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Abstract

This paper considers dynamic asset allocation in a mean versus downside-risk framework. We de-

rive closed-form solutions for the optimal portfolio weights when returns are lognormally distributed.

Moreover, we study the impact of skewed and fat-tailed return distributions. We �nd that the optimal

fraction invested in stocks is V-shaped: at low and high levels of wealth the investor increases the stock

weight. The optimal strategy also exhibits reverse time-e�ects: the investor allocates more to stocks as

the horizon approaches. Furthermore, the investment strategy becomes more risky for negatively skewed

and fat-tailed return distributions.
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1 Introduction

A growing number of practitioners are using downside-risk measures in various portfolio man-

agement applications. Due to the concern of regulating authorities and the need for establishing

risk management systems at banks and institutional investors, the popularity of such downside-

risk measures has grown considerably. Partly, this can be attributed to the appealing notion

that investors care mainly about the risk associated with downside movements and that upside

potential should not be penalized.1 The most famous example is value-at-risk based risk manage-

ment which has become an industry standard by regulation (Jorion 1997). Besides value-at-risk,

other popular downside-risk measures include expected shortfall and downside deviation.

Despite its popularity and widespread use little is known about the implications of downside-

risk management for asset allocation. One of the early references on the merits of downside risk

measures for asset allocation is Markowitz (1959). Markowitz (1959) realized the drawbacks of

variance as a measure of risk, as it penalizes both upside and downside movements in the portfolio

value equally. He proposed semivariance as a more appropriate risk measure, measuring risk as

deviations below the mean only. However, Markowitz was not able to resolve the diÆculties of

a mean-semivariance framework due to the non-di�erentiability involved.

Recent literature on the use of downside risk measures for portfolio theory still relies on sim-

ulations and computational results (Harlow 1991, Sortino & van der Meer 1991, Markowitz,

Todd, Xu & Yamane 1993) and focus on one-period buy-and-hold strategies. In the tradi-

tional �nancial-economic literature, on the other hand, closed-form solutions have been de-

rived for dynamic asset allocation models. The main focus, however, is on portfolio selec-

tion under power utility (Samuelson 1969, Merton 1969) and the impact of the predictabil-

ity of asset returns (Brennan, Schwartz & Lagnado 1997, Kim & Omberg 1996, Campbell &

Viceira 1999, S�rensen 1999). The issue of downside risk management is largely ignored in this

literature.

In this paper we study dynamic asset allocation in a mean versus downside-risk framework. The

investor makes a trade-o� between expected return and downside-risk. We derive closed-form

solutions for optimal asset allocation in this setting. Additionally, we consider the impact of

negatively skewed and fat-tailed return distributions. In particular, we address the following

questions:

1. What is the optimal investment strategy in a mean downside-risk framework?

2. Does the optimal portfolio choice of a downside-risk averse investor exhibit time diversi�-

cation e�ects?

3. How does a downside-risk averse investor behave when confronted with negatively skewed

and fat-tailed asset returns?

Our results are as follows. First, under general security price processes, we show that investors

1We like to remark that downside risk aversion is closely related to loss aversion and prospect theory advocated

by Kahneman & Tversky (1979), as they both assume that people treat gains and losses di�erently.
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who care mainly about falling below the target (e.g. probability of a loss) and investors who

care more about the magnitude of deviations below the target (e.g. downside variance) behave

quite di�erently. The �rst group of investors desires full insurance at intermediate wealth levels

against falling below the threshold and exhibit gambling behavior at low levels of wealth. The

second group of investors do not desire full insurance: they accept small deviations below the

threshold and behave more prudent.

An interesting result is that we can decompose the optimal strategies in derivatives contracts.

This provides a clear interpretation of the investment strategy without assuming speci�c asset

return distributions. The �rst group of investors desires to hold two binary options on the

growth optimal portfolio. A binary option can be interpreted as a probability maximizing

strategy. The second group holds a binary option and a butter
y spread option on the growth

optimal portfolio. We also point to a drawback of the mean downside-risk framework, caused

by risk neutrality above the target. This permits the investor to accept excessive gambles.

Second, when asset prices follow a geometric Brownian motion, we derive closed-form solutions

for the optimal portfolio weights. The optimal fraction invested in stocks as a function of wealth

displays a V-shaped pattern. When confronted with gains, risk neutrality induces the investor to

increase his exposure to stocks. When confronted with losses the investor also increases his stock

weight. For small lower partial moments (e.g. probability of a loss) this e�ect is caused by risk

seeking behavior below the target. For larger lower partial moments (e.g. downside variance)

this can attributed to the increasing relative risk aversion property of the corresponding utility

function.

An important issue is how investors should allocate to risky assets depending on their horizon.

Our closed-form solutions enable us to study these time-e�ects. It is a well-known result that

investors with power utility allocate a constant fraction of wealth to risky assets regardless of

their investment horizon. When investors are downside-risk averse this result does no longer

hold. In general, downside-risk aversion causes reversed time-e�ects, i.e. when confronted with a

shorter horizon the investor allocates more heavily to stocks. The rationale behind the reversed

time e�ect is risk neutrality when confronted with gains and risk seeking behavior (0 � 
 < 1)

or increasing relative risk aversion (
 = 2) when confronted with losses.

Finally, we are interested in the e�ect of skewness and kurtosis in asset returns on the optimal

portfolio choice under downside-risk aversion. In the standard case of constant relative risk

aversion or for mean-variance optimizers, skewed and fat-tailed return distributions do not a�ect

the optimal allocation to stocks. When employing downside-risk measures this is no longer true.

The impact of skewness and kurtosis is quite large and can not be ignored. Again we �nd

striking results: expected loss and probability of loss minimizers (0 � 
 � 1) increase the stock

weight as the return distribution becomes more negatively skewed. Moreover, investors in a

mean versus downside risk framework invest more in stocks when confronted with fat tails, due

to risk neutrality above the threshold.

In conclusion, despite the popularity of downside-risk as a measure for investment risk and

a guideline for optimal investment strategies, a mean versus downside risk framework implies

many peculiarities:
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1. Both at low and high levels of wealth the investor gambles by investing more in risky assets;

2. Downside-risk aversion gives rise to reversed time e�ects: confronted with a shorter horizon

the investor invests more in risky assets;

3. Confronted with negatively skewed and fat-tailed returns the investor invests more in risky

assets.

It is questionable whether investors and practitioners are aware of the gambling e�ects prevalent

in the use of downside-risk measures. It should be noted that optimal strategies derived under

downside-risk aversion do indeed minimize the downside-risk of an investment portfolio. How-

ever, this is accompanied with gambling strategies that may not be approved of by regulators

or management. In practice short selling constraints will certainly restrain investors from (ex-

tremely) risky investment strategies. However, regardless of short selling constraints, the nature

of the optimal investment strategies remains the same.

Surprisingly, there is little previous research on optimal portfolio choice under downside-risk

aversion. Basak & Shapiro (1999) study investment behavior in the traditional setting of power

utility subject to a value-at-risk constraint. Although they only focus on expected utility with

value-at-risk as a side-constraint, their �ndings con�rm the gambling e�ects established in this

paper. Dert & Oldenkamp (1997) consider a one-period discrete state model aiming at maxi-

mizing expected return subject to a guaranteed return constraint. They also �nd a gambling

e�ect and refer to it as a casino e�ect. However, they do not provide closed-form solutions for

the optimal portfolio choice.

