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Abstract

The classical statistical model relatesitondependent random variables hav-
ing a common distribution. In this paper we consider theasitun where the com-
mon distribution involves an unknown parameter, and whetere 0 < ¢ < 1
only the first[nt] random variables are observed. The innovation approach is
used to derive goodness of fit processes which especiakaiternatives un-
der which the unknown parameter does not remain constaniabies over time.

The behaviour of these processes is investigated undeuthieypothesis as
well as under alternative hypotheses. Limiting Pitman affies of supremum
type tests based on these processes are evaluated. Fixegq@nt alternative
hypotheses and smooth alternative hypotheses receivisoaddliireatment.

The methods are exemplified using covariance structure Isyoegpecially
Gaussian graphical models.

Key Words:Goodness of fit tests, parameter constancy, Pitman effs&aGiaus-
sian graphical models.

1 Introduction

The classical statistical model relates to random vargalile . . ., X,, which are in-
dependent and have a common distribution. In most practitgtions, the classical
statistical model is not fully specified, but contains annmknp-dimensional param-
eter, say, which is an element of the parametersp@cdn order to apply the model,
the unknown parameter has to be estimated.



When the adequacy of the classical statistical model toritesa particular data
set needs to be assessed, the presence of estimated pasdmeetames a problem
due to the complicating effect estimation has on the digtidimn of test statistics. The
following quote is from Pollard (1984).

The interest aroused when Durbin (1973) applied weak cgevee
methods to get limit distributions for statistics analogdo those of Kol-
mogorov and Smirnov, but with estimated parameters, dieghdehen
the intractable limit processes asserted themselves.

A way to avoid this problem was offered in Khmaladze (1981)jok advocated in
a different context the use of tests based on functionalBeapfo a martingale with
respect to the so-called parametric filtration; we shakréd such a martingale as a
parametric martingale. The parametric filtration is the gsafiltration which con-
tains the elements of the natural filtration as well as the@&viavolving the estimator.
Loosely speaking, the natural filtration describes for gaarsome indexsef which
events concerning the random variabl€s, ..., X,, can be observed at time the
parametric filtration allows some sort of “data-peekingfice at every moment in
time we are also able to observe the estimator.

Khmaladze’s exact innovation approach enables the usemingale central limit
theory to show that a functional of a parametric martingaleverges weakly to the
same functional applied to the Wiener processjanSubsequently, the rich theory
of the well-studied Wiener process can be used to deriverttiedistribution of the
parametric martingale functional.

The “data-peeking” phenomenon inherent in Khmaladze's@ggh has met some
criticism, since in some situations data-peeking seemswematural; for instance, in
filtering. However, a vast majority of statistical analysee performed after all data
have been gathered. For these analyses the actual form &ftthion is merely a
technical matter; in fact, even an artificial filtration mayised (Khmaladze, 1993).

A more serious criticism concerns the intractability of feametric martingale,
which often motivates the use of an approximation of thepatec martingale on the
basis of a representation of its limit process. Unfortulyatbe approximation often
appears to be complex. This problem featured already prmtinin Khmaladze
(1981), where a situation not uncommon in survival analg&isdersen et al.; 1993)
was considered: the natural filtration only allows the obsgon at timet of those
random variables which take value not exceeding

Several examples of Khmaladze’s approximate innovatipnageh approach exist
in literature, see for instance paragraph V1.3.3.4 in Asdaret al (1993). In contrast,
Khmaladze’s exact innovation approach has not receivechrattention. In Koning
(1994) an example of the exact innovation approach is giae&sg Brostrom (1997)
contains in effect an example, although the ideas of Khmalade not referred to.
However, these examples are limited in scope since they @igern very specific
models.



In this paper a new and more extensive example of Khmalaézest innovation
approach is given, which may provide more insight into theibaleas of Khmaladze
(1981). The example concerns the classical statisticabinadd involves a natural fil-
tration that only allows the observation at timef the random variableX,, . . ., X,
an observational scheme not uncommon in time series; wdaathe natural filtration
is generated by, ..., X{,4. The parametric filtration allows at timethe observa-
tion of the estimator as well; we say that the parametricafilbn is generated by the
estimator and\, . .., Xpy.

The parametric filtration naturally leads to the consideradf the so-called inno-
vation score process, which is a parametric martingale;isha martingale with re-
spect to the parametric filtration. Although the innovatsonre process is the primary
object of interest, this paper contains intermediate tesudncerning the behaviour
of the maximum likelihood estimator and the estimated spooeess which have not
appeared in literature before.

Apart from theoretical relevance, there is also direct ficatrelevance. The re-
sulting new tests are in particular sensitive to alterratiunder which the random
variables X, ..., X, are still independent, but do not have a common distribution
anymore. Thus, they can be used to assess whether the paramiethe statistical
model remain constant over time. The test based on thet&tafjso (R * \i;") to
be introduced in Section 6, turns out to be optimal underradtéves which earlier
received attention in Page (1957) and Bissell (1984, 1986).

The structure of the paper is as follows. The null hypothasis alternative hy-
pothesis theory is developed in Section 2 and Section 3cagply. Local alternatives
receive extra attention in Section 4. The theory of Sectirgis used in Section 5
to evaluate limiting Pitman efficacies of supremum typestéstsed on the processes
under study. The behaviour of these tests under fixed chamige gternatives and
smooth alternatives is investigated in Section 6 and Segti@spectively.

Section 8 describes the application to covariance strechadels, which is exem-
plified in Section 9 by means of the mathematics marks datpeAgix A contains the
proofs of two inequalities given in Section 3.

