and
rules for the knowledge base. Actually it is much more than conversion. The verbal data should map
into the knowledge structure. For this purpose KADS uses a hierarchy of levels of knowledge.

KRITON employs a set of different methods for different aspects of the knowledge-acquisition
process. For the interpretation of verbal data it also uses data analysis. The authors admit that data
analysis is still a difficult task.

KEATS is a tool that helps the knowledge engineer to organize the raw data of the protocols.
(KEATS is not a genuine automated knowledge-acquisition system.) KEATS has a frame-based
knowledge representation and uses a graphic interface that functions as a blackboard and controls
the knowledge base. On this basis it is able to analyze the protocols.

Mixed approaches
Several systems are combinations of automated knowledge-acquisition subsystems.

KRITON is a typical mixed approach automated knowledge-acquisition system. Expert knowledge
is obtained by automated interview methods (such as repertory grid) and protocol analysis. Textbook
knowledge is gathered by text-analysis techniques. Then the acquired knowledge is represented in

 78

an intermediate knowledge representation. This serves as a blackboard to generate the desired
representation of the knowledge base and check the knowledge for consistency and completeness.

Other systems
MORE is a stand alone system, but only used for diagnostic problem-solving expert systems. Its
knowledge-acquisition process is based on a domain model. Using the pattern of relations between
hypotheses and symptoms MORE is able to build a domain model from which it generates rules.
MORE is able to look for inconsistencies and deficiencies. MOLE, the successor of MORE, uses a
heuristic problem solver in interaction with the problem-solving method of the expert system.
MOLE works with domain independent (although limited to diagnosis problems) heuristics about
the knowledge-acquisition process and the context of diagnosis.

Kn

Ac is a knowledge matcher. It is able to anticipate modifications, like incomplete knowledge, in
the knowledge base. It works with heuristics about the knowledge-acquisition process like a
knowledge engineer would do.

KREME, a system for knowledge acquisition and knowledge editing is able to use different kinds of
knowledge representation. The goal is to develop various knowledge-acquisition approaches.

KLAUS is able to transfer its acquired knowledge into various knowledge representations.

Knowledge acquisition from multiple experts
KITTEN and KNACK gather knowledge from multiple experts. ETS can do the same, but the end
user can evaluate the input from the various experts and can make a choice.

4.6 KNOWLEDGE LEVELS

The more complicated systems need to supervise the flow of knowledge. Therefore "knowledge of
knowledge" or meta-knowledge is introduced. With meta-knowledge the system knows what is
going on. This metaknowledge may vary from sorts of bookkeeping or using blackboard methods.
But also levels of knowledge are distinguished and used to serve the various kinds of knowledge.

INFORM distinguishes 4 conceptual levels of knowledge:
1. The diagram filling level.
2. Knowledge about the knowledge-engineering activities.
3. The heuristic approach for the encoding process.
4. The level of providing explanation.

KADS distinguishes four layers of expert knowledge, corresponding to the different roles that
knowledge plays in reasoning processes:
1. The domain level contains the static knowledge of the domain.
2. The inference level applies this knowledge into rules.
3. The task level describes the goals and tasks.
4. The strategic level plans, controls, and debugs.

 79

KADS uses 5 levels for mapping verbal data into the knowledge base:
1. Knowledge identification; the recording of verbal data.
2. Knowledge conceptualization; the formalization of the data into concepts, conceptual relations,

etc.
3. Epistemological analysis; the structural properties of the conceptual knowledge are uncovered by

an epistemological framework.
4. Logical analysis; this applies to the formalisms of the knowledge in the higher levels.
5. Implementational analysis; the mechanisms are uncovered on which higher levels are based.

Metalevel knowledge in TEIRESIAS is about knowing what you know. This knowledge takes care
of the process of understanding the data and rules. From here it can develop strategies in the infer-
ence process.
Other knowledge levels in TEIRESIAS in the knowledge-acquisition routine:
1. Object level knowledge.
2. Knowledge of the conceptual building blocks of the knowledge representation, such as attributes,

values, rules.
3. The description of the conceptual primitives behind the representations.