This paper is organized as follows. In Section 2 we introduce our continuous-time economy

and discuss the mean versus downside-risk framework. In Section 3 we specify the agent's

optimization model and consider the optimal strategies under general price processes. We also

derive closed-form solutions in this section for the optimal fraction invested in risky assets when

asset prices follow geometric Brownian motions and interest-rates and the market price of risk are

constant. Section 4 studied the optimal portfolio choice problem under downside-risk aversion

when asset returns are skewed and fat-tailed. Section 5 concludes this paper.

2 Economic Setting

2.1 The Economy

In this section we formulate our economy and the dynamic investment problem. We consider a

�nite-horizon, [0; T ], economy.2 We assume that the investor trades K+1 assets continuously in

a market without transaction costs. The zero-th asset is a riskless money market account S0(t):

dS0(t) = r(t)S0(t)dt;

2All stated processes are assumed to be well-de�ned and satisfy the appropriate regularity conditions. For

technical details the reader is refered to Karatzas & Shreve (1998).
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The prices of the remaining assets S = fSk(t)gKk=1 follow Ito processes with drift rate �k(t) and

volatility �k(t):

dSk(t) = �k(t)Sk(t)dt+ �k(t)Sk(t)dBt; k = 1; : : : ;K; (1)

where the interest rate r(�), the drift rates �(�) and the volatility matrix �(�) are adapted process
(possibly path-dependent).

In order to meet his investment goals the investor chooses a portfolio consisting of the K risky

assets and the riskless money market account. We denote the fraction invested in risky asset

k at time t by wk(t) and the fraction invested in the riskless asset at t by w0(t). For any self-

�nancing portfolio the wealth Wt of the investor can be expressed as the following stochastic

process (using vector notation):

dWt = r(t)Wtdt+ (�(t)� �r(t))0w(t)Wtdt+Wt(w(t)�(t))
0
dBt: (2)

where we substituted w0(t) = 1�Piwi(t). The initial wealth of the investor is denoted by W0.

Markets are assumed to be complete, implying the existence of a unique state price density (or

pricing kernel) �t, given by

�t = exp

�
�
Z t

0

r(s)ds

�
Zt;

where Zt denotes the Radon-Nikodym derivative of a change of probability measure de�ned by

Zt =
dQ

dP
= exp

�
�1

2

Z t

0

k�(s)k2ds�
Z t

0

�(s)0dBs

�
;

and �(t) = �
�1(t)(�(t)� � r(t)) denotes the market price of risk process. We assume that there

are no redundant assets, and consequently � is an invertible matrix, as markets are complete.

Alternatively, we may write the state price density process as

d�t

�t

= �r(t)dt� �(t)0dBt; �0 = 1: (3)

The state price density process (or pricing kernel) will play an important role in deriving the

optimal trading strategies. Merton (1990) has shown that the inverse of the pricing kernel is

equal to the value of the growth-optimum portfolio. The growth optimum portfolio, �t, is the

strategy that maximizes the expected growth rate of the portfolio (or the average continuously

compounded return on the portfolio), i.e. �t = argmax�t Et(log(WT )). Moreover, this portfolio

is mean-variance eÆcient. When the investment opportunity set is constant and utility is concave

and di�erentiable, any optimal portfolio can be represented in terms of simple combinations of

the growth optimum portfolio and the riskless asset (so-called two fund separation).

2.2 Downside-Risk Aversion

Many portfolio management applications are based on the traditional mean-variance framework

(Markowitz 1952). Mean-variance theory can either be justi�ed by assuming quadratic utility
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or by assuming normal returns. Quadratic utility exhibits increasing relative and absolute risk

aversion, properties that are considered unrealistic by many �nancial economists, as they imply

that investors invest more in risky assets as their wealth decreases. Moreover, there is a vast

amount of empirical evidence that stocks returns may not be normally distributed. Finally,

employing variance as a risk-measure both upside and downside movements in the portfolio

value are penalized equally.

Markowitz (1959) already realized the drawbacks of variance as a measure of risk, and proposed

semivariance as a more appropriate risk measure, measuring risk as deviations below the mean

only. However, he was not able to resolve the diÆculties of a mean-semivariance framework due

to the non-di�erentiability involved. In a recent paper Markowitz et al. (1993) return to this

issue and rely on computational techniques to derive the optimal asset allocation in a mean-

semivariance framework. In this paper we are able to derive closed-form solutions for a more

general mean versus downside-risk framework.

Downside-risk measures penalize only negative returns relative to a given benchmark �. More-

over, downside-risk measures allow for asymmetric return distributions and are consistent with

more general utility functions (Fishburn 1977). A widely applied class of downside-risk measures

is based on the so-called lower partial moments (LPMs) as introduced by Bawa & Lindenberg

(1977). Investors make a trade-o� between mean and downside-risk, where risk is associated

with the partial moments of the return distribution of the investment portfolio, measured with

regard to the target �, i.e.

R
(�) = E ([maxf� � x; 0g]
) =
Z �

�1

(� � x)
dF (x); 
 � 0; (4)

where F (x) denotes the probability distribution function over portfolio returns x.

The reference point � distinguishes gains from losses and serves as a benchmark for investing.

Commonly used de�nitions are the expected portfolio return, the riskfree rate, or a certain target

rate of return. The benchmark could be time-varying, e.g. in index tracking, or represent the

liabilities of an institutional investor, e.g. in asset liability management studies. In this paper

we assume that � is constant (and � � 1), and interpret it as a benchmark wealth level. We

could also incorporate a stochastic benchmark, e.g. following a geometric Brownian motion.

However, the results and conclusions do not change qualitatively.

The class of LPMs (4) includes measures such as shortfall probability (
 = 0), expected shortfall

(
 = 1), and downside-variance (
 = 2). Variance is only a special case of (4) when returns

are normally distributed. Letting 
 ! 1 it can be shown that the risk associated with worst

possible outcomes is a limiting case (Fishburn 1977). Finally, we like to mention that Value-at-

Risk is closely related to the class of risk measures (4). VaR is the maximum amount of money

that you may lose with a given probability, over a certain time period. In our situation, the

�%-VaR corresponds to the benchmark level �̂(�) such that R0(�̂(�)) = 1� �.

In a mean-variance framework investors make a trade-o� between expected return and risk

(as measured by variance), i.e. they maximize �(x) � ��
2(x), where � denotes the mean and

� the variance of the return on a portfolio x. In the mean versus downside risk framework
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investors make a similar trade-o�, however, only negative returns relative to the benchmark �

are considered as risk. They maximize:

E(x)�AE ([maxf� � x; 0g]
) ; (5)

where a and A are constants, and A denotes the risk aversion of the investor. In this paper we

refer to investors who maximize (5) as downside-risk averse investors.

It is not diÆcult to derive that downside-risk averse investors who maximize (5) can be modeled

as expected utility maximizers with the following utility function:

U(x) =

�
x�A(� � x)
 x � �

x x > �
(6)

where A � 0 to ensure that U(�) is an increasing function, and 
 > 0. Often downside-risk is

measured in terms of portfolio returns, here we assume that the investor only measures downside-

risk at the investment horizon, and therefore we formulate the utility function (6) in terms of

terminal wealth.

