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1 Introduction

Two key features of US unemployment, which are well documented in the literature, are
that shocks to the series seem rather persistent and that it seems to rise faster in reces-
sions than that it falls during expansions. The first feature is commonly coined as the long
memory feature, see Diebold and Rudebusch (1989), Tschernig and Zimmermann (1992),
Koustas and Veloce (1996) and Crato and Rothman (1998). The time series model that
is used in these studies to describe this feature usually belongs to the class of fractionally
integrated [FI] time series models, see Granger and Joyeux (1980) and Hosking (1981).
The second feature is commonly called nonlinearity, see Montgomery et al. (1998), Koop
and Potter (1999), and Skalin and Terasvirta (2000), to mention just a few studies. The
time series models which are considered most often for describing and forecasting the non-
linear properties of unemployment are either of the Markov-switching type, see Hamilton
(1989), or of the threshold autoregressive [TAR], see Tong (1990), or smooth transition
autoregressive [STAR] type, see Granger and Terdsvirta (1993), Terdsvirta (1994, 1998)
and Franses, Van Dijk and Terdsvirta (2000). These three model classes assume the pres-
ence of two or more regimes, within which the data require different (linear) models for
description and forecasting.

Interestingly enough, at least as far as we know, there have been no attempts to
combine the features of long memory and nonlinearity into a single model, which then
would be applied to US unemployment data. Such an attempt would be rather useful, as
there are by now several studies, which document that one may fit a long-memory model to
nonlinear data, and the other way around. For example, Granger and Terésvirta (1999) and
Davidson (2000) demonstrate that nonlinear models may generate data to which one may
want to fit linear long-memory models. At the same time, data from long-memory models
may seem nonlinear enough to try and fit certain nonlinear models to these observations,
see Andersson, Eklund and Lyhagen (1999). As occasional structural breaks amount to a
rather stylized nonlinear model (see Koop and Potter (2000) and Lundbergh, Terdsvirta
and van Dijk (2000) for discussions on structural change and nonlinearity), one may expect
that neglecting structural breaks also spuriously suggests the presence of the long memory
property, see Bos, Franses and Ooms (1999), Diebold and Inoue (1999) and Granger and
Hyung (2000). In fact, linear models which allow for occasional structural breaks have
been considered for unemployment rates, see Bianchi and Zoega (1998), Papell, Murray
and Ghiblawi (2000) and Coakley, Fuertes and Zoega (2000). To summarize, it seems
worthwhile to try to capture both the features of long-memory and nonlinearity into a
single time series model in order to be able to assess their relative importance. Within the
context of such a model, one may then decide to see if nested alternative models perform
better on measures of fit or forecasting. To that aim, in this paper we put forward such

a model, where we decide to combine the concepts of fractional integration and smooth



transition nonlinearity, as this combination seems rather straightforward and also as the
resultant model appears fairly easy to analyze.

The outline of our paper is as follows. In Section 2, we discuss the representation of the
model, which we will label the Fractionally Integrated Smooth Transition Autoregression
[FISTAR]. In Section 3, we focus on a useful empirical strategy to fit this model to actual
data. This section contains a discussion on tests for nonlinearity in FI models, estimation
of FISTAR models and tests for model adequacy. In Section 4, we try to fit this model to
monthly US unemployment data, as for these data it has been well-documented that long-
memory and nonlinear features seems to exist, as argued above. We compare the FISTAR
model with a FI model and with various STAR models, and we find that the FISTAR
model has various desirable properties. We also display impulse response fucntions in
order to grasp the empirical implications of the model. In Section 5, we conclude the

paper with a range of possible topics for further research.

2 The Fractionally Integrated Smooth Transition Autore-
gressive Model

A model that allows for long memory in an observed time series y; basically builds on
(1- L)dyt = Tt, (1)

where x; is a covariance-stationary process, e.g., an autoregressive moving average [ARMA]
process, and the parameter d is possibly non-integer, in which case the time series y; is
called fractionally integrated [FI], see Granger and Joyeux (1980) and Hosking (1981).
For non-integer d, the fractional differencing operator (1 — L) is defined by the binomial

expansion,

(1—ry=1-ar+ —2!1)L2 d(d- 1)?()!61 _ 918

The series y; is covariance stationary if d < 0.5 and invertible if d > —0.5. The auto-

correlation function of g, does not decline at an exponential rate, as is characteristic for
covariance-stationary ARMA processes, but rather at a (much) slower hyperbolic rate.
For 0 < d < 0.5, y; possesses long memory in the sense that the autocorrelations are not
absolutely summable. Finally, for 0.5 < d < 1, yr is non-stationary, but the limiting value
of the impulse response function is equal to 0, such that shocks do not have permanent
effects.