2 Null hypothesis theory

In this section a parametric martingale is derived by corspeng the estimated score
process under the assumption that the parameter of thstistatmodel remains con-
stant; we shall refer to this situation as “the null hypotsies

Consider a sampl&y, ..., X, of independeny-dimensional random variables
having common density functiofy(¢). Suppose that at timé < ¢t < 1 we have
only observedXy, ..., X4, where[nt] denotes the largest integer not exceeding



The score process at timés given by

P [nt] [nt]
WP =072 o) Y og fy(X) =072 Y pe(X),
o 9=0 i1=1 i=1
where
[nt]
> log fo(Xi)
=1
is the log-likelihood at time, and
po(x) = 5| log fo(x)
9V |,_,

is the classical score function. Observe that the classaak function and the score
process ar@-dimensional.
Let

== [ os) (al)" )

be the Fisher information matrix evaluateddatand observe that the dependence of
Y on @ is not reflected in notation. If the Fisher information matri exists, then
the Donsker theorem (Shorack and Wellner, 1986, p. 53) esghat¥} converges
weakly to ap-dimensional Gaussian proce&swith expectation function identical to
zero and covariance function satisfying

E(0,9]) = (s A1)S. (1)

The maximum likelihood estimata¥' is obtained by solving the likelihood equa-
tions 5

2 e =0 @

Define the estimated score procdgsby

[nt]

\TJ? = 1/? Z Pin (Xi)

=1

then the likelihood equations (2) directly impiiy’f = 0: maximum likelihood esti-
mation actually selects the parameter value which makesdtimated score process
ultimately return to zero. In Horvath and Parzen (1994)dkmated score process
is called Fisher-score change process; see also Csoyblavath (1997, p. 57).
The use of the estimated score process in testing the caysttmodel parameters is
discussed in Hjort and Koning (1999).



As in Horvath and Parzen (1994), in typical cases one may sihat the estimated
score proces¥™ converges weakly to the-dimensional Gaussian process

U, =, — 10,

From (1) we immediately derive thatis a Gaussian process with expectation function
identical to zero and covariance function

E(0,0]) ={(s At) — st} 3.

Thus, the estimated score procdsgshas a more intricate asymptotic structure than
the original score process”. As in Durbin (1973), this may become a problem in the
use of the estimated score process to assess the goodness af dtatistical model.
As was mentioned in the introduction, this problem may bedeaby using the exact
innovation approach proposed in Khmaladze (1981). In tii@son considered in this
paper, the exact innovation approach involves computiagtinditional expectation

E (pén(Xz) | én,Xl,Xg, PN ;Xi—l) .

Due to the fact that\,, ..., X,, are independent, the log-likelihood is symmetric in
Xi,..., X, foranyf, which implies that the maximum likelihood estimatfris also
symmetric inXy, ..., X,,. It follows that

E (Pgn (Xo) | 0", X1, X, . .. ,Xi—1) =L (pgn(Xi) | 0", X1, X, . .. aXi—l)
for ¢ > 4, and hence
E (pén(Xz) | én Xl,Xg, e Xi—l)

= (n—i+1)" ZE(pen (X,) | 6" Xl,Xg,...,Xi_l)
=i

(n—z—i—l (Zpﬂn Xg |9 Xl,XQ,...,XZ'_1>
=i

1—1
:(TL—Z+1) 1 ( Zpgn Xl |9 X17X27"'5le>
=1

—(n—i+1)" Zpang

Subtracting the conditional expectation frem (X;) yields the random variable

Xz:pén(Xz)+(n—Z+1 12[)071 XZ _pG"(X) n—z—l—l Zpgn XZ’
=1



the innovation part op;. (X;). Since

var(py. (X)) fori=j,
CoV (g (X,), (X)) =
—(n— 1) var(p;, (X,)) fori#

from symmetry and the fact that;", p;. (X;) is equal to zero, it follows that
n n—i
S v\ ) n—1n—i+1
cov(Xi,Xj) =
0 ifi#£y

The innovation score process is now defined by

var(p;, (X)) it i=j

[nt]
\If? = n*1/2 Z Cn,iXi7
=1

with
(n —i+ 1) 1/2
Cpnj= | —— .
n—1
The innovation score process ispadimensional martingale with respect to the
parametric filtration, generated by the random variabtesy,, X,, ..., X},,. More-
over, we have

<o (Fn\ L L
E <\1; (¥7) ) = (s At)—var(p (X)),
Typically, the right hand side of this equation tendg 4o\ ¢)X asn tends to infinity.

It follows that the innovation score proce$$ converges weakly to a-dimensional
Gaussian procesis with expectation function identical to zero and covariafucestion

E(U,0]) = (s A 1)X.

Observe that the processés and U™ have the same asymptotic distribution.

Now that we have found one example of a parametric martingadey more ex-
amples are easily derived. Under conditions on the stoicheségrand, it follows
from standard martingale theory that stochastic integvélsrespect to the innovation
score process are also parametric martingales. For irestéatd. be a deterministic
scalar function satisfying

/01 (Ly)2ds =1, 3)

then the stochastic integral« U™ of L with respect tol™, defined by
y y b 12 [nt] .
(L+0") =Ly - /0 bmdL, = n ;Li/nxicn,i,

6



is also a martingale with respect to the parametric filtragenerated by the random
variablesf”, X, X, ..., X4, and converges weakly to adimensional Gaussian

process. x U with expectation function identical to zero and covariafuzetion

E{(L ) (L \p)tT} — /OW (L) dus.

Thus, the simple asymptotic structure of the innovatiomespoocess easily extends to
stochastic integrals with respect to the innovation scooegss. Stochastic integrals
are convenient, since the freedom in the choice of the iatedjt. provides the op-
portunity to tune the behaviour of the resulting goodned# pfocess. For instance,
in Section 5 a choice of the integrand is given which maximittes limiting Pitman
efficacy of the supremum type goodness of fit test based oridblastic integral with
respect to a specific alternative.

Observe that that it is not difficult to compute the innovatarts once ap;, (X;)'s
are known. Moreover, the;, (X;)’s usually become available as a by-product of max-
imum likelihood estimation via solving the likelihood equas (2). This makes im-
plementation of statistical techniques basedi@ror U™ rather easy.

If X1,...,X, are univariate and follow a normal distribution with expiin
¢ and variance 1, thep,,(X;) coincides with thei” least squares residudl; —
n~t 37, Xy; refer to Section 8 for more details. It follows that both teast squares
cumulative sum in Ploberger and Kramer (1992) and the sralimked time series in
Schruben (1982, 1983) coincide with our estimated scoregss™. Moreover, the
right-hand side of the equation

. n—i 1/2 n

n—i+1 =

may be interpreted as tie —i+1)"" recursive residual when the order of the sample is
reversed. Hence, the recursive cumulative sum in Brown(&B&15) is strongly related
to U — ¥", the increment of the innovation score process over thevialt¢, 1]; see
also Kramer et al (1988). However, it should be noted thatestimation method and
general context in Kramer et al (1988) and Ploberger, Knafh992) differ from ours.

