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Abstract

Combined forecasts from a linear and a nonlinear model are investigated for time
series with possibly nonlinear characteristics. The forecasts are combined by a con-
stant coeÆcient regression method as well as a time varying method. The time varying
method allows for a locally (non)linear model. The methods are applied to data from
two kinds of disciplines: the Canadian lynx and sunspot series from the natural sci-
ences, and Nelson-Plosser's U.S. series from economics. It is shown that the combined
forecasts perform well, especially with time varying coeÆcients. This result holds for
out of sample performance for the sunspot and Canadian lynx number series, but it
does not uniformly hold for economic time series.
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1 Introduction

Since the in
uential work of Bates and Granger (1969) several schemes for combining

forecasts of di�erent models have been constructed. Crane and Crotty (1967), Reinmuth

and Geurts (1976) and Granger and Ramanathan (1984) propose, for instance, the use of

regression methods. The latter authors point out that conventional weighting is equivalent

to constrained ordinary least squares where the observations are the dependent variables,

the individual forecasts are explanatory variables, and the weights are constrained to sum

to one. Furthermore, they show that the unconstrained least squares method can be

applied to get a better forecasting performance.

An important motive to combine forecasts from di�erent models is the fundamental

assumption that one cannot identify the true process exactly, but di�erent models may

play a complementary role in the approximation of the data generating process. We follow

this idea and consider the combination of several time series models for analyzing data

which show, possibly, nonlinear characteristics. We investigate the properties of combining

forecasts of linear and nonlinear models by a constant coeÆcient regression method as well

as time varying regression method.

There are several reasons to consider the proposed methods. First, there exists em-

pirical evidence that nonlinear models perform well for long term forecasting and that

a linear model dominates in the short run. In fact, a linear model can be useful as a

robust model for analyzing data which exhibit apparently nonlinear characteristics. We

note that Tong (1990; p.425-429) proposes a simple combination, where a linear and a

Threshold Autoregressive (TAR) model are used alternatively corresponding to upward

and downward phases of time series.

Second, it is possible for a data generating process to switch its structure over the

observation period between a linear and a nonlinear structure. The combined forecast can

be based on a locally linear or locally nonlinear model. This is important for economic

time series which exhibit structural change. Terui and Kariya (1997a, b and c) indicate

that many economic series show no clear features of nonlinearity. These series appear to

be standing on the borderline of linear, Gaussian and nonlinear, non-Gaussian regions.

Third, by using combined forecasts, one can evaluate the contribution of each com-

ponent for the whole series (constant combination) or at every time point (time varying

combination).

As for the class of nonlinear time series models to be combined with a linear model,

we use threshold autoregressive (TAR) models and exponential autoregressive (ExpAR)

models. One reason for this is that these models have competed with each other in their

performances on the Canadian lynx and Wolfe's sunspot data, which are benchmarks for

nonlinear models. Studies of their performance are available. The other reason is that

these models are suggested for some macroeconomic data. We note that the combination
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of other types of nonlinear models is straightforward.

In our empirical application regarding the Nelson-Plosser series, we �rst test the lin-

earity of each series. We choose six series which are appropriate to be examined by our

approach. It is shown that the combined forecasts perform well in most cases, especially,

with time varying coeÆcients. However, the combined forecasts do not necessarily domi-

nate for all series; sometimes a linear model still produces the best forecasts. Our results

are in line with those of De Gooijer and Kumar (1992) and Clements and Smith (1999).

2 Nonlinear models and their combinations

In addition to a conventional linear autoregressive (AR) model, we consider two classes

of nonlinear time series models; the threshold autoregressive (TAR) models and the ex-

ponential autoregressive (ExpAR) models. For stationary time series fYtg, a two regime

self-exciting TAR model of order (p1; p2), denoted by TAR(p1; p2; d; r), is de�ned as

Yt =

8><
>:
�
(1)
0 + �

(1)
1 Yt�1 + � � �+ �

(1)
p1 Yt�p1 + �

(1)
t if Yt�d � r

�
(2)
0 + �

(2)
1 Yt�1 + � � �+ �

(2)
p2 Yt�p2 + �

(2)
t if Yt�d > r

(1)

where f�
(i)
t g, i=1,2, is the innovation process for each regime. The parameters d and r are

called delay and threshold parameters respectively. We note that a TAR model can be

characterized as a piece-wise linear time series model.

The ExpAR model with order p, denoted by ExpAR(p; d; 
) is de�ned as

Y 0

t = f�1 + �1 exp(�
Y
02
t�d)gY

0

t�1 + f�2 + �2 exp(�
Y
02
t�d)gY

0

t�2 +

� � �+ f�p + �p exp(�
Y
02
t�d)gY

0

t�p + �t (2)

where fY 0

tg is a mean deleted process and f�tg is an innovation process. This model can

be interpreted as a smoothly switching model between two extreme regimes, according to

the magnitude of the amplitude j Y 0

t�1 j.

Estimating the TAR and ExpAR models; that is, determining the lag length as well

as estimating the delay and threshold parameters, is conducted by extensive use of the

Akaike Information Criterion (AIC).