Fractionally integrated models have been successfully implemented for exchange rates
(Diebold, Husted and Rush, 1991; Cheung, 1993; and Baillie and Bollerslev, 1994), infla-
tion rates (Baillie, Chung and Tieslau, 1996; and Hassler and Wolters, 1995), and unem-
ployment (Diebold and Rudebusch, 1989; Tschernig and Zimmermann, 1992; Kostas and
Veloce, 1996; and Crato and Rothman, 1998), see Baillie (1996) for a survey.



To capture nonlinear features in a time series gy, one can choose from a wide variety
of nonlinear models, see Franses and Van Dijk (2000) for a recent survey. A model which
enjoys a fair amount of popularity, mainly due to its empirical tractability, is the smooth

transition autoregressive [STAR] model, that is,

yr = (P10 + P11yi—1 + -+ P1pyi—p) (1 — G(s457,¢))
+ (P20 + b2,1yt—1 + -+ b2pyr—p)G(St57,¢) + e, (2)

where ¢, is a white noise process and the transition function G(s¢;7y,¢) usually is assumed

to be the logistic function
G(si;v,¢) = (1+exp{—y(st — ¢)fos,}) ™" withy >0, (3)

where s; is the transition variable, o, is the standard deviation of s, v is a slope parameter
and c is a location parameter. The parameter restriction v > 0 is an identifying restriction.
The value of the logistic function (3), which is bounded between 0 and 1, depends on the
transition variable s; as follows. G(sy;7y,¢) = 0 as 84 = —o00, G(s4;y,¢) = 0.5 for sy = ¢,
and G(sg;y,¢) = 1 as sy — +0o. When v — o0, G(s4;7, ¢) becomes a step function, such
that the model effectively becomes a threshold autoregressive [TAR] model. For v = 0,
G(s;7,¢) = 1/2 for all s;, in which case the model reduces to a linear AR model with
parameters ¢; = (¢1;+ $52)/2, 7 =0,1,... ,p. Finally, the exponent in (3) is normalized
by dividing it by o, to make the parameter v approximately scale-free, which is useful for
finding initial estimates for the nonlinear optimization used to estimate the parameters in
(2).

The transition variable s; can be assumed to be a lagged endogenous variable (s; = y;_;
for certain integer [ > 0), an exogenous variable (s; = z), or a (possibly nonlinear)
function of lagged endogenous variables, that is, s; = h(y¢—1,... ,yi—;; ) for some function
h(-), which depends on the (¢ x 1) parameter vector o, and e > 1. In particular, if
h(Yi—1y-- yyp—g;) = Zé’:1 a;y;—j, the model becomes an artificial neural network [ANN]
with a single hidden unit, see also Medeiros and Veiga (2000). The transition variable
can also be a linear time trend (s; = t), which gives rise to an AR model with smoothly
changing parameters.

Tllustrative applications of the STAR model and the closely related TAR model to
unemployment rates can be found in Montgomery et al. (1998), Koop and Potter (1999),
Caner and Hansen (2000) and Skalin and Terdsvirta (2000), among others.

In this paper we combine the two representations in (1) and (2) into the following new

time series model,

(]. - L)dyt = T, (4)
zy = Phwi(1 — G(s37,¢)) + powiG(si37, ¢) + e, (5)



where wy = (1,w)), @y = (ze—1,... ,%t—p), ¢i = (i, Pi1y--- > Pip), ¢ = 1,2, and
G(s4;7,¢) is the logistic function given in (3). We assume that e; is a martingale dif-
ference sequence with respect to the history of the time series up to time ¢ — 1, which is
denoted as Q¢—1 = {yr-1,Yt-2,--- ,Y1—(p—1), Y1-p}, that is, E[e¢[Q; 1] = 0. For simplicity,
we also assume that the conditional variance of &; is constant, E[e7|Q; 1] = o2, although
this assumption can be relaxed if necessary.