If X1,...,X, are univariate and follow a Bernoulli distribution with eeqiation
9, thenX; coincides wichi(”) in Brostrom (1997). Hence, the martingale approach in
Brostrom (1997) is related to the exact innovation apgnoac

3 The alternative hypothesis
In this section we study the behaviour of the estimated amoMation score processes
when the random variables, . .., X,, are still independent and belong to the same

family of distributions, but do not necessarily have a commistribution anymore; we
shall refer to this situation as “the alternative hypotké&silthough the null hypothesis

7



is actually a special case. The density function of the remdariableX; is assumed
to be of the formfy, (¢).

To avoid technical details and additional notation, theltssn this section are pre-
sented as descriptions of the rescaled estimated scoressioc/ 2@? and the rescaled
innovation score process—!/2¥” rather than as descriptions @f* and ¥ them-
selves. Since the largest eigenvaluedf? is finite, approximations of the rescaled
processes directly lead to approximations of the origimatesses. The proofs of
Lemma 1 and Inequalities 1 and 2 are deferred to Appendix A.

Definedy y» as‘21/2(z9’ — 4)|, whereX is as before the Fisher information matrix
evaluated at); one may think o) as the common value of thg’s under some null
hypothesis in the vicinity of the alternative hypothesissAme thap,(z) satisfies the
following condition.

Condition 1 Let # denoten ! ¥}, 6,. For everyr > 0 and everyd € O satisfy-

ing max,—; _, dpg, < r,there exist a random variablg,, , such thatp-dimensional
vector
R(X3,0,9") = 72 py (X;) — 572 py (X;) + 512 (0 — 0)
satisfies
-1 . !/ < ,
lg,a}fn n Z R(XZ= v 719) — Unﬂ“dﬁ R (4)

=14
for everyd, ¥’ satisfyingd, 5 < r andd, 4 < r, and
n 'y R(X;,0;,0)

=34

max

< Upn,r max dy, 5. (5)
{=1,....,n ’ ’

{=1,...,n

As the next lemma illustrates], , tyically converges in probability to a positive
constant depending onasn tends to infinity. Moreover, if- tends to zero, then
the limit of U,,, tends to zero also. Regularity conditions (A)—(D) in Setti4 of
Lehmann (1991) ensure consistency and asymptotic nognadilihaximum likelihood
estimators.

Lemma 1 Let fy(x) satisfies regularity conditions (A)—(D) in Section 6.4 ofitreann
(1991), and lepy, (X;) denote the derivative gfy (X;) with respect ta’, evaluated in
V' = 0;. LetSy; ;x and Sy, ;; denote thej, k) elements 0£ /2 {py, (X;) — E (py,(Xi))}
and X7Y2{E (py,(X;)) + X}, respectively. If there exiss < ¢ < 1 such that
TEED VNP ARD Y WY J) (|Su,jk|1+€) remains bounded forn tending to infinity, then
Condition 1 holds with

n p p

Un, = 3cr + nt Z Z Z Skl + U, s

i=1j=1k=1

wherec is a fixed constant, antl* is a Op(n~/(1*9) random variable with distribu-
tion not depending on.



Note that under the null hypothesisE (py, (X;)) coincides withX, and hence
Up,r = 3cr + U}, The well-knownC,.-inequality (Shorack and Wellner, 1986, p. 843)

may be helpful in establishing a bound E?(|SM jk|1+6)

Inequality 1 Suppose Condition 1 holds. Defiié' by

Wy =0 Y23 S 2p5(X,).
=1
For any radiusr > 0, given the event that

Uny <+ and [Wy| < Lrnt/? (6)

both hold, there exists within the ba&l,,, = {19 tdyg < r} a solutiond” to the likeli-
hood equations (2) which satisfies

3Un,

‘n1/221/2 (én B é) W*

Inequality 1 shows that the behaviour of the maximum liketith estimatod™ is
governed by the random variabl&s, and ;. Note that if we apply Inequality 1
with a shrinking radius:,, then the convergence in probability ©f ,, to zero yields

thatn!/2x1/2 (é" — é) is asymptotically equivalent td*.
The random variabl&V is in turn related to the random variable

Wa = n"t2 37570y, (X),
=1
since (5) implies
W = Wy = 072357120, (X) = 07237 2712 pp(X5)
=1 =1

- e ety a0 1)

= |n7'? Z R(X;, 0;, 9)‘

=1

IN
S
=
™
=
I
»
U
S
>
3
S

.....

Usually, py, (X;) has zero expectation vector; see Lindsey (1996, p. 18&)aksumed
thatW,, converges in distribution to some random variable. In mases this can be
shown by verifying the Lindeberg condition

2
lim n™'E { (1{thgi(Xi)>gn1/z}hTPei (Xi)> } =

9



for everye > 0 and every unit vectoh. If this Lindeberg condition holds for every
¢ > 0 and every vectoh, thenW,, has a multivariate normal limit distribution with
the null vector as expectation, and the identity matrix asagance matrix. In other
circumstances a multivariate stable limit distributionynagise.

The Lindeberg condition is implied by the existencefoi< ¢ < 1 such that
DD DD S/ (|Su~,jk|”€) remains bounded for tending to infinity, where
S1ijk IS asin Lemma 1.

Inequality 1 implies that

1/2d nl/2 ‘21/2 (9n . 9—)‘

is bounded by || if the event (6) holds; this result also follows from (16) het
proof of Inequality 1. By noting that;, ,, is bounded byl;. ; + dg,,, We obtain the
following corollary to Inequality 1.

Corollary 1 Suppose Condition 1 holds. If the event (6) holds, then

nl/2

ax dg. g {|W |+ nt/ ax dy, g (1+ Un,r)} :

..........

