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Abstract

The classical statistical model relates ton independent random variables hav-
ing a common distribution. In this paper we consider the situation where the com-
mon distribution involves an unknown parameter, and where at time 0 � t � 1
only the first [nt℄ random variables are observed. The innovation approach is
used to derive goodness of fit processes which especially detect alternatives un-
der which the unknown parameter does not remain constant, but varies over time.

The behaviour of these processes is investigated under the null hypothesis as
well as under alternative hypotheses. Limiting Pitman efficacies of supremum
type tests based on these processes are evaluated. Fixed change point alternative
hypotheses and smooth alternative hypotheses receive additional treatment.

The methods are exemplified using covariance structure models, especially
Gaussian graphical models.
Key Words:Goodness of fit tests, parameter constancy, Pitman efficacies, Gaus-
sian graphical models.

1 Introduction

The classical statistical model relates to random variables X1; : : : ; Xn which are in-
dependent and have a common distribution. In most practicalsituations, the classical
statistical model is not fully specified, but contains an unknownp-dimensional param-
eter, say�, which is an element of the parameterspace�. In order to apply the model,
the unknown parameter has to be estimated.
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When the adequacy of the classical statistical model to describe a particular data
set needs to be assessed, the presence of estimated parameters becomes a problem
due to the complicating effect estimation has on the distribution of test statistics. The
following quote is from Pollard (1984).

The interest aroused when Durbin (1973) applied weak convergence
methods to get limit distributions for statistics analogous to those of Kol-
mogorov and Smirnov, but with estimated parameters, died down when
the intractable limit processes asserted themselves.

A way to avoid this problem was offered in Khmaladze (1981), which advocated in
a different context the use of tests based on functionals applied to a martingale with
respect to the so-called parametric filtration; we shall refer to such a martingale as a
parametric martingale. The parametric filtration is the smallest filtration which con-
tains the elements of the natural filtration as well as the events involving the estimator.
Loosely speaking, the natural filtration describes for eacht in some indexsetT which
events concerning the random variablesX1; : : : ; Xn can be observed at timet; the
parametric filtration allows some sort of “data-peeking”, since at every moment in
time we are also able to observe the estimator.

Khmaladze’s exact innovation approach enables the use of martingale central limit
theory to show that a functional of a parametric martingale converges weakly to the
same functional applied to the Wiener process onT . Subsequently, the rich theory
of the well-studied Wiener process can be used to derive the limit distribution of the
parametric martingale functional.

The “data-peeking” phenomenon inherent in Khmaladze’s approach has met some
criticism, since in some situations data-peeking seems very unnatural; for instance, in
filtering. However, a vast majority of statistical analysesare performed after all data
have been gathered. For these analyses the actual form of thefiltration is merely a
technical matter; in fact, even an artificial filtration may be used (Khmaladze, 1993).

A more serious criticism concerns the intractability of theparametric martingale,
which often motivates the use of an approximation of the parametric martingale on the
basis of a representation of its limit process. Unfortunately, the approximation often
appears to be complex. This problem featured already prominently in Khmaladze
(1981), where a situation not uncommon in survival analysis(Andersen et al.; 1993)
was considered: the natural filtration only allows the observation at timet of those
random variables which take value not exceedingt.

Several examples of Khmaladze’s approximate innovation approach approach exist
in literature, see for instance paragraph VI.3.3.4 in Andersen et al (1993). In contrast,
Khmaladze’s exact innovation approach has not received much attention. In Koning
(1994) an example of the exact innovation approach is given;also Broström (1997)
contains in effect an example, although the ideas of Khmaladze are not referred to.
However, these examples are limited in scope since they onlyconcern very specific
models.
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In this paper a new and more extensive example of Khmaladze’sexact innovation
approach is given, which may provide more insight into the basic ideas of Khmaladze
(1981). The example concerns the classical statistical model, and involves a natural fil-
tration that only allows the observation at timet of the random variablesX1; : : : ; X[nt℄,
an observational scheme not uncommon in time series; we say that the natural filtration
is generated byX1; : : : ; X[nt℄. The parametric filtration allows at timet the observa-
tion of the estimator as well; we say that the parametric filtration is generated by the
estimator andX1; : : : ; X[nt℄.

The parametric filtration naturally leads to the consideration of the so-called inno-
vation score process, which is a parametric martingale; that is, a martingale with re-
spect to the parametric filtration. Although the innovationscore process is the primary
object of interest, this paper contains intermediate results concerning the behaviour
of the maximum likelihood estimator and the estimated scoreprocess which have not
appeared in literature before.

Apart from theoretical relevance, there is also direct practical relevance. The re-
sulting new tests are in particular sensitive to alternatives under which the random
variablesX1; : : : ; Xn are still independent, but do not have a common distribution
anymore. Thus, they can be used to assess whether the parameters of the statistical
model remain constant over time. The test based on the statistic T� Æ �R � �	n�, to
be introduced in Section 6, turns out to be optimal under alternatives which earlier
received attention in Page (1957) and Bissell (1984, 1986).

The structure of the paper is as follows. The null hypothesisand alternative hy-
pothesis theory is developed in Section 2 and Section 3 respectively. Local alternatives
receive extra attention in Section 4. The theory of Sections2–4 is used in Section 5
to evaluate limiting Pitman efficacies of supremum type tests based on the processes
under study. The behaviour of these tests under fixed change point alternatives and
smooth alternatives is investigated in Section 6 and Section 7 respectively.

Section 8 describes the application to covariance structure models, which is exem-
plified in Section 9 by means of the mathematics marks data. Appendix A contains the
proofs of two inequalities given in Section 3.

2 Null hypothesis theory

In this section a parametric martingale is derived by compensating the estimated score
process under the assumption that the parameter of the statistical model remains con-
stant; we shall refer to this situation as “the null hypothesis”.

Consider a sampleX1; : : : ; Xn of independentq-dimensional random variables
having common density functionf�(t). Suppose that at time0 � t � 1 we have
only observedX1; : : : ; X[nt℄, where[nt℄ denotes the largest integer not exceedingnt.
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The score process at timet is given by	nt = n�1=2 ��# �����#=� [nt℄Xi=1 log f#(Xi) = n�1=2 [nt℄Xi=1 ��(Xi);
where [nt℄Xi=1 log f�(Xi)
is the log-likelihood at timet, and��(x) = ��# �����#=� log f#(x)
is the classical score function. Observe that the classicalscore function and the score
process arep-dimensional.