We consider two techniques; the constant coeÆcient and the time varying coeÆcient

method. Each method gives a combined model which is de�ned as follows.

Constant Combination:

Yt = �0 + �lY l
t + �tY t

t + �eY e
t + ut (3)

Time Varying Combination:

Yt = �0t + �ltY
l
t + �ttY

t
t + �et Y

e
t + vt

� Xt�t + vt; vt � N(0; �2) (4)

�t = �t�1 + et; et � N(0;�) (5)
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where Y l
t , Y

t
t and Y e

t are the mean marginal predictors generated by a linear AR; a

TAR, and an ExpAR model, respectively. The process futg is a white noise process;

Xt = [1; Y l
t ; Y

t
t ; Y

e
t ]; and �t = (�0t ; �

l
t; �

t
t ; �

e
t )

0.

The time varying combined model - equations (4) and (5) - is a state space model,

where equation (4) is the measurement equation which de�nes the distribution of Yt; t � 1;

and where equation (5) is the state equation which de�nes the distribution of �t for every

t � 1.

In the �rst step, the �ltered state vector and its covariance matrix,

b�tjt = E(�t j Y1; � � � ; Yt);
b�tjt = E

h
(�t �

b�tjt)(�t �
b�tjt)0

i

are evaluated by applying the Kalman �lter algorithm, where recursive relations regarding

the predictions

b�tjt�1 = E(�t j Y1; � � � ; Yt�1);
bYtjt�1 = E(Yt j Y1; � � � ; Yt�1)

b�tjt�1 = E
h
(�t �

b�tjt�1)(�t �
b�tjt�1)0

i
; b�2tjt�1 = E(Yt � bYtjt�1)2

are essential. We refer for details to Harvey(1989) and Hamilton(1994). Next, suppose we

have T observations (Y1; Y2; � � � ; YT ) and we want to determine the optimal inside sample

estimator b�tjT = E(�t j Y1; � � � ; YT ) of �t, as well as its covariance matrix
b�tjT . Since the

recursions regarding these smoothing estimators are available, the trajectories of each b�
�tjT

and (b�
�tjT � 1:64b�

�tjT ) are drawn in our �gures, where b�
�tjT means the smoothing estimate

of each �o; �l; �t; �e and the standard deviations for the marginal predictors, b�
�tjT , are

derived from the square root of diagonal elements of b�tjT .

We use the notation L.T.E.(C) and L.T.E(TV) for the constant combination and the

time varying combination model respectively. In each model, a constant term is included

because multistep forecasts of nonlinear models do not always produce unbiased predictors.

3 The relative contribution of each model: Within Sample

Performance

We make use of two kinds of data sets. The �rst set consists of the well known Canadian

lynx number series and the sunspot number series in the natural sciences. These data sets

have played the role of benchmark for measuring the performance of nonlinear time series

models. The second data set is Nelson and Plosser's U.S. macroeconomic time series data,

see Nelson and Plosser (1982) and for the extended set Schotman and Van Dijk (1991).

This data set has motivated the discussion regarding deterministic trends and stochastic

trends in economic time series.
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3.1 Canadian Lynx and Sunspot Number Series

Using individual models, the Canadian lynx series, for the period 1821-1934, was estimated

as a linear autoregressive model AR(11)process [see Tong(1983) and Priestley(1981), p.386];

as a threshold autoregressive process TAR(2; 8, 3)[see Tong and Lim(1980) and Priest-

ley(1988), p.82], and as an exponential autoregressive process ExpAR(1, 11)[see Haggan

and Ozaki(1981) and Priestley(1988), p.89].

The sunspot number series observed from the year 1720 through 1989, with the �rst

221 data used, was individually estimated as linear AR(9)(see Subba Rao and Gabr(1984),

p.196 and Tong(1990), p.427); as a TAR(2; 3, 11)(see Tong and Lim(1980); and Tong(1990),

p.425); and as an ExpAR(1, 10)(Haggan and Ozaki(1980)).

For both series, �gures 1-1 and 1-2 show the observations and their estimates for each

identi�ed marginal model and for two kinds of combined models. Table 1 shows the results

of estimation using the constant combination method, and �gures 2-1 and 2-2 show the

values of coeÆcients of the time varying combination method. Table 2 shows the estimates

of the standard errors of each model. Given these results, we draw the following three

conclusions:

Canadian Lynx Data

(1) The models are ordered with increasing order of standard errors as follows: L.T.E.(TV)

< L.T.E.(C) < TAR < ExpAR < Linear.

(2) L.T.E.(C): Only the level estimate is not signi�cant.

(3) L.T.E.(TV):

{ The level is signi�cant at the 5% level at every data point.

{ The movement of the estimate of the level is similar for each observation. This

suggests that yet another model than a linear, a TAR or an ExpAR, may be

e�ective.

{ The estimates of the coeÆcient for the predictors of the TAR and the ExpAR

models are signi�cant at the 5% level at each data point.

{ The estimates of the coeÆcients for the TAR model become signi�cant at the

5% level after the year 1864.

Sunspot Number Data

(1) The models are ordered with increasing order of standard errors as follows: L.T.E.(TV)

< L.T.E.(C) < TAR < ExpAR < Linear.