Inequality 2 Suppose Condition 1 holds, and the maximum likelihood estind™
exists. Let

 w(n A oo, 1
jii =3 (6 9),andul_2(ez n—i+1;9£>'

Then
sup |22 — *1/222 1/2{/%""/)0 Zpa[ X, }
te[O,l] =1
< 4p'l? max dg, o Upr,
and
1/2F 1/2 il 1/2 1 =
sup (S2UP —n 2y e, B {u + po, (X;) — ﬁZpeg(Xe)}
te[0,1] i1 v+ 195

< 2(2 —i—logn)nl/  Jnax dgn g, Un,r-

One may viewn'/? max,—; ., dyn o, @s indicative of the order of magnitude of
2*1/2\?? andX /29", Hence, the accuracy of the bound for the approximations for
Y1297 and ©1/207 in Inequality 2 is in essence given 18y, and (logn)U,.,,
respectively.

Since the largest eigenvalue Bf/? is finite, Inequality 2 implies that if/,, . and
(log n)U,, are small, then

10



e the estimated score proce@ﬁ is approximately equal to a random part

[nt]

w2y {pei (X)) —n" ; o (Xe)}

=1 =

with zero expectation vector plus a deterministic dsift/2 2" 7,

e the innovation score proce§/$‘ is approximately equal to a random part

[nt} 1 n
71/22 : . X)- - E ,
n Cn,z Pel( 7,) - pg(X)
= ( n—i 1t

with zero expectation vector plus a deterministic duift/? EZ@ Cniflis

e the stochastic integrilL * \if”)t is approximately equal to a random part

[nt] 1 n
nt? > Lim (Poi (Xi) — ————=_ po, (Xj)> Cnyi

n—i+1:=

with zero expectation vector plus a deterministic dgift/? Eg’ﬂ Li/nCnifli.

4 Local alternatives

Further insight into the behaviour of the estimated scopegssl” and the innovation
score proces¥” can be gained by assuming thét, . . ., X,, is in fact then' row of a
triangular scheme of independent random vectors, andithas densityfy, (z) with

Qi = 90 + cnn_l/Qf (%) T, (7)

wherec,, a given scalar depending on & (¢) is a given scalar function defined on
[0, 1], andT is a givenp-dimensional vector.

If ¢,n1/? tends to zero, then we shall refer to (7) as a local altereatfor local
alternatives, we may apply Inequality 2 wittreplaced by-,,, wherer,, tends to zero
if n goes to infinity; we shall refer to, as a shrinking radius. In the light of (6)
we should require that’, is op(n'/?r,). Thus,n'/?r, should tend to infinity ifiV,
remains bounded in probability.

Under a local alternative, it follows from the martingalentral limit theorem in
Rootzén (1980) that if the Lindeberg type condition memtid in Section 3 is satis-
fied, then the random part of the estimated score progésnverges in distribution
to U, the limit in distribution of the estimated score procesdarnthe null hypothesis
described in Section 2. Similarly, under a local alterrethe random parts of” and
L = U™ respectively converge in distribution t and L = ¥, where¥ is the limit

11



in distribution of U™ under the null hypothesis. In Horvath and Parzen (1994 onl
the asymptotic null behaviour oF” is considered, assuming pointwise smoothness
conditions. Pointwise smoothness conditions are lessrgktian stochastic differen-
tiability.

Now, let us use the behaviour af !/2 max—1,.., dy, g to distinguish between
fast, contiguous and slow local alternatives. For fastllaft@rnatives we have that
n~2 max,_; __,dy, g tends to zero. Thus, iflogn)U,,,, tends to zero in probability
andV, remains bounded in probability, we have by Corollary 1 tH&t max,_; dén,ee
remains bounded in probability. It now follows by Inequal® that U™, U™ and

(L * \Tf”)t exhibit the same limiting behavior as under the null hypsthe

.....

limit, § say. If (logn)U,,, tends to zero in probability and’,, remains bounded in
probability, we again have by Corollary 1 that? max,—; dgn 4, remains bounded

in probability. In this case the deterministic drifts &f, ¥" and (L % \if”)t tend to
AT, 6A, ST andd (L % A)t Y7 respectively, where

A= [ew) - [ e} as
At:/()t{§(s)—i/:§(u)du}ds

(L*A)t: tLS £(s) — i 1§(u)du ds.
0 1—sJs

.....

and

..........

dom fluctuations of the processes under consideration becegiigible with respect
to their deterministic drifts as increases. Hence, one may show thatdtte " and

(L % \Tf”)t are approximated by, A, X7, ¢,A,Sr ande, (L % A)t Y7, respectively.

Plots of A, and A, versust give an impression of the patterns showing up in graph-
ical displays of the estimated and innovation score pra&sesader a particular slow
alternative hypothesis.

For U™ the results in this section remain trueliif ,,, tends to zero in probability.
The requirement that Condition 1 holds with ,, tending to zero in probability is
related to the notion of “stochastic differentiability’ee Pollard (1985). For ways
of verifying stochastic differentiability the reader iSfeged to Pollard (1985) and
Hoffmann-Jgrgensen (1994b, Chapter 14).

12



5 Limiting Pitman efficacies of supremum type tests

Alternatives with¢, = 1 are called contiguous, and are important in the evaluation
of Pitman efficacies. Consequently, the functichsand A show up in the Pitman
efficiencies of tests based on functionals of the estimatedesprocess} and the
innovation score procesis;l. In this section the limiting Pitman efficacies of the tests
based o}, o ¥, T, o U™ andT, o (L « Um) are evaluated as an example. Herie
ap-dimensional vector and the functioriél is defined by

T,on= sup VT77t
te(0,1]

for any functionn defined or7". We shall refer to these tests as one-sided supremum
type tests. For notational convenience we restrict oueselo alternatives for which
vI'Yris equal to 1.

Supremum type tests are affiliated with a long tradition indygess-of-fit; re-
call the quote from Pollard (1984): “statistics analogaughiose of Kolmogorov and
Smirnov”. Most popular are the two-sided versions, obtaibg taking the absolute
value of the inproduct’ ', before suping. Since two-sided tests are less convenient
for theoretical purposes due to problems related to thesdiminess (Lehmann, 1986,
Section 4.1), we concentrate in Sections 5—-7 on one-sidsl téore on two-sided
supremum type tests can be found in Section 8.