Let � = Z 10 ��(s) (��(s))T f�(s)ds
be the Fisher information matrix evaluated at�, and observe that the dependence of� on � is not reflected in notation. If the Fisher information matrix � exists, then
the Donsker theorem (Shorack and Wellner, 1986, p. 53) implies that	nt converges
weakly to ap-dimensional Gaussian process	 with expectation function identical to
zero and covariance function satisfyingE �	s	Tt � = (s ^ t)�: (1)

The maximum likelihood estimator̂�n is obtained by solving the likelihood equa-
tions ��# �����#=�̂n nXi=1 log f#(Xi) = 0: (2)

Define the estimated score process	̂n by	̂nt = n�1=2 [nt℄Xi=1 ��̂n(Xi)
then the likelihood equations (2) directly implŷ	n1 = 0: maximum likelihood esti-
mation actually selects the parameter value which makes theestimated score process
ultimately return to zero. In Horváth and Parzen (1994) theestimated score process
is called Fisher-score change process; see also Csörgő and Horváth (1997, p. 57).
The use of the estimated score process in testing the constancy of model parameters is
discussed in Hjort and Koning (1999).
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As in Horváth and Parzen (1994), in typical cases one may show that the estimated
score procesŝ	n converges weakly to thep-dimensional Gaussian process	̂t = 	t � t	1:
From (1) we immediately derive that̂	 is a Gaussian process with expectation function
identical to zero and covariance functionE �	̂s	̂Tt � = f(s ^ t)� stg�:
Thus, the estimated score process	̂n has a more intricate asymptotic structure than
the original score process	n. As in Durbin (1973), this may become a problem in the
use of the estimated score process to assess the goodness of fit of a statistical model.
As was mentioned in the introduction, this problem may be avoided by using the exact
innovation approach proposed in Khmaladze (1981). In the situation considered in this
paper, the exact innovation approach involves computing the conditional expectationE ���̂n(Xi) j �̂n; X1; X2; : : : ; Xi�1� :
Due to the fact thatX1; : : : ; Xn are independent, the log-likelihood is symmetric inX1; : : : ; Xn for any�, which implies that the maximum likelihood estimator�̂n is also
symmetric inX1; : : : ; Xn. It follows thatE ���̂n(X`) j �̂n; X1; X2; : : : ; Xi�1� = E ���̂n(Xi) j �̂n; X1; X2; : : : ; Xi�1�
for ` � i, and henceE ���̂n(Xi) j �̂n; X1; X2; : : : ; Xi�1�= (n� i + 1)�1 nX̀=i E ���̂n(X`) j �̂n; X1; X2; : : : ; Xi�1�= (n� i + 1)�1E  nX̀=i ��̂n(X`) j �̂n; X1; X2; : : : ; Xi�1!= (n� i + 1)�1E  � i�1X̀=1 ��̂n(X`) j �̂n; X1; X2; : : : ; Xi�1!= � (n� i + 1)�1 i�1X̀=1 ��̂n(X`):
Subtracting the conditional expectation from��̂n(Xi) yields the random variable�Xi = ��̂n(Xi) + (n� i+ 1)�1 i�1X̀=1 ��̂n(X`) = ��̂n(Xi)� (n� i+ 1)�1 nX̀=i ��̂n(X`);
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the innovation part of��̂n(Xi). Since

cov(��̂n(Xi); ��̂n(Xj)) = 8><>: var(��̂n(X1)) for i = j,� (n� 1)�1 var(��̂n(X1)) for i 6= j
from symmetry and the fact that

Pni=1 ��̂n(Xi) is equal to zero, it follows that

cov
� �Xi; �Xj� = 8>>><>>>: nn� 1 n� in� i+ 1var(��̂n(X1)) if i = j0 if i 6= j

The innovation score process is now defined by�	nt = n�1=2 [nt℄Xi=1 
n;i �Xi;
with 
n;i = �n� i+ 1n� i �1=2 :

The innovation score process is ap-dimensional martingale with respect to the
parametric filtration, generated by the random variables�̂n; X1; X2; : : : ; X[nt℄. More-
over, we have E ��	ns ��	nt �T� = (s ^ t) nn� 1var(��̂n(X1)) :
Typically, the right hand side of this equation tends to(s ^ t)� asn tends to infinity.
It follows that the innovation score process�	n converges weakly to ap-dimensional
Gaussian process�	 with expectation function identical to zero and covariancefunctionE ��	s �	Tt � = (s ^ t)�:
Observe that the processes	n and �	n have the same asymptotic distribution.

Now that we have found one example of a parametric martingale, many more ex-
amples are easily derived. Under conditions on the stochastic integrand, it follows
from standard martingale theory that stochastic integralswith respect to the innovation
score process are also parametric martingales. For instance, letL be a deterministic
scalar function satisfying Z 10 (Ls)2 ds = 1; (3)

then the stochastic integralL � �	n of L with respect to�	n, defined by�L � �	n�t = Lt �	nt � Z t0 �	nsdLs = n�1=2 [nt℄Xi=1 Li=n �Xi
n;i;
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is also a martingale with respect to the parametric filtration generated by the random
variables�̂n; X1; X2; : : : ; X[nt℄, and converges weakly to ap-dimensional Gaussian
processL � �	 with expectation function identical to zero and covariancefunctionE ��L � �	�s �L � �	�Tt � = Z s^t0 (Lu)2 du�:
Thus, the simple asymptotic structure of the innovation score process easily extends to
stochastic integrals with respect to the innovation score process. Stochastic integrals
are convenient, since the freedom in the choice of the integrandL provides the op-
portunity to tune the behaviour of the resulting goodness offit process. For instance,
in Section 5 a choice of the integrand is given which maximizes the limiting Pitman
efficacy of the supremum type goodness of fit test based on the stochastic integral with
respect to a specific alternative.

Observe that that it is not difficult to compute the innovation parts once all��̂n(Xi)’s
are known. Moreover, the��̂n(Xi)’s usually become available as a by-product of max-
imum likelihood estimation via solving the likelihood equations (2). This makes im-
plementation of statistical techniques based on	̂n or �	n rather easy.

If X1; : : : ; Xn are univariate and follow a normal distribution with expectation� and variance 1, then��̂n(Xi) coincides with theith least squares residualXi �n�1Pǹ=1X`; refer to Section 8 for more details. It follows that both theleast squares
cumulative sum in Ploberger and Krämer (1992) and the standardized time series in
Schruben (1982, 1983) coincide with our estimated score process	̂n. Moreover, the
right-hand side of the equation
n;i �Xi = � n� in� i + 1�1=2  Xi � (n� i+ 1)�1 nX̀=iX`! :
may be interpreted as the(n�i+1)th recursive residual when the order of the sample is
reversed. Hence, the recursive cumulative sum in Brown et al(1975) is strongly related
to �	n1 � �	nt , the increment of the innovation score process over the interval (t; 1℄; see
also Krämer et al (1988). However, it should be noted that the estimation method and
general context in Krämer et al (1988) and Ploberger, Krämer (1992) differ from ours.

If X1; : : : ; Xn are univariate and follow a Bernoulli distribution with expectation�, then �Xi coincides withZ(n)i in Broström (1997). Hence, the martingale approach in
Broström (1997) is related to the exact innovation approach.