(2) L.T.E.(C): Only the level estimate is not signi�cant.
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(3) L.T.E.(TV):

- The level is not signi�cant at a 5% level except for a few points, i.e., 1723 and

the years 1807-1819.

- The estimates of the coeÆcients for the linear model are signi�cant at the 5%

level until the year 1762.

- The estimates of the coeÆcients for the predictors of TAR are signi�cant at the

5% level for every data point.

- The estimates of coeÆcient for the ExpAR model become signi�cant at the 5%

level after the year 1756.

We also considered three other cases of combined forecasts of two models: Linear and

TAR; Linear and ExpAR; and TAR and ExpAR. In order to save space we summarize

the results as follows: for both data sets the combined forecasts of the three cases with

time varying coeÆcients show better performance than the constant coeÆcient method.

Regarding the Canadian lynx data, the combined Linear and ExpAR model with time

varying coeÆcients, and the combined Linear and TAR model perform well. This suggests

that a linear model plays a complementary role for this data set. For the sunspot data, the

TAR and ExpAR combined model performs well. The TAR model has more weights at

every data point than the ExpAR model. This implies that this data set exhibits explicit

nonlinear characteristics, which can be explained more by a TAR model. Furthermore,

comparing nonlinear models, we observe mutual complementary roles of these models for

the Canadian lynx data, because the TAR model plays an important role in the �rst part

of the period and the ExpAR model become signi�cant in the last period.

3.2 Macroeconomic Time Series

3.2.1 Nonlinearity of the Nelson-Plosser Series

Before making combined forecasts for the Nelson-Plosser series, we apply several tests for

linearity. All tests use a linear model as a null hypothesis and set some speci�c nonlinear

model as alternative.

Let

Yt = h(Yt�1; Yt�2; � � � ; Yt�p) + et (6)

be an autoregressive nonlinear time series model, where fetg is an i:i:d: process with mean

zero. If we assume the innovation et as Gaussian, the linearity test is equivalent to test for

Gaussianity. We use �ve well known linearity tests: (i) the Ori-F test by Tsay(1986), (ii)

the Aug-F test by Luukkonenn, Saikkonen and Ter�asvirta(1988), (iii) the CUSUM test by

Petruccelli and Davis(1986), (iv) the TAR-F test by Tsay(1989) and (v) the New-F test

by Tsay(1988).
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All of these tests set up, as a null hypothesis, a linear process. Based on the Volterra

expansion of (6) around O = (0; 0; � � �)0, we have

Yt = �+
1X
u=1

 uYt�u +
1X

u;v=1

�uvYt�uYt�v +
1X

u;v;w=1

�uvwYt�uYt�vYt�w + � � �+ et; (7)

where

� = h(O); �u =
@h

@Yt�u

����
O

; �uv =
@2h

@Yt�u@Yt�v

�����
O

; �uvw =
@3h

@Yt�u@Yt�v@Yt�w

�����
O

; etc:

The Ori-F and Aug-F tests detect against the nonlinearity of the second and third order

polynomials respectively. The CUSUM, TAR-F and New-F tests assume the threshold

type nonlinear alternatives;

Yt = �
(j)
0 +

pX
i=1

�
(j)
i Yt�i + a

(j)
t (j = 1; 2); (8)

where fa
(j)
t g is the innovation of mean zero and variance �2j : The New-F test covers the

most extensive set of alternatives of nonlinearity, including the ExpAR model. Detailed

procedures and distributional properties regarding these tests can be found in Granger

and Ter�asvirta(1993).

In order to implement the tests, the order p of the autoregression has to be determined

for all cases and the value of delay parameter d needs to be speci�ed for the tests (iii), (iv),

and (v). We set the maximum of p as 10 and let d run from 1 to 10. Each of the linearity

tests with a di�erent set of (p; d) brings out di�erent results. Following Cox and Hinkley

(1974, p.104) and Stone (1969), we use the most signi�cant result of the test among all

the combinations of (p; d).

Nelson and Plosser's 14 series are annual data starting from di�erent years and ending

in 1970. The notation and the starting year of the sample periods are as follows: RGNP

(real GNP: 1909-), NGNP (nominal GNP: 1909-), PCRGNP (real per capita GNP: 1909-),

IP (industrial production: 1860-), EMP (employment: 1890-), UN (unemployment: 1890-

), PRGNP (GNP de
ator: 1889-), CPI (consumer prices: 1860-), WG (wages: 1900-),

RWG (real wages: 1900-), M (money stock: 1889-), VEL (velocity: 1869-), BND (bond

yield: 1900-), SP500 (common stock prices: 1871-). All of the series are assumed to be

stationary after taking their �rst di�erence here.

The p-values of all linearity tests for Nelson-Plosser's annual 14 series are tabulated in

table 3. We note the followings results.

� There are several series which are not signi�cantly di�erent from a lineair AR process.

In particular, RGNP has p-values greater than 5% for all tests.

� The series with strong nonlinearity are NGNP, PRGNP and CPI.
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� The annual series of SP500 is not inconsistent with Gaussian disturbances, except

for the New-F tests.