The rationale behind taking the inproductr, originates from the desire to con-
structp tests, each focusing on a different aspect of the model, wtam be easily
combined into one overall test. This is accomplished byirgptt;, v», . . ., v, equal
to the rows of some root df !, the inverse of the Fisher information under the null
hypothesis. The maximum of the resulting test statistias c®@nvenient overall test
statistic: under the null hypothesis its limit distributics easily derived, since the
individual test statistics are asymptotically indepertdamd have a common distri-
bution. From a statistical perspective, the spectral root the LU-root ofS ! are
especially useful. A slight complication in this approacises from the dependence
of v1,vs,...,1, On the unknown parameter; however, replacing the pararbgtés
estimator usually repairs this problem without affectihg asymptotic behaviour of
the individual test statistics.

Our test statistics have asymptotic null hypothesis distrons which are non-
normal, but well-known. The asymptotic null hypothesigritisition of 7, o ™ coin-
cides with the distribution of the supremum of the one-disi@nal standard Brownian
bridge, which has cumulative distribution function

FWeibuII(2—1/2,2) () =1—exp {—2:1:2}
belonging to the Weibull distribution with scale parameet/? and shape parameter

2. The asymptotic null hypothesis distributioriob U™ coincides with the distribution

13



of the supremum of the one-dimensional standard Wieneegsoan the unit interval,
which has cumulative distribution function

Funo,) () = (QW)A/Z/ e+ *ds
belonging to the half-standardnormal distribution; thenedolds true for the asymp-
totic null hypothesis distribution df,, o (L % \i}”) if the integrandZ. satisfies (3).
Since supremum type test statistics are not asymptoticaliynal, their Pitman
efficacy has the unfavourable property of depending on tteedi the test. However,
it can be shown that the Pitman efficacies of the tests bas&@y o™, T, o ¥ and

T, o (L % \i;") all tend from below to

2 2 2
{2 sup At} , {sup At} and {sup (L*A) }
t€[0,1] t€[0,1] te[0,1] t

respectively, as the sizes of the tests tend to zero. Therfa@ppearing in the asymp-
totic Pitman efficacy of the test based Bno U” is due to the fact that the maximum
value of the variance function of the one-dimensional stathdrownian bridge is
only a quarter of the maximum value of the variance functibthe one-dimensional
standard Wiener process on the unit interval, which is 1.

For a specific alternative, the efficacy of the test based,on (L + ¥") can be
maximized by choosing equal to

an alternative expression for the optimal choiceof the integrand is obtained by
using the identity

Observe that this choice satisfies (3); moreover, the IngiRitman efficacy of the test
based orY), o (L* * \If”) is equal to

[Hew -2 [Metym) as ®)

Using this expression, it can be shown tiato ( L* x \i;") has limiting Pitman effi-
ciency 1 with respect to the generalized likelihood ratst teelonging to the specific
alternative. Thus, for every specific alternative therestxa test based on the supre-
mum of a certain parametric martingale which approachesphienal parametric test
in power.
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The limiting Pitman efficiency results in this section geallgrextend to limiting
approximate Bahadur efficiency results. Uf, . takes the former + U whereU;;
is aop((logn)~') random variable with distribution not depending omr ¢, then
Condition 1lI* in Wieand (1976) follows from Inequality 2. Hence, Theorenml
Kallenberg and Koning (1995) yields that for the test stasunder study the limiting
Pitman and limiting approximate Bahadur concepts give éneesanswers. Fat, o W™
this remains true it/ is aop (1) random variable with distribution not dependingron
or 6. Under regularity conditions off (py, (X;)), the special structure- + U of U,
may be verified with the aid of Lemma 1.

The results above remain validif, is replaced by a Lipschitz functional; that is, a
functional?” for which there exists a finite constatif: such that

T om —Tomn| <Cr sup |n— 1oy
t€[0,1]

6 A fixed change point alternative hypothesis

Let R, denote2(1 — ¢), and observe that. = R satisfies (3). In this section we
compare the behaviour of the supremum type test statigfiosh”, 7, o ¥" and7}, o
(R +¥") to the behaviour of the optimal supremum type test statftic (L* + ¥"
under an alternative hypothesis under which the paramttiee classical model jumps
suddenly fron, to 6, — n='/2¢, 7 after[nu] observations:

0 ift<u,
o]

-1 ift>u;

see also Page (1957). As in the previous section, we restriselves without loss of
generality to alternatives for whia 7 = 1 for notational convenience.
If the relative position: of the jump remains fixed, then using

1 1 1—u
g(t)_l——t i §(s)ds = -

it can be easily shown that

T,joA:{sup (1—u)t}+{sup u(l—t)}:u(l—u),

0<t<u u<t<1

1{t§u}7

T,0A = sup A, = sup —(1 —u)log(l —¢t) = —(1 — u)log(l — u),

0<t<u 0<t<u
T,,o(R*A) = sup (R*A) = sup 2(1 — u)t = 2u(l — u),
0<t<u U p<t<u

and, according to (8),

1/2

T,0 (L +A) = {/0 (—1:2)2&9} — {u(1 — )},
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= T;o\i;; I T;o\i}; T w TVO(R*W)

Figure 1: Fixed change point alternatives: limiting effiaess of three supremum type
tests as a function of the locatiarof the change point.

Figure 1 plots the efficiency &f, o ¥ and the efficiency of}, o ¥ with respect
to the optimal supremum type tékto (L* * \i/n) as a function of the locatiom of the
change point.

Except for change points occurring in the last 20 percenh®sample, the supre-
mum type test based on the estimated score process shoutdfbagd to the supre-
mum type test based on the innovation process. The supreppgntdst based on the
estimated score process is optimal for change points angumr exactly the middle
of the the sample. The supremum type test based on the inooyabcess is never
optimal.

The conclusions with respectmoﬁ/” also extend td, o (R * ™), since both test
statistics share the same efficacy for every relative chpogg positionu. It follows
that the relative poor performance of the innovation preass be greatly improved
by stochastic integration.

The two-sided version df, o U™ appears as entry “LS-CUSUM” in Table 3 in
Chu et al (1995), which present simulation results for fixednge points occurring
in univariate normal distributions with variance 1. Thidl@indeed underlines the
high power of the supremum type test based on the estimabeel gocess for change
points alternatives witlh between 30 and 70 percent.