4.7 CONCLUSION

The many examples of automated knowledge-acquisition systems in various stages of sophistication
give enough reason to predict a prosperous future for this sort of system.

Dedicated knowledge acquisition systems for one particular expert system (or group of expert
systems) seem to work very well. Also knowledge-acquisition systems that can handle not too
complex tasks are satisfying.
But all round systems that are usable during the whole process of expert-system building and for all
kinds of expert systems are not feasible. The development of such a system will take a considerable
amount of manpower over a long period of time (Bennett 1987).

Many aspects of the knowledge-acquisition process are particularly apt for automation. Or, more
precisely, several tasks in the knowledge-acquisition process will be performed better when they are
automated than when they are done by a human knowledge engineer.
The knowledge-engineering tasks that are specially difficult for human performance should anyhow
be automated. For example knowledge-base refinement, consistency checking, machine learning are
specially suitable. Also all the tasks that need constant tracking and overviewing are particularly
appropriate for automation.

Preliminary interviewing by the knowledge engineer seems a must to get himself acquainted with
the domain. This is not so much knowledge acquisition for the expert system, but for the knowledge
engineer to be able to direct the project. It does not seem relevant to automate this part of knowledge
acquisition. But from here on it is possible to use automated techniques.
Concepts, their hierarchies and their relations can be acquired by scaling and repertory grid methods.
Experts are good in giving advice when confronted with cases. Using the concepts learned with the

 80

previous methods, the system can guide the dialog with the expert to elicit production rules from
problem cases.
Automated refinement and debugging are already mentioned.

An automated knowledge-acquisition system that can handle the entire process is not only able to do
more, but also the different stages can benefit from each other.
It is also worthwhile to generalize well-working dedicated systems or to expand multifunctional
systems, such as KRITON. There is no point in reinventing the wheel.
Systems that can handle various tasks seem to be better than one task systems. Real life expert
problems are seldom of one kind, but mainly mixed.
It is not unthinkable that systems that can handle different tasks are able to solve more creatively
tasks than the knowledge engineer would do.

Some serious problems remain to be solved. Several knowledge-acquisition tasks are particularly
difficult for human knowledge engineering. I chose the ones that are mentioned in chapter 2, the
ones that I find particularly interesting.
The man-machine mismatch problem and the knowledge-representation versus knowledge-
acquisition problem are the crucial ones. So far not much has been done about these problems.
Another problem is the recognition of structures in the various stages of the knowledge-acquisition
process. The guidance of the knowledge-acquisition process on the system level seems solved by
blackboard systems, but the guidance on a metalevel throughout the whole process is more
complicated.

In a forthcoming paper I shall go more extensively into the relations between knowledge
representation, knowledge acquisition and mental models in the expert-system-building process.

 81

BIBLIOGRAPHY

Abrett and Burstein 1987
Glenn Abrett and Mark H.Burstein. The KREME knowledge editing environment. International
Journal of Man-Machine Studies 27 (1987)

ACL 1985
Proceedings of the Second Conference of the European Chapter of the Association for
Computational Linguistics. Geneva, Switzerland. March 1985.

Antonelli 1983
David R. Antonelli. The application of Artificial Intelligence to a maintenance and diagnostic
information system. In: J.J. Richardson, ed. Artificial Intelligence in maintenance. In: Proceedings
of the Joint Services Workshop on Artificial Intelligence in Maintenance. Boulder, CO 1983. (Noyes
1985)

Avignon 1987
Les systèmes experts et leurs applications. 7th International workshop. Avignon, France. May 1987.
(Nanterre 1987)

Bareiss et al. 1988
E.Ray Bareiss, Bruce W.Porter, Craig C.Wier. Protos: an exemplar-based learning apprentice.
International Journal of Man-Machine Studies 29 (1988)

Barr, Cohen, and Feigenbaum 1981
Avron Barr and Edward A.Feigenbaum, eds. The Handbook of artificial intelligence. Volumes I and
II. Paul R.Cohen and Edward A.Feigenbaum, eds. Volume III. (William Kaufmann 1981)

Becker and Selman 1986
Sue Becker and Bart Selman. An overview of knowledge acquisition methods for expert systems.
Tech Rep CSRI-184 June 1986. Computer Systems Research Institute, University of Toronto.