As mentioned above, the class of utility functions (6) has a clear interpretation in terms of

related risk measures. De�ning risk as negative preferences gives rise to the following risk

measures: probability of a loss (
 = 0), expected losses (
 = 1), semivariance or downside

variance (
 = 2), and worst possible outcome (
 =1). Note that when 
 is small, the investor

cares about small deviations below the target, while for large 
 the investor is more concerned

with larger deviations below the target, as he penalizes these deviations more heavily.

When 
 < 1 the investor is locally risk-seeking over losses. In this case the investor is willing to

gamble in an attempt to minimize the extent to which his return falls short of �. If 
 > 1 the

investor is locally risk-averse over losses. The relative risk-aversion function below the threshold

� is given by:

R(x) = �xU
00(x)

U 0(x)
=
Ax
(
 � 1)(� � x)
�2

1 +A
(� � x)
�1

It is not diÆcult to conclude that when 1 < 
 � 2 the investor displays increasing relative risk

aversion over losses. When 
 > 2, this no longer holds, and the relative risk aversion function is

both increasing and decreasing on its domain.

Utility function (6) is linear above �, implying risk neutrality. The optimization problem there-

fore becomes unbounded, and a proper analysis is not possible. We can resolve this by intro-

ducing a satiation level W : utility remains constant for wealth in excess of W: Consequently

the investor invests fully in the riskfree asset as wealth at time t exceeds We
�r(T�t). Note that

the original case can be retrieved by letting W !1. In the next section we study the optimal

portfolio choice problem when investors care about the downside-risk of their asset value. We

consider investment behavior under downside-risk aversion under general price processes, and

interpret the results in terms of derivative contracts.
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3 Portfolio Optimization Under Downside-Risk Aversion

3.1 Agent's Optimization Model

In this section we solve the portfolio optimization problem of a downside risk averse investor and

discuss and analyze the properties of the solution. We make no assumptions on the distribution

of the asset returns throughout this section as we derive the optimal wealth pro�le of a downside-

risk averse investor at his investment horizon. This general derivation provides insight in the

structure of the optimal strategy regardless of distributional assumptions. In the next section

we specialize to the case where asset prices follow geometric Brownian motions with constant

interest rate and market price of risk and we study some of the analytic properties of the optimal

strategies in more detail.

We explicitly incorporate a non-negativity constraint on the investor's wealth, as the utility

function does not exhibit in�nite marginal utility at zero wealth. The investor aims at solving

the following dynamic portfolio problem:

max E [U(WT )]

s.t. dWt = rWtdt+ (�� �r)0wtWtdt+ �
0
wtWtdBt

Wt � 0; 8 t 2 [0; T ]

(7)

The martingale methodology allows the problem to be restated as the following static optimiza-

tion problem.

max E [U(WT )]

s.t. E[�TWT ] � �0W0

WT � 0

(8)

The assumption of complete markets, a constant opportunity set and the absence of exogenous

sources of income (e.g. labor income) ensures that the optimally invested wealth will never reach

zero before time T (Cox & Huang 1989). As a result it suÆces to restrict terminal wealth only.

Proposition 1 characterizes the optimal terminal wealth for a downside-risk averse investor when

0 � 
 � 1 (including expected loss and probability of loss).

Proposition 1 The time T optimal wealth of a downside-risk averse investor with 0 � 
 � 1

is:

W (T ) =

8<
:

W if �T < �

� if � < �T < �

0 if �T > �

(9)

where � = 1
y
and � = 1

y
+ A

y
�

�1

Figure 1(a) displays the optimal terminal wealth for a downside risk averse investor with 0 � 
 �
1 as a function of �T . In good states (low �T ) the investor attains satiation, and consequently
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wealth is at the upper boundW . In intermediate states (�T between � and �) the investor keeps

his wealth at the benchmark level �. In bad states (high �T ) the investor ends up with zero

wealth. When �rst order risk aversion becomes more pronounced, or equivalently downside-risk

aversion increases (A increases) the intermediate states region expands at the cost of the bad

states region. As 
 increases, the investor becomes less risk seeking and consequently � increases.

The optimal terminal wealth of a downside-risk averse investor with 0 � 
 � 1 can be interpreted

as an investment in two binary options on the growth optimal portfolio with value Zt := 1=�t.

The �rst binary option pays �, with a strike price equal to 1=�. This binary option is the

optimal strategy for an investor that maximizes the probability that terminal wealth exceeds �

(or equivalently the investor minimizes the probability of falling short of �). The second binary

option pays W � �, with a strike price equal to 1=�.

For downside-risk measures with 
 > 1 (e.g. downside variance) the optimal terminal wealth

pro�le is quite di�erent as the investor, in this case, becomes risk averse over losses, and ad-

ditionally cares more about larger deviations below �. Proposition 2 characterizes the optimal

terminal wealth for a downside-risk averse investor when 
 > 1.

Proposition 2 The time T optimal wealth of a downside-risk averse investor with 
 > 1 is:

W (T ) =

8><
>:

W if �T < �

� �
�
y�T�1
A


�1=(
�1)
if � < �T � �

0 if �T > �

(10)

where � = 1
y
and � = 1

y
+ A


y
�

�1

Figure 1(b) displays the optimal terminal wealth for a downside risk averse investor with 
 > 1

as a function of �T . In good states (low �T ) the investor attains satiation, and consequently

keeps wealth at the upper bound WT . In intermediate states (�T between � and �) terminal

wealth is always below the threshold �. In bad states (high �T ) the investor ends up with zero

wealth. The parameters of the utility function have a clear impact on the interval of intermediate

states [�; �]. If downside-risk aversion increases (i.e. A increases) the intermediate states region

expands. If the investor desires a larger target return � this region also expands.

The investor has to make a trade-o� between the amount of insurance at intermediate states

and the size of the intermediate states region. A downside-risk averse investor with 0 � 
 � 1

fully insures against intermediate states while the investor with 
 > 1 only partially insures

against these intermediate states. It should be noted that, when 
 > 1; terminal wealth is

a convex function of the pricing kernel at intermediate states. Therefore, as 
 increases the

investor desires less insurance, while at the same time the intermediate region expands. This

can be understood by realizing that as 
 increases the investor is more concerned with large

deviations below � and consequently strives to avoid ending up with zero wealth at the horizon.

For small 
 the investor is mostly concerned with the failure to meet the target. In the extreme

case when 
 !1 the investor never ends up with zero wealth as � !1; and faces a constant

payo� for �T > � equal to � � 1 (with � � 1).
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Again, the optimal strategy can be decomposed into an investment in two derivative contracts.

The �rst option is a bull spread on the growth optimal portfolio Zt := 1=�t with exercise prices

1=� and 1=�. The bull spread consists of a long position in a call option stroke at 1=� and a

short position in a call option stroke at 1=�.3 An investor entering into a bull spread beliefs that

markets will rise. The bull spread limits both the investor's upside potential and his downside-

risk. It should be noted that the payo� of the bull spread between 1=� and 1=� is nonlinear.