7 A smooth alternative hypothesis

In this section we compare the behaviour of the supremum tggtestatistics/), o
v T, o W™ andT, o (R * \If”) to the behaviour of the optimal supremum type test

statisticT), o (L* % \Tf”) under an alternative hypothesis under which the paraméter o

the classical model changes in a smooth way fégto 6, — n~'/?¢,,7: we assume that
—& () is equal to some cumulative distribution functi@non the unit interval(0, 1).
This situation may serve as a close approximation of thein in which the
distribution parameter changes suddenly fréyrto 6, — n~/%¢,7 and the relative
positions of the change point within the sample is random and follGiv§o see this,
observe that conditioning on the event thatakes the value: leads to the situation

16
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Figure 2: “Beta” smooth alternatives: limiting efficiensief three supremum type
tests as a function of the parametersndb.

considered in the previous example, with deterministittsidf U, ¥ and (L * \if”)t
depending on.. These deterministic drifts become random as the condlitipan
the event thatr takes the value: is removed, but the law of large numbers shows
that it is still possible to approximate them byA, X7, ¢, A, X7 ande, (L % A)t S
respectively.

The identity

{(t)—% t §(s)d3:%/t (1—5)dG,

facilitates the evaluation &f, o A, T, o A, T, o (R % A), and7, o (L* * A).
Figure 2 assumes thét corresponds to a beta distribution with parameteasd
b, and contains contour plots of the efficienciedpb ¥", T, o U" andT, o (R % U™

with respect to the optimal supremum type test as a functidimeoparameters andb
of the beta distribution.

Observe that the efficiency @f, o U™ increases as tends taro while the ratioa/b
tends to%. This is actually not very surprising, since in this sitoatG will become
degenerate ilé, corresponding to a fixed change point alternative with %; recall
that7,, o U™ was optimal with respect to this alternative.

The efficiency off}, o U™ increases as becomes larger antlbecomes smaller.
This indicates the sensitivity &f, o U™ to change points occurring in the last part of
the sample, since in this situatiGhwill become more concentrated near 1.

The test statisti@), o (R * \i/n) shows the strongest performance. It is optimal in
the special case that= 1 andb = 1, which corresponds to the situation whére
is the uniform distribution on the unit intervé, 1), and the distribution parameter
changes linearly from, to 6, — n='/%¢,7; see also Bissel (1984, 1986). Moreover, in
the range of values af andb displayed in Figure 2 the efficiency @f, o (R * \if”)

always exceeds the efficiency Bf o ¥" as well asl}, o ™.
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8 Application to covariance structure models

In this section we consider the model in which the indepeng@imensional random
vectorsXy, ..., X, have a common multivariate normal distribution with exp&ion
vector ., and full rank covariance matriR. Both ; and (2 depend on the unknown
p-dimensional parameter vect6r This model coincides with the model discussed
in Magnus (1978), and is an extension of the covariance tsireienodel in which
the components gt are all assumed to be zero. The classical theory for covaian
structures was developed in Browne (1974, 1982, 1984) areklkog (1981). The
simultaneous equations model (Wold, 1954; Goldberger4),36e explanatory fac-
tor analysis model (Lawley and Maxwell, 1963), the highetesrconfirmatory fac-
tor analysis model (Joreskog, 1971), the linear struttgaations model (Joreskog,
1977), and the Gaussian graphical model (Dempster, 197Rtakér 1990) are special
cases of the covariance structure model. In Bentler and Eaad¢l996) an overview
of covariance structure analysis is given.

Let u; denote the™ component of the expectation veciorand letw;; andw®
respectively denote the, j) elements of the covariance matfixand its inverse) .
Observe thav™ = °4_, 37| w”w;w. Moreover, introduce

Opy Owij O
691 691 a01
% awij ow"

ﬂj = 802 , wz] = 802 and WU = 892 ,
Oy Oy 0wt
00, 00y, 00,

and observe that
p p . .. p p . .
djig = — Z Z wijwjkwke and wY = — Z Z kawﬂd)M.
j=lk=1 k=1¢=1
According to the model the random vectoys, . . ., X,, have common density

fo(x) = {det (2rQ)} P exp {~5 (2 — )" Q7' (z — w)},
and hence the classical score function is given by

)= 35 (o1 — o) g+ b Lo — () (o — )} )

=1 j=1

see also (13) in Magnus (1978). Using the relations betwegny;, and ™ just
mentioned, we derive that the Fisher information matrixiveg by
q q

a i=1 /;w i (f i;gg;{wmwge+wwwgk}w (-ke)T
- Z Xq: {wlk/vbz (Mk)T — id)ik (wzk)T _ iwik (wzk)T} .

1=1 k=1
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For every0 < ¢ < 1 one may show that ' >7 , >0, >} | E (|Su,jk|1+f) re-
mains bounded for tending to infinity, wheres); j;, is defined as in Lemma 1. Thus,
if ¥ is a differentiable function of, Lemma 1 implies that if,, is of the ordem /2,
the random variabl€,, ., is Op(n~1/2).

Observe that ifX, ..., X,, are univariate and follow a normal distribution with
expectatiory and variance 1, thepy(z) is equal tox — 6, " is equal to the sample
mean, and hence,, (X;) coincides with the least squares residual.