This fractionally integrated smooth transition autoregressive [FISTAR| model restricts
the long-run properties of the time series y; to be constant, as these are determined by the
fractional differencing parameter d. However, it does allow for different short-run dynamics
in the two regimes corresponding with G(s;;7y,¢) =0 and G(sy;y,c¢) = 1, through ¢ and
¢2. This makes the model potentially useful for capturing both nonlinear and long-memory
features of the time series y;.

The FISTAR model (4)-(5) can be expressed as an infinite order STAR model as

o o
ye=| Lo+ gy | (1= Gls557,0) + | b0+ > mouj | Gls;v,0) +en, (6)

7=1 7=1
where
mi(L) = ¢5(L)(1 — L), i=1,2, (7)
with m;(L) =1 —m1 L — 7rz-,2L2 — -+, and ¢;(L) defined similarly.

3 Specification of FISTAR models

Granger (1993) strongly recommends a ‘specific-to-general’ strategy for building nonlinear
time series models. This implies starting with a simple or restricted model and proceeding
to more complicated ones only if diagnostic tests indicate that the maintained model is
inadequate. Tt is straightforward to extend the procedure proposed by Terasvirta (1994)
for STAR models to obtain such a ‘specific-to-general’ modeling cycle for FISTAR models.

The resulting specification procedure can be summarized as follows.

1. Specify an appropriate linear ARFI model with autoregressive order p [ARFI(p)] for

the time series under investigation;

2. Test the null hypothesis of linearity against the alternative of a FISTAR model. If

linearity is rejected, select the appropriate transition variable s;;
3. Estimate the parameters in the FISTAR model;

4. Evaluate the model using diagnostic tests.

Steps 2 to 4 in this specification procedure are discussed in turn below. This section con-
cludes with some remarks on forecasting with FISTAR models, impulse response analysis

and model selection.



3.1 Testing linearity

Consider again the FISTAR model in (4)-(5), but now with G(s¢; 7, ¢) given by the general

k-th order logistic function

& -1
G(s4;7,¢) = <l—|—exp{—l]€ (st—ci)}) with v > 0,¢1 <...<¢, (8)
Tsi =1
where k£ > 1. The additional parameter restrictions ¢; < ... < ¢ also are identifying

restrictions. For odd k, the value of the logistic function (8) is bounded between 0 and 1,
with G(s¢;y,¢) — 0 as sy — —oo, and G(sy;y,¢) — 1 as sy — +00. On the other hand, for
even k, G(sy;7y,c) is bounded between a and 1 with 0 < a < 1/2, and G(s4;7y,¢) — 1 for
s¢ — oo. For all k, there are k smooth transitions between the minimum and maximum
values of G(s4;y,¢) as sy increases from —oo to +o0o. Thus, the use of this transition
function is advantageous as it allows to capture different forms of regime-switching behavior
by varying the value of k, see Terdsvirta (1998). Here it is useful to derive tests of linearity
against the alternative of a FISTAR model.

The null hypothesis of linearity can be expressed as equality of the autoregressive
parameters in the two regimes of the FISTAR model in (4)-(5). Thus, Ho : ¢1j = ¢2;
forall j =0,1,... ,p. As in the STAR model, the testing problem is complicated by the
presence of unidentified nuisance parameters under the null hypothesis, as the parameters
in the transition function (y and ¢) drop out of the model when the null hypothesis holds
true. Note that besides equality of the AR parameters in the two regimes, the alternative
null hypothesis Hf, : v = 0 also gives rise to a linear ARFI model.

To circumvent the identification problem we follow the approach of Luukkonen, Saikko-
nen and Terdsvirta (1988) and approximate G(s¢;7y,c) by a first-order Taylor expansion

around the null hypothesis Hj, : v = 0,

G (st;7,¢)

T1(st57,¢) = G(540,¢) + + Ri(s4;7,¢)
a’y 7:0
1 0 i
=+ — [ (st = ci) + Ri(s5v, ), (9)
2 dog Py

where Ry (s;7y,c) is a remainder term. Substituting 7% (-) for G(+) in (5) and rearranging

terms yields the auxiliary regression
z = Bywy + Blwesy + -+ + Brwesy + ey, (10)

where e; = g4+ (P2 — 1) wiR1 (8¢5, ¢). Notice that under the null hypothesis, Ry (s¢;7,¢) =
0 and e; = . Consequently, the remainder term of the Taylor approximation does
not affect the properties of the residuals under the null hypothesis and hence the dis-

tribution theory for the test statistics. The relationships between the parameters §; =



(Bio>Bijgs---»Bip)s o = 0,1,... ,k, in the auxiliary regression (10) and the parameters
in the original FISTAR model are such that the null hypothesis can be reformulated as
HY :Bi=0,i=1,... k.