3 The alternative hypothesis

In this section we study the behaviour of the estimated and innovation score processes
when the random variablesX1; : : : ; Xn are still independent and belong to the same
family of distributions, but do not necessarily have a common distribution anymore; we
shall refer to this situation as “the alternative hypothesis”, although the null hypothesis
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is actually a special case. The density function of the random variableXi is assumed
to be of the formf�i(t).

To avoid technical details and additional notation, the results in this section are pre-
sented as descriptions of the rescaled estimated score process��1=2	̂nt and the rescaled
innovation score process��1=2 �	nt rather than as descriptions of̂	nt and �	nt them-
selves. Since the largest eigenvalue of�1=2 is finite, approximations of the rescaled
processes directly lead to approximations of the original processes. The proofs of
Lemma 1 and Inequalities 1 and 2 are deferred to Appendix A.

Defined#0;# as
����1=2(#0 � #)���, where� is as before the Fisher information matrix

evaluated at�; one may think of� as the common value of the�i’s under some null
hypothesis in the vicinity of the alternative hypothesis. Assume that��(x) satisfies the
following condition.

Condition 1 Let �� denoten�1Pǹ=1 �`. For everyr > 0 and every� 2 � satisfy-
ing max`=1;:::;n d�;�` < r, there exist a random variableUn;r such thatp-dimensional
vector R(Xi; #; #0) = ��1=2�#0(Xi)� ��1=2�#(Xi) + �1=2 (#0 � #)
satisfies max`=1;:::;n �����n�1 nXi=` R(Xi; #0; #)����� � Un;rd#0;#; (4)

for every#; #0 satisfyingd#0;�� < r andd#0;�� < r, andmax`=1;:::;n �����n�1 nXi=`R(Xi; �i; ��)����� � Un;r max`=1;:::;n d�`;��: (5)

As the next lemma illustrates,Un;r tyically converges in probability to a positive
constant depending onr asn tends to infinity. Moreover, ifr tends to zero, then
the limit of Un;r tends to zero also. Regularity conditions (A)–(D) in Section 6.4 of
Lehmann (1991) ensure consistency and asymptotic normality of maximum likelihood
estimators.

Lemma 1 Letf#(x) satisfies regularity conditions (A)–(D) in Section 6.4 of Lehmann
(1991), and let_��i(Xi) denote the derivative of�#0(Xi) with respect to#0, evaluated in#0 = �i. LetS1i;jk andS2i;jk denote the(j; k) elements of��1=2 f _��i(Xi)� E ( _��i(Xi))g
and ��1=2 fE ( _��i(Xi)) + �g, respectively. If there exists0 � � � 1 such thatn�1Pni=1Ppj=1Ppk=1E �jS1i;jkj1+�� remains bounded forn tending to infinity, then
Condition 1 holds withUn;r = 3
r + n�1 nXi=1 pXj=1 pXk=1 jS2i;jkj+ U�n;
where
 is a fixed constant, andU�n is aOP (n��=(1+�)) random variable with distribu-
tion not depending onr.
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Note that under the null hypothesis�E ( _��i(Xi)) coincides with�, and henceUn;r = 3
r + U�n. The well-knownCr-inequality (Shorack and Wellner, 1986, p. 843)
may be helpful in establishing a bound onE �jS1i;jkj1+��.
Inequality 1 Suppose Condition 1 holds. DefineW �n byW �n = n�1=2 nXi=1��1=2���(Xi):
For any radiusr > 0, given the event thatUn;r < 13 and jW �n j < 12rn1=2 (6)

both hold, there exists within the ball�n0 = n# : d#;�� < ro a solution�̂n to the likeli-
hood equations (2) which satisfies���n1=2�1=2 ��̂n � ����W �n ��� < 32Un;r jW �n j :

Inequality 1 shows that the behaviour of the maximum likelihood estimator̂�n is
governed by the random variablesUn;r andW �n . Note that if we apply Inequality 1
with a shrinking radiusrn, then the convergence in probability ofUn;rn to zero yields
thatn1=2�1=2 ��̂n � ��� is asymptotically equivalent toW �n .

The random variableW �n is in turn related to the random variableWn = n�1=2 nXi=1��1=2��i(Xi);
since (5) impliesjWn �W �n j = �����n�1=2 nXi=1��1=2��i(Xi)� n�1=2 nXi=1��1=2���(Xi)�����= �����n�1=2 nXi=1 ���1=2��i(Xi)� ��1=2���(Xi) + �1=2 ��i � ���������= �����n�1=2 nXi=1R(Xi; �i; ��)������ n1=2 max`=1;:::;n d�`;��Un;r:
Usually,��i(Xi) has zero expectation vector; see Lindsey (1996, p. 188). It is assumed
thatWn converges in distribution to some random variable. In most cases this can be
shown by verifying the Lindeberg conditionlimn!1n�1E (�1fhT ��i (Xi)>"n1=2ghT ��i(Xi)�2) = 0
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for every" > 0 and every unit vectorh. If this Lindeberg condition holds for every" > 0 and every vectorh, thenWn has a multivariate normal limit distribution with
the null vector as expectation, and the identity matrix as covariance matrix. In other
circumstances a multivariate stable limit distribution may arise.

The Lindeberg condition is implied by the existence of0 < � � 1 such thatn�1Pni=1Ppj=1Ppk=1E �jS1i;jkj1+�� remains bounded forn tending to infinity, whereS1i;jk is as in Lemma 1.
Inequality 1 implies thatn1=2d�̂n;�� = n1=2 ����1=2 ��̂n � ������

is bounded by23 jW �n j if the event (6) holds; this result also follows from (16) in the
proof of Inequality 1. By noting thatd�̂n;�` is bounded byd�̂n;�� + d��;�`, we obtain the
following corollary to Inequality 1.

Corollary 1 Suppose Condition 1 holds. If the event (6) holds, thenn1=2 max`=1;:::;n d�̂n;�` � 23 �jWnj+ n1=2 max`=1;:::;n d�`;�� (1 + Un;r)� :
Inequality 2 Suppose Condition 1 holds, and the maximum likelihood estimator �̂n
exists. Let �̂i = � ��i � ��� ; and ��i = � �i � 1n� i + 1 nX̀=i �`! :
Then supt2[0;1℄ ��������1=2	̂nt � n�1=2 [nt℄Xi=1��1=2 (�̂i + ��i(Xi)� n�1 nX̀=1 ��`(X`))������� 4n1=2 max`=1;:::;n d�̂n;�`Un;r;
and supt2[0;1℄ ��������1=2 �	nt � n�1=2 [nt℄Xi=1 
n;i��1=2 (��i + ��i(Xi)� 1n� i+ 1 nX̀=i ��`(X`))������� 2(2 + logn)n1=2 max`=1;:::;n d�̂n;�`Un;r:

One may viewn1=2 max`=1;:::;n d�̂n;�` as indicative of the order of magnitude of��1=2	̂nt and��1=2 �	nt . Hence, the accuracy of the bound for the approximations for��1=2	̂nt and��1=2 �	nt in Inequality 2 is in essence given byUn;r and (logn)Un;r,
respectively.