9 An example: the mathematics marks data

In this section we analyze the mathematics marks data giv&able 1.2.1 in Mardia,
Kent and Bibby (1979), by means of the overall test describefection 5. The
observations are marks in mechanics, vectors, algebrysiand statistics exams
for 88 students. A “butterfly” Gaussian graphical model wdediin Example 6.7.1in
Whittaker (1990) and in Example 3.4 in Edwards (1995); theupetrization

92 911 97 913 0 O
p=1|0s |, Q1= 6 013 05 014 015
05 0 0 65 b5 0o

is in accordance with this model. Under the butterfly modeldktimated expectation
vector and the estimated inverse covariance matrix arediye

3.896 530 —.247 —.291 .000  .000
5.059 —.247 1.046 —-.567  .000  .000
5.060 |, —.291 —-.567 2.895 —.784 —493 |,
4.674 .000 .000 —-.784 1.022 -.210
4.226 .000 .000 —.493 -—-.210 .647

Here we have divided each of the marks by ten, to avoid too neading zeroes in
our display of results. The information matrix depends @wthknown parameters; we
estimate the information matrix by replacing the unknowrapzeters by their estima-
tors. The LU-root of the inverse of the estimated informateatrix is block-diagonal
with two blocks. The first block concerns the estimation eféixpectations,, . . ., 05,
and is given by
1.373
483 1.036
606 508 .673

371 311 412 1.160
632 529 .702 .891 1.722
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Expectations Inverse covariances Inverse covariances
(diagonal) (off-diagonal)

Figure 3: Marks data: the processed U™, ... 250",

the entries not explicitly given are all equal to zero. Theos®l block concerns the
estimation of the inverse covarianags. . ., 614, and is given by

468
—.150 .869
—.105 —.282 1.396
—.752 769
—.490 —.148 .542
—.452 —-.788 —.178 731
—.308 152 —1.189 —.261 948
102 —.843 —1.278 —.117 —-.161 1.407
—2.093 -1.101 -—.045 1.629
—1.444 .069 —.661 —.225 1.199
921 —-.510 —-.323 —.405 —.481 .840

Figure 3 display2u7 0™, ..., 20%5,0", wherev! is equal to the row of the LU-
root of the inverse of the estimated information matrix. €#e that every process
starts and ends at value zero. The “two-sided version” obtlezall test described in
the beginning of Section 5 is based on the statistic

‘max_sup [2v] U
i=1,,16 4c10.1] ‘ it
The asymptotic null hypothesis distribution of each of thdividual test statistics
SUDyeo,1] ‘QVZ»T\I/? coincides with the distribution of two times the absolutpremum

of the one-dimensional standard Brownian bridge, whichduesulative distribution
function

1-2 Z {FWeibuII(2—1/2’2) (kZL') - FWeibu”(Q—l/Q,z) ((k — %)LL‘)} ,
k=1
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Expectations Inverse covariances Inverse covariances
(diagonal) (off-diagonal)

Figure 4: Marks data: the processési”, ... vLU",

where, as in Section Fjyyeipui2-1/2 2) () is the cumulative distribution function be-
longing to the Weibull distribution with scale paramefer/? and shape parameter
2. As each of the 16 individual suprema are asymptoticalllependent, it follows
that the asymptotic critical value at the 5 percent signiicealevel of the overall test
statistic is 3.60; see also the table in Smirnov (1948). Thealed area in Figure 3
represents the acceptance region of the overall test: théypothesis is rejected as
soon as one of the 16 processes moves outside this area. d’dw@yg\i/” reaches
a maximal value of 6.46, which clearly exceeds the overalirgotic critical value
3.60; moreover, the procegs? U" reaches a maximal value of 4.78, which also ex-
ceeds the overall asymptotic critical value. Thus, thenestied score process indicates
“time”-dependent behaviour of the statistics and analgsgectations.

Figure 4 display&lT\ff”, e yﬂ\ff”; observe the “free” behaviour of the processes
at the end of the interval. The overall test is now based ostthestic

_max  sup VZT\I/?‘ .

i=1,...,16 t€[0,1]
The asymptotic null hypothesis distribution of each of thdividual test statistics
SUDye(0,1] ‘z/iT\If? coincides with the distribution of the absolute supremurthefone-
dimensional standard Wiener process on the unit interdaimhas cumulative distri-
bution function

1— Qgé {F‘HN(OJ) ((4k — 1)x) — Funco,1) ((4k — 3)33)} ;

where, as in Section Fjin,1) () is the cumulative distribution function belonging
to the half-standardnormal distribution. One may show thatasymptotical critical
value at the 5 percent significance level of the overall tiedissic is equal to 3.16. The
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Expectations Inverse covariances Inverse covariances
(diagonal) (off-diagonal)

Figure 5: Marks data: the procesqus(R * \i/n) sy Vg (R % \f;n)

shaded area in Figure 4 represents the acceptance regibe ové¢rall test: the null
hypothesis is rejected as soon as one of the 16 processes mgsgéale this area. The
processes? U”, vIp", I\ andyI ¥" reach maximal values of 4.08, 6.50, 4.04 and
4.48 respectively, which all exceed the overall asymptoitecal value 3.16. Thus, the
innovation process indicates “time”-dependent behavidtine statistics and analysis
expectations, and of the mechanics and algebra diagoreak@eovariances.

Figure 5 displays! (R * \ff”) sy Vi (R * \Tl”); observe that due to the use of
R as integrand, the volatility of these processes is relgtivigh at the beginning of
the time interval and relatively low at the end. The oversdltts based on the statistic

~max sup
i=1,-16 4c[g.1]

vl (R * \fl?)

The asymptotic null hypothesis distribution of each of thdividual test statistics
SUP,cpo.) |V (R * \ff?? coincides with the distribution of the absolute supremum of
the one-dimensional standard Wiener process on the ueitadt and hence the asymp-
totical critical value at the 5 percent significance levekltd overall test statistic is
equal to 3.16. The shaded area in Figure 5 represents thatance region of the over-
all test: the null hypothesis is rejected as soon as one dfglpeocesses moves outside
this area. The processe$ (R « U7, v (R« Wp), vl (R« ¥7) andvf, (R« 07
reach maximal absolute values of 3.22, 5.00, 8.43 and 32ieatively, which all ex-
ceed the overall asymptotic critical value 3.16. Thus, ttec@ssRk « U™ indicates
“time”-dependent behaviour of the statistics, analysi$ @ctors expectations, and of
the algebra/analysis off-diagonal inverse covariance.

Our results are consistent with the ones obtained in Edwa@B5, Section 7.3)
after adding a continuous latent variable to the butterflgehoyielding the conclusion
“that the data have been sorted by some criterion”; obséatesorting creates time-
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dependence. However, the latter results were obtained @dand without a formal
test. Moreover, attention was restricted to changes in dngponents of:, since the
continuous latent variable only affects the location offilie marks.
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A Proofs

This section contains the proofs of Lemma 1, Inequality 1laeduality 2.

Proof of Lemma 1 A Taylor expansion opy(X;) — pg (X;) around?, immediately
followed by a second Taylor expansion®f( X;) aroundd;, yields

4
R XZ719;) Z Xlaﬁz,a
7j=1

with
Ry (X, 9, 9) = 772 (0 (X3) = po(X3) = po () (9 = ),
Ry (X5, 95, 0) = X7 (po(Xi) — o, (X3)) (95 — 9)
Rs(X,9;,9) = 272 {5, (X3) — E (po,(X3))} (0 = ),
Ry(X;, 0}, 9) = 572 {E (pg,(Xs)) + S} (0 — 0) .

It is easily seen that

......... n
a) i=0 7) Z:l 77

Furthermore, it follows by regularity condition (D) in Semt 6.4 of Lehmann
(1991) that there exists some constastich that

2
Jgax n 1§|R1 (X3, 05, 9)] < C<Errll,a>f dg, ) < 2er <Zm,a>f dyg, ) (10)

-1 !
(X, 0, < dg, 9 - dy < dy 9). (11
 max ;e'RQ i» U3, U)] C<£Ir%§_§n 00,0 19[,19> <ecr (EH%aXn 19(,,19> (11)

=1,...,

In the context of (5), let;, denote the:' element of); — 0, and observe thab, |
is bounded bynax,_; , dy, 5. We may write

.....

n~ ' > Rsy(X;,0;,0)

n
oL
Z S1i jkOik | -

=14

max
{=1,...,n

p p
S22 max
J: :

For0 < e < 1, the maximal moment inequality (4.34.1) in Hoffmann-Jaigen
(19944, p. 308) yields that

n
-1
" St k0

=34

1+€ n
) } < Cn~n~t Z E {|Sli,jk(5ik|1+6 |5ik|1+6}

=1

1+e€
< Cn | max dy, 4
{=1,...,n 00
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for some constant' only depending on. Application of Markov’s inequality (Shorack
and Wellner, 1986, p. 842) shows that

—1 n
maXe—1,.n|N L S1i.k0;
ne/(1+e) £=1, ,n| Ez_Z i,k lk| — Op(l)
maxy=1,...n dg,

Hence, there exists a random variable= Op(n~/(1*9) which satisfies

-1 " ) o B
zgl?.}fn n ;Rg(XZ,GZ,G) <U, rnax del i (12)
In the context of (4), defin&] by
n p
Ug: max n—IZZZka ,
Lom i=f j=1k=1

and observe that .

nil Z R3 (Xw 19/7 19)
=

Again combining the maximal moment inequality (4.34.1) inftrhann-Jgrgensen

(1994a) with Markov’s inequality yields that” is Op(n=¢/(1+9)), since

< U,r,:dqjl’ﬂ. (13)

max
{=1,...,n

n

PP
n IZZZ 1k

=17

1+e

(1)

Finally, takeU equal to the maximum ot//, and U/, and observe thal/} is
Op(n=/(+9), Comblnatlon of (9)-(11) and (13) ylelds (4), and combioatbf (9)—
(11) and (12) yields (5). This concludes the proof of Lemma 1. O

Proof of Inequality 1 Definely = o +n~ "3, ¥~ 'py(X;), and observe that the
likelihood equations (2) may be written in the foﬂm — 6™, Moreover,

nl/2 (3 — 8) = nl/2 (67— 8) and n'/? (T — 0) = /2 Y Sy (X) = W7
=1
The differentiability condition implies that

[S12 (15— 1)

n~! Z ( ST2pgr (X;) — SV pg (X5) + S (9 — 19))‘

S dﬂ,ﬂ’ Un,r (14)

n~' > R(X;,0,9)
=1

for everyd, ' € © satisfyingdy o < r anddy g < r.
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First, we shall prove the existence of a solutiorbig, to the likelihood equations
given the event that (6) holds. Condition on this event, antsiter) € ©,,. Since
Un, < 3, it follows that

DESIME )

<SR - 0)| = tdwo (15)
for everyd, ¥’ € O satisfyingdy 9 < r anddy » < r. Consequently, it follows that
[S12 1y - 0)| < [2V2 (17 - )] + |22 (1 — 1)
<V W+ ddyg < Ar+dir <o

and hencd™ mapsO,,, into itself. Define the sequen({é;.z 2, recursively byé;.z =

F;ln , whereég is equal tdd. From (15) it now follows that this sequence converges to

a pomté” € Oy Which satisfied, = §".
Next, we prove the final statement of Inequality 1. Conditiorthe event that (6)
holds. It immediately follows from (15) that

\21/2 (Tp, - Fg)\ <1 \21/2 (tr - 9)], (16)
which implies
22 (5= 0)] < (1= §) 7 [ (17 - 0)| = 2= (17 - 0)].
Combining this inequality with (16) yields
[Sv2 (7, - 17| < 1|52 (Tp, = 0)| < 20, [242 (T - 0)],
which concludes the proof of Inequality 1. O

Proof of Inequality 2 Since we may write

N2, (X)) — 2720 — 2, (X)) +n*122 2o, (X2)
(=1

= R(X27 én, 92) — Tfl Z R(Xla én: 95)
/=1

the first statement follows from

[Tlt] n
DR D DO {ﬂz’ + 00, (Xi) =n7" ) po, (Xz)}‘
i=1 =1

<

n~1/? Z { (X5, 0,0;) —n™" ST R(X,, 0m, ee)}‘

(=1

=1,...,
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sinceR(X;, 6", 6;) equalsR(X;, 0", 0) + R(X;, 6;,6). Similarly, the second statement
follows from

[nt]
SR g2 S, S {gi +pp,(Xi) —(n—i+1 Z o, (Xo) }‘
i=1
1/2 a <
<|n~ i 3 R(X;, 07, 0;) RX,0 6;)
[nt] [nt] R
S n1/2 Z (Cn,j — Cnyjfl) nfl Z R(XZ, 9”, GZ)
jfl i=j
2y S R 76
Z n—i+t1 ;_:l (Xe, 6", 6)
<2 [i%(c —c —i—Z i n'? max d, .U,
= = n,J n,j—1 n—i + 1 =1on 0,,0n Y n,r
This concludes the proof of Inequality 2. O
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