The null hypothesis of linearity in (10) can conveniently be tested by means of a La-
grange Multiplier [LM] test. Assuming the errors to be normally distributed with variance

o2, the conditional log-likelihood for observation ¢ is given by

1 1. o, e

2 can be assumed to

Because the information matrix is block diagonal, the error variance o
be fixed. The remaining partial derivatives evaluated under the null hypothesis are given

by

— = —¢ =0,1,...,k 12
851 Hg 0_2 ELWi Sy, ¢ ) Ly ) vy ( )
t—1
8lt 1 86,5 1 “ ét—j
-t = 2 = - 13
8d " 0'2 “ 8d " 02 ct Z ] ’ ( )
Hg Hg j=1

where &; are the residuals obtained from the ARFI model under the null hypothesis. The
LM-type test statistic to test H{j is given by LM = f’ﬁcov(iﬁ)_liﬁ, where lg = (lg1,... ,lgn)
and lg; = (0l;/0P1,...,0l;/0Bk) and hats indicate that all elements of lg should be
evaluated under the null hypothesis. The expressions for the partial derivatives of the
log-likelihood given above suggest that the statistic can be computed in a few steps as

follows:

1. Estimate an ARFI model, obtain the residuals é;, and compute the sum of squared
residuals under the null hypothesis, SSRo = >, 7.

. ~ t—1 €4 e ;.
2. Regress the residuals é; on wy, — ) =1 and the auxiliary regressors wys!, i =

J=1
1,... .k, and compute the sum of squared residuals under the alternative, SSR;.
3. Compute the x?-version of the test statistic as LM, = %, or the F-version

as

_ (SSRg — SSR1)/kp
~ SSRy/(n—kp—(p+1))’

LM, (14)

where n denotes the sample size.

Under the null hypothesis, the x2- and F-version of LM, are x? distributed with kp degrees
of freedom, and F' distributed with kp and n—kp— (p+1) degrees of freedom, respectively.
As usual, the F version of the test statistic is preferable to the y? variant in small samples

because its size and power properties are better.



Although the LM-type test in (14) can be computed for any value of k, it seems
reasonable to consider only a number of small values, say, £k = 1, 2 and 3. Finally, note

that the only difference between the statistic derived above and the test of linearity against

the alternative of a STAR model is the inclusion of — Z;;ll étj’j , which originates from
the gradient of the likelihood with respect to the fractional differencing parameter d, in

the auxiliary regression in step 2.

3.2 Estimation

To estimate the parameters in a FISTAR model we modify Beran’s (1995) approximate
maximum likelihood [AML] estimator for invertible and possible non-stationary ARFIMA
models to allow for different autoregressive dynamics in the two regimes. The resulting

estimator amounts to minimizing the sum of squared residuals

n

Qu(0) =D i (0), (15)

t=1

where 6 = (4], ¢, d, v, c) and the residuals e;(0) are computed as

oo o)
er(0) =y — (bro+ Y mgye )1 = Gls57,0) — (b0 + Y majun )G(s17,0) + e,
j=1 j=1
where the 7 ; and mp ; are the autoregressive coefficients in the infinite order STAR rep-
resentation of the FISTAR model, which can be obtained from (7).

For the linear ARFT model, the AML estimator is asymptotically efficient if the errors &;
are normally distributed. Under less restrictive regularity conditions, it is root-7" consistent
and asymptotically normal. We cannot claim efficiency of the AML estimator for the
FISTAR model, but consistency and asymptotic normality follow from the fact that the
FISTAR model satisfies conditions M1-M7 in Wooldridge (1994, pp. 2653-2655).

Issues that deserve particular attention, and which we discuss next, are concentrating
the sum of squares function, the choice of the starting values for the optimization algorithm,
and the estimates of the smoothness parameter ~.