� Among the �ve tests, the New-F test rejects the null hypothesis of linearity most

strongly and the CUSUM test rejects the least. We have some similarity of the

results between the Ori-F and Aug-F tests.

� The CUSUM test produces di�erent results from other tests, which might be due

to its poor power performance reported by Tsay (1988, 1989). Henceforth, we leave

the results of the CUSUM test out of our investigation.

� The null hypotheses of linearity for PCRGNP, IP and SP500 are rejected only by

the New-F test and this may imply that these series have a bilinear or ExpAR type

of nonlinearity.

� The result for VEL is signi�cant solely for the TAR-F test and a threshold type

nonlinearity might be appropriate for VEL.

Based on the results of the Ori-F, Aug-F, TAR-F and New-F tests, we classify possible

nonlinearity into three classes: Highly nonlinear, Possibly ExpAR, Possibly TAR. First,

we choose the NGNP, PRGNP and CPI series as highly nonlinear, because all tests reject

linearity. Next, we select SP500 and IP as possibly ExpAR series, because only the New-F

test rejects the linearity. Finally, only VEL can be dealt with as a possible TAR series,

because the New-F test does not reject the linearity but the TAR-F test rejects it.

From these observations, we pick up the following six, possibly, nonlinear series: NGNP,

PRGNP, CPI, SP500,IP, VEL.

3.2.2 Combined Models

Linear AR, TAR and ExpAR models are estimated using the six series. Results are

summarized in table 4. We note that the estimation of each marginal model was based

on the use of AIC; see Tong and Lim(1980) for similar results on the TAR model and

see Haggan and Ozaki(1981) for results on the ExpAR model. The maximum values of

the autoregressive part of each model was set as 10, and the particular lag order and the

nonlinearity parameters (d, r) were chosen by a conditional least squares method and by

using the criterion of minimum AIC. The data and their estimates of SP500 and NGNP

are shown in �gures 3-1 and 3-2.

From Table 4, we observe that the nonlinear models improve the �t over a linear model,

in particular, they catch up with the sudden change or trough, which could be interpreted

as a structural change of the economy. Table 5 shows the result of the constant combina-

tion method, and table 6 shows the estimated standard errors of the marginal models and

the two combining methods. Figure 4-1 and 4-2 show the movements of the time varying
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combination method for the SP500 and the NGNP series. We summarize the conclusions

as follows:

Highly Nonlinear Series:

NGNP

1. The ExpAR model dominates the individual models.

2. The order of the estimated standard error of each model is L.T.E.(TV) < L.T.E.(C)

< ExpAR < TAR < Linear.

3. L.T.E.(C): TAR and ExpAR models are signi�cant.

4. L.T.E.(TV):

(a) Linear model is not signi�cant for all data points.

(b) The TAR model is signi�cant for all data points and the mean values are grad-

ually increasing.

(c) The ExpAR model is signi�cant for all sample periods and the mean values are

gradually decreasing.

(d) The constant term is not signi�cant for all data points.

PRGNP

1. The TAR model dominates the individual models.

2. The order of the estimated standard error of each model is L.T.E.(TV) < L.T.E.(C)

< TAR < ExpAR < Linear.

3. L.T.E.(C): The TAR and ExpAR models are signi�cant.

4. L.T.E.(TV):

(a) The linear model is signi�cant for the �rst part until the year 1927.

(b) The TAR model is signi�cant for all sample periods and the mean values are

gradually decreasing.

(c) The ExpAR model is signi�cant for all sample periods and the mean values are

gradually increasing.

(d) The constant term(level) is insigni�cant for all sample periods.

9



CPI

1. The ExpAR model dominates the individual models.

2. The order of the estimated standard error of each model is L.T.E.(TV) < L.T.E.(C)

< ExpAR < TAR < Linear.

3. L.T.E.(C): Every component is signi�cant.

4. L.T.E.(TV):

(a) The linear model is not signi�cant for all sample points.

(b) The TAR model is signi�cant for all sample points.

(c) The ExpAR model is signi�cant for all sample points.

(d) The constant term(level) is signi�cant for 1871-73, 1897-1915 and the 1935-45

years.

ExpAR series:

SP500

1. The ExpAR model dominates the individual models.

2. The order of the estimated standard error of each model is L.T.E.(TV) < L.T.E.(C)

< ExpAR < TAR < Linear.

3. L.T.E.(C): constant and linear terms are not signi�cant.

4. L.T.E.(TV):

(a) The linear model is not signi�cant over all data points.

(b) The TAR model is signi�cant for the �rst 5 years.

(c) The ExpAR model keeps signi�cant over all periods.

(d) Although constant term(level) is insigni�cant except for the �rst 3 years, the

mean values are slowly increasing with cyclical movement.

IP

1. TAR model dominates the individual models.

2. The order of estimated standard errors of each models is L.T.E.(TV) < L.T.E.(C)

< TAR < ExpAR < Linear.

3. L.T.E.(C): Only TAR model is signi�cant.
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4. L.T.E.(TV):

(a) Linear model is insigni�cant for all sample periods.

(b) TAR model begins signi�cant since 1903 year and its con�dence bound is rela-

tively narrow compared with those of ExpAR and Linear models.

(c) ExpAR model starts signi�cant since 1906 year.

(d) Constant term(level) is insigni�cant for all sample periods.

TAR series:

VEL

1. The TAR model dominates the individual models.

2. The order of estimated standard errors of each models is L.T.E.(TV) < L.T.E.(C)

< TAR < ExpAR < Linear.

3. L.T.E.(C): constant and linear terms are not signi�cant.

4. L.T.E.(TV):

(a) The linear model is signi�cant for the �rst part until 1914.

(b) The TAR model is signi�cant for all sample points.

(c) The ExpAR model is signi�cant as o� the year 1903.

(d) The constant term is signi�cant for the �rst part until the year 1914.

4 Out of Sample Performance

In this section, we compare the out of sample performance of each predictor. The opti-

mal predictor in the sense of minimizing mean squared error criterion is the conditional

expectation
eYt+h = EfYt+h j Yt�1; Yt�2; � � �g; (9)

This predictor is, in general, hard to evaluate for nonlinear time series models. Several

methods have been proposed in this context. Recently, Clements and Smith(1997) used

extensive simulation in order to compare several multistep forecasting methods. We make

use of the SK(Skelton) method proposed in Tong and Lim(1980). This method has been

applied for TAR models and can be extended in a standard way to ExpAR models. A

Bayesian procedure was applied by Geweke and Terui(1991, 1993) and Terui(1992). A

formal Bayesian analysis of our method is left for further work.

The multistep forecasts by the SK method for the TAR and the ExpAR models are

computed through the following algorithm:
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1. if h � d, use recursive relations just like in the linear process,

Now given T , forecast the h step ahead value as

bYT+h =
8<
:
YT+h if h � 0

h(bYT+h�1; bYT+h�2; � � � ; bYT+h�p) if h = 1; 2; � � �
(10)

2. otherwise, replace fYT+h�dg by the forecast fbYT+h�dg.
After the generation of the marginal predictors, Y l

T+h; Y
t
T+h; Y

e
T+h, by a recursive way

for the linear predictors and by the SK method for the TAR and ExpAR predictors, these

predictors are the regressor matrix XT+h. Then the composite forecast with constant

coeÆcients is generated by

bYT+h = b�0 + b�lY l
T+h +

b�tY t
T+h +

b�eY e
T+h

= XT+h
b� (11)

where b� is the estimated coeÆcient vector. As for the composite forecast with time varying

coeÆcients, we observe (Y1; � � � ; YT ) and we predict �T+h and YT+h, for h � 1. That is,

b�T+hjT = E(�T+h j Y1; � � � ; YT );
bYT+hjT = E(YT+h j Y1; � � � ; YT )

as well as their variances,

b�T+hjT = E
h
(�T+h �

b�T+hjT )(�T+h � b�T+hjT )0
i
; b�2T+hjT = E(YT+h � bYT+hjT )2:

These quantities are also evaluated by applying the Kalman �lter, and the �nal forms are

bYT+hjT =XT+h
b�T+hjT ; b�T+hjT = b�T+h�1jT for h � 1: (12)

As a measure of predictive performance, we use the root mean squared error (RMSE)

of the h step ahead prediction, which is de�ned as

RMSE(h) =

vuut1

h

hX
k=1

(bYt+k � Yt+k)2: (13)

4.1 Sunspot Number Data and Canadian Lynx Data

First, using the observations up to 1920, we generate multistep ahead predictions for the

number of sunspots for the years 1921 through 1989. Table 7 summarizes the results of

comparing 25 step ahead predictions. Since the combination method with time varying

coeÆcients has the minimumRMSE in most cases, the RMSE(h) of each method is divided

by the RMSE of the time varying combination method. In table 7 a number less than

one means that the predictors up to h step ahead have smaller RMSE than those of the
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time varying combination method. The asterisk is attached to the one with the smallest

RMSE. In case no asterisk is attached in a row, it means that the best predictor is one

based on the combination method with time varying coeÆcients.

We draw several conclusions from the results in table 7. First, the linear model is

the best for the �rst step; however, it is the worst after that. Secondly, comparing the

nonlinear models, the ExpAR model dominates the TAR model after the year 1957. There

is no clear di�erence before that year. Furthermore, the time varying coeÆcient model

dominates the constant coeÆcient model after the year 1936. There is no clear di�erence

before that. Finally, the order of standard deviations of the prediction errors from small

to large is as follows: time varying combination, the constant combination, the ExpAR,

the TAR and the linear models.

With respect to marginal models, we observe that the predictors generated by the linear

model die out as time proceeds and that the TAR predictors generate an asymmetric

cycle. However, the discrepancy of the peaks and troughs between the predictors and

the observations becomes larger as the prediction period increases. Further, the ExpAR

predictors catch up with the peaks and troughs of observations, but the cycle is symmetric,

which is due to the structure of the model. The combined models with time varying

coeÆcients outperform the other models, particularly, as the prediction step proceeds, but

the combined models with constant coeÆcients are producing the best predictors until 14

steps.

Next, for the Canadian lynx number series, the whole data set (1821-1934) has been

used in the literature. Here, in order to keep data for a predictive performance, we re-

estimate each model by using the �rst 100 observations, and we evaluate the succeeding

10 predictions.