Since the largest eigenvalue of�1=2 is finite, Inequality 2 implies that ifUn;r and(logn)Un;r are small, then
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� the estimated score process	̂nt is approximately equal to a random partn�1=2 [nt℄Xi=1(��i(Xi)� n�1 nX̀=1 ��`(X`))
with zero expectation vector plus a deterministic driftn�1=2P[nt℄i=1 �̂i,� the innovation score process�	nt is approximately equal to a random partn�1=2 [nt℄Xi=1 
n;i0���i(Xi)� 1n� i+ 1 nXj=i ��j (Xj)1A
with zero expectation vector plus a deterministic driftn�1=2P[nt℄i=1 
n;i��i,� the stochastic integral

�L � �	n�t is approximately equal to a random partn�1=2 [nt℄Xi=1 Li=n0���i(Xi)� 1n� i+ 1 nXj=i ��j (Xj)1A 
n;i
with zero expectation vector plus a deterministic driftn�1=2P[nt℄i=1 Li=n
n;i��i.

4 Local alternatives

Further insight into the behaviour of the estimated score procesŝ	nt and the innovation
score process�	nt can be gained by assuming thatX1; : : : ; Xn is in fact thenth row of a
triangular scheme of independent random vectors, and thatXi has densityf�i(x) with�i = �0 + 
nn�1=2� � in� �; (7)

where
n a given scalar depending onn, � (t) is a given scalar function defined on[0; 1℄, and� is a givenp-dimensional vector.
If 
nn�1=2 tends to zero, then we shall refer to (7) as a local alternative. For local

alternatives, we may apply Inequality 2 withr replaced byrn, wherern tends to zero
if n goes to infinity; we shall refer torn as a shrinking radius. In the light of (6)
we should require thatWn is oP (n1=2rn). Thus,n1=2rn should tend to infinity ifWn
remains bounded in probability.

Under a local alternative, it follows from the martingale central limit theorem in
Rootzén (1980) that if the Lindeberg type condition mentioned in Section 3 is satis-
fied, then the random part of the estimated score process	̂n converges in distribution
to 	̂, the limit in distribution of the estimated score process under the null hypothesis
described in Section 2. Similarly, under a local alternative the random parts of�	n andL � �	n respectively converge in distribution to�	 andL � �	, where �	 is the limit
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in distribution of �	n under the null hypothesis. In Horváth and Parzen (1994) only
the asymptotic null behaviour of̂	n is considered, assuming pointwise smoothness
conditions. Pointwise smoothness conditions are less general than stochastic differen-
tiability.

Now, let us use the behaviour ofn�1=2 max`=1;:::;n d�`;�� to distinguish between
fast, contiguous and slow local alternatives. For fast local alternatives we have thatn�1=2 max`=1;:::;n d�`;�� tends to zero. Thus, if(logn)Un;rn tends to zero in probability
andWn remains bounded in probability, we have by Corollary 1 thatn1=2max`=1;:::;n d�̂n;�`
remains bounded in probability. It now follows by Inequality 2 that 	̂n, �	n and�L � �	n�t exhibit the same limiting behavior as under the null hypothesis.

For contiguous alternatives we have thatn�1=2 max`=1;:::;n d�`;�� tends to a non-zero
limit, Æ say. If (logn)Un;rn tends to zero in probability andWn remains bounded in
probability, we again have by Corollary 1 thatn1=2 max`=1;:::;n d�̂n;�` remains bounded

in probability. In this case the deterministic drifts of	̂n, �	n and
�L � �	n�t tend toÆ�̂t�� , Æ ��t�� andÆ �L � ���t�� respectively, where�̂t = Z t0 �� (s)� Z 10 � (u) du� ds;��t = Z t0 �� (s)� 11� s Z 1s � (u) du� ds

and �L � ���t = Z t0 Ls �� (s)� 11� s Z 1s � (u) du� ds:
For slow local alternatives we have thatn�1=2max`=1;:::;n d�`;�� tends to infinity. If(logn)Un;rn tends to zero in probability andWn remains bounded in probability, we

have by Corollary 1 thatn1=2max`=1;:::;n d�̂n;�` isOP (n�1=2 max`=1;:::;n d�`;��). The ran-
dom fluctuations of the processes under consideration become negligible with respect
to their deterministic drifts asn increases. Hence, one may show that the	̂n, �	n and�L � �	n�t are approximated by
n�̂t�� , 
n ��t�� and
n �L � ���t �� , respectively.

Plots of�̂t and ��t versust give an impression of the patterns showing up in graph-
ical displays of the estimated and innovation score processes under a particular slow
alternative hypothesis.

For 	̂n the results in this section remain true ifUn;rn tends to zero in probability.
The requirement that Condition 1 holds withUn;rn tending to zero in probability is
related to the notion of “stochastic differentiability”; see Pollard (1985). For ways
of verifying stochastic differentiability the reader is referred to Pollard (1985) and
Hoffmann-Jørgensen (1994b, Chapter 14).
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5 Limiting Pitman efficacies of supremum type tests

Alternatives with
n � 1 are called contiguous, and are important in the evaluation
of Pitman efficacies. Consequently, the functions�̂ and �� show up in the Pitman
efficiencies of tests based on functionals of the estimated score procesŝ	nt and the
innovation score process�	nt . In this section the limiting Pitman efficacies of the tests
based onT� Æ 	̂n, T� Æ �	n andT� Æ �L � �	n� are evaluated as an example. Here� is
ap-dimensional vector and the functionalT� is defined byT� Æ � = supt2[0;1℄ �T �t
for any function� defined onT . We shall refer to these tests as one-sided supremum
type tests. For notational convenience we restrict ourselves to alternatives for which�T�� is equal to 1.

Supremum type tests are affiliated with a long tradition in goodness-of-fit; re-
call the quote from Pollard (1984): “statistics analogous to those of Kolmogorov and
Smirnov”. Most popular are the two-sided versions, obtained by taking the absolute
value of the inproduct�T �t before suping. Since two-sided tests are less convenient
for theoretical purposes due to problems related to their biasedness (Lehmann, 1986,
Section 4.1), we concentrate in Sections 5–7 on one-sided tests. More on two-sided
supremum type tests can be found in Section 8.

The rationale behind taking the inproduct�T�t originates from the desire to con-
structp tests, each focusing on a different aspect of the model, which can be easily
combined into one overall test. This is accomplished by setting �1; �2; : : : ; �p equal
to the rows of some root of��1, the inverse of the Fisher information under the null
hypothesis. The maximum of the resulting test statistics isa convenient overall test
statistic: under the null hypothesis its limit distribution is easily derived, since the
individual test statistics are asymptotically independent and have a common distri-
bution. From a statistical perspective, the spectral root and the LU-root of��1 are
especially useful. A slight complication in this approach arises from the dependence
of �1; �2; : : : ; �p on the unknown parameter; however, replacing the parameterby its
estimator usually repairs this problem without affecting the asymptotic behaviour of
the individual test statistics.

Our test statistics have asymptotic null hypothesis distributions which are non-
normal, but well-known. The asymptotic null hypothesis distribution ofT� Æ 	̂n coin-
cides with the distribution of the supremum of the one-dimensional standard Brownian
bridge, which has cumulative distribution functionFWeibull(2�1=2;2) (x) = 1� exp n�2x2o
belonging to the Weibull distribution with scale parameter2�1=2 and shape parameter
2. The asymptotic null hypothesis distribution ofT�Æ �	n coincides with the distribution
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of the supremum of the one-dimensional standard Wiener process on the unit interval,
which has cumulative distribution functionFHN(0;1) (x) = (2�)�1=2 Z x�x e�s2=2ds
belonging to the half-standardnormal distribution; the same holds true for the asymp-
totic null hypothesis distribution ofT� Æ �L � �	n� if the integrandL satisfies (3).

Since supremum type test statistics are not asymptoticallynormal, their Pitman
efficacy has the unfavourable property of depending on the size of the test. However,
it can be shown that the Pitman efficacies of the tests based onT� Æ 	̂n, T� Æ �	n andT� Æ �L � �	n� all tend from below to(2 supt2[0;1℄ �̂t)2 ; ( supt2[0;1℄ ��t)2

and

( supt2[0;1℄ �L � ���t)2
respectively, as the sizes of the tests tend to zero. The factor 2 appearing in the asymp-
totic Pitman efficacy of the test based onT� Æ 	̂n is due to the fact that the maximum
value of the variance function of the one-dimensional standard Brownian bridge is
only a quarter of the maximum value of the variance function of the one-dimensional
standard Wiener process on the unit interval, which is 1.

For a specific alternative, the efficacy of the test based onT� Æ �L � �	n� can be
maximized by choosingL equal toL�t = � (t)� 11� t Z 1t � (s) ds Z 10 �� (s)� 11� s Z 1s � (u) du�2 ds!1=2 ;
an alternative expression for the optimal choiceL� of the integrand is obtained by
using the identity� (t)� 11� t Z 1t � (s) ds = � 11� t Z 1t (1� s) d� (s) :
Observe that this choice satisfies (3); moreover, the limiting Pitman efficacy of the test
based onT� Æ �L� � �	n� is equal toZ 10 �� (s)� 11� s Z 1s � (u) du�2 ds: (8)

Using this expression, it can be shown thatT� Æ �L� � �	n� has limiting Pitman effi-
ciency 1 with respect to the generalized likelihood ratio test belonging to the specific
alternative. Thus, for every specific alternative there exists a test based on the supre-
mum of a certain parametric martingale which approaches theoptimal parametric test
in power.
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The limiting Pitman efficiency results in this section generally extend to limiting
approximate Bahadur efficiency results. IfUn;r takes the form
r + U�n whereU�n
is a oP ((logn)�1) random variable with distribution not depending onr or �, then
Condition III� in Wieand (1976) follows from Inequality 2. Hence, Theorem 1in
Kallenberg and Koning (1995) yields that for the test statistics under study the limiting
Pitman and limiting approximate Bahadur concepts give the same answers. ForT�Æ	̂n
this remains true ifU�n is aoP (1) random variable with distribution not depending onr
or �. Under regularity conditions onE ( _��i(Xi)), the special structure
r + U�n of Un;r
may be verified with the aid of Lemma 1.

The results above remain valid ifT� is replaced by a Lipschitz functional; that is, a
functionalT for which there exists a finite constantCT such thatjT Æ �1 � T Æ �2j � CT supt2[0;1℄ j�1;t � �2;tj:
6 A fixed change point alternative hypothesis

Let Rt denote2(1 � t), and observe thatL = R satisfies (3). In this section we
compare the behaviour of the supremum type test statisticsT� Æ 	̂n, T� Æ �	n andT� Æ�R � �	n� to the behaviour of the optimal supremum type test statisticT� Æ �L� � �	n�
under an alternative hypothesis under which the parameter of the classical model jumps
suddenly from�0 to �0 � n�1=2
n� after[nu℄ observations:� (t) = 8><>: 0 if t � u,�1 if t > u;

see also Page (1957). As in the previous section, we restrictourselves without loss of
generality to alternatives for which�T�� = 1 for notational convenience.

If the relative positionu of the jump remains fixed, then using� (t)� 11� t Z 1t � (s) ds = 1� u1� t 1ft�ug;
it can be easily shown thatT� Æ �̂ = ( sup0�t�u(1� u)t)+ ( supu�t�1 u(1� t)) = u(1� u);T� Æ �� = sup0�t�u ��t = sup0�t�u�(1� u) log(1� t) = �(1� u) log(1� u);T� Æ �R � ��� = sup0�t�u �R � ���t = sup0�t�u 2(1� u)t = 2u(1� u);
and, according to (8),T� Æ �L� � ��� = (Z u0 ��1� u1� s�2 ds)1=2 = fu(1� u)g1=2 :
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Figure 1: Fixed change point alternatives: limiting efficiencies of three supremum type
tests as a function of the locationu of the change point.

Figure 1 plots the efficiency ofT� Æ 	̂n and the efficiency ofT� Æ �	n with respect
to the optimal supremum type testT� Æ�L� � �	n� as a function of the locationu of the
change point.

Except for change points occurring in the last 20 percent of the sample, the supre-
mum type test based on the estimated score process should be preferred to the supre-
mum type test based on the innovation process. The supremum type test based on the
estimated score process is optimal for change points occurring in exactly the middle
of the the sample. The supremum type test based on the innovation process is never
optimal.

The conclusions with respect toT�Æ	̂n also extend toT�Æ�R � �	n�, since both test
statistics share the same efficacy for every relative changepoint positionu. It follows
that the relative poor performance of the innovation process can be greatly improved
by stochastic integration.

The two-sided version ofT� Æ 	̂n appears as entry “LS-CUSUM” in Table 3 in
Chu et al (1995), which present simulation results for fixed change points occurring
in univariate normal distributions with variance 1. This table indeed underlines the
high power of the supremum type test based on the estimated score process for change
points alternatives withu between 30 and 70 percent.

7 A smooth alternative hypothesis

In this section we compare the behaviour of the supremum typetest statisticsT� Æ	̂n, T� Æ �	n andT� Æ �R � �	n� to the behaviour of the optimal supremum type test

statisticT� Æ �L� � �	n� under an alternative hypothesis under which the parameter of

the classical model changes in a smooth way from�0 to �0�n�1=2
n� : we assume that�� () is equal to some cumulative distribution functionG on the unit interval(0; 1).
This situation may serve as a close approximation of the situation in which the

distribution parameter changes suddenly from�0 to �0 � n�1=2
n� and the relative
position� of the change point within the sample is random and followsG. To see this,
observe that conditioning on the event that� takes the valueu leads to the situation
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Figure 2: “Beta” smooth alternatives: limiting efficiencies of three supremum type
tests as a function of the parametersa andb.
considered in the previous example, with deterministic drifts of 	̂n, �	n and

�L � �	n�t
depending onu. These deterministic drifts become random as the conditioning on
the event that� takes the valueu is removed, but the law of large numbers shows
that it is still possible to approximate them by
n�̂t�� , 
n ��t�� and
n �L � ���t��
respectively.

The identity � (t)� 11� t Z 1t � (s) ds = 11� t Z 1t (1� s) dGs
facilitates the evaluation ofT� Æ �̂, T� Æ ��, T� Æ �R � ���, andT� Æ �L� � ���.

Figure 2 assumes thatG corresponds to a beta distribution with parametersa andb, and contains contour plots of the efficiencies ofT� Æ 	̂n, T� Æ �	n andT� Æ �R � �	n�
with respect to the optimal supremum type test as a function of the parametersa andb
of the beta distribution.

Observe that the efficiency ofT� Æ 	̂n increases asa tends to1 while the ratioa=b
tends to12 . This is actually not very surprising, since in this situationG will become
degenerate in12 , corresponding to a fixed change point alternative withu = 12 ; recall
thatT� Æ 	̂n was optimal with respect to this alternative.

The efficiency ofT� Æ �	n increases asa becomes larger andb becomes smaller.
This indicates the sensitivity ofT� Æ �	n to change points occurring in the last part of
the sample, since in this situationG will become more concentrated near 1.

The test statisticT� Æ �R � �	n� shows the strongest performance. It is optimal in
the special case thata = 1 andb = 1, which corresponds to the situation whereG
is the uniform distribution on the unit interval(0; 1), and the distribution parameter
changes linearly from�0 to �0 � n�1=2
n� ; see also Bissel (1984, 1986). Moreover, in
the range of values ofa andb displayed in Figure 2 the efficiency ofT� Æ �R � �	n�
always exceeds the efficiency ofT� Æ 	̂n as well asT� Æ �	n.
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8 Application to covariance structure models

In this section we consider the model in which the independent q-dimensional random
vectorsX1; : : : ; Xn have a common multivariate normal distribution with expectation
vector� and full rank covariance matrix
. Both � and
 depend on the unknownp-dimensional parameter vector�. This model coincides with the model discussed
in Magnus (1978), and is an extension of the covariance structure model in which
the components of� are all assumed to be zero. The classical theory for covariance
structures was developed in Browne (1974, 1982, 1984) and J¨oreskog (1981). The
simultaneous equations model (Wold, 1954; Goldberger, 1964), the explanatory fac-
tor analysis model (Lawley and Maxwell, 1963), the higher order confirmatory fac-
tor analysis model (Jöreskog, 1971), the linear structural equations model (Jöreskog,
1977), and the Gaussian graphical model (Dempster, 1972; Whittaker 1990) are special
cases of the covariance structure model. In Bentler and Dudgeon (1996) an overview
of covariance structure analysis is given.

Let �i denote theith component of the expectation vector�, and let!ij and!ij
respectively denote the(i; j) elements of the covariance matrix
 and its inverse
�1.
Observe that!i` = Ppj=1Ppk=1 !ij!jk!k`. Moreover, introduce

_�j = 0BBBBBBBBBB�
��j��1��j��2

...��j��m
1CCCCCCCCCCA ; _!ij = 0BBBBBBBBBB�

�!ij��1�!ij��2
...�!ij��m

1CCCCCCCCCCA and _!ij = 0BBBBBBBBBBB�
�!ij��1�!ij��2

...�!ij��m
1CCCCCCCCCCCA ;

and observe that_!i` = � pXj=1 pXk=1!ij _!jk!k` and _!ij = � pXk=1 pX̀=1!ik!j` _!k`:
According to the model the random vectorsX1; : : : ; Xn have common densityf�(x) = fdet (2�
)g�1=2 exp n�12 (x� �)T 
�1 (x� �)o ;
and hence the classical score function is given by��(x) = qXi=1 qXj=1n!ij (xi � �i) _�j + 12 f!ij � (xi � �i) (xj � �j)g _!ijo ;
see also (13) in Magnus (1978). Using the relations between!i`, _!i` and _!i` just
mentioned, we derive that the Fisher information matrix is given by� = qXi=1 qXk=1!ik _�i ( _�k)T + 14 qXi=1 qXj=1 qXk=1 qX̀=1 f!ik!j` + !i`!jkg _!ij � _!k`�T= qXi=1 qXk=1�!ik _�i ( _�k)T � 14 _!ik � _!ik�T � 14 _!ik ( _!ik)T� :
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For every0 < � � 1 one may show thatn�1Pni=1Ppj=1Ppk=1E �jS1i;jkj1+�� re-
mains bounded forn tending to infinity, whereS1i;jk is defined as in Lemma 1. Thus,
if � is a differentiable function of�, Lemma 1 implies that ifrn is of the ordern�1=2,
the random variableUn;rn isOP (n�1=2).

Observe that ifX1; : : : ; Xn are univariate and follow a normal distribution with
expectation� and variance 1, then��(x) is equal tox � �, �̂n is equal to the sample
mean, and hence��̂n(Xi) coincides with theith least squares residual.

9 An example: the mathematics marks data

In this section we analyze the mathematics marks data given in Table 1.2.1 in Mardia,
Kent and Bibby (1979), by means of the overall test describedin Section 5. The
observations are marks in mechanics, vectors, algebra, analysis and statistics exams
for 88 students. A “butterfly” Gaussian graphical model was fitted in Example 6.7.1 in
Whittaker (1990) and in Example 3.4 in Edwards (1995); the parametrization� = 0BBBBBB� �1�2�3�4�5

1CCCCCCA ; 
�1 = 0BBBBBB� �6 �11 �12 0 0�11 �7 �13 0 0�12 �13 �8 �14 �150 0 �14 �9 �160 0 �15 �16 �10
1CCCCCCA :

is in accordance with this model. Under the butterfly model the estimated expectation
vector and the estimated inverse covariance matrix are given by0BBBB� 3:8965:0595:0604:6744:226 1CCCCA; 0BBBB� :530 �:247 �:291 :000 :000�:247 1:046 �:567 :000 :000�:291 �:567 2:895 �:784 �:493:000 :000 �:784 1:022 �:210:000 :000 �:493 �:210 :647 1CCCCA;
Here we have divided each of the marks by ten, to avoid too manyleading zeroes in
our display of results. The information matrix depends on the unknown parameters; we
estimate the information matrix by replacing the unknown parameters by their estima-
tors. The LU-root of the inverse of the estimated information matrix is block-diagonal
with two blocks. The first block concerns the estimation of the expectations�1; : : : ; �5,
and is given by 0BBBB� 1:373:483 1:036:606 :508 :673:371 :311 :412 1:160:632 :529 :702 :891 1:722 1CCCCA;
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Figure 3: Marks data: the processes2�T1 	̂n; : : : ; 2�T16	̂n.