Note that when the fractional differencing parameter d and the parameters in the
transition function G(s;;7y,c) are known and fixed, the FISTAR model is linear in the
remaining autoregressive parameters. Thus, conditional upon d, v and ¢, estimates of ¢;

and ¢y can be obtained by ordinary least squares [OLS] as
n -1 n
qg(da'}’a C), = (Z wt(da'}’a C)wt(da'y’c)I) (Z wt(da7ac)$t> ) (16)
t=1 t=1

where w;(d, v, ¢) = (w,(1 —G(s4;7,¢)), wsG(s4;,¢))', and the notation ¢(d,, ¢) is used to

indicate that the estimate of ¢ is conditional upon d, v and ¢. This implies that the sum



of squares function can be concentrated with respect to ¢; and ¢, as

n

Qn(dv g C) = Z($t - Qg(da s C),wt(dv s C))2'

t=1
This reduces the dimensionality of the estimation problem, as @Q,(d,v,c) needs to be
minimized with respect to the three parameters d, v, and c only. The above immediately
suggests that a grid search over d, 7, and c is a convenient method to obtain starting
values for the nonlinear optimization.

The remarks in Terdsvirta (1994, 1998) concerning the parameter estimates of STAR
models apply to the FISTAR model as well. In particular, it might appear to be difficult
to accurately estimate the smoothness of the transition between the different regimes,
characterized by -y, when this parameter is large. This is due to the fact that for large
values of 7, the logistic function G(s¢;7y,c) in (3) is close to a step function. To obtain an
accurate estimate of v one then needs many observations in the immediate neighborhood
of the threshold ¢, because even large changes in - only have a small effect on the shape
of the transition function. The estimate of v may therefore be rather imprecise and often
appear to be insignificant when judged by its ¢-statistic. This should, however, not be
interpreted as evidence for only weak nonlinearity or parameter instability. The reason
is that the t-statistic does not have its customary asymptotic ¢-distribution under the

hypothesis v = 0, due to the identification problems mentioned above.

3.3 Diagnostic tests

The tests of no residual autocorrelation, no remaining nonlinearity, and parameter con-
stancy developed by Eitrheim and Terasvirta (1996) for the standard STAR model can be
modified in a straightforward manner to obtain similar diagnostic tests for the FISTAR
model.

In particular, the null hypothesis of no autocorrelation in the residuals ¢4 in (4)-(5)
can be tested against the alternative of serial dependence up to order g, that is, under the

alternative ¢; satisfies
€ =11+ + QgEt—q + e, (17)

with e; ~ i.i.d.(0,0?). The null hypothesis is given by Hp : a; = ... = a, = 0 which,
following Eitrheim and Terdsvirta (1996), is tested by an LM test.

The null hypothesis of no remaining nonlinearity can be tested against the additive
3-regime FISTAR model, which is obtained by combining (4) with

zy = Plwg + (P2 — ¢1) wiG1(se) + (3 — d2) wGa(se) + e, (18)

where G;(s) = Gi(st;7i,¢i), i = 1,2 are logistic functions as in (8). The null hypothesis of

no remaining nonlinearity is given by either Hy : ¢o = ¢3 or Hfj : 72 = 0. Obviously then,



this testing problem suffers from the presence of unidentified nuisance parameters under
the null hypothesis, as in the case of testing linearity against the FISTAR alternative
discussed in Section 3.1. The proposed solution is the same as well, that is, avoid the
identification problem by replacing the second transition function Ga(s;) by a suitable
Taylor-approximation around the null hypothesis, such that the null hypothesis can be
tested by a standard LM variable addition test.

In case the additional nonlinearity is thought to be determined by a variable different
from s;, a more natural model to consider under the alternative hypothesis is the 4-regime
FISTAR model, given by (4) with

2y = (Prwi(1 — Gi(s1t)) + PhwiGi(s14)) (1 — Ga(sar))
+ (1 = Gi(s1)) p3we + Gi(s10) pywe) Ga(sae) + e, (19)

where s1; = sy, see also Franses and van Dijk (1999). A test of no remaining nonlinearity
again is obtained by approximating Gs(s;) by a suitable Taylor-expansion around the null
hypothesis Hj, : 72 = 0.

A test of parameter constancy in the FISTAR model against the alternative of smoothly
changing parameters can also be based on (19) by taking so; = t. This can perhaps be

easiest seen from the alternative representation

zr = Phwi(l — Gi(s171,¢1)) + dhywiGi(s1;71,¢1) + e, (20)

where
b1t = (1 — Ga(t)) b1 + Ga(t) