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Abstract

In this paper a likelihood-based multivariate unit root testing framework is uti-

lized to test whether the real exchange rates of G10 countries are non-stationary.

The framework uses a likelihood ratio statistic which combines the information

across all involved countries while retaining heterogeneous rates of mean reversion.

This likelihood ratio statistic has an asymptotic distribution which can be typi�ed

as a summation of squared, univariate Dickey and Fuller (1979) distributions. Our

multivariate unit root tests indicate that bilateral G10 real exchange rates are sta-

tionary, irrespective of the numeraire country. We also analyze per panel the time

necessary to have an adjustment to a shock in the individual real exchange rates.

From this analysis it becomes apparent that there are signi�cant cross-country dif-

ferences in the adjustment of individual real exchange rates within each panel.

Keywords: Multivariate unit root testing, maximum likelihood estimation, PPP,

real exchange rates.

JEL classi�cation: C12, C23, F31.

1 Introduction

Purchasing power parity [PPP] is a main building bloc for open-economy macroeconomic

models and it implies that real exchange rates are stationary. Testing the validity of PPP

has provided an impetus to a whole literature on testing for stationary real exchange
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rates. In general, applying conventional augmented Dickey and Fuller (1979) [ADF] unit

root tests on real exchange rates relative to the United States [U.S.] does not result in a

rejection of the null of non-stationary real exchange rates. For example, Mark (1990) is

not able to reject the null of non-stationarity for monthly real exchange rates relative to

the U.S. and the United Kingdom [U.K.] for the 1973-1988 period whereas Papell (1997)

has the same result for both monthly and quarterly U.S. real exchange rates over the

1973-1994 period. With respect to Germany-based real exchange rates both Mark (1990)

and Papell (1997) provide more positive estimation results, albeit that they still do not

signi�cantly reject the hypothesis of non-stationarity for a majority of their real exchange

rates.1

Since the Monte Carlo analysis in Shiller and Perron (1985) it is well known that the

power of ADF unit root tests depend on the time span of the sample utilized in testing.

As the time span of the post-Bretton Woods oating rate sample is rather short, 1973 up

to the present, one can be doubtful that conventional ADF unit root tests are capable of

detecting persistent, but stationary patterns in real exchange rates. One possible remedy

for this problem is to look at panel data sets of real exchange rates. One can discern

two groups of panel-based unit root tests of real exchange rates. Studies like Frankel and

Rose (1996), MacDonald (1996), Oh (1996) and Papell (1997) have conducted panel unit

root testing on real exchange rates using a version of the Levin and Lin (1992) panel

unit root test. In general these studies �nd evidence for stationary real exchange rates in

panels for 6 to 100 real exchange rates relative to both the U.S. and Germany on post-

Bretton Woods samples. However, the evidence within panels of less than 10 countries is

weak. Also, Papell (1997) fails to �nd evidence for stationarity within several samples of

quarterly U.S.-based real exchange rates.

A major disadvantage of panel unit root testing based on the Levin and Lin (1992)

approach is the assumption of cross-sectional independence between the di�erent real ex-

change rates within the panel. Monte Carlo experiments in O'Connell (1998) indicate that

panel unit root tests that neglect cross-sectional dependence yields severely biased test

results on cross-sectionally correlated data. Given the fact that real exchange rates rela-

tive to the same base country are contemporaneously correlated, one should be doubtful

with respect to test results based on the Levin and Lin (1992) approach. A second group

of panel-based studies, most notably Abuaf and Jorion (1990) and O'Connell (1998), uti-

lize panel unit root test regressions where they allow for cross-sectional correlation across

the included real exchange rates. On a monthly sample of G10 real exchange rates over

the period 1973-1987 Abuaf and Jorion (1990) only rejects the null of non-stationarity

marginally at a 10% signi�cance level. O'Connell (1998) in panels of 12 to 64 countries

with quarterly data over the period 1973-1995 cannot reject the null of non-stationary

real exchange rates at all.

When properly conducted, i.e. allowing for cross-sectional dependence, panel unit root

tests give mixed results on the issue whether or not real exchange rates are stationary.

However, the bulk of panel-based studies are based on the assumption of identical rates

1Froot and Rogo� (1995) contains a detailed survey of time series-based empirical tests of PPP.
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of mean reversion and the weak panel-based evidence in favor of PPP could very well

be caused by inappropriately assuming homogeneous speeds of mean reversion across

countries, as suggested by O'Connell (1998, p. 18). For example, bilateral real exchange

rates behave di�erently when monetary shocks in the bilateral relation ship are dominant

than when real shocks are dominant. It is known from the literature that deviations from

PPP are of short duration for high ination countries. Also, when the home country has

linked its monetary policy to that of the base country, based for example on a target

zone regime, PPP deviations do not last long. On the other hand, Balassa (1964) and

Samuelson (1964) have argued that in fast growing economies productivity growth in

the traded goods sector is higher than in the non-traded goods sector and the relative

price of traded/non-traded goods rises quickly. Consequently, if the home country grows

faster than the base country the corresponding bilateral real exchange rate will exhibit a

sustained appreciation (or a sustained depreciation in the inverse case), implying a low rate

of mean reversion. Finally, the mean reversion of real exchange rates can be slowed down

by the existence of transportation costs (see Dumas 1992) and when these transportation

costs di�er across countries they could lead to di�ering speeds of adjustment. Hence, in

order to pro�t from the extra information in multi-country samples it could be worthwhile

to conduct multi-country tests of PPP based on cross-sectional heterogeneity of mean

reversion parameters.

Multi-country tests of PPP under parameter heterogeneity have up to now not been

applied on a frequent basis. Coakley and Fuertes (1997) test the validity of PPP for

U.S.-based real exchange rates of G10 countries over the 1973-1995 period within the

heterogeneous panel unit root testing framework of Im et al. (1997) and they can reject

the null of non-stationary real exchange rates. But, the results of Coakley and Fuertes

(1997) should be treated with suspicion as the Im et al. (1997) framework, like the Levin

and Lin (1992) framework, is based on the assumption of cross-sectional independence.

Hakkio (1984) does allow for cross-sectional dependence as he estimates a system of four

U.S.-based real exchange rates with generalized least squares [GLS], and his estimation

results does not provide evidence for PPP. However, the Hakkio (1984) results are not

explicitly based on the non-stationarity of real exchange rates under the null and are

therefore unreliable. The most reliable results available in case of heterogeneous panels are

provided by Engel et al. (1997), who use dollarized price levels over the period 1978-1994

for two cities in each of the U.S., Canada, Germany and Switzerland. Engel et al. (1997)

construct three panel models comprising intra-national real exchange rates, national real

exchange rates and continental (North-America versus Europe) real exchange rates, and

they simultaneously estimate these three panel models with GLS. Based on parametric

bootstrap distributions they test if each of the three panels are composed of non-stationary

real exchange rate data and these tests reject the validity of PPP. Yet, Engel et al. (1997)

only allow for a limited degree of parameter heterogeneity: across the three panels there

is heterogeneity and within each of the three panel models the mean reversion speeds are

homogeneous. This particular speci�cation could very well be the cause of their negative

results on the PPP hypothesis.
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As an alternative to existing studies, our paper proposes to estimate a system of N

ADF test regressions with iterative seemingly unrelated regression estimation [SURE]

where the parameters di�er for each equation. Likelihood ratio statistics are constructed

to test the null hypothesis that all N series are non-stationary versus the alternative

hypothesis that all N series are stationary. Compared to the existing literature our

framework has several advantageous features. First, the set-up of our multivariate unit

root testing framework is such that it allows for di�erent rates of mean reversion under the

alternative of stationary series. Next, the estimates and tests within our likelihood-based

framework are robust to contemporaneous correlation across the series in our panel. In

fact, our likelihood-based framework actually utilizes the presence of contemporaneous

correlation to enhance the power of the multivariate unit root test. Existing studies of

panel unit root tests on contemporaneously correlated data use (parametric) bootstrap

distributions, as they claim that \...if there is cross-correlation in the data (...) the

distributions of the statistics are not the same as before and are not known." (Maddala

and Wu 1996, p. 14). Yet, for our multivariate likelihood ratio unit root test we are able

to determine the distribution even if the data are cross-correlated.

The multivariate unit root test is used to test for the validity of PPP under cross-

sectional heterogeneity for G10 real exchange rates within the 1973-1997 post-Bretton

Woods period. In contrast to the existing literature, we not only use the U.S. as the

numeraire country. Both within pure time series data (Frenkel 1981, Mark 1990) and

within panel data sets (Jorion and Sweeney 1996, Papell 1997) there is more evidence

for stationary real exchange rates when instead of the U.S. Germany is used as the base

country. Therefore, we use Germany as one of our base countries. Also, like Mark (1990)

we use the U.K. as a numeraire country. Finally, we use Japan as a base country for

our G10 bilateral real exchange rates as this is the second largest non-European country

within the set of G10 countries and because the Japanese economy has undergone several

structural changes during this period. The multivariate unit root test results indicate

that irrespective of the base country G10 bilateral real exchange rates are stationary. We

also analyze the mean reversion speeds across the G10 real exchange rates in each panel,

and this analysis shows that there is a severe cross-country heterogeneity in the mean

reversion speeds within each of our four panels.

The remainder of this paper is organized as follows. In section 2 we provide an overview

of existing panel unit root tests, including a Monte Carlo analysis. The likelihood-based

multivariate unit root testing framework is described in section 3. Multivariate tests on

the stationarity of G10 real exchange rates are reported in section 4. Section 5 concludes

the paper.

2 Existing Panel Unit Root Tests

In order to improve upon the negative results of standard time series unit root tests, unit

root testing on real exchange rates has recently been conducted within panels of N real

exchange rates. Most studies base their analysis on the Levin and Lin (1992) framework
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which utilizes a test regression like2

�xit = Æi + �xi;t�1 +

pX
j=1

ij�xi;t�j + �it; i = 1; : : : ; N ; t = 1; : : : ; T; (1)

where �xit = xit � xi;t�1, Æi is a constant which can di�er across the cross-sections, i

is the cross-section index and t is the time series index. Levin and Lin (1992) assume

in (1) cross-sectionally unrelated disturbances: �it � N(0; �2i ) for i = 1; : : : ; N , and p

lagged �rst di�erences are added to guarantee that the �it's are not autocorrelated. The

non-stationarity of xit for i = 1; : : : ; N can now be tested in (1) through a t-statistic t�
for H0 : � = 0 versus H1 : � < 0. Levin and Lin (1992) derive that for T !1, N !1
and

p
N=T ! 0 a proper transformation of t� converges in the limit to a standard normal

distribution:3

p
1:25t� +

p
1:875N ) N(0; 1): (2)

A drawback of panel unit root testing based on (1), is the assumption of a homogeneous

adjustment speed under the alternative hypothesis. Such an alternative hypothesis implies

two things:

(a) �i < 0 for i = 1; : : : ; N ;

(b) and conditional on (a): �1 = � � � = �N .

When in reality only (a) is valid, assuming a common � in (1) can be too restrictive and

could decrease the power to reject the null in favor of a true alternative hypothesis. A

possible solution is to base multi-country unit root testing of real exchange rates on the

framework of Im et al. (1997). This framework is based on the estimation of the ADF

test regression for each x1t; : : : ; xNt separately:

�xit = Æi + �ixi;t�1 +

piX
j=1

ij�xi;t�j + �it; (3)

and constructing N conventional ADF t-statistics t�;i under the null �i = 0 for i =

1; : : : ; N . Assuming Cov(�it; �jt) = 0 for i; j = 1; : : : ; N with i 6= j, Im et al. (1997)

propose to test H0 : �i = 0 versus H1 : �i � 0 through

��t =

p
N(�t� E(t�;ij�i = 0))p

Var(t�;ij�i = 0)
) N(0; 1); (4)

where �t = 1
N

PN

i=1 t�;i and the asymptotic distribution is valid for N !1 and T ! 1.

In (4) E(t�;ij�i = 0)) and Var(t�;ij�i = 0) are the cross-sectional mean and variance of the

2The most appropriate speci�cation for unit root tests on real exchange rates is the speci�cation with

a constant included in the test regression.
3A symbol \)" indicates convergence in distribution.
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t�;i's under the null which are calculated through Monte Carlo simulations by Im et al.

(1997). Im et al. combine the individual ADF statistics into a common statistic, as in

general the combining of multiple series into one statistic increases the power relative to

the case where one bases the test on only one series.

Both the Levin and Lin (1992) and the Im et al. (1997) approaches su�er from a

number of disadvantages which makes them inappropriate for testing the empirical validity

of PPP across N real exchange rates. Firstly, the limiting distributions in both (2) and

(4) rely heavily on a large number of cross-section observations N . However, the number

of cross-sections for panels of macroeconomic data and in particular real exchange rate

data is in most cases limited, especially for samples with quarterly or monthly data. This

lack of a signi�cant number of cross-sections could result in a lack of power for both

the Levin and Lin (1992) and the Im et al. (1997) tests in quarterly or monthly panels

of real exchange rates. Also, the panel unit root tests by Levin and Lin (1992) and Im

et al. (1997) are based on cross-sectional independence between the involved real exchange

rates and we argued before that this is a very unlikely assumption. As a consequence the

asymptotic distributions in (2) and (4) are invalid.

To investigate the aforementioned problems with power and cross-correlated data we

conduct several Monte Carlo experiments for the Im et al. and Levin and Lin panel unit

root tests (IPS and LL respectively hereafter). We are especially interested in the size

and power of the IPS and LL tests in panels of the size typically used in real exchange

rate studies. Within the Monte Carlo experiments the data generating process [DGP] of

the arti�cial series yit used in our tests equals:

yit = ci + �iyi;t�1 + �it; i = 1; : : : ; N ; t = 1; : : : ; T: (5)

A speci�cation with a constant is chosen in (5) as we use this speci�cation in section 4

and it is the most appropriate one for testing the PPP hypothesis. Also, we set T = 100

in (5) which is comparable to the number of quarterly observations within the 1973-1997

sample used in section 4. The cross-section dimension is set at N = 9 as we have 9

real exchange rates in the multi-country systems of section 4. We also set N = 3; 6 so

that we can determine how the sizes and power ratios react to increases in the number of

cross-sections. The innovations �it in (5) are generated through

�it = �i�i;t�1 + �it; (6)

where (�1t � � � �Nt)
0 � N(0N ;�) with the N -dimensional vector of zeros 0N and4

� = �0�; � is N �N and � � U(0; 1): (7)

Randomly generating the elements of the � matrix in (7) from an uniform distribution

U(0; 1) guarantees that the �it's in (6) are positively cross-correlated, as in the historical

samples from section 4. Sizes and power ratios are computed both with and without �rst

order serially correlated �it's in (6):

4The denomination U(k1; k2) indicates that we draw from an uniform distribution on the interval

between, but NOT including, k1 and k2.
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Size without serial correlation: for i = 1; : : : ; N we have in (5) ci = 0 and �i = 1,

and in (6) �i = 0.

Size with serial correlation: for i = 1; : : : ; N we have in (5) ci = 0 and �i = 1, and in

(6) �i � U(0; 0:5).

Power without serial correlation: for i = 1; : : : ; N we have in (5) ci � U(�1; 1) and
�i � U(0:9; 1), and in (6) �i = 0.

Power with serial correlation: for i = 1; : : : ; N we have in (5) ci � U(�1; 1) and

�i � U(0:9; 1), and in (6) �i � U(0; 0:5).

For the power computations we have chosen to draw the mean reversion parameters from

U(0:9; 1) in order to have an ample amount of heterogeneity, comparable with the range

of estimated parameters in section 4, combined with a signi�cant degree of persistence.

All other parameters were also drawn from uniform distributions for each i = 1; : : : ; N so

that we have heterogeneity across the N cross-sections. As a benchmark we also calculate

the sizes and power ratios for the univariate ADF unit root test, based on the above

mentioned DGP's only now with N = 1.

The size and power computations are reported in table 1 and in the case of serially

correlated errors we have �tted the test regressions (1) and (3) with a common lag order

p = 1, 2 and 3 to measure the e�ect of over�tting the lag order. Except for N = 3 in case

of the IPS test, both panel unit root tests are heavily oversized. This results con�rms the

fact that in case of cross-correlated data limiting distributions (2) and (4) are incorrect.

As we combine in both the LL and the IPS tests a multiple of time series into one statistic

the power of these tests should be higher than in case of the univariate ADF test, and

this is what we observe in table 1. On the other hand, given the fact that both the LL

and the IPS tests are oversized in samples of cross-correlated data the reported power

ratios from table 1 are not very impressive. As both panel unit root tests are based on a

framework with a large number of cross-sections, the small cross-section dimensions in the

Monte Carlo experiments could explain this last observation. Also, as mentioned before,

the LL test is based on a homogeneous rate of mean reversion and this could decrease the

power of the LL test in our experiments which are based on heterogeneous mean reversion

rates. In the next section we propose an alternative framework, which allows for both

heterogeneous rates of mean reversion and cross-sectional dependence. Inference in our

framework is solely based on large T asymptotics and as such the power of this method

does not rely on the presence of a large number of cross-sections.

3 A Multivariate Framework for Unit Root Testing

In this section we propose a likelihood-based framework in which we simultaneously test

for non-stationarity across N series. We �rst discuss in section 3.1 the involved estimation

issues. Next, we construct in section 3.2 our multivariate likelihood ratio unit root test
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statics and discuss the corresponding asymptotic distribution. Results of a Monte Carlo

analysis of our test statistics can be found in section 3.3.

3.1 Maximum Likelihood Estimation

In order to conduct a unit root test on an individual variable xt one can run a ADF test

regression

�xt = Æzt + �xt�1 + wpt + �t; t = 1; : : : ; T: (8)

In (8) �xt = xt � xt�1, the m � 1 deterministic components vector zt either contains a

constant: zt = 1, or a constant plus a linear time trend: zt = (1 t)0 with the 1 � m

coeÆcient vector Æ, and wpt = (�xt�1 � � ��xt�p)
0 with the 1� p coeÆcient vector . The

unit root test is a test if in (8) � = 0.

To conduct unit root testing on a variable xit of the i
th cross-section within a panel

of N cross-section observations and T time series observations , we can stack N ADF

regressions like (8) into one system,

�Xt =

0
B@

Æ1
...

ÆN

1
CA zt +

0
B@

�1 0 � � �0 0

0
. . . 0

0 0 � � �0 �N

1
CAXt�1 +

0
B@

1 0 � � �0 0

0
. . . 0

0 0 � � �0 N

1
CAWpt + "t

= �Æzt + �Xt�1 + �Wpt + "t;

(9)

where �i relates �xit to xi;t�1 and i relates �xit to �xi;t�1; : : : ;�xi;t�pi .
5 The model

in (9) consists of the N � 1 vectors Xt�1 = (x1;t�1 � � �xN;t�1)
0, �Xt = Xt � Xt�1 and

"t = (�01t � � � �0Nt)
0, and the (

PN

i=1 pi) � 1 vector Wpt = (w0

p1t;1
� � �w0

pN t;N)
0 for t = 1; : : : ; T

and i = 1; : : : ; N . In (9) zt, xit, wp;i, Æi, �i and i have an identical de�nition as in (8) for

i = 1; : : : ; N , and the coeÆcient matrices �Æ, � and � have dimensions equal to N �m,

N �N and N � (
PN

i=1 pi) respectively. We assume a multivariate normal distribution for

the disturbance vector "t: "t � N(0N ; 
) with the N �N covariance matrix structure,


 =

0
B@

!11 � � � !1N
...

. . .
...

!N1 � � � !NN

1
CA : (10)

In (10) !ij � Cov(�it; �jt) for i; j = 1; : : : ; N .

The panel of the N variables x1t; : : : ; xNt in (9) can be interpreted as a restricted

vector autoregressive [VAR] model. This restricted VAR model hinges on the following

assumption:

Assumption 3.1 There is no linear dependence between the variable xit of individual i

and lags of the variable xjt of individual j for i 6= j.

5Note that the number of lagged �rst di�erences can di�er across the equations of (9).
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Proper estimation of the restricted VAR model (9) involves the usage of feasible GLS

(or SURE), see L�utkepohl (1993, Section 5.2). Unit root testing across N cross-sections

simultaneously within the restricted VAR model (9) involves testing the parameter re-

striction �1 = � � � = �N = 0. Interpreting the panel as a restricted VAR model allows us

to adopt the estimation and testing framework for VAR models to analyze panels with a

limited cross-section dimension.

The log-likelihood function for model (9) can be written as,6

`(�Æ; �; �; 
) = �
NT

2
ln(2�) +

T

2
lnj
�1j

�
1

2
tr
�

�1(�X � Z�Æ0 �X

�1�
0 �Wp�

0)0(�X � Z�Æ0 �X
�1�

0 �Wp�
0)
�
; (11)

where �Æ, � and � are de�ned in (9) and 
 has an identical structure as (10). The T �N

matrices �X, X
�1 and the T � (

PN

i=1 pi) matrix Wp in (11) can be de�ned as:

�X =

0
B@

�X 0

1
...

�X 0

T

1
CA ; X

�1 =

0
B@

X 0

0
...

X 0

T�1

1
CA and Wp =

0
B@

W 0

p1
...

W 0

pT

1
CA ;

and the T �m matrix Z equals Z = �T or Z = (� �) with �T is a T � 1 vector of ones and

the T � 1 vector � = (1 � � �T )0.
Maximum likelihood estimates of �Æ, �, � and the disturbance covariance matrix 
 in

(9) can be obtained through iterative SURE (ISURE). Essential for this ISURE procedure

is proper estimation of 
, and based on (11) 
 is estimated with the standard conditional

maximum likelihood estimator:7


̂(�̂Æ; �̂; �̂) =
1

T

�
�X � Z �̂Æ

0

�X
�1�̂

0 �WP �̂
0

�
0
�
�X � Z �̂Æ

0

�X
�1�̂

0 �WP �̂
0

�
: (12)

The ISURE procedure starts o� with a consistent initial estimate of 
:


̂(�̂OLS) =
�

̂ij

�
i;j=1;::: ;N

with 
̂ij =
1

T

TX
t=1

�̂it�̂
0

jt: (13)

In (13) �̂it and �̂jt are residuals resulting from N OLS regressions of �xit on zt, xi;t�1 and

�xi;t�1; : : : ;�xi;t�p as in (8). The initial estimate (13) is used to estimate �Æ, � and �

through SURE and these SURE estimates in turn can be used to construct a new estimate

of 
 based on (12). Next, we can construct new SURE estimates of �Æ, � and � using the

estimate of 
 based on the old SURE estimates of �Æ, � and �. Magnus (1978) shows that

iterating in this manner until convergence of the estimators yields maximum likelihood

estimates of �Æ, �, � and 
.

6The determinant of 
�1 is indicated with j
�1j and the trace of a matrix is indicated with tr(� � � ).
7The number of time series T is identical for each equation as this greatly simpli�es the estima-

tion of covariance matrix 
. Hence, we consider in this paper only systems with balanced times series

observations.
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3.2 Multivariate Unit Root Testing

For unit root testing across N individuals simultaneously based on a speci�cation like (9),

we make use of SURE estimators as outlined in section 3.1. Hence, we can only consider

the cases where T > N and the limiting behaviour of our test statistics are based on large

T asymptotics while assuming a �xed cross section dimension N .

As the null hypothesis of N unit roots involves a restriction on N parameters simul-

taneously, we shall use a likelihood ratio test to test for non-stationarity in our SURE

system. One can straightforwardly show that the maximized value of (11) conditional on

the maximum likelihood estimates �̂Æ, �̂ and �̂ in combination with disturbance covariance

matrix estimator (12) can be speci�ed as8

`max[�̂Æ; �̂; �̂; 
̂(�̂Æ; �̂; �̂)] = `1max = �
NT

2
(1 + ln(2�))�

T

2
lnj
̂(�̂Æ; �̂; �̂)j: (14)

Under the unit root restriction, i.e. �1 = � � � = �N = 0 in (9), maximum likelihood

estimation is identical as in section 3.1 but without x1;t�1; : : : ; xN;t�1 included in our

restricted VAR model. The corresponding maximized log-likelihood function equals:

`max[�̂Æ; �̂; 
̂(�̂Æ; �̂)] = `0max = �
NT

2
(1 + ln(2�))�

T

2
lnj
̂(�̂Æ; �̂)j: (15)

The likelihood ratio test statistic for H0 : �1 = � � � = �N = 0 within (9) versus H1 : �i 6= 0

for i = 1; : : : ; N is now identical to:

LR�=0 = 2(`1max � `0max) = T [lnj
̂(�̂Æ; �̂)j � lnj
̂(�̂Æ; �̂; �̂)j]: (16)

The asymptotic behaviour of the multivariate unit root test statistic in (16) can be

typi�ed as

Proposition 3.1 Let,

(a) the estimates of Æ1; : : : ; ÆN , �1; : : : ; �N , 1; : : : ; N and 
 be fully converged estimates

from the iterative estimation schemes of section 3.1 both under the null hypothesis

(�1 = � � � = �N = 0) and the alternative hypothesis,

(b) each of the N series x1t; : : : ; xNt be I(1),

(c) the cross-section dimension N be �xed and the time series dimension T !1.

Then the limiting distribution of LR�=0 in (16) equals:

LR�=0 )
NX
i=1

"�Z
�BidBi

�2�Z
�B2
i

�
�1
#
: (17)

8Note that lnj
�1j = �lnj
j.
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In (17) \) " denotes convergence in distribution, Bi(u) is a scalar standard Brownian

motion for individual i on the interval u 2 [0; 1],
R
�BidBi �

R 1
0
�Bi(u)dBi(u)du and

�Bi(u) = Bi(u) if in (9) Æ1 = � � � = ÆN = 0 or �Bi(u) = �Bi(u). When appropriate, �Bi(u)

equals for individual i �Bi(u) = Bi(u)�
R 1
0
B(u)du if in (9) zt = 1 or �Bi(u) = Bi(u)�ai�bit

if in (9) zt = (1 t) with ai and bi resulting from regressing Bi(u) on a constant and a

linear time trend.

Proof: See Appendix A.

Expression (17) is identical to a summation of N squared Dickey and Fuller (1979) lim-

iting distributions for the univariate ADF unit root test. Appendix B describes how we

compute the critical values for test statistic (16) based on the asymptotic distributions

from proposition 3.1.

The �nite sample properties of test statistic (16) can be improved through a degrees

of freedom correction as suggested by Sims (1980). It involves replacing T in (16) by the

average degrees of freedom per cross-section under the alternative hypothesis:

CLR�=0 = (T � d)[lnj
̂(�̂Æ; �̂)j � lnj
̂(�̂Æ; �̂; �̂)j]; (18)

where9

d =
1

N

 
N(m + 1) +

NX
i=1

pi

!
:

Obviously, the corrected likelihood ratio test statistic (18) has smaller values than (16)

and in �nite samples combined with a large number of parameters CLR�=0 could under

a true null very well be much closer to the asymptotic distribution (17) than LR�=0.

3.3 Monte Carlo Evaluation

To study the behaviour of our multivariate unit root test statistics (16) and (18) we

conduct a Monte Carlo analysis on arti�cial samples with comparable dimensions as the

multi-country systems used in section 4. The Monte Carlo experiments have the same set-

up as in section 2 and, as in section 2, these experiments are based on 10,000 replications,

T = 100 and N = 3, 6 or 9.

The results of the Monte Carlo experiments on our multivariate unit root tests are

reported in table 2. When we have no serially correlated innovations we see that both the

LR�=0 and the CLR�=0 statistics have a correct size at the 95% quantile from distribution

(17). As in section 2 we have �tted our SURE system (9) in case of �rst order serially

correlated innovations with a common lag order p equal to 1, 2 and 3. For p = 1 we have

again in all cases a correct size. When the utilized lag order increases from 1 to 2 and 3

9The number of deterministic components per cross-section equals m (m = 0, m = 1 or m = 2),

the number of lagged �rst di�erences per cross-section equals pj and we have 1 lagged level xi;t�1 per

cross-section.
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we see in table 2 that at N = 9 the LR�=0 statistics has a tendency to slightly overreject

the true null hypothesis. The CLR�=0 statistic, however, retains a correct size when at

N = 9 the lag order increases to 2 and 3. Overall, the CLR�=0 statistic has a better size

than the LR�=0 statistic when the number of parameters increase substantially.

When we look at the power ratios in table 2 we see that at N = 3 we have for both

multivariate unit root test statistics power ratios in the range of 60%-72%. An increase

in the number of series from 3 to 6 and 9 results in a substantial increase in the power

ratios to levels beyond the 90% value. Next, compare the power performance of our

multivariate unit root tests with the power results for the univariate ADF test and the

two panel unit root tests in table 1. Such a comparison makes it clear that already at

very moderate cross-section dimensions our LR�=0 and CLR�=0 statistics have a superior

power performance relative to both univariate and panel unit root tests. This is caused

by the fact that within our framework the N test regressions are jointly estimated by

taken into account the covariances between the N cross-sections, rather than estimating

the N regressions separately as in the case of the ADF and Im et al. (1997) tests. As such

our approach yields more eÆcient estimates of the mean reversion parameters �1; : : : ; �N

resulting in a higher power under a true alternative hypothesis. Hence, our likelihood-

based multivariate unit root test statistics are the most appropriate for a multi-country

analysis of real exchange rates.

4 A Multi-Country Test of PPP

In this section we apply the multivariate unit root testing framework from section 3 on

the real exchange rates of the G10 countries in order to test the validity of PPP for all

these countries. Section 4.1 contains an description of the data. Also, we conduct in this

subsection univariate unit root tests on bilateral G10 real exchange rates relative to the

U.S., Germany Japan and the U.K. Next, we report in section 4.2 multivariate unit root

test results for our four sets of G10 bilateral real exchange rates.

4.1 The Data and Univariate Unit Root Test Results

In its logarithmic form the real exchange rate for the home country versus a foreign

country is de�ned as

q = e+ p� � p; (19)

where q, e, p� and p are the logarithm of the real exchange rate, the nominal exchange

rate, the foreign aggregate price level and the home aggregate price level respectively.

Long-run PPP is valid when the real exchange rate has a constant mean through time,

implying an equalized relative competitiveness in the long-run between two countries.
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Thus q in (19) must be stationary, i.e. one should reject the null hypothesis

H0 : �qt =

pX
j=1

j�qt�j + �t; � � i.i.d.(0; �2); t = 1; : : : ; T; (20)

in favor of the alternative hypothesis

H1 : �qt = Æ + �qt�1 +

pX
j=1

j�qt�j + �t; � < 0: (21)

An intercept Æ is included in (21) to correct for measurement errors due to the fact that

we use in practice price indices and not actual price levels. Note that (21) allows for

short-run deviations from PPP.

We consider real exchange rates for 10 of the most important industrialized countries

[G10], i.e. Canada, France, Germany, Italy, Japan, The Netherlands, Sweden, Switzerland,

the U.K. and the U.S. Quarterly observations from 1973.1 through 1997.4 are used in the

estimation of our systems of real exchange rates. Logarithms of real exchange rates are

constructed as in (19), where we use the consumer price index [CPI] as a proxy of the

aggregate price level. Data on the CPI's and exchange rates are obtained from the IMF's

International Financial Statistics [IFS].10 G10 real exchange rates are constructed relative

to four numeraire countries: the U.S., Germany, Japan and the U.K. In constructing real

exchange rates relative to the U.S. we use quarterly average U.S. dollar exchange rates

as the CPI data are also quarterly averages.11 In case of real exchange rates relative

to Germany, Japan and the U.K., the nominal exchange rates are calculated through

cross-rates based on the U.S. dollar exchange rates.

To get a feel of the degree of persistence within bilateral G10 real exchange rates,

we conduct univariate ADF unit root tests for G10 real exchange rates relative to our

four base countries. We use the ADF unit root test with a constant included in the test

regression, that is we conduct a t-test for � = 0 in (21). The lag order for the ADF test

regressions is selected as follows. First, we determine an optimal lag order through the

Schwartz Information Criterion [SIC], based on a comparison of SIC criteria computed

for lag orders ranging from 0 to 8 in (21). Next, we used Lagrange-Multiplier [LM] serial

correlation tests at 1, 4 and 8 lags to determine whether the residuals of (21) at the

optimal SIC lag order are white noise. If that is not the case, we increase the lag order

until the LM serial correlation tests indicate that the residuals of (21) are indeed white

noise.

From table 3 it becomes clear that irrespective of the base country univariate unit root

tests are in general not able to reject the null of non-stationary real exchange rates. The

ADF tests for Germany-based real exchange rates provide the most favorable evidence

for the PPP hypothesis, as we can reject the null of non-stationarity for France and

10The CPI data are from IFS line code 64.
11The exchange rate data are from IFS line code \rf".
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Switzerland. For the other base countries we are only able to reject the null of non-

stationary real exchange rates in case of the real exchange rates of Switzerland relative

to Japan and the U.K. The estimated measures of mean reversion seems to have more

favorable values when we use Germany and the U.K. as the base countries. All things

considered, the results in table 3 indicate that even if real exchange rates are stationary

their degree of persistence is such that univariate unit root tests are not able reject the

null of non-stationarity.

4.2 Multivariate Unit Root Test Results

The failure of univariate unit root tests to reject in section 4.1 the null of non-stationary

real exchange rates could be due to slow rates of mean reversion such that one only can

�nd evidence for stationarity within samples of data with a long time span. One possible

solution is the usage of panel techniques described in section 2, but these techniques are

based on the possibly invalid assumption of homogeneous cross-country rates of mean

reversion. As an alternative we apply in this subsection the multivariate framework of

section 3.

For G10 bilateral real exchange rates relative to the U.S., Germany, Japan and the

U.K. we conduct ISURE estimation on a system like (9) with zt = 1, i.e.

�q1t = Æ1 + �1q1;t�1 +
Pp1

j=1 1j�q1;t�j + �1t
...

...
...

...
...

�qNt = ÆN + �NqN;t�1 +
PpN

j=1 Nj�qN;t�j + �Nt

(22)

andN = 9. Next, after we have estimated (22) under the restriction �1 = � � � = �N = 0 we

construct our likelihood ratio unit root test statistics (16) and (18). The lag orders for each

equation of system (22) are selected through the \bottom-up" approach of Hsiao (1979,

1982) and L�utkepohl (1993, pp.182-183) for restricted VAR models: appropriate lag orders

are selected for each equation separately based on the optimal SIC for that particular

equation. Given assumption 3.1, we already applied such a strategy in section 4.1 in

determining the lag orders for the univariate ADF tests. Hence, we use for each equation

of (22) the lag order of the corresponding equation in table 3.

Conditional on the stationarity of our G10 real exchange rates, we are also interested

in the speed of mean reversion after the occurrence of a shock in a real exchange rate. In

order to achieve this we reinterpret (22), analogous to section 3.1, as a restricted VAR

model:

Qt = �1Qt�1 + � � �+�pmax+1Qt�pmax�1 +
�Æ + "t: (23)

In (23) Qt = (q1t � � � qNt)
0, �Æ = (Æ1 � � � ÆN )0 from (22), pmax is the maximum of p1; : : : ; pN

in (22) and �j is a N �N diagonal matrix for j = 1; : : : ; pmax + 1:

�j =

0
B@

�1j 0 � � �0 0

0
. . . 0

0 0 � � �0 �Nj

1
CA ;
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where if pi < pmax then �i;pi+2 = � � � = �i;pmax+1 = 0 for i = 1; : : : ; N . De�ne the lag

operator L such that Ljqit = qi;t�j and L
jQt = Qt�j, and de�ne the matrix lag polynomial

�(L) = IN ��1L� � � � � �pmax+1L
pmax+1

= (IN � ��L)� (

pmaxX
s=1

��

sL
s)(1� L);

(24)

where

�� =

pmax+1X
j=1

�j and ��

s =

pmax+1X
l=s+1

��l:

Hence, in (22) �1; : : : ; �N and 1j; : : : ; Nj are equal to the diagonal elements of ( ��� IN)

and ��

s respectively.

The fact that we can read the panel model in (22) as the restricted VAR model in

(23) gives us the opportunity to calculate the mean reversion speeds for each cross-section

through the corresponding impulse response function. That is, tdi is the number of periods

after which in absolute terms � � 100% of a unit shock in real exchange rate qit has been

reversed:12

tdi = max(d) for d = 1; 2; : : : until

����@qi;t+d

@�it

���� � 1� �; (25)

with 0 < � < 1 and i = 1; : : : ; N . The estimated mean reversion speeds td1; : : : ; tdN
in (25) depend on estimates of the parameters in (22) and parameter uncertainty thus

has an impact on the estimates of td1; : : : ; tdN . We therefore compute 95 % con�dence

intervals for the estimated mean reversion speeds, based on 10,000 parametric bootstrap

simulations. These parametric bootstrap simulations are organized as follows:

� the initial startup values for q1; : : : ; qN are taken from the historical data,

� a sequence of (T � pmax� 1) �it's are drawn for i = 1; : : : ; N from a N -dimensional

multivariate normal distribution calibrated to the estimation of (22),

� given the initial values, the arti�cial �1t; : : : ; �Nt and the parameters from (22) es-

timated on the historical data, we generate for each i = 1; : : : ; N (T � pmax � 1)

arti�cial values of qit,

� we re-estimate (22) on these arti�cial q1t; : : : ; qNt and calculate for each i the cor-

responding tdi through (25).

12See Ng and Perron (1999). An alternative measure of mean reversion speed equals ln(1��)=ln(1+�i),

but this measure only uses the sum of autoregressive parameters (see (24)). Our measure of adjustment

speed utilizes the moving average representation Qt = �Æ + �(L)�1"t and as such makes use of all the

individual autoregressive parameters.
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The resulting parametric bootstrap samples of tdi's are then used to compute the 95%

con�dence intervals.

The results of the ISURE estimation of panel model (22) for our four panels of G10

bilateral real exchange rates are summarized in table 4. The results for the likelihood-

based test statistics LR�=0, reported in the lower part of table 4, indicates a rejection of

the null of non-stationary real exchange rates for all four sets of G10 real exchange rates.

In case of the base countries Germany and the U.K. the p-values of the test statistics

indicate that we easily can reject the null at the 5% signi�cance level. When Japan is

used as the numeraire country we can reject the null comfortably at the 1% signi�cance

level, whereas the results for the U.S. indicates a rejection at the 10% signi�cance level

with a p-value very close to 5%. The test results are qualitatively the same when we take

into account the number of parameters through the usage of the CLR�=0 statistic. The

power analysis in section 3.3 indicates that with cross-correlated data, our multivariate

framework has ample power to reject the null when the data are stationary but persistent

in nature. On average the cross-correlations of the relative changes in real exchange rates

with respect to the U.S., Germany, Japan and the U.K. equals 0.56, 0.33, 0.69 and 0.61

respectively. Consequently, we would expect a priori that our multivariate unit root

test statistics yield more positive results with respect to the PPP hypothesis than the

univariate unit root tests, especially for the base countries the U.S., Japan and the U.K.

The multivariate unit root test results in table 4 therefore con�rms our prior that the

usage of cross-country information in the analysis of real exchange rates results in more

positive �ndings regarding the PPP hypothesis.

In the upper part of table 4 we report the maximum likelihood estimates of the mean

reversion coeÆcients, and the cross-country variability of these estimates within a panel

seems to depend on the choice of the numeraire country. One notices from table 4 that

when the U.S. is used as the base country the estimated �i's are, with the exception of

Canada, very close to each other. In contrast we observe for the base countries Germany

and Japan that the estimated mean reversion coeÆcients per country are quite heteroge-

neous in nature, i.e. they range from -0.036 to -0.197 and -0.033 to -0.145 for Germany

and Japan respectively. However, a more fruitful way to determine the degrees of persis-

tence is to look at impulse response functions, as in (25), instead of the �i's which sum

away the information in the individual autoregressive parameters (see footnote 12). The

results of such an approach can be found in table 5 where we report the rate in quarters

at which 50% and 90% of a shock in an individual real exchange rates has been reverted,

that is we compute td1; : : : ; tdN in (25) for � = 0:5 and � = 0:9. We have chosen � = 0:5

to determine the half life of a shock in a real exchange rate and � = 0:9 is chosen in

order to pin point the period after which a shock does not anymore has an economically

signi�cant inuence.

From the �rst column of table 5 we observe that the estimated half life of a shock

in the Canada-U.S. real exchange rate equals 6.75 years, whereas the half lives for the

remaining U.S.-based rates are more or less identical to a period of 3 years. The cross-

country di�erences across the U.S.-based real exchange rates becomes more pronounced
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when we look at the 90% absorption rates. In this case France, Germany, Italy, Japan,

the Netherlands and Switzerland exhibit a 90% absorption after about 6.5 years, but note

that the corresponding con�dence interval for Japan is much wider. For Canada, Sweden

and the U.K. a shock is for 90% reversed after approximately 8.5 years. In the case of base

country Germany we have half lives of 1.5 and 2 years for France and the U.K., which is

signi�cantly lower than the half lives of 4.5 and 5.25 years for the U.S. and Canada. In

the remaining Germany-based real exchange rates we have a 50% shock reversion after

approximately 3.25 years, but the corresponding con�dence intervals indicate that the

di�erence with Canada and the U.S. is in reality small. Judging from the fourth column

of table 5 the Germany-based rates of France, the Netherlands and the U.K. have a 90%

shock reversion after 2, 5.25 and 5.5 years respectively. In all other cases the adjustment

speed is signi�cantly slower, especially for Italy and Switzerland. In column 5 a shock

in the Switzerland-Japan rate has a half life of 1.25 years, Canada and the U.S. have

signi�cantly larger half lives of 5.75 and 4.75 years respectively and all other Japan-

based rates have an identical 50% absorption pace of about 2 years. The conclusions for

the 90% shock reversion periods are similar: the Switzerland-Japan rate has the highest

full adjustment speed with 3.25 years and the North-American rates versus Japan have

the slowest full adjustment speeds of 11 to 14 years. Finally, we report the 50% and

90% absorption rates for U.K.-based real exchange rates in columns 7 and 8 of table 5.

The North-American rates versus the U.K. have a signi�cantly longer duration of mean

reversion than for the other U.K.-based rates with half lives of at least 5 years and full

absorption after at least 11.75 years.

The discussion of the results regarding the mean reversion speeds in table 5 indicates

that cross-country parameter heterogeneity in the four panels seems to be caused by the

behaviour of sub-groups of bilateral relationships within each panel. Most noticeably is

the behaviour of the Canadian and, if appropriate, U.S. real exchange rates relative to

our four base countries, where shocks can have an inuence on these respective rates

of up to 10 years on average. In contrast to that we observe for the France-Germany

real exchange rate, the U.K.-Germany rate and the European Japan-based rates that

shocks in the respective real exchange rates die out relatively fast. We can relate these

di�erences to the dominance of monetary versus real shocks: inationary/deationary

shocks are of short duration whereas Balassa-Samuelson-type shocks trigger persistent

deviations in real exchange rates from their long-run mean, see section 1. Both France

and the U.K. has known periods with signi�cantly looser monetary policy relative to

Germany and Japan since the early 1990s has experienced a pronounced price deation.

Therefore, the high mean reversion speeds in these real exchange rates seems to be due

to the dominance of monetary shocks, which is also reected by the relatively narrow

con�dence intervals of these rates at both the 50% and 90% absorption rates. The high

persistence in the North American real exchange rates could very well be caused by the

Balassa-Samuelson e�ect. The very large corresponding con�dence intervals at the 90%

absorption rate seem to con�rm this, as a shock in, for example, the Canada-U.S. real

exchange rate can potentially inuence this rate up to 28 years! We can now also interpret
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another peculiarity in table 5: for the Italy-Germany, Switzerland-Germany and Sweden-

U.K. real exchange rates the reversion of the �rst 50% of a shock takes place at a faster

pace than for the remainder of such a shock. Apparently, these real exchange rates are

inuenced by both ination shocks and Balassa-Samuelson-type shocks, resulting in 90%

absorption periods which are three times as large as the corresponding half life.

5 Conclusions

The validity of long-run PPP implies that real exchange rates are stationary, i.e. in time

real exchange rates revert back to a constant mean. This paper proposes and employs a

multivariate framework for unit root testing in multi-country panels of real exchange rates,

while retaining cross-country di�erences in mean reversion rates. By treating the panel of

data explicitly as a restricted, high dimensional VAR model we are able to derive appro-

priate estimation and testing methods based on the corresponding log-likelihood function.

Utilizing time series-based asymptotics in combination with a �xed cross-section dimen-

sion enables us to derive limiting distributions which are also applicable when the series in

the panel are contemporaneously correlated. Monte Carlo experiments for systems with

empirically sensible dimensions show that our multivariate unit root test statistic behaves

well both under a true null of non-stationarity and under a true alternative of stationar-

ity, especially when a degrees-of-freedom correction is employed. The Monte Carlo results

indicate that our multivariate unit root test is not only robust to cross-correlations in the

data, the usage of cross-correlated data also improves the power of the test signi�cantly.

The empirical tests are conducted on the bilateral real exchange rates of 10 large

industrialized [G10] countries. We construct four panels of G10 real exchange rates relative

to the U.S., Germany, Japan and the U.K. In all four multi-country panels our multivariate

approach is able to reject the null of non-stationary real exchange rates. When we look

at the time necessary to have a 50% and 90% completion of an adjustment to a shock, it

becomes apparent that there are signi�cant cross-country di�erences within each panel.

As these di�erences seems to be concentrated within a sub-group of real exchange rates

within each panel, we postulate that parameter heterogeneity within our G10 panels is

mainly caused by the predominance of Balassa-Samuelson-type shocks in certain countries.

It would be interesting for future research to assess more explicitly the part monetary

and real shocks play in the observed asymmetric pattern of mean reversion. A further

research topic is to apply the framework of this paper on real exchange rates based on

disaggregated price data, e.g. city-based price indexes or sector-based prices. Finally,

based on an appropriately restricted disturbance covariance matrix our framework could

be extended to the case where we have both a large number of cross-sections and time

series observations.
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Appendix

A Proof of Proposition 3.1

In the following proofs we discard the presence of lagged �rst di�erences in (9), and we

assume that we have 1 = � � � = N = 0 combined with a vector of disturbances "t which

does not exhibit serial correlation. From Dickey and Fuller (1979) and Said and Dickey

(1984) we know that the inclusion of lagged �rst di�erences within ADF test regressions,

in order to guarantee white noise innovations, does not inuence the asymptotic behaviour

of the ADF t-statistic relative to the case of no higher order dynamics. Johansen (1991)

has an identical result in the case of likelihood ratio cointegration rank statistics within

unrestricted VAR models of non-stationary variables. As (9) can both be considered as

a system of N ADF test regressions and as a restricted VAR model of N non-stationary

variables, LR�=0 is under the null asymptotically identical whether or not 1 = � � � = N =

0 in (9) as long as we have white noise disturbances. Hence, for notational convenience

we base all our proofs on the absence of higher order dynamics in (9). Also, our proofs

are at �rst based on the absence of deterministic components in (9) but we discuss at the

end of this Appendix the extension to the case of deterministic components.

In deriving the limiting behaviour of LR�=0 we make use of the following results:

1. We make use of the properties of \vec"-operators and Kronecker-product operators

as summarized in L�utkepohl (1993, Appendix A.11 and A.12), we use in particular:

vec(ABC) = (C 0 
 A)vec(B);

(A
 B)(C 
D) = (AC 
BD);
(A.1)

where A, B and C are appropriate matrices and \vec" denotes vectorization of a

matrix by stacking the columns of this matrix.

2. For T !1 we have (see Hamilton 1994, chapters 17 and 18):

1

T 2
X 0

�1X�1 ) 

1

2

�Z
WNW

0

N

�



1

2

0

;

1

T
X 0

�1�X ) 

1

2

�Z
WNdW

0

N

�



1

2

0

:

(A.2)

In (A.2) WN (u) = (B1(u) � � �BN(u))
0 is a N -dimensional vector Brownian Motion with

covariance matrix IN and u 2 [0; 1], Bi(u) is a scalar standard Brownian Motion,R
WNdW

0

N �
R 1
0
WN(u)dWN(u)du, and 
 is the true non-diagonal disturbance covari-

ance matrix as in (10). Note that \)" indicates convergence in distribution, whereas in

the remainder of this Appendix \
p!" indicates convergence in probability.
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The Proof

For Æ1 = � � � = ÆN = 0, 1 = � � � = N = 0 and no serial correlation within the innovations

vector "t in (9), log-likelihood function (11) can also be written as

`(�; 
) = �
NT

2
ln(2�) +

T

2
lnj
�1j

�
1

2
vec(�X �X

�1�)
0(
�1 
 IT )vec(�X �X

�1�); (A.3)

with the T � T identity matrix IT . We can write within the last part of log-likelihood

function (A.3)

vec(�X �X
�1�) =

vec (�X)� vec (X1;�1�1 : : :XN;�1�N )

= vec (�X)� (IN 
X
�1)F�

0
B@

�1
...

�N

1
CA ;

(A.4)

where IN is a N �N identity matrix and F� is a N2 �N selection matrix,

F� =

0
BBB@

e1 0N � � � 0N
0N e2 0N

0N(N�3) 0N(N�3)
. . . 0N(N�3)

0N 0N eN

1
CCCA = ((e1 
 e1) � � � (eN 
 eN )) : (A.5)

In (A.5) ei is the i
th column of the identity matrix IN and 0s is a s-dimensional column

vector of zeros with s = N or N(N � 3). Substituting (A.4) in log-likelihood (A.3) and

maximizing (A.3) with respect to � given 
, yields the following estimator of �1; : : : ; �N :0
B@

�̂1
...

�̂N

1
CA = (F 0

�(

�1 
X 0

�1X�1)F�)
�1F 0

�(

�1 
 IT )vec(X

0

�1�X); (A.6)

which is a SURE estimator. The conditional maximum likelihood estimator of 
 given

the estimate �̂ equals:


̂(�̂) =
1

T

�
�X �X

�1�̂
�
0
�
�X �X

�1�̂
�
: (A.7)

Using (A.6) and (A.7) in the ISURE procedures from section 3.1 yields maximum likeli-

hood estimates but Magnus (1978) has shown that the estimates after one iteration have

the same asymptotic distribution as fully converged estimates. In the following we make

use of this property of the one-step SURE estimator.

20



Following L�utkepohl (1993, pp.123-124), it can be shown that the likelihood ratio

statistic for the null hypothesis �1 = � � � = �N = 0 versus �i 6= 0 can be written as

LR�=0 = 2
h
`(�̂; 
)� `(
)

i
= vec(X

�1�̂)
0(
̂�1 
 IT )vec(X�1�̂) + op(1); (A.8)

where �̂ contains the estimated �i's from (A.6) and 
̂ is a consistent estimate of the

disturbance covariance matrix 
. Under H0 : �1 = � � � = �N = 0, 
̂(�̂) in (A.7) is a

consistent estimate of 
. Hence, given (A.8) and 
̂ = 
̂(�̂)
p! 
 we have

LR�=0 w vec(X
�1�̂)

0(
̂�1 
 IT )vec(X�1�̂)

=

0
B@

�̂1
...

�̂N

1
CA
0

F 0

�(
̂
�1 
X 0

�1X�1)F�

0
B@

�̂1
...

�̂N

1
CA

= (F�vec(X
0

�1�X
̂�1))0[F 0

�(
̂
�1 
X 0

�1X�1)F�]
�1F 0

�vec(X
0

�1�X
̂�1);

(A.9)

where F� is de�ned in (A.5) and the third expression results from substituting estimator

(A.6).

Based on 
̂ = 
̂(�̂)
p! 
, (A.1), (A.2) and the continuous mapping theorem, we have

for T !1:

1

T 2
[F 0

�(
̂
�1 
X 0

�1X�1)F�]
�1 ) [F 0

�(

�1 
 


1

2

Z
WNW

0

N

1

2

0

)F�]
�1

= [F 0

�(

�

1

2 
 

1

2 )(IN 

Z

WNW
0

N)(

�

1

2 
 

1

2 )0F�]
�1;

(A.10)

and

1

T
F 0

�vec(X
0

�1�X
̂�1)) F 0

�vec(

1

2

Z
WNdW

0

N

�

1

2

0

)

= F 0

�(

�

1

2 
 

1

2 )vec(

Z
WNdW

0

N):

(A.11)

In order to manipulate the expressions in (A.10) and (A.11) we de�ne the following:


�
1

2 = (	0

1 � � �	
0

N)
0; with 	i is 1�N;



1

2 = (�0

1 � � ��
0

N)
0; with �i is 1�N:

(A.12)

Utilizing (A.12) we can now write

F 0

�(

�

1

2 
 

1

2 )(
�
1

2 
 

1

2 )0F� =

0
B@

	1 
 �1

...

	N 
 �N

1
CA
0
B@

	1 
 �1

...

	N 
 �N

1
CA
0

=

0
B@

(	1	
0

1)(�1�
0

1) � � � (	1	
0

N)(�1�
0

N)
...

. . .
...

(	N	
0

1)(�N�
0

1) � � � (	N	
0

N)(�N�
0

N)

1
CA

= PP 0;

(A.13)
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where PP 0 is the Choleski decomposition of the N �N matrix in the second right hand

side expression in (A.13). Using (A.13), pre-multiplying the expression within square

brackets in (A.10) with P�1 and post-multiplying with P�10

yields

[P�1F 0

�(

�

1

2 
 

1

2 )(IN 

Z

WNW
0

N )(

�

1

2 
 

1

2 )0F�P
�10

]�1

=

0
B@P�1

0
B@

(	1	
0

1)(�1

R
WNW

0

N�
0

1) � � � (	1	
0

N)(�1

R
WNW

0

N�
0

N)
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. . .
...

(	N	
0

1)(�N

R
WNW

0

N�
0

1) � � � (	N	
0

N)(�N

R
WNW

0

N�
0

N)

1
CAP�10

1
CA
�1

=

0
B@
R
B2
1 0 � � �0 0

0
. . . 0

0 0 � � �0
R
B2

N

1
CA
�1

:
(A.14)

For (A.11) we have, based on (A.1) and (A.13), the following result:

P�1F 0

�(
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1
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1

2 )vec(
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0

N) = P�1

0
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WNdW

0

N	
0

N

1
CA

=

0
B@
R
B1dB1

...R
BNdBN

1
CA :

(A.15)

As the P matrix appears in both (A.14) and (A.15), we are able to substitute (A.14)

and (A.15) in (A.9) and this results in the following limiting expression for LR�=0:

LR�=0 )

0
B@
R
B1dB1

...R
BNdBN

1
CA
0
0
B@
R
B2
1 0 � � �0 0

0
. . . 0

0 0 � � �0
R
B2

N

1
CA
�10
B@
R
B1dB1

...R
BNdBN

1
CA

=

NX
i=1

"�Z
BidBi

�2�Z
B2

i

�
�1
#
: �

Deterministic Components

We can concentrate log-likelihood function (11) with respect to the deterministic compo-

nents through OLS regressions of the elements of �Xt, Xt�1 and Wpt on the deterministic

component vector zt, as zt has an identical content for each equation of (9).13 Hence, we

13See also the Frisch-Waugh-Lovell theorem in Davidson and MacKinnon (1993, pp. 19-24).
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have after adjusting for the e�ect of the deterministic components:

� ~Xi = MZ�Xi and � ~X = (� ~X1 � � �� ~XN );

~Xi;�1 = MZXi;�1 and ~X
�1 = ( ~X1;t�1 � � � ~XN;�1);

~Wp;i = MZWp;i and ~Wp = ( ~Wp;1 � � � ~Wp;N);

(A.16)

withMZ = IT �Z(Z 0Z)�1Z 0. Replacing �X, Z, X
�1 and Wp with the variables of (A.16)

in the ISURE procedure from section 3.1 yields therefore identical maximum likelihood

estimates of � and � in (9) as in the original ISURE procedure. Under the null of

N non-stationary variables, i.e. Æ1 = � � � = ÆN = �1 = � � � = �N = 0, we now have
�Bi(u) = Bi(u)�

R 1
0
Bi(u)du or �Bi(u) = Bi(u)�ai�bit, and dBi(u)�

R 1
0
dBi(u)du = dBi(u)

or dBi(u)�ai�bit = dBi(u).
14 Hence, we replace in all relevant formulae of the previously

described proof WN(u) with �WN (u) = ( �B1(u) � � � �BN(u))
0 while retaining dWN .

B Critical Values

The asymptotic distribution of our multivariate likelihood ratio unit root test, as sum-

marized in proposition 3.1, is a functional of Brownian Motions. As these are continuous

time variables, one has to rely in practice on approximations to get proper critical val-

ues for our multivariate unit root tests. Nielsen (1997) observes that within a single

equation model the asymptotic behaviour of a likelihood ratio unit root test is very well

approximated by a Gamma-distribution, especially for quantiles � 50%. The limiting dis-

tribution of a likelihood ratio unit root test within the single equation framework equals

a squared Dickey and Fuller (1979) distribution and the limiting distribution in proposi-

tion 3.1 equals a summation of N squared Dickey-Fuller distributions. Hence, we can use

a Gamma-distribution to approximate the curvature of our asymptotic distributions.

The usage of the Gamma-distribution has several advantageous features. First, we do

not have to simulate and report critical values for our multivariate unit root tests at every

value of N and the Gamma-distribution can therefore be considered as a \cross-sectional

response surface". Next, the usage of the Gamma-distribution allows one to compute the

p-values of the multivariate unit root test in a convenient way. The Gamma-distribution

can be written as

�(z; r; a) =

Z z

0

ar

�(r)
xr�1exp(�ax)dx; z > 0; r > 0; a > 0; (B.1)

where �(�) is the Gamma-function. When we can �nd proper values for the parameters a

and r, we can use (B.1) to approximate the distribution of our test statistic z under the

null. Following Doornik (1998), we can calibrate (B.1) through

â =
m

v
; r̂ =

m2

v
; (B.2)

14Parameters ai and bi results from regressing Bi(u) on an intercept and a linear time trend.
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where m is the mean of z under the null and v is the variance. Doornik (1998) shows

in Monte Carlo experiments that the above described procedures yields very accurate

approximations of the asymptotic distributions of multivariate cointegration tests, which

basically are squared multivariate Dickey-Fuller distributions.

Proposition 3.1 indicates that the asymptotic distribution of our test statistic is a

summation of N independent, squared Dickey-Fuller distributions. Therefore, the mean

and variance of these distributions equals N times the mean and N times the variance

of a single squared Dickey-Fuller distribution. Thus, we �rst approximate the mean

and variance of a single squared Dickey-Fuller distribution. MacKinnon (1991) provides

very accurate approximations of the 10%, 5% and 1% quantiles of the Dickey-Fuller

distribution using response surface regressions. Consequently we also utilize response

surface regressions to approximate the mean and variance of a single squared Dickey-

Fuller distribution. In these response surface regressions we use 13 di�erent values of

the number of time series observations T : 50, 65, 80, 100, 150, 200, 250, 350, 500, 750,

1,000, 2,000 and 5,000. To control for experimental randomness we performed 40 separate

Monte Carlo simulations for every T each with 50,000 replications except for T > 750

where we used 25,000 replications in each experiment. In each replication we generate a

discrete time random walk with T + 1 observations, compute the Dickey-Fuller t-value

and take the square of this t-value, and calculate the mean and variance across the 25,000

or 50,000 generated squared t-values. As such the mean and variance of the squared

Dickey-Fuller distribution are for each value of T based on either 2 million iterations or in

case of T > 750 on 1 million replications. These exercises are repeated for speci�cations

with a constant or a constant plus trend added to the test regression, where we use either

a demeaned or a detrended random walk.

For each deterministic speci�cation we now have 520 approximations for both the

mean and the variance of the single squared Dickey-Fuller distribution at various T and

analogous to MacKinnon (1991) we use these approximations to �t a response surface

regression for both the mean and variance:

C l
i = �l

1

+ �l1T
�1
i + �l2T

�2
i + eli; i = 1; : : : ; 520; l = mean or variance: (B.3)

In (B.3) Ti is the number of time series observations in the ith experiment and C l
i is the

estimate of either the mean or variance from the ith experiment. The �rst parameter �l
1

is either the mean or the variance of the asymptotic squared Dickey-Fuller distribution

and the other two parameters allows one to determine the mean or variance in �nite

samples. The error terms eli are heteroskedastic and (B.3) is therefore estimated with

a weighted least squares [WLS] procedure. In this procedure we �rst regress C l
i on 13

dummy variables, where the �rst dummy variable is equal to 1 if Ti = 50, the second is

1 if Ti = 65 and so forth, resulting in the residuals �el1; : : : ; �e
l
520. Next, we regress (�eli)

2

on a constant, T�1
i and T�2

i , and the inverses of the square roots of the �tted values of

this auxiliary regression are used as weights in WLS estimation of (B.3). We used tests

on both the individual and joint signi�cance of parameters plus the Schwartz Information

Criterion [SIC] to check the adequacy of the speci�cation in (B.3) relative to other possible
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speci�cations such as adding T�3
i as an extra regressor to (B.3) or deleting T�2

i from the

equation. The speci�cation tests favored in case of the mean always a version of (B.3) with

solely T�1
i . The response surface regression of the variance in the case of no deterministic

components also included only T�1
i and for the other cases the response surface for the

variance included both T�1
i and T�2

i . See also the expressions within parentheses in

table B.1.

Approximations for the asymptotic or exact sample mean and variance of our distri-

butions in proposition 3.1 are now equal to N times the corresponding �tted value of �l
1

or C l
i in (B.3), see also table B.1. Based on these approximations of m and v we can now

determine the values of r and a in (B.1) through (B.2). The resulting calibrated Gamma-

distribution can now be used to compute asymptotic or exact sample critical values or

p-values for our multivariate unit root test.15

Table B.1: Mean and variance of the limiting distributions of Proposition 3.1a

Case m v

1 (1:1420 + 0:690T�1)N (2:2243 + 9:128T�1)N

2 (3:0573 + 1:548T�1)N (7:0103 + 41:004T�1 + 239:48T�2)N

3 (5:3235 + 2:179T�1)N (11:2478 + 94:101T�1 + 504:40T�2)N

a The values equal N times the mean or variance of a single squared Dickey-Fuller distri-

bution approximated by a response surface regression as in (B.3). The denomination

N indicates the cross-section dimension, T is the (balanced) number of time series ob-

servations and m, v indicates the approximations of the mean and variance of limiting

distribution (17) respectively. Case 1 is the speci�cation without deterministic compo-

nents, Case 2 is the speci�cation with a constant for each cross-section and Case 3 is

the speci�cation with a constant and linear time trend for each cross-section.
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Table 1: Size and power of the Levin and Lin (1992) and Im et al. (1997) panel unit root

tests with constant terms in cross-correlated data for a nominal size of 5%.a

No Serial Correlation Serial Correlation

p = 1 p = 2 p = 3

Size Power Size Power Size Power Size Power

Augmented Dickey and Fuller (1979) Unit Root Test

0:050 0:170 0:047 0:153 0:048 0:132 0:044 0:129

Panel Unit Root Tests

N = 3 LL 0:157 0:344 0:140 0:287 0:138 0:272 0:143 0:257

IPS 0:072 0:222 0:073 0:185 0:078 0:187 0:078 0:177

N = 6 LL 0:241 0:449 0:205 0:371 0:207 0:349 0:211 0:338

IPS 0:136 0:378 0:142 0:330 0:147 0:331 0:146 0:310

N = 9 LL 0:303 0:519 0:244 0:427 0:253 0:398 0:260 0:370

IPS 0:182 0:472 0:179 0:429 0:184 0:419 0:189 0:392

a The Monte Carlo experiments are based on T = 100 and 10,000 simulations both with or without

�rst order serially correlated innovations, see the text. Denomination p indicates the lag order used

in the test procedures. Rows with \LL" (\IPS") report the results for the Levin and Lin (1992)

(Im et al. 1997) panel unit root test. The results for the univariate ADF test are based on the

appropriate 5% critical value from MacKinnon (1991).
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Table 2: Size and power of the multivariate unit root test with constant terms for a nominal

size of 5%.a

No Serial Correlation Serial Correlation

p = 1 p = 2 p = 3

Size Power Size Power Size Power Size Power

N = 3 LR�=0 0:050 0:729 0:054 0:699 0:057 0:666 0:060 0:637

CLR�=0 0:044 0:717 0:045 0:677 0:045 0:640 0:045 0:599

N = 6 LR�=0 0:057 0:965 0:068 0:955 0:076 0:943 0:073 0:930

CLR�=0 0:049 0:962 0:055 0:948 0:057 0:931 0:054 0:913

N = 9 LR�=0 0:067 0:997 0:073 0:994 0:090 0:992 0:101 0:988

CLR�=0 0:057 0:996 0:059 0:993 0:065 0:990 0:067 0:985

95% Quantiles

N = 3 18.112 18.116 18.119 18.123

N = 6 30.631 30.636 30.641 30.647

N = 9 42.356 42.362 42.369 42.375

a See the notes of table 1. The statistics LR�=0 and CLR�=0 are de�ned in (16) and (18). Size and

power calculations are based on the exact sample 95% quantiles in the lower part of the table, which are

computed through the procedures of Appendix B.
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Table 4: Multivariate unit root test results for G10 real exchange

rates, 1973.1-1997.4a

Relative to: U.S. Germany Japan U.K.

�̂i �̂i �̂i �̂i

Canada �0:025 �0:036 �0:033 �0:035
France �0:065 �0:197 �0:090 �0:057
Germany �0:072 |- �0:106 �0:073
Italy �0:075 �0:050 �0:100 �0:086
Japan �0:065 �0:058 |- �0:067
Netherlands �0:072 �0:093 �0:089 �0:060
Sweden �0:055 �0:065 �0:075 �0:046
Switzerland �0:079 �0:056 �0:145 �0:096
U.K. �0:056 �0:089 �0:083 |-

U.S. |- �0:041 �0:040 �0:038

Likelihood Ratio Unit Root Tests

LR�=0 42:196 45:431 69:884 45:723

(0:052) (0:028) (0:000) (0:026)

CLR�=0 40:682 42:769 67:642 44:099

(0:069) (0:047) (0:000) (0:036)

a ISURE estimates of �i in (22) equal �̂i. \LR�=0" and \CLR�=0" are

likelihood ratio statistics for the null ofN unit roots, with the corresponding

p-values within parentheses (see Appendix B).
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Table 5: Mean reversion speeds across G10 real exchange rates, 1973.1-1997.4a

Relative to: U.S. Germany Japan U.K.

50% 90% 50% 90% 50% 90% 50% 90%

Canada 27 33 21 33 23 56 22 51

(12-59) (15-112) (9-35) (13-72) (8-35) (18-91) (8-33) (16-80)

France 12 29 6 8 9 20 13 38

(6-15) (13-38) (4-8) (6-16) (5-10) (12-25) (6-17) (15-54)

Germany 11 27 |- |- 7 19 10 28

(6-13) (13-34) |- |- (5-8) (12-22) (6-12) (15-35)

Italy 10 25 15 42 8 19 9 23

(5-13) (11-35) (3-36) (10-118) (5-9) (10-23) (4-11) (9-33)

Japan 12 26 13 31 |- |- 11 26

(5-19) (9-45) (5-21) (10-55) |- |- (5-18) (9-45)

Netherlands 11 27 13 21 8 23 12 34

(6-12) (13-34) (3-21) (11-33) (5-10) (13-28) (6-16) (15-46)

Sweden 14 35 11 31 10 26 16 46

(5-23) (12-60) (4-22) (9-63) (5-13) (13-34) (6-28) (15-84)

Switzerland 10 25 13 38 5 13 8 21

(5-12) (12-33) (3-27) (11-86) (4-7) (7-17) (4-10) (10-29)

U.K. 13 36 8 22 9 21 |- |-

(5-23) (11-66) (4-14) (7-40) (5-13) (8-32) |- |-

U.S. |- |- 18 26 19 47 20 47

|- |- (10-26) (13-50) (7-27) (15-72) (7-28) (15-71)

a The columns labeled with \50%" (\90%") report the number of quarters after which 50% (90%) of a

shock in the real exchange rate has been reversed, calculated through (25). The corresponding 95%

con�dence intervals, based on 10,000 parametric bootstrap simulations, are reported in parentheses.
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