The identi�cation of each marginal model was conducted by the use of AIC. We set the

maximum of the autoregressive order, p; p1; and p2 as 15 and we move the delay parameter

d from 1 to 5.

The identi�ed AR(p), TAR(p1; p2; d; r) and ExpAR(p; d; 
) models are:

� Linear AR(11); AIC = -16.418, s = 0.19181.

� TAR(12,3; 3, 3.328); AIC =-23.087, s=0.183.

� ExpAR(12; 3, 3.8); AIC = -21.167, s = 0.160.

The estimates of the coeÆcients for the constant combination method are shown in

tables 1 and 2, and we see that there is no great di�erence between these estimates and

the estimates using the whole sample. Further, we did not �nd any great di�erences in

the movements of time varying coeÆcients. The estimated standard errors are shown in

table 2.
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The RMSE for the lynx data are tabulated at the bottom of table 7. In this case, we

can see that the time varying combination model shows the best performances during the

forecasting periods and the linear model is the worst. Compared among marginal nonlinear

models, the TAR model is a little better than the ExpAR model, which is consistent with

the values of AIC. For speci�c marginal models, similar results are observed as for the

case of sunspot numbers.

4.2 The Nelson-Plosser Data

For the Nelson-Plosser series, the last 10 values (1961-1970) are stored for the evaluation

of the predictive performance. Table 8 shows the results of RMSE comparisons between

individual marginal models as well as two kinds of combining models. The �gures in the

table should be interpreted in the same way as table 7. We observe that there is no

strong dominance of combined models over marginal models, except for the SP500 and

VEL series. Marginal models sometimes show the best forecasting performance, including

linear predictors. Particularly, we observe that the combination method with constant

coeÆcients for IP is better than the combination method with time varying coeÆcients.

The ExpAR model for VEL has the best forecasts, and linear forecasts are useful during

some forecasting steps for the CPI and NGNP series. These observations are expected

since the economic series exhibit structural changes of the economy. Therefore, although

uniform dominance of the combination method with time varying coeÆcients does not

always hold for the economic time series examined here, we have some situations where

the combination methods produce better forecasts.

From table 8, we have the following observations. First, for the highly nonlinear se-

ries(NGNP, CPI, PRGNP), the composite forecasts perform better than the marginal

model forecasts. On the other hand, for possibly ExpAR(SP500, IP) and for possi-

bly TAR(VEL) series, the composite forecasts do not produce better forecasts than the

marginal forecasts, except for the case of the SP500. Note that the SP500 series might

belong to the highly nonlinear series because the p-value of TAR-F test is 0.05048, which

is signi�cant at a little more than 5%.

Clements and Smith(1999) investigated the multistep forecast performances of a num-

ber of empirical TAR models that have been proposed in the literature, and they concluded

that the TAR models produce better forecasts, unless the TAR forecast models is captur-

ing nonlinearities (outlier, non TAR type nonlinearities) which can not be exploited for

forecasting. Their observations are consistent with our results. That is, for highly nonlin-

ear series, which show several directions from the linearity, composite forecasts perform

better than marginal forecasts. On the other hand, for possibly TAR series and possibly

ExpAR series, the marginal forecasts show a relatively better performance than compos-

ite forecasts. There are cases where the above statements do not hold, but we interpret

these cases as exhibiting nonlinearity caused by outliers or as exhibiting other types of
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nonlinearity, which do not persist into the future.

5 Conclusion

In this paper, we investigate combinations of forecasts generated by linear and some nonlin-

ear models using a constant coeÆcient regression method as well as time varying method.

The time varying method makes it possible to provide a locally linear(or nonlinear) model.

It is shown that the combined forecasts perform well, especially, the method with time

varying coeÆcients dominates marginal forecasts for inside sample performance. This

results holds also for out-of-sample performance for the sunspot and the Canadian lynx

number series, but does not uniformly hold for economic series.

Clements and Smith(1999) discussed that nonlinear models have an edge in certain

states of nature but not in others, and that this can be highlighted by evaluating forecasts

conditional on the regime, and they discuss that the lack of forecast gain of nonlinear

models over linear models is often explained in terms of a failure of the nonlinearity to

persist into the future. De Gooijer and Kumar(1992) report that there is no clear evidence

in favor of nonlinear models over linear models in terms of forecast performance. Our

results are in line with the observations of these preceding literature.

We end by stating some problems for future research. First, a more theoretical anal-

ysis of the proposed method may be investigated, in particular, a Bayesian approach; see

Geweke and Terui (1991, 1993) and Terui (1992). Second, an extensive simulation study

and the use of other forecasting measures, like forecast encompassing tests, may be inves-

tigated. Finally, the use of other nonlinear models such as, for example, bilinear models

(Subba Rao and Gabr (1984)) and random coeÆcient models (Nicholls and Quinn(1982)) is

directly possible with our method. Our purpose here is to demonstrate only the usefulness

of the principle of combining linear and nonlinear models for forecasting.
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Table 1: Constant Combining Models

Canadian Lynx: 1821-1934 year(Whole sample)

Model Const. Linear TAR ExpAR

-.0256 -.3402 .4302 .9223

L.T.E (.1349) (.1556) (.1377) (.2219)

[-.1899] [-2.1855] [3.1245] [4.1567]

Canadian Lynx: 1821-1920 year

Model Const. Linear TAR ExpAR

-.0349 -.3116 .4743 .8533

L.T.E (.0908) (.1942) (.1427) (.1726)

[-.3842] [-1.6044] [3.3235] [4.9428]

Sunspot number

Model Const. Linear TAR ExpAR

-.6526 -.5319 .8078 .7328

L.T.E. (1.4870) (.2014) (.1088) (.1950)

[-.4389] [-2.6425] [7.4267] [3.7586]

The numbers show the estimates of coeÆcients.

Their standard errors and t values are in

parenthesis and [�] respectively

Table 2: Estimated Standard Errors for Marginal and Composite Models

Model Lynx:Whole sample Lynx:100 samples Sunspot

Linear .2870 .1918 14.392

TAR .1911 .1827 12.436

ExpAR .1978 .1603 13.561

L.T.E(C) .1748 .1521 11.982

L.T.E(TV) .0566 .0761 10.502
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Table 3: Nonlinearity Tests: Nelson-Plosser's Series

Variable Ori-F Aug-F TAR-F New-F CUSUM

RGNP 0.15517 0.27571 0.07719 0.16726 0.09241

NGNP 0.00037 0.00527 0.02512 0.00127 0.18666

PCRGNP 0.02689 0.25088 0.07406 0.00322 0.10078

IP 0.29993 0.37873 0.08529 0.00655 0.31221

EMP 0.10476 0.04953 0.02986 0.01323 0.04677

UN 0.10010 0.08274 0.13235 0.02331 0.17948

PRGNP 0.00011 0.00002 0.03372 0.00000 0.04200

CPI 0.00014 0.00000 0.02116 0.00023 0.23835

WG 0.10428 0.02679 0.09720 0.00428 0.32098

RWG 0.09704 0.00022 0.02072 0.00980 0.15943

M 0.02202 0.05583 0.04062 0.01178 0.01488

VEL 0.07703 0.10706 0.02028 0.31703 0.60523

BND 0.05406 0.15516 0.06135 0.04360 0.01565

SP500 0.14899 0.24497 0.05048 0.03524 0.56961

The number means the p-value.
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Table 4: Estimated Marginal Models: Nelson-Plossor's Series

Linear

Series - - p s AIC

[A] NGNP - - 1 .1015 -97.6304

[A] PRGNP - - 1 .0690 -136.673

[A] CPI - - 2 .0407 -365.337

[B] SP500 - - 5 .1566 -77.6440

[B] IP - - 5 .1048 -165.319

[C] VEL - - 1 .0729 -226.550

TAR

Series d r (p1; p2) s AIC

[A] NGNP 4 .0855 (4, 10) .0801 -35.988

[A] PRGNP 3 .0092 (10, 10) .0436 -55.122

[A] CPI 2 .0098 (3, 2) .0377 -189.828

[B] SP500 1 .0281 (5, 4) .1427 -30.6599

[B] IP 1 -.0661 (10, 5) .0865 -124.392

[C] VEL 3 -.0134 (3, 6) .0626 -98.1974

ExpAR

Series d 
 p s AIC

[A] NGNP 3 1.576 9 .0674 -88.0833

[A] PRGNP 1 4.739 10 .0454 -131.560

[A] CPI 1 .0410 10 .0271 -387.764

[B] SP500 1 .00001 8 .1223 -81.3575

[B] IP 1 .00009 9 .0893 -153.588

[C] VEL 3 .00001 6 .0648 -213.878
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Table 5: Constant Combining Models: Nelson-Plossor's Series

Series Const. Linear TAR ExpAR

.0195 -.2682 .4320 .6789

[A] NGNP (.0129) (.2665) (.1481) (.1475)

[1.5091] [-1.0064] [2.9178] [4.6031]

.0091 -.2841 .5923 .6098

[A] PRGNP (.0077) (.2391) (.1152) (.1357)

[1.1841] [-1.1883] [5.1391] [4.4951]

.0064 -.4096 .5225 .9133

[A] CPI (.0030) (.2034) (.1899) (.0942)

[2.1373] [-2.0137] [2.7519] [9.6960]

.0278 -.6427 .6465 .9058

[B] SP500 (.0147) (.3342) (.2184) (.1457)

[-1.8875] [-1.8692] [2.9603] [6.2153]

.0085 -.1232 .7139 .3520

[B] IP (.0158) (.3199) (.2645) (.2506)

[.5414] [-.3851] [2.6990] [1.4046]

-.0121 -.5131 .7263 .6224

[C] VEL (.0235) (1.3060) (.2134) (.2567)

[-.5145] [-.3929] [3.4029] [2.4248]

The number inside parenthesis are standard errors

and the numbers in [�] means t values.