The second option is a binary option on the growth optimal portfolio paying W � � with strike

price equal to 1=�, to gain additional upside.

Proposition 1 and Proposition 2 also demonstrate a drawback of the mean versus downside-risk

framework. As the utility function is risk neutral above the target, the investment behavior is

dominated by risk neutrality for large wealth levels. This implies gambling behavior. Consider

the following situation. Assume that the initial wealth satis�es W0 > � e
�rT

: By investing a

part of his wealth (� e�rT ) in the riskfree asset, the investor can always ensure that terminal

wealth exceeds �. The remaining wealth is used to gamble as the investors behavior exhibits

risk neutrality. Similar e�ects were found by Dert & Oldenkamp (1997) in a one-period discrete

time model. They termed this phenomenon the casino e�ect.

In our continuous-time model this e�ect is also present. Note that when wealth exceeds � the

investor behaves as a probability maximizer to attain the arbitrary upper bound W . We only

introduced the arbitrary upper bound W to arrive at a sensible policy and avoid unbounded

solutions, due to risk-neutrality. AsW is arbitrary, the investor bets on a favorable realization of

�T yielding a high expected wealth level that occurs with a very small probability only. Letting

W ! 1 this e�ect becomes clear: the probability of reaching in�nite wealth is zero, while

expected wealth equals in�nity.

3.2 Properties of the Investment Strategy

In this section we derive closed-form solutions for the optimal portfolio strategy under downside-

risk aversion, when asset prices follow geometric Brownian motions. We assume that interest

rates and the market price of risk are constant. The optimal portfolios can either be charac-

terized in feedback form or in timeseries form (Dybvig 1995). The feedback form stresses the

dependence of the optimal portfolio on the state variables and is common when applying dy-

namic programming techniques (Merton 1969). The timeseries form stresses the dependence of

the optimal portfolio on the random uncertainty (i.e. the pricing kernel �t), and is common

when applying the martingale methodology (Cox & Huang 1989).

As we assume that interest-rates and the market price of risk are constant and that the prices

of the risky assets follow geometric Brownian motions, the pricing kernel �T is lognormally

distributed. We focus on two distinct cases in this section: downside-risk aversion with 0 � 
 � 1

(including shortfall probability and expected shortfall) and downside-risk aversion with 
 = 2

(downside variance). We derive closed-form solutions and consider time e�ects on the demand for

risky assets. In the next section we study the impact of skewed and fat-tailed return distributions.

3Alternatively, one may use put options to create the bull spread synthetically.
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Case I: Shortfall Probability and Expected Shortfall

We �rst consider the case of downside-risk aversion when 0 � 
 � 1. As we discussed in Section

2 special cases are shortfall probability (
 = 0) and expected shortfall (
 = 1). Proposition 3

characterizes the optimal portfolio when 0 � 
 � 1. The optimal portfolio is given in timeseries

form.

Proposition 3 Assume that the investor is downside-risk averse with 0 � 
 � 1. Then

(i) The time t optimal wealth is given by

W (t) = (W � �)e�r(T�t)N(d1(�)) + �e
�r(T�t)

N(d1(�)) (11a)

where N(�) denotes the cumulative normal distribution function, �= 1
y
, � = 1

y
+ A

y
�

�1,

d1(x) =
log
�
x
�t

�
+
�
r � 1

2
k�k2

�
(T � t)

k�k
p
(T � t)

(ii) The fraction of wealth invested in the risky assets is

w(t) =
(�0)�1�

W (t)

 
(W � �)e�r(T�t)�(d1(�)) + �e

�r(T�t)
�(d1(�))

k�k
p
(T � t)

!
(12)

Note that 
 only in
uences �. Furthermore, it should be noted that the fraction of wealth

invested in the risky assets tends to zero as wealth goes to zero (to avoid bankruptcy) and as

wealth goes to in�nity (as the investor attains satiation).

Figure 2 displays the optimal intermediate wealth and the fraction invested in stocks for a

downside-risk averse investor with 
 = 0 (e.g. probability of loss). We assume that there is one

risky asset (stocks) only and that the investment horizon is one year. From Figure 2(a) we see

that the investor's wealth is a smoothed version of the terminal wealth pro�le of Figure 1(a).

In intermediate states the investor starts to insure himself. Figure 2(b) shows that the fraction

invested in stocks is V-shaped for intermediate states. In good states (low �t) the investor

reduces his exposure to stocks as he attains satiation at W exp(�r(T � t)).

Case II: Downside-Variance

We now study the case of an investor making a trade-o� between mean and downside variance.

This investor cares more about larger deviations below the target and is risk averse over losses.

Proposition 4 characterizes the optimal portfolio when 
 = 2. The optimal portfolio is given in

timeseries form.

Proposition 4 Assume that the investor is downside-risk averse with 
 = 2. Then
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(i) The time t optimal wealth is given by:

W (t) = (W � �)e�r(T�t)N(d1(�)) + � e
�r(T�t)

N(d1(�)) (13)

�y�t
2A

e
�(t)(N(d2(�)�N(d2(�))

where N(�) denotes the cumulative normal distribution function, �= 1
y
, � = 1

y
+ A


y
�

�1

; � =

� + 1
2A

d1(x) =
log
�
x
�t

�
+
�
r � 1

2
k�k2

�
(T � t)

k�k
p
(T � t)

d2(x) = d1(x)� k�k
p
(T � t)

�(t) = �2r(T � t) + k�k2(T � t)

(ii) The fraction of wealth invested in the risky assets is

w(t) =
(�0)�1�

W (t)

 
(W � �)e�r(T�t)�(d1(�))

k�k
p
(T � t)

+
�e
�r(T�t)

�(d2(�))

k�k
p
(T � t)

(14)

� y�te
�(t)

2A

 
�(d2(�))� �(d2(�))

k�k
p
(T � t)

� (N(d2(�))�N(d2(�)))

!!

Note that the fraction of wealth invested in the risky assets tends to zero as wealth goes to zero

(to avoid bankruptcy) and as wealth goes to in�nity (as the investor attains satiation).

Figure 3 displays the optimal intermediate wealth and the fraction invested in stocks for a

downside-risk averse investor with 
 = 2. The optimal fraction invested in stocks exhibits a

V-shaped pattern again for intermediate states. In good states (low �t) the investor reduces his

exposure to stocks as he attains satiation at W exp(�r(T � t)). Focusing on intermediate states,

we may discern the di�erences between the strategy for 0 � 
 � 1 and 
 > 1 as discussed in the

previous section.

As the downside-risk averse investor with 0 � 
 � 1 demands full protection at intermediate

states at the investment horizon, he dedicates more aggressively to stocks at intermediate states.

The downside-risk averse investor with 
 > 1, on the other hand, more gradually increases his

exposure to stocks at intermediate states. In good states the behavior of both investors is similar.

This becomes more clear if we consider the optimal fraction invested in stocks in feedback form.

Figure 4 displays the optimal fraction invested in stocks as a function of wealth for both investors.