Bennett 1985
J.S.Bennett. ROGET: A knowledge-based system for acquiring the conceptual structure of a
diagnostic expert system. Journal of Automated Reasoning 1 (1985)

Bennett 1987
J.S.Bennett. Personal communication. Stanford, CA. August 1987.

Berry 1987
Dianne C.Berry. The problem of implicit knowledge. Expert Systems 4 (1987)

Bobrow and Winograd 1977
D.Bobrow and T.Winograd. An overview of KRL, a knowledge representation language. Cognitive
Science 1 (1977)

 82

Boose 1984
John H.Boose. Personal Construct Theory and the transfer of human expertise. In: Proceedings of
the 4th conference of the AAAI. Austin, TX, 1984

Boose 1985
John H.Boose. A knowledge acquisition program for expert systems based on personal construct
psychology. International Journal of Man-Machine Studies 23 (1985)

Boose 1986a
John H.Boose. Rapid acquisition and combination of knowledge from multiple experts in the same
domain. Future Computing Systems 1 (1986)

Boose 1986b
John H.Boose. Expertise transfer for expert system design. (Elsevier Science Publ. 1986)

Boose 1988
John H.Boose. Uses of repertory grid-centred knowledge acquisition tools for knowledge-based
systems. International Journal of Man-Machine Studies 29 (1988)

Boose and Bradshaw 1987
John H.Boose and J.M.Bradshaw. Expertise transfer and complex problems: using AQUINAS as a
knowledge-acquisition workbench for knowledge-based systems. International Journal of Man-
Machine Studies 26 (1987)

Boose and Gaines 1988
J.H.Bosse and B.R.Gaines, eds. Knowledge acquisition tools for expert systems. (Academic Press
1988)

Brachman and Levesque 1985
Ronald G.Brachman and Hector J.Levesque, eds. Readings in knowledge representation. (Morgan
Kaufmann Publishers Inc. 1985)

Brachman et al. 1985
Ronald G.Brachman, Richard E.Fikes, and Hector J.Levesque. KRYPTON: A functional approach
to knowledge representation. In: Brachman and Levesque 1985

Bramer 1985
M.A.Bramer, ed. Research and development in expert systems. (Cambridge University Press 1985)

Breuker and Wielinga 1985
Joost Breuker and Bob Wielinga. KADS: Structured knowledge acquisition for expert systems. In:
Expert systems and their applications. 5èmes Journées internationales. Avignon, France. May 1985.
(Agence de l'informatique 1985)

Breuker and Wielinga 1987
Joost Breuker and Bob Wielinga. Use of models in the interpretation of verbal data. In: Kidd 1987

Buchanan and Feigenbaum 1978

 83

Bruce G.Buchanan and Edward A.Feigenbaum. DENDRAL and Meta-DENDRAL: their
applications dimension. Artificial Intelligence 11 (1978).

Buchanan et al. 1983
Bruce G.Buchanan, David Barstow, Robert Bechtal, James Bennett, William Clancey, Casimir
Kulikowski, Tom Mitchell, and Donald A. Waterman. Constructing an expert system. In: Hayes-
Roth et al. 1983

Burton et al. 1988
A.M.Burton, N.R.Shadbolt, A.P.Hedgecock, and G.Rugg. A formal evaluation of knowledge
elicitation techniques for expert systems: domain 1. In: D.S.Moralee. Research and development in
expert systems IV. Proceedings of Expert Systems '87. Brighton, England. December 1987.
(Cambridge University Press 1988)

Bylander and Chandrasekaran 1987
Tom Bylander and B.Chandrasekaran. Generic tasks for knowledge-based reasoning: the "right"
level of abstraction for knowledge acquisition. International Journal of Man-Machine Studies 26
(1987)