the entries not explicitly given are all equal to zero. The second block concerns the
estimation of the inverse covariances�6; : : : ; �16, and is given by0BBBBBBBBBBBBBBBB�

:468�:150 :869�:105 �:282 1:396�:752 :769�:490 �:148 :542�:452 �:788 �:178 :731�:308 :152 �1:189 �:261 :948:102 �:843 �1:278 �:117 �:161 1:407�2:093 �1:101 �:045 1:629�1:444 :069 �:661 �:225 1:199:921 �:510 �:323 �:405 �:481 :840
1CCCCCCCCCCCCCCCCA:

Figure 3 displays2�T1 	̂n; : : : ; 2�T16	̂n, where�Ti is equal to theith row of the LU-
root of the inverse of the estimated information matrix. Observe that every process
starts and ends at value zero. The “two-sided version” of theoverall test described in
the beginning of Section 5 is based on the statisticmaxi=1;:::;16 supt2[0;1℄ ���2�Ti 	̂nt ��� :
The asymptotic null hypothesis distribution of each of the individual test statisticssupt2[0;1℄ ���2�Ti 	̂nt ��� coincides with the distribution of two times the absolute supremum
of the one-dimensional standard Brownian bridge, which hascumulative distribution
function 1� 2 1Xk=1nFWeibull(2�1=2;2) (kx)� FWeibull(2�1=2;2) �(k � 12)x�o ;

20



0 10 20 30 40 50 60 70 80 90

-2
0

2
4

6
8

0 10 20 30 40 50 60 70 80 90

-2
0

2
4

6
8

0 10 20 30 40 50 60 70 80 90

-2
0

2
4

6
8

Expectations Inverse covariances Inverse covariances
(diagonal) (off-diagonal)

Figure 4: Marks data: the processes�T1 �	n; : : : ; �T16 �	n.

where, as in Section 5,FWeibull(2�1=2;2) (x) is the cumulative distribution function be-
longing to the Weibull distribution with scale parameter2�1=2 and shape parameter
2. As each of the 16 individual suprema are asymptotically independent, it follows
that the asymptotic critical value at the 5 percent significance level of the overall test
statistic is 3.60; see also the table in Smirnov (1948). The shaded area in Figure 3
represents the acceptance region of the overall test: the null hypothesis is rejected as
soon as one of the 16 processes moves outside this area. The process2�T5 	̂n reaches
a maximal value of 6.46, which clearly exceeds the overall asymptotic critical value
3.60; moreover, the process2�T4 	̂n reaches a maximal value of 4.78, which also ex-
ceeds the overall asymptotic critical value. Thus, the estimated score process indicates
“time”-dependent behaviour of the statistics and analysisexpectations.

Figure 4 displays�T1 �	n; : : : ; �T16 �	n; observe the “free” behaviour of the processes
at the end of the interval. The overall test is now based on thestatisticmaxi=1;:::;16 supt2[0;1℄ ����Ti �	nt ��� :
The asymptotic null hypothesis distribution of each of the individual test statisticssupt2[0;1℄ ����Ti �	nt ��� coincides with the distribution of the absolute supremum ofthe one-
dimensional standard Wiener process on the unit interval, which has cumulative distri-
bution function1� 2 1Xk=1nFHN(0;1) ((4k � 1)x)� FHN(0;1) ((4k � 3)x)o ;
where, as in Section 5,FHN(0;1) (x) is the cumulative distribution function belonging
to the half-standardnormal distribution. One may show thatthe asymptotical critical
value at the 5 percent significance level of the overall test statistic is equal to 3.16. The
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Figure 5: Marks data: the processes�T1 �R � �	n� ; : : : ; �T16 �R � �	n�.
shaded area in Figure 4 represents the acceptance region of the overall test: the null
hypothesis is rejected as soon as one of the 16 processes moves outside this area. The
processes�T4 �	n, �T5 �	n, �T6 �	n and�T8 �	n reach maximal values of 4.08, 6.50, 4.04 and
4.48 respectively, which all exceed the overall asymptoticcritical value 3.16. Thus, the
innovation process indicates “time”-dependent behaviourof the statistics and analysis
expectations, and of the mechanics and algebra diagonal inverse covariances.

Figure 5 displays�T1 �R � �	n� ; : : : ; �T16 �R � �	n�; observe that due to the use ofR as integrand, the volatility of these processes is relatively high at the beginning of
the time interval and relatively low at the end. The overall test is based on the statisticmaxi=1;:::;16 supt2[0;1℄ ����Ti �R � �	nt ���� :
The asymptotic null hypothesis distribution of each of the individual test statisticssupt2[0;1℄ ����Ti �R � �	nt ���� coincides with the distribution of the absolute supremum of
the one-dimensional standard Wiener process on the unit interval, and hence the asymp-
totical critical value at the 5 percent significance level ofthe overall test statistic is
equal to 3.16. The shaded area in Figure 5 represents the acceptance region of the over-
all test: the null hypothesis is rejected as soon as one of the16 processes moves outside
this area. The processes�T2 �R � �	nt �, �T4 �R � �	nt �, �T5 �R � �	nt � and�T14 �R � �	nt �
reach maximal absolute values of 3.22, 5.00, 8.43 and 3.23 respectively, which all ex-
ceed the overall asymptotic critical value 3.16. Thus, the processR � �	n indicates
“time”-dependent behaviour of the statistics, analysis and vectors expectations, and of
the algebra/analysis off-diagonal inverse covariance.

Our results are consistent with the ones obtained in Edwards(1995, Section 7.3)
after adding a continuous latent variable to the butterfly model, yielding the conclusion
“that the data have been sorted by some criterion”; observe that sorting creates time-
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dependence. However, the latter results were obtained ad hoc, and without a formal
test. Moreover, attention was restricted to changes in the components of�, since the
continuous latent variable only affects the location of thefive marks.
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A Proofs

This section contains the proofs of Lemma 1, Inequality 1 andInequality 2.