At high wealth levels the behavior of both investors is similar as they are both risk neutral above

the benchmark level � and reach satiation at W exp(�r(T � t)). Risk neutrality prescribes a full

commitment to stocks as they provide a higher return. As the investors attain satiation they

reduce their exposure to stocks for higher wealth levels. For low wealth levels both investors

invest more heavily in stocks, however the expected shortfall and probability of loss minimizers

behave more aggressively. When 0 � 
 < 1 the investor becomes risk-seeking below �, explain-

ing the aggressive investment behavior for low wealth levels. As utility function (6) displays
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increasing relative risk aversion below � for 1 < 
 � 2 the fraction invested in stocks increases

as wealth decreases.

We may also calculate the indirect utility function even though it does have the desired deriva-

tives to satisfy the Hamilton-Jacobi-Bellman equation of dynamic programming. The indirect

utility function for 
 = 2 is given by

J(�t; t) = (W � �)N(d1(�) + �) + �N(d1(�) + �)�A�
2
N(�d1(�)� �)

�y
2
�
2
t

4A
e
�(t)

�
N(d2(�))�N(d2(�)

�
:

Figure 5 shows a graph of the indirect utility function as a function of wealth. The indirect utility

function is increasing relative risk averse for low levels of wealth (explaining why the optimal

fraction invested in stocks increases as wealth decreases) and decreasing relative risk averse for

high levels of wealth. For extremely high wealth levels the relative risk aversion function is

increasing again as the investor attains satiation.

An interesting issue is the impact of the investment horizon on the demand for risky assets. When

investor preferences exhibit constant relative risk aversion (CRRA) it is a well known result that

the fraction invested in stocks is independent of the time horizon (Samuelson 1969, Merton 1969).

When relative risk aversion is non constant this no longer holds. Assuming asset returns are

lognormally distributed, decreasing relative risk aversion implies time diversi�cation, i.e. an

investor invests more in stocks when confronted with a longer investment horizon. Increasing

relative risk aversion implies a reverse time diversi�cation e�ect. For a recent discussion we refer

to Kritzman (1998).

When the investor is downside-risk averse the investment horizon also has an impact on the

demand for risky assets. Figure 6 displays the optimal fraction invested in stocks for di�erent

horizons. At large and small levels of wealth the optimal policy of the investor exhibits a reverse

time-diversi�cation e�ect. The reverse time-diversi�cation e�ect at low wealth levels can be

attributed to the increasing relative risk aversion property of the utility function at low wealth

levels. The reverse time diversi�cation e�ect at high wealth levels can be attributed to risk

neutrality above the target. Only at a small region of intermediate wealth levels the optimal

policy of the investor exhibits time diversi�cation.

3.3 Momentum and Portfolio Insurance Strategies

In the previous sections we characterized the optimal strategies under downside-risk aversion.

In this section we consider the number of shares purchased or sold as the underlying asset price

changes. This provides some additional insight into the optimal trading strategies when investors

are downside-risk averse. We assume again that interest-rates and the market price of risk are

constant, and that the prices of the risky assets follow geometric Brownian motions. Assuming

that there is only one risky asset (e.g. stocks), with price St at time t, the pricing kernel �t can

be expressed as a function of the stock price, as follows:

�t = B(t)S
�(��r)=�2

t ;
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where B(t) = exp
n
(��r)(�+r��2)

2�2
t

o
. This allows us to rewrite the optimal terminal wealth pro�le

derived in the previous section as a function of the stock price.

We �rst consider the strategy of a HARA investor with utility

U(WT ) =
1� �

�

�
AWT

1� a
+ �

��
:

The optimal terminal wealth for this investor is given by:

W (T ) = ��(1� a)

A
+
1� a

A

�
yC(T )ST

A

��=�(1��)
:

where � denotes the Sharpe ratio. Consequently, when �=�(1 � �) > 1 the optimal strategy is

convex (portfolio insurance strategy), and when �=�(1��) < 1 the optimal strategy is concave

(momentum strategy). When � > 1 the utility function exhibits increasing relative risk aversion

and the optimal strategy is always a momentum (or reversal) strategy. When 1� �=� < � < 1;

the optimal strategy is a portfolio insurance strategy, and when � < 1��=� the optimal strategy

is a momentum strategy.

Let us consider the strategy of a downside-risk averse investor now. For a downside-risk averse

investor with 
 > 1 we obtain

W (T ) =

8>><
>>:

W if ST > S

� �
�
yB(T )S

�(��r)=�2

T
�1

A


�1=(
�1)

if S < ST � S

0 if ST < S

where S =
�
B(T )

�

��2=(��r)
and S =

�
B(T )
�

��2=(��r)
. It is not diÆcult to show that for a

downside-risk averse investor with 1 < 
 � 2 terminal wealth is a concave function of the stock

price between S and S: When 
 > 2 this no longer holds and the optimal terminal wealth may

be both convex and concave between S and S: Consequently, when 1 < 
 � 2 the investor

follows a reversal strategy: selling high, buying low.

Figure 7 displays the number of stocks purchased as a function of the stock price. The initial

stock price at t = 0 equals $1. The number of stocks purchased as the stock price increases is

M-shaped. At low stock prices the investor buys stocks (or reversely sells stocks as prices drop

to avoid bankruptcy), at intermediate stock price levels the investor is willing to sell stocks as he

follows a reversal strategy (due to concavity), if the stock price goes up even further the investor

starts buying again as he becomes risk neutral until he attains satiation and is willing to sell

again. This illustrates the peculiarities and subtleties involved in using downside-risk aversion.

4 Downside-Risk Aversion and Higher Order Moments

In the previous section we considered the optimal investment policy of a downside-risk averse

investor when asset returns are lognormally distributed, or equivalently when the continuously
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compounded returns are normally distributed. A common argument for the use of downside-

risk measures is that asset returns are negatively skewed and have fat tails. An analysis of the

optimal investment strategy for downside-risk averse investors would therefore be incomplete

without addressing this issue. In this section we study the impact of skewness and kurtosis on

the demand for risky assets when investor are downside-risk averse.

When asset prices follow geometric Brownian motions, the continuously compounded returns

are normally distributed. In order to incorporate skewness and kurtosis, one would have to

specify alternative stochastic processes for the asset prices, such as jump processes (e.g. the

variance-gamma processes of Madan & Seneta (1990) or the hyperbolic model Eberlein, Keller

& Prause (1998)). The problem with these discontinuous processes is that markets become

incomplete. This complicates the martingale methodology employed in this paper.4 We rather

rely on a polynomial expansion of the normal density function, known as the Gram-Charlier

expansion.

The appealing feature of the Gram Charlier expansion is that we do not need to make distri-

butional assumptions which may be hard to justify. The Gram Charlier expansion is a simple

expansion of the (log)normal density function, allowing us to incorporate skewness and kurtosis.

This approach should be considered as an approximation technique, yielding additional insight,

as we are able to derive closed-form solutions. The Gram Charlier expansion has also been used

in the option pricing literature under similar assumptions (Longsta� 1995).

The Gram-Charlier expansion was �rst introduced in �nance by Jarrow & Rudd (1982). It pro-

vides a parsimonious representation of a distribution with skewness and kurtosis, and generates

an approximate density function for a standardized random variable. For the lognormal density

function, the Gram-Charlier expansion is given by

f(z;�; Æ) = (1 + �(z3 � 3z) + Æ(z4 � 6z2 + 3))�(z); (15)

where z = (log(x) � �)=�, � =�=6, Æ = �=24 and �; � denote skewness and kurtosis of log(x)

respectively, and �(�) denotes the standard normal density function. Equation (15) is often

viewed as an approximation to an arbitrary density function with nonzero higher moments,

however, for moderate values of � and � it is a density function in itself.

In our analysis we consider a Gram-Charlier expansion of the density function of the pricing

kernel. Therefore, � and � denote the skewness and kurtosis of the pricing kernel respectively.

Assuming the existence of one risky asset only, � and � also denote the skewness and kurtosis of

the return on this risky asset.5 There is a vast amount of empirical evidence that asset returns

are negatively skewed and fat-tailed. Fama (1965) was the �rst to show that stock returns (at

a daily basis) exhibit fat tails. Sample estimates of skewness for stock index returns tend to be

negative, while sample estimates of excess kurtosis for stock returns on indexes are positive.

Given the empirical evidence, it is important to study the e�ect of skewed and fat-tailed asset

returns on the demand for risky assets. Obviously, this demand is a�ected by the preferences of

4The HJB approach can certainly not be used for these discontinuous processes.
5It is not diÆcult to show that if X;Y are random variables such that Y = aX + b, then skew(Y ) = skew(X)

and kurt(Y ) = kurt(X).
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the investor, given by his utility function. When preferences are represented by a power utility

function or for mean-variance optimizers and when interest rates and the market price of risk

are constant, it can be demonstrated that skewness and kurtosis do not in
uence the optimal

portfolio choice. This investor invests a constant fraction of wealth in risky assets, depending

on the mean and covariance of asset returns only.

When the investor is downside-risk averse this is no longer true. The demand for risky as-

sets under downside-risk aversion depends on the skewness and kurtosis of the asset returns.

Proposition 5 characterizes the optimal portfolio choice for a downside-risk averse investor with

0 � 
 � 1 when asset returns exhibit skewness and kurtosis.

Proposition 5 Assume that the investor is downside-risk averse with 0 � 
 � 1. Let � and Æ

denote scaled skewness and kurtosis respectively. Then

(i) The time t optimal wealth is given by:

W (t) = (W � �)e�r(T�t)G1(�; �) + �e
�r(T�t)

G1(�; �) (16)

where �= 1
y , � =

1
y +

A
y �


�1

d1(x) =
log
�
x
�t

�
+
�
r � 1

2
k�k2

�
(T � t)

k�k
p
(T � t)

�(x) = d1(x) + k�k
p
(T � t)

Gi(x; s) = N(di(x))Q1(s; �; Æ)� �(di(x))Q2(�(x); s; �; Æ)

Q1(s; �; Æ) = 1 + �s
3 + Æs

4

Q2(�; s; �; Æ) = �
�
(�+ s)2 � �s� 1

�
+ Æ

�
�((� + s)2 � �s� 3) + s(s2 � 1)

�
N(�) denotes the cumulative standard normal distribution function and �(�) denotes the

standard normal density function, and s = k�k
p
(T � t):

(ii) The fraction of wealth invested in the risky assets is

wt =
(�0)�1�

W (t)

 
e
�r(T�t)

�
W � �

�
k�k
p
(T � t)

	(�(�); s; �; Æ)) +
�e
�r(T�t)

k�k
p
(T � t)

	(�(�); s; �; Æ))

!
(17)

where �(�) denotes the standard normal density function and

	(�; s; �; Æ) = �(�� s)(Q1(s; �; Æ)�Q
0
2(�; s; �; Æ) + (�� s)Q2(�; s; �; Æ))

= �(�� s)(1 + �(�3 � 3�) + Æ(�4 � 3�2 � 3� + 3) + 3Æs(1� �))

Note that the solutions when asset returns are lognormally distributed are a special case of the

solutions presented in Proposition 5 when � = 0 and Æ = 0: Figure 8 shows the e�ect of skewness

and kurtosis on the optimal fraction invested in stocks for 
 = 0.

Figure 8(a) shows the e�ect of negative skewness. At low levels of wealth the investor invests

more in stocks, as he is risk seeking, when confronted with negative skewness. At intermediate
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levels of wealth the investor invests less in stocks, as he desires more insurance (staying above

the threshold). In good states the investor allocates more to stocks again as risk neutrality

dominates his behavior. Figure 8(b) shows the e�ect of excess kurtosis. At most levels of wealth

the investor invests more in stocks, when confronted with fat tails. This is caused by risk seeking

behavior below � and risk neutrality above �.

Proposition 6 presents closed-form solutions for a downside risk averse investor with 
 = 2 when

asset returns exhibit skewness and excess kurtosis.

Proposition 6 Assume that the investor is downside-risk averse with 
 = 2. Let � and Æ

denote scaled skewness and kurtosis respectively. Then

(i) The time t optimal wealth is given by:

W (t) = (W � �)e�r(T�t)G1(�; s) + �e
�r(T�t)

G1(�; s)�
y�t

2A
e
�(t)(G2(�; 2s)�G2(�; 2s))

(18)

where �= 1
y , � =

1
y +

A

y �


�1
; � = � + 1

2A

d1(x) =
log
�
x
�t

�
+
�
r � 1

2
k�k2

�
(T � t)

k�k
p
(T � t)

d2(x) = d1(x)� k�k
p
(T � t)

�(x) = d1(x) + k�k
p
(T � t)

�(t) = �2r(T � t) + k�k2(T � t)

Gi(x; s) = N(di(x))Q1(s; �; Æ)� �(di(x))Q2(�(x); s; �; Æ)

Q1(s; �; Æ) = 1 + �s
3 + Æs

4

Q2(�; s; �; Æ) = �
�
(�+ s)2 � �s� 1

�
+ Æ

�
�((� + s)2 � �s� 3) + s(s2 � 1)

�
N(�) denotes the cumulative standard normal distribution function and �(�) denotes the

standard normal density function, and s = k�k
p
(T � t):

(ii) The fraction of wealth invested in the risky assets is

wt =
(�0)�1

�

W (t)

 
e
�r(T�t)

�
W � �

�
k�k

p
(T � t)

	(�(�); s; �; Æ)) +
�e

�r(T�t)

k�k

p
(T � t)

	(�(�); s; �; Æ)) (19)

�

y�
t

2A
e
�(t)

 
	(�(�); 2s; �; Æ)�	(�(�); 2s; �; Æ)

k�k

p
(T � t)

� (G2(�; 2s)�G2(�; 2s))

!!

where �(�) denotes the standard normal density function and

	(�; s; �; Æ) = �(�� s)(Q1(s; �; Æ)�Q
0
2(�; s; �; Æ) + (�� s)Q2(�; s; �; Æ))

= �(�� s)(1 + �(�3 � 3�) + Æ(�4 � 3�2 � 3� + 3) + 3Æs(1� �))

Figure 9 displays the optimal fraction invested in stocks (assuming that only one risky asset

is available) when the returns on stocks are negatively skewed and have fat tails. Comparing
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Figure 8 with Figure 9 it is clear that at low levels of wealth skewness and kurtosis have less

impact on the optimal portfolio choice for an investor concerned with downside variance than

for an investor focusing on shortfall probability. This can be understood by realizing that an

investor with 
 < 1 is risk seeking below �. At higher levels of wealth the e�ects are comparable

as both strategies are driven by risk neutrality.