Clancey 1983
W.J.Clancey. The epistemology of a rule-based expert system - a framework for explanation.
Artificial Intelligence 20 (1983)

Clancey 1985
William J.Clancey. Heuristic Classification. Artificial Intelligence 27 (1985)

Cooke and McDonald 1987
Nancy M.Cooke and James E. McDonald. The application of psychological scaling techniques to
knowledge elicitation for knowledge-based systems. International Journal of Man-Machine Studies
26 (1987)

Cromp 1985
Robert T.Cromp. The task, design and approach of the Advice Taker/Inquirer System. TR-85-014.
Arizona State University, Tempe, Arizona.

Davis 1977
Randall Davis. Interactive transfer of expertise: acquisition of new inference rules. In: Proceedings
of the 5th IJCAI. Cambridge, MASS, 1977

Davis and Lenat 1982
Randall Davis and Douglas B.Lenat. Knowledge-based systems in artificial intelligence. (McGraw-
Hill 1982)

De Greef and Breuker 1985
Paul de Greef and Joost Breuker. A case study in structured knowledge acquisition. In: Proceedings
of the 9th IJCAI, Los Angeles, CA, 1985

 84

De Greef, Schreiber, and Wielemaker 1988
Paul de Greef, Guus Schreiber, and Jan Wielemaker. StatCons: een case-study in gestructureerde
kennisacquisitie. In: Proceedings of the NAIC-88. Amsterdam, April 1988.

De Groot 1965
Adriaan de Groot. Thought and choice in chess. (Mouton, The Hague 1965)

Diederich et al. 1987
Joachim Diedrich, Ingo Ruhmann and Mark May. KRITON: a knowledge acquisition tool for expert
systems. International Journal of Man-Machine Studies 26 (1987)

Duda and Reboh 1984
Richard O.Duda and René Reboh. AI and decision making: The PROSPECTOR experience. In:
W.Reitman, ed. Artificial Intelligence applications for business. (Ablex Publ.Comp. 1984)

Ericsson and Simon 1984
K.A.Ericsson and H.A.Simon. Protocol analysis. Verbal reports as data. (MIT Press 1984)

Eshelman 1988
Larry Eshelman. MOLE: a knowledge acquisition tool that buries certainty factors. International
Journal of Man-Machine Studies 29 (1988)

Eshelman et al. 1987
Larry Eshelman, D.Ehret, J.McDermott, and M.Tan. MOLE: a tenancious knowledge acquisition
tool. International Journal of Man-Machine Studies 26 (1987)

Feigenbaum 1977
Edward A.Feigenbaum. The art of artificial intelligence: themes and case studies of knowledge
engineering. In: Proceedings of the 5th IJCAI, Cambridge, MASS, 1977

Feigenbaum and McCorduck 1983
Edward Feigenbaum and Pamela McCorduck. The fifth generation: artificial intelligence and Japan's
computer challenge to the world. (Addison-Wesley 1983)

Findler 1979
N.V.Findler, ed. Associative networks: Representation and use of knowledge by computer.
(Academic Press 1979)

Friedland 1981
Peter Friedland. Acquisition of procedural knowledge from domain experts. In: Proceedings of the
7th IJCAI, Vancouver, B.C., 1981

Fum 1985
Danilo Fum. Natural language processing and the automatic acquisition of knowledge. In:
Proceedings of the Second Conference of the European Chapter of the Association for Computa-
tional Linguistics. Geneva, Switzerland. March 1985

 85

Gaines 1987
Brian Gaines. An overview of knowledge acquisition and transfer. International Journal of Man-
Machine Studies 26 (1987)

Gaines and Boose 1988
B.R.Gaines and J.H.Boose, eds. Knowledge acquisition for knowledge-based systems. (Academic
Press 1988)

Gale 1987
William A.Gale. Knowledge-based knowledge acquisition for a statistical consulting system.
International Journal of Man-Machine Studies 26 (1987)