Table 6: Estimated Standard Errors for Marginal and Composite Models

Model [A] NGNP [A] PRGNP [A] CPI [B] SP500 [B] IP [C] VEL

Linear .1015 .0690 .0407 .1566 .1048 .0729

TAR .0801 .0436 .0377 .1427 .0865 .0626

ExpAR .0674 .0454 .0271 .1223 .0893 .0648

L.T.E.(C) .0604 .0344 .0259 .1156 .0854 .0603

L.T.E.(TV) .0526 .0307 .0235 .1070 .0748 .0450
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Table 7: Root Mean Squared Error Comparison for Predictors

Sunspot Number

Step Linear TAR ExpAR L.T.E.(C)

1 0:287? 4.827 2.184 2.523
2 2.151 1.423 1.068 0:906?

3 2.999 1.435 1.795 0:910?

4 2.554 1.227 1.831 0:966?

5 2.419 1.532 1.645 1.122
6 1.384 0.872 1.222 0:871?

7 1.560 0.925 1.348 0:902?

8 1.547 0.859 1.396 0:883?

9 2.567 1.598 1.661 1.125
10 2.490 1.285 1.459 0:956?

11 2.388 1.181 1.320 0:871?

12 2.433 1.203 1.332 0:872?

13 2.172 1.162 1.220 0:899?

14 2.148 1.112 1.183 0:878?

15 2.382 1.275 1.506 1.008
16 2.099 1.303 1.502 1.090
17 1.911 1.357 1.385 1.125
18 1.844 1.371 1.338 1.133
19 1.768 1.351 1.287 1.125
20 1.754 1.337 1.273 1.116
21 1.753 1.326 1.263 1.108
22 1.779 1.341 1.269 1.112
23 1.800 1.347 1.285 1.115
24 1.797 1.348 1.283 1.115
25 1.685 1.303 1.254 1.105

Canadian Lynx

Step Linear TAR ExpAR L.T.E.(C)

1 1.440 1.399 1.527 0:824?

2 1.380 1.331 1.399 1.038
3 1.584 1.399 1.506 0:976?

4 1.912 1.674 1.784 1.046
5 2.189 1.953 2.025 1.181
6 1.921 1.753 1.813 1.125
7 1.761 1.635 1.688 1.087
8 1.681 1.580 1.617 1.109
9 1.664 1.559 1.598 1.114
10 1.683 1.573 1.617 1.112

The number means each RMSE devided by

corresponding RMSE of L.T.E.(TV)
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Table 8: Root Mean Squared Error Comparison for Predictors

Step Linear TAR ExpAR L.T.E.(C) Linear TAR ExpAR L.T.E.(C)

[A] NGNP [A] PRGNP

1 1.109 0.642 1.849 1.254 0.812 3.291 0.868 1.516

2 1.214 1.343 1.516 1.192 0.936 2.688 1.810 1.287

3 0.757 1.022 1.661 1.192 1.535 2.731 2.011 1.235

4 0.837 0.971 1.604 1.177 1.565 2.692 1.986 1.253

5 0.992 1.051 1.577 1.173 1.446 1.952 1.642 1.070

6 1.529 1.065 1.535 1.161 0.908 1.646 1.512 1.002

7 1.528 1.072 1.541 1.163 0.716 1.576 1.551 0.969

8 1.607 1.246 1.524 1.161 1.030 1.631 1.562 0.968

9 0.819 1.292 1.529 1.161 1.360 1.304 1.487 0.923

10 1.578 1.310 1.429 1.139 1.367 1.089 1.494 0.890

[A] CPI [B] SP500

1 0.871 0.273 1.643 0.307 1.424 1.769 1.275 1.301

2 0.877 5.920 5.447 1.141 0.962 1.178 0.871 0.981

3 1.139 2.164 1.384 1.160 1.149 1.195 1.123 1.033

4 1.132 2.856 1.681 1.199 1.205 1.204 1.214 1.058

5 0.714 3.414 2.096 1.216 1.229 1.254 1.239 1.081

6 0.720 2.981 2.376 1.100 1.109 1.129 1.144 1.016

7 0.882 3.068 2.587 1.104 1.129 1.156 1.169 1.030

8 0.947 1.794 2.0760 0.981 1.147 1.189 1.183 1.040

9 1.293 1.568 2.032 0.961 1.140 1.182 1.181 1.032

10 1.399 1.335 1.913 0.951 0.954 1.068 0.953 0.950

[B] IP [C] VEL

1 2.719 2.428 2.095 1.355 0.935 1.219 1.655 0.822

2 1.741 1.400 2.709 1.112 1.852 0.906 1.107 0.843

3 1.715 1.417 3.229 1.102 1.390 0.657 0.562 0.846

4 0.987 0.893 1.862 0.945 1.502 0.973 0.606 0.846

5 0.997 0.867 1.853 0.955 1.487 0.845 0.543 0.742

6 1.014 0.893 1.752 0.971 1.545 0.764 0.472 0.659

7 1.018 0.906 1.805 0.971 1.407 0.795 0.392 0.649

8 0.972 0.873 1.805 0.960 1.394 0.769 0.377 0.625

9 0.971 0.867 1.831 0.957 1.395 0.754 0.362 0.602

10 1.040 0.957 1.662 0.986 1.395 0.888 0.356 0.693

The number means each RMSE devided by corresponding RMSE of L.T.E.(TV).
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