Proof of Lemma 1 A Taylor expansion of�#(Xi) � �#0(Xi) around#, immediately
followed by a second Taylor expansion of_�#(Xi) around�i, yieldsR(Xi; #0i; #) = 4Xj=1Rj(Xi; #0i; #);
with R1(Xi; #0i; #) = ��1=2 ��#0i(Xi)� �#(Xi)� _�#(Xi) (#0i � #)� ;R2(Xi; #0i; #) = ��1=2 ( _�#(Xi)� _��i(Xi)) (#0i � #) ;R3(Xi; #0i; #) = ��1=2 f _��i(Xi)� E ( _��i(Xi))g (#0i � #) ;R4(Xi; #0i; #) = ��1=2 fE ( _��i(Xi)) + �g (#0i � #) :
It is easily seen thatmax`=1;:::;nn�1 nXi=` jR4(Xi; #0i; #)j � max`=1;:::;nn�1 nXi=` pXj=1 pXk=1 jS2i;jkj� max`=1;:::;n d#0̀ ;#� : (9)

Furthermore, it follows by regularity condition (D) in Section 6.4 of Lehmann
(1991) that there exists some constant
 such thatmax`=1;:::;nn�1 nXi=` jR1(Xi; #0i; #)j � 
� max`=1;:::;n d#0i;#�2 � 2
r � max`=1;:::;n d#0̀ ;#� ; (10)max`=1;:::;nn�1 nXi=` jR2(Xi; #0i; #)j � 
� max`=1;:::;n d�`;# � d#0̀ ;#� � 
r � max`=1;:::;n d#0̀ ;#� : (11)

In the context of (5), letÆik denote thekth element of�i � ��, and observe thatjÆikj
is bounded bymax`=1;:::;n d�`;��. We may writemax`=1;:::;n �����n�1 nXi=`R3(Xi; �i; ��)����� � pXj=1 pXk=1 max`=1;:::;n �����n�1 nXi=` S1i;jkÆik����� :
For 0 � � � 1, the maximal moment inequality (4.34.1) in Hoffmann-Jørgensen
(1994a, p. 308) yields thatE8<: max`=1;:::;n �����n�1 nXi=` S1i;jkÆik�����!1+�9=; � Cn��n�1 nXi=1E njS1i;jkÆikj1+� jÆikj1+�o� Cn�� � max`=1;:::;n d�`;���1+�
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for some constantC only depending on�. Application of Markov’s inequality (Shorack
and Wellner, 1986, p. 842) shows thatn�=(1+�)max`=1;:::;n jn�1Pni=` S1i;jkÆikjmax`=1;:::;n d�`;�� = OP (1):
Hence, there exists a random variableU 0n = OP (n��=(1+�)) which satisfiesmax`=1;:::;n �����n�1 nXi=`R3(Xi; �`; ��)����� � U 0n max`=1;:::;n d�`;��: (12)

In the context of (4), defineU 00n byU 00n = max`=1;:::;n ������n�1 nXi=` pXj=1 pXk=1S1i;jk������ ;
and observe that max`=1;:::;n �����n�1 nXi=`R3(Xi; #0; #)����� � U 00nd#0;#: (13)

Again combining the maximal moment inequality (4.34.1) in Hoffmann-Jørgensen
(1994a) with Markov’s inequality yields thatU 00n isOP (n��=(1+�)), sincen�=(1+�) ������n�1 nXi=1 pXj=1 pXk=1S1i;jk������ = OP (1):

Finally, takeU�n equal to the maximum ofU 0n andU 00n , and observe thatU�n isOP (n��=(1+�)). Combination of (9)–(11) and (13) yields (4), and combination of (9)–
(11) and (12) yields (5). This concludes the proof of Lemma 1. 2
Proof of Inequality 1 Define�n# = # + n�1Pni=1��1�#(Xi), and observe that the
likelihood equations (2) may be written in the form�n̂�n = �̂n. Moreover,n1=2 ��n̂�n � ��� = n1=2 ��̂n � ��� and n1=2 ��n�� � ��� = n�1=2 nXi=1��1���(Xi) = W �n :
The differentiability condition implies that����1=2 (�n#0 � �n# )��� = �����n�1 nXi=1 ���1=2�#0(Xi)� ��1=2�#(Xi) + �1=2 (#0 � #)������= �����n�1 nXi=1R(Xi; #; #0)����� � d#;#0Un;r (14)

for every#; #0 2 � satisfyingd#0;� < r andd#0;� < r.
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First, we shall prove the existence of a solution in�n0 to the likelihood equations
given the event that (6) holds. Condition on this event, and consider# 2 �n0. SinceUn;r < 13 , it follows that����1=2 (�n#0 � �n# )��� � 13 ����1=2 (#0 � #)��� = 13d#0;# (15)

for every#; #0 2 � satisfyingd#0;� < r andd#0;� < r. Consequently, it follows that����1=2 ��n# � ������ � ����1=2 ��n�� � ������+ ����1=2 (�n# � �n�� )���� n�1=2 jW �n j+ 13d#;�� < 12r + 13r < r;
and hence�n maps�n0 into itself. Define the sequencef�̂ni g1i=1 recursively by�̂ni =�n̂�ni�1 , where�̂n0 is equal to��. From (15) it now follows that this sequence converges to

a point�̂n 2 �n0 which satisfies�n̂�n = �̂n.
Next, we prove the final statement of Inequality 1. Conditionon the event that (6)

holds. It immediately follows from (15) that����1=2 ��n̂�n � �n�� ���� < 13 ����1=2 ��n̂�n � ������ ; (16)

which implies����1=2 ��n̂�n � ������ < �1� 13��1 ����1=2 ��n�� � ������ = 32 ����1=2 ��n�� � ������ :
Combining this inequality with (16) yields����1=2 ��n̂�n � �n�� ���� < 13 ����1=2 ��n̂�n � ������ < 32Un;r ����1=2 ��n�� � ������ ;
which concludes the proof of Inequality 1. 2
Proof of Inequality 2 Since we may write��1=2��̂n(Xi)� ��1=2�̂i � ��1=2��i(Xi) + n�1 nX̀=1��1=2��`(X`)= R(Xi; �̂n; �i)� n�1 nX̀=1R(X`; �̂n; �`)
the first statement follows from��������1=2	̂nt � n�1=2 [nt℄Xi=1��1=2 (�̂i + ��i(Xi)� n�1 nX̀=1 ��`(X`))������� ������n�1=2 [nt℄Xi=1(R(Xi; �̂n; �i)� n�1 nX̀=1R(X`; �̂n; �`))������� 4�n1=2 max`=1;:::;n d�̂n;�`�Un;r
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sinceR(Xi; �̂n; �i) equalsR(Xi; �̂n; ��) +R(Xi; �i; ��). Similarly, the second statement
follows from��������1=2 �	nt � n�1=2 [nt℄Xi=1 
n;i��1=2 (��i + ��i(Xi)� (n� i + 1)�1 nX̀=i ��`(X`))������� ������n�1=2 [nt℄Xi=1 
n;i(R(Xi; �̂n; �i)� 1n� i + 1 nX̀=iR(X`; �̂n; �`))������� ������n1=2 [nt℄Xj=1 (
n;j � 
n;j�1)n�1 [nt℄Xi=j R(Xi; �̂n; �i)������+ ������n1=2 [nt℄Xi=1 
n;in� i+ 1n�1 nX̀=i R(X`; �̂n; �`)������� 28<: [nt℄Xj=1 (
n;j � 
n;j�1) + [nt℄Xi=1 
n;in� i+ 19=;n1=2 max`=1;:::;n d�`;�̂nUn;r:
This concludes the proof of Inequality 2. 2
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