Gammack and Young 1985
John G.Gammack and Richard M.Young. Psychological techiques for eliciting expert knowledge.
In: Bramer 1985

Gentner and Stevens 1983
D.Gentner and A.L.Stevens, eds. Mental models. (Erlbaum 1983)

Ginsberg et al. 1985
A.Ginsberg, S.Weiss, and P.Politakis. SEEK2: A generalized approach to automatic knowledge base
refinement. In: Proceedings of the 9th IJCAI, Los Angeles, CA, 1985

Goodall 1985
Alex Goodall. The guide to expert systems. (Learned Information Ltd. 1985)

Greiner and Lenat 1980
R.Greiner and D.B.Lenat. A representation language language. In: Proceedings of the 1st conference
of the AAAI, Stanford, CA, 1980

Greiner et al. 1988
Russell Greiner, Bernhard Silver, Sue Becker and Michael Grüninger. A review of machine learning
at AAAI-87. Machine Learning 3 (1988).

Grosz and Stickel 1983
B.J.Grosz and M.E.Stickel. Research on interactive acquisition and use of knowledge. Final rep. 3
Jul 80 - 30 Nov 83 SRI International, Menlo Park, CA. 1983

Grover 1983
Mark D.Grover. A pragmatic knowledge acquisition methodology. In: Proceedings of the 8th IJCAI,
Karlsruhe, West Germany, 1983

Gruber and Cohen 1987
Thomas R.Gruber and Paul R.Cohen. Design for acquisition: principles of knowledge-system design
to facilitate knowledge acquisition. International Journal of Man-Machine Studies 26 (1987)

Haas and Hendrix 1980
Norman Haas and Gary G.Hendrix. An approach to acquiring and applying knowledge. In:

 86

Proceedings of the 1st conference of the AAAI, Stanford, CA, 1980

Haas and Hendrix 1983
Norman Haas and Gary G.Hendrix. Learning by being told: acquiring knowledge for information
management. In: Michalski et al. 1983

Hart 1986
Anna Hart. Knowledge acquisition for expert systems. (McGraw-Hill 1986)

Haugeland 1981
John Haugeland, ed. Mind design. (MIT Press 1981)

Hawkins 1983
David Hawkins. An analysis of expert thinking. International Journal of Man-Machine Studies 18
(1983)

Hayes-Roth et al. 1983
Frederick Hayes-Roth, Donald A.Waterman, and Douglas B.Lenat, eds. Building expert systems.
(Addison-Wesley 1983)

Hayes-Roth et al. 1986
F.Hayes-Roth, P.Klahr, D.J.Mostow. Knowledge acquisition, knowledge programming, and
knowledge refinement. In: P.Klahr and D.A.Waterman. Expert systems; techniques, tools, and
application (Addison Wesley 1986)

Hayward, Wielinga, and Breuker 1987
S.A.Hayward, B.J.Wielinga, and J.A.Breuker. Structured analysis of knowledge. International
Journal of Man-Machine Studies 26 (1987)

Hink and Woods 1987
R.F.Hink and D.L.Woods. How humans process uncertain knowledge: an introduction for
knowledge engineers. AI Magazine 8 (1987)

International Journal of Policy Analysis 1980
Special Issues on Knowledge and Machine Learning.International Journal of Policy Analysis and
Information Systems 4 (1980)

Jackson 1986
Peter Jackson. Introduction to expert systems. (Addison Wesley 1986)

Jacobson and Freiling 1988
Chris Jacobson and Michael J.Freiling. ASTEK: A multi-paradigm knowledge acquisition tool for
complex structured knowledge. International Journal of Man-Machine Studies 29 (1988)

Johnson-Laird 1983
P.N.Johnson-Laird. Mental models. (Cambridge University Press, 1983)

 87

Kahn et al. 1984
Gary Kahn, Steve Nowlan, and John McDermott. A foundation for knowledge acquisition. In:
Proceedings of the IEEE workshop on principles of knowledge-based systems. Denver, CO,
December 1984