Figure 9 shows the e�ect of negative skewness. At intermediate and high levels of wealth the

impact of skewness and kurtosis is most pronounced. At high levels of wealth the investor invests

more in stocks when confronted with negative skewness, due to risk neutrality. At intermediate

levels of wealth the investor invests less in stocks when confronted with negative skewness, this

can be understood by realizing that downside-risk aversion with 
 = 2 is consistent with an

investor exhibiting (positive) skewness preference. In other words this investor dislikes negative

skewness and therefore, invests less in stocks. At low levels of wealth the impact of negative

skewness can be ignored. Both at intermediate and high levels of wealth the investor invests

more in stocks as he faces fat tails. At low levels of wealth the impact of kurtosis can be ignored.

5 Conclusions

In this paper we studied investment behavior in a mean versus downside-risk framework. We

derived closed-form solutions for the optimal portfolio choice when returns are lognormally

distributed and when returns exhibit skewness and kurtosis. The optimal fraction invested in

stocks is V-shaped. Both for low and high levels of wealth the investor desires a large exposure

to stocks. Investors caring mainly about falling below the target (0 � 
 � 1) behave di�erently

from investors caring more about the magnitude of losses below the target (
 > 1). The �rst

group of investors desires full insurance at intermediate levels of wealth as they are averse against

falling below the target. The second group of investors do not desire full insurance but care

more about large deviations below the target.

Under downside-risk aversion time-e�ects have a large e�ect on the demand for risky assets.

Both at large and small levels of wealth downside-risk aversion implies reverse time-e�ects:

the investor invests more in risky assets as his horizon is shorter. Only at a small range of

intermediate wealth levels the optimal strategy exhibits time diversi�cation: the investor invests

less in risky assets as his horizon is shorter. We also studied the number of shares purchased or

sold as a function of the asset price. The optimal number of shares is M-shaped. At low stock

prices the investor buys stocks, at intermediate stock price levels the investor is willing to sell

stocks as he follows a reversal strategy, if the stock price goes up even further the investor starts

buying again as he becomes risk neutral until he attains satiation and is willing to sell again.

How do skewness and kurtosis a�ect the optimal investment strategy? In the case of constant

relative risk aversion or for mean variance optimizers, skewed and fat-tailed return distributions

do not a�ect the optimal allocation to stocks. When employing downside-risk measures this

is no longer true. We �nd that the impact of skewness and kurtosis is quite large and should

not be ignored. Again we �nd striking results: expected loss and probability of loss minimizers

(0 � 
 � 1) increase the stock weight as the return distribution becomes more negatively skewed.
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This can be understood by realizing that investors caring mainly about falling below the target

(0 � 
 � 1) become risk seeking when confronted with gains. When the investor cares more

about the magnitude of wealth below the target (
 > 1) skewness and kurtosis mainly e�ect the

optimal strategy at large levels of wealth (due to risk neutrality).

In conclusion, despite the popularity of downside-risk as a measure for investment risk and

a guideline for optimal investment strategies, a mean versus downside-risk framework implies

many peculiarities:

1. Both at low and high levels of wealth the investor gambles by investing more in risky assets;

2. Downside-risk aversion implies reversed time e�ects: confronted with a shorter horizon the

investor invests more in risky assets;

3. Confronted with negatively skewed and fat-tailed returns the investor invests more in risky

assets.

These results can be understood by realizing that:

1. When confronted with gains the investor becomes risk neutral, and hence increases his

exposure to stocks;

2. When confronted with losses the investor is either risk seeking (0 � 
 < 1) or displays

increasing relative risk aversion (
 = 2), and hence desires to gamble by investing more in

stocks.

Downside-risk measures may be useful as a summary statistic for decision-makers, however as

a tool for managing and controlling risk it has severe drawbacks as we have demonstrated in

this paper. Investors and practitioners should be aware of the gambling e�ects prevalent in the

optimal policies under downside risk aversion. Although short selling constraints and position

limits will prevent investors in practice to accept extremely risky investments, the optimal asset

allocation will certainly be driven by the e�ects found in this paper.

A possible remedy to the consequences of the mean-downside risk framework studied in this

paper, might be to consider optimal portfolio choice with power utility over wealth and additional

side constraints restricting the downside risk of the portfolio. This avoids the drawbacks of risk

neutrality above the target. However, the analysis of Basak & Shapiro (1999) in an expected

utility framework with value-at-risk as a side constraint, demonstrates that the optimal policies

still exhibit gambling e�ects.
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A Mathematical Proofs

Proof of Proposition 2

Problem (8) is a convex optimization problem with a concave objective function. We rely on the

convex-duality approach (see, e.g. Karatzas & Shreve (1998)). The Legendre-Fenchel transform

for (8) is de�ned by

U
�(�T ) = max

W�0
fU(W )� y�TWg ; (20)

where �T � 0 denotes the pricing kernel. We �rst consider the solution to this pointwise

maximization problem for all �T , and show that (10) solves this problem. Then, we show that

the solution to the pointwise maximization problem (20) also solves (8).

Let us denote the part of the utility function below � by U1(W ) and the part above � by U2(W ).

If W � �; the optimally invested wealth W
� should satisfy the following Karush-Kuhn-Tucker

(KKT) conditions

U
0
1(W

�) = y�T � �; W
� � 0;

�W
� = 0; � � 0;

where � denotes the Lagrange multiplier associated with the nonnegativity constraint on wealth.

Solving for the KKT conditions we obtain

W
� = max

(
� �

�
A


y�T

�1=1�


; 0

)
:=W

�
1 ;

when �T � 1=y. If W � �, the function U(W ) � y�TW is linear. Consequently, the optimally

invested wealth satis�es

W
�
2 =

�
W if �T < a=y

� if �T > a=y:

When �T <
a
y the optimal solution is obviously given by W

�
2 = W . In case �T � 1=y, the

solution is given by W �
1 . Let us compare the objective values of W

�
1 and W

�
2 . If

U(W �
1 )� y�TW

�
1 � U(W �

2 )� y�TW
�
2 (21)

the optimal solution is given by W
�
1 : It is not diÆcult to verify that W �

1 is indeed the optimal

solution for 
 > 1 when �T � 1
y .

Let us denote the optimal solution of (20) by W �(T ). Now let W (T ) be any candidate optimal

solution, satisfying the static budget equation in (8). Then, we have

E[U(T;W �
T )]�E[U(T;WT )] =

E[U(T;W �
T )]�E[U(T;WT )]� y�0W0 + y�0W0 �

E[U(T;W �
T )]�E[U(T;WT )]� yE[�TW

�
T ] + yE[�TWT ] =

E[U�(�T )]�E[U�(�T )] � 0
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where the �rst inequality follows from the fact that the static budget equation holds with equality

for W �
T and with inequality for WT . The second inequality follows from the fact that W �

T is the

optimal solution to (20). Hence, we conclude that W �(T ) is the optimal solution of the static

problem (8) with utility (6) when 
 > 1. This concludes the proof. 2

Proof of Proposition 1

The proof of this proposition follows similar arguments as the proof of Proposition 2. Consider

the pointwise problem

U
�(�T ) = max

W�0
fU(W )� y�TWg ; (22)

where �T � 0 denotes the pricing kernel.

Let us denote the part of the utility function below � by U1(W ) and the part above � by U2(W ).

If W � �, the function U(W ) � y�TW is linear. Consequently, the optimally invested wealth

satis�es

W
�
2 =

(
W if �T <

1
y

� if �T >
1
y

If W � �; the utility function is convex. In a maximization problem the corresponding optimal

solution with a convex objective is always a corner solution, i.e. either W �
1 = � or W �

1 = 0. To

determine the optimum when W � � we compare the objective values of W �
1 = � and W

�
1 = 0.

It is not diÆcult to verify that

W
�
1 =

(
� if 1

y � �T � 1
y +

A
y �


�1

0 if �T >
1
y +

A
y �


�1
:

A similar argument as in the proof of Proposition 2 shows that (9) is the optimal solution to (8)

for utility function (6) with 0 � 
 < 1. A separate analysis shows that (9) is also the optimal

solution to (8) when 
 = 1. This concludes the proof. 2

Proof of Proposition 3

(i) Applying Ito's Lemma it is straightforward to show that �tWt is a martingale. Therefore

Wt =
1

�t

Et[�TWT ] =
1

�t

Et

h
�T (W 1f�T��g + � 1f���T���g)

i
; (23)

where we substituted (9). Since r and � are constant, and the asset prices follow geometric

Brownian motions, the pricing kernel log(�T ) is normally distributed with mean

log(�t)� (r +
1

2
k�k2)(T � t)

and variance k�k2(T � t). After some straightforward calculus we obtain (11a).
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(ii) We have two alternative characterizations for wealth at time t. Reformulating (11a) as

a stochastic process and equating the di�usion part of this stochastic process with the

di�usion part of the wealth process (2) we obtain an explicit expression for the fraction of

wealth invested in the risky assets.

For ease of notation we de�ne wealth as Wt =: F (t; �t). Using Ito's Lemma and (3) we

obtain:

dWt = G(t; �t)dt�
@F (t; �t)

@�t

�t�
0
dBt; (24)

for some G(t; �t) (note that we are only interested in the di�usion part). Comparing the

di�usion part of (2) with the di�usion part of (24) we obtain the following expression for

the optimal fraction invested in the risky assets:

wt = �(�0)�1�0

Wt

�
@F (t; �t)

@�t

�t

�
: (25)

Substituting (11a) in (25) yields the expression in (12). 2

Proof of Proposition 4

The proof is completely analogous to the proof of Proposition 3, using (10). 2

Proof of Proposition 5

(i) The proof is analogous to the proof of part (i) in Proposition 3, except that the pricing kernel

is not lognormally distributed. As we used a Gram-Charlier expansion of the lognormal

density function, the pricing kernel log(�T ) has the following density function:

f(zT ;�; k) = (1 + �(z3T � 3zT ) + Æ(z4T � 6z2T + 3))�(zT );

where zT = (log(�T ) � �)=�, � = �=6, Æ = �=24 and �; � denote skewness and kurtosis

of log(�T ) respectively, and � = log(�t) � (r + 1
2
k�k2)(T � t), � = k�k

p
T � t denote the

mean and standard deviation of log(�T ). After some tedious but straightforward calculus

we obtain (16).

(ii) The proof is analogous to the proof of part (ii) in Proposition 3. Denote wealth by Wt =

F (t; �t). The optimal fraction invested in the risky assets is given by:

wt = �(�0)�1�0

Wt

�
@F (t; �t)

@�t

�t

�
: (26)

Substituting (16) in (26) yields the expression in (17). 2

Proof of Proposition 6

The proof is completely analogous to the proof of Proposition 5, using (10). 2
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Figure 3: Optimal Intermediate Wealth and Optimal Portfolio
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Figure (a) shows the optimal intermediate wealth of a downside-risk averse agent with 
 = 2. Figure (b)

shows the optimal fraction invested in stocks for a downside risk averse investor with 
 = 2:0. The parameters

used are A = 16:0, W0 = 1:0, � = 1:0, r = 0:05, jjkjj = 0:4, T = 1, t = 0:5, �0 = 1. Then, � = 0:52, � = 17:15.

Figure 4: Optimal Fraction Invested (Feedback Form)
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This �gure shows the optimal fraction invested as a function of wealth for a downside-risk averse agent with

0 � 
 � 1 (dotted plot) and for a downside-risk averse investor with 
 = 2 (solid plot). The parameters used

are W0 = 1:0, � = 1:0, r = 0:05, jjkjj = 0:4, T = 1, t = 0:5, �0 = 1.
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Figure 5: Indirect Relative Risk Aversion Function
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This �gure shows relative risk aversion function of the indirect utility function for a downside-risk averse

agent with 
 = 2. The parameters used are A = 16:0, W0 = 1:0, � = 1:0, r = 0:05, jjkjj = 0:4, T = 1, t = 0:5,

�0 = 1.

Figure 6: Optimal Fraction Invested: Time E�ects
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Figure (a) shows the time e�ects for a downside-risk averse agent with 0 � 
 � 1, t = 0:1 (dotted plot),

t = 0:5 (solid plot), and t = 0:9 (dashed plot). Figure (b) shows the time e�ects for a downside-risk averse

investor with 
 = 2, t = 0:1 (dotted plot), t = 0:5 (solid plot), and t = 0:9 (dashed plot). The parameters

used are W0 = 1:0, � = 1:0, r = 0:05, jjkjj = 0:4, T = 1, �0 = 1.
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Figure 7: Number of Stocks Purchased
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This �gure shows the number of stocks purchased as a function of the stock price for a downside-risk averse

agent with 
 = 2. The parameters used are W0 = 1:0, � = 1:0, r = 0:05, jjkjj = 0:4, T = 1, t = 0:5, �0 = 1.

Then, �1 =, �2 =.

Figure 8: Optimal Fraction Invested: Impact of Skewness and Kurtosis
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(b)

Figure (a) shows the e�ects of negative skewness for a downside-risk averse agent with 0 � 
 � 1, � = 0:0

(solid plot), � = �0:4 (dashed plot), and � = �0:8 (dotted plot). Figure (b) shows the e�ects of excess

kurtosis for a downside-risk averse investor with 0 � 
 � 1, � = 0:0 (solid plot), � = 1:2 (dashed plot), and

� = 2:2 (dotted plot). The parameters used are W0 = 1:0, � = 1:0, r = 0:05, jjkjj = 0:4, T = 1, �0 = 1.
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Figure 9: Optimal Fraction Invested: Impact of Skewness and Kurtosis
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Figure (a) shows the e�ects of negative skewness for a downside-risk averse agent with 
 = 2, � = 0:0 (solid

plot), � = �0:4 (dashed plot), and � = �0:8 (dotted plot). Figure (b) shows the e�ects of excess kurtosis for

a downside-risk averse investor with 
 = 2, � = 0:0 (solid plot), � = 1:2 (dashed plot), and � = 2:2 (dotted

plot). The parameters used are W0 = 1:0, � = 1:0, r = 0:05, jjkjj = 0:4, T = 1, �0 = 1.