Kahn et al. 1985a
Gary Kahn, Steve Nowlan, and John McDermott. MORE: An intelligent knowledge acquisition tool.
In: Proceedings of the 9th IJCAI, Los Angeles, CA, 1985

Kahn et al. 1985b
Gary Kahn, Steve Nowlan, and John McDermott. Strategies for knowledge acquisition. In: IEEE
Transactions on Pattern Analysis and Machine Intelligence. PAMI-7 (1985)

Kahn et al. 1987
Gary S.Kahn, Edwin H.Breaux, Peter DeKlerk and Robert L.Joseph. A mixed-initiative workbench
for knowledge acquisition. International Journal of Man-Machine Studies 27 (1987)

Kelly 1955
G.A.Kelly. The psychology of personal constructs. (New York 1955)

Kidd 1987
Alison L.Kidd. Knowledge elicitation for expert systems. A practical handbook. (Plenum Press
1987)

Kitto and Boose 1987
Catherine M.Kitto and John H.Boose. Heuristics for expertise transfer: an implementation of a
dialog manager for knowledge acquisition. International Journal of Man-Machine Studies 26 (1987)

Klahr 1976
David Klahr, ed. Cognition and instruction. (Erlbaum 1976)

Klinker et al. 1987
Georg Klinker, Joel Bentolila, Serge Genetet, Michael Grimes and John McDermott. KNACK -
Report-driven knowledge acquisition. International Journal of Man-Machine Studies 26 (1987)

Klinker et al. 1988
Georg Klinker, Serge Genetet and John McDermott. Knowledge acquisition for evaluation systems.
International Journal of Man-Machine Studies 29 (1988)

Kornell 1984
Jim Kornell. A VAX tuning expert built using automated knowledge acquisition. In: Proceedings of
the first conference on AI applications. IEEE - 84 CH 2107-1. Denver, CO, 1984

Kornell 1987
Jim Kornell. Formal thought and narrative thought in knowledge acquistition. International Journal
of Man-Machine Studies 26 (1987)

LaFrance 1987

 88

Marianne LaFrance. The knowledge acquisition grid: a method for training knowledge engineers.
International Journal of Man-Machine Studies 26 (1987)

Lefkowitz and Lesser 1988
Lawrence S.Lefkowitz and Victor R.Lesser. Knowledge acquisition as knowledge assimilation.
International Journal of Man-Machine Studies 29 (1988)

Lenat et al. 1986
D.Lenat, M.Prakash, and M.Shepherd. CYC: Using common sense knowledge to overcome
brittleness and knowledge acquisition bottlenecks. AI Magazine 6 (1986)

Marcus 1987
Sandra Marcus. Taking backtracking with a grain of SALT. International Journal of Man-Machine
Studies 26 (1987)

Marcus 1988
Sandra Marcus, ed. Automating knowledge acquisition for expert systems. (Kluwer 1988)

Marcus et al. 1985
Sandra Marcus, John McDermott, and Tianran Wang. Knowledge acquisition for constructive
systems. In: Proceedings of the 9th IJCAI, Los Angeles, CA, 1985

Michalski 1987
Ryszard S.Michalski. Learning strategies and automated knowledge acqusition. An overview. In:
Leonard Bolc, ed. Computational models of learning. (Springer Verlag 1987)

Michalski et al. 1983
Ryszard S.Michalski, Jaime G.Carbonell, Tom M.Mitchell. Machine Learning. An artificial
intelligence approach. (Tioga Publishing Company 1983)

Michie 1979
Donald Michie, ed. Expert systems in the micro electronic age. (Edinburgh University Press 1979)

Michie 1987
Donald Michie. Current developments in expert systems. In: J.Ross Quinlan, ed. Applications of
expert systems. (Addison Wesley 1987)

Mitchell et al. 1985
Tom Mitchell, Sridhar Mahadevan and Louis I.Steinberg. LEAP: A learning apprentice for VLSI
design. In: Proceedings of the 9th IJCAI, Los Angeles, CA, 1985

Mitchell et al. 1986
Tom.M.Mitchell, Jaime G.Carbonell, and Ryszard S.Michalski, eds. Machine Learning. A guide to
current research. (Kluwer Academic Publishers 1986)

Mittal and Dym 1985
S.Mittal and C.L.Dym. Knowledge acquisition from multiple experts. AI magazine 6 (1985)

 89

Moore and Agogino 1987
Eric A.Moore and Alice M.Agogino. INFORM: an architecture for expert-directed knowledge
acquisition. International Journal of Man-Machine Studies 26 (1987)

Morik 1987
Katharina Morik. Acquiring domain models. International Journal of Man-Machine Studies 26
(1987)

Motta et al. 1988
Enrico Motta, Marc Eisenstadt, Kent Pitman, Malcom West. Support for knowledge acquisition in
the Knowledge Engineer's Assistant (KEATS). Expert Systems 5 (1988)

Musen et al. 1987
Mark A.Musen, Lawrence M.Fagan, David M.Combs and Edward H.Shortliffe. Use of a domain
model to drive an interactive knowledge-editing tool. International Journal of Man-Machine Studies
26 (1987)

Politakis 1985
P.G.Politakis. Empirical analysis for expert systems. (Pitman 1985)

Porter and Bareiss 1986
Bruce W.Porter and Ray E.Bareiss. PROTOS: An experiment in knowledge acquisition for heuristic
classification tasks. Report AI TR86-35 September 1986. University of Texas, Austin, TX.

Porter et al. 1986
Bruce W.Porter, Ray Bareiss, and Adam Farquhar. Acquiring domain knowledge from fragments of
advice. In: Mitchell et al. 1986

Prerau 1987
D.S.Prerau. Knowledge acquisition in the development of a large expert system. AI Magazine 8
(1987)

Quinlan 1979
J.Ross Quinlan. Discovering rules by induction from large collections of examples. In: Michie 1979

Rosenbloom et al. 1984
Paul Rosenbloom, John E.Laird, John McDermott, Allen Newell, and Edmund Orciuch. R1-Soar.
An experiment in knowledge-intensive programming in a problem-solving architecture. In:
Proceedings of the IEEE workshop on principles of knowledge-based systems. December 1984.
Denver, CO.

Rosenbloom et al. 1986
Paul S.Rosenbloom, John E.Laird, Allen Newell, Andrew Golding, and Amy Unruh. Current
research on learning in SOAR. In: T.M.Mitchell et al. 1986

RuleMaster2 1987
RuleMaster2. A software tool for building expert systems. A technical introduction. Radian
Corporation, Austin, TX 1987

 90

Schweickert et al. 1987
R.Schweickert et al. Comparing knowledge elicitation techniques: a case study. Artificial
Intelligence Review 1 (1987)

Shachter and Heckerman 1987
R.D.Shachter and D.E.Heckerman. Thinking backward for knowledge acquisition. AI Magazine 8
(1987)

Shalin et al. 1988
Valerie L.Shalin, Edward J.Wisniewski, and Keith R.Levi. A formal analysis of machine learning
systems for knowledge acquisition. International Journal of Man-Machine Studies 29 (1988)

Shaw 1982
Mildred L.G.Shaw. PLANET: some experience in creating an integrated system for repertory grid
applications on a microcomputer. International Journal of Man-Machine Studies 17 (1982)

Shaw and Gaines 1987
Mildred L.G.Shaw and Brian R.Gaines. KITTEN: Knowledge initiation and transfer tools for
experts and novices. International Journal of Man-Machine Studies 27 (1987)

Shaw and Woodward 1988
Mildred L.G.Shaw and J.Brian Woodward. Validation in a knowledge support system: construing
and consistency with multiple experts. International Journal of Man-Machine Studies 29 (1988)

Shema and Boose 1988
David B.Shema and John H.Boose. Refining problem-solving knowledge in repertory grids using a
consultation mechanism. International Journal of Man-Machine Studies 29 (1988)

Simon 1978
H.A.Simon. On the forms of mental representation. In: C.W.Savage. Perception and cognition.
(Minnesota Studies in the philosophy of science, 1978)

Slatter 1987
P.E. Slatter. Building expert systems: cognitive emulation. (Ellis Horwood 1987)

Stout et al. 1988
Jeffrey Stout, Gilbert Caplain, Sandra Marcus, and John McDermott. Toward automating
recognition of differing problem-solving demands. International Journal of Man-Machine Studies 29
(1988)

Thiemann 1989
Janine Thiemann. Wielinga over KADS. Kennissystemen 3 (1989)

Tranowski 1988
Deborah Tranowski. A knowledge acquisition environment for scene analysis. International Journal
of Man-Machine Studies 29 (1988)

 91

Van de Brug et al. 1984
Arnold van de Brug, Judith Bachant, and John McDermott. The taming of R1. IEEE Expert 1 (1986)

Van den Herik 1986
H.J.van den Herik. Het gebruik van kennis in expertsystemen.
In: Anton Nijholt & Luc Steels, eds. Ontwikkelingen in expertsystemen. (Academic Service, Den
Haag 1986)

Van Dijk et al. 1988
J.E.M.van Dijk, F.G. Hilgevoord, M.T.Jacques, G.A.M.Otten, A.C. Sitting, and J.L.Talmon. Drie
methoden voor kennisverwerving. Kennissystemen 2 (1988)

Waterman 1986
D.Waterman. A guide to expert systems. (Addison Wesley 1986)

Weiss 1987
Ray Weiss. System automates knowledge acquisition. Electronic Engineering Times. Issue 428,
April 6, 1987

Weiss and Kulikowski 1979
Sholom M.Weiss and Casimir A.Kulikowski. EXPERT: A system for developing consultation
models. Proceedings of the 6th IJCAI, Tokyo, 1979.

Weiss and Kulikowski 1984
Sholom M.Weiss and Casimir A.Kulikowski. A practical guide to designing expert systems.
(Chapman and Hall, London 1984)

Weizenbaum 1966
J.Weizenbaum. ELIZA - A computer program for the study of natural language communication
between man and machine. Communications of the Association for Computing Machinery 9 (1966)

Welbank 1983
Margaret Welbank. A review of knowledge acquisition techniques for expert systems. Techn.Rep.
British Telecom Research Laboratories, Martlesham Heath, Ipswich, 1983

Wielinga and Breuker 1985
B.J.Wielinga and J.A.Breuker. Interpretation of verbal data for knowledge acquisition. In: T.O'Shea,
ed. Advances in artificial intelligence. ECCAI-85. (Elsevier Science Publ. 1985)

Wielinga and Breuker 1987
B.J.Wielinga and J.A.Breuker. Models of expertise. In: B. Du Boulay, D.Hogg, and L.Steels, eds.
Advances in artificial intelligence - II. (Elsevier Science Publ. 1987)

Wilczynski 1981
David Wilczynski. Knowledge acquisition in the CONSUL system. In: Proceedings of the 7th
IJCAI, Vancouver, B.C. 1981

 92

Wilkins et al. 1986
David C.Wilkins, William J.Clancey, and Bruce G.Buchanan. Overview of the ODYSSEUS
learning apprentice. In: Mitchell et al. 1986

 93

Wilkins et al. 1987
David C.Wilkins, William J.Clancey, and Bruce G.Buchanan. Knowledge base refinement by
monitoring abstract control knowledge. International Journal of Man-Machine Studies 27 (1987)

Winograd and Flores 1987
Terry Winograd and Fernando Flores. Understanding computers and cognition; a new foundation for
design. (Ablex Publ. Comp. 1987)

Wright and Ayton 1987
George Wright and Peter Ayton. Eliciting and modelling expert knowledge. Decision Support
Systems 3 (1987)

Wrobel 1988
Stefan Wrobel. Design goals for sloppy modeling systems. International Journal of Man-Machine
Studies 29 (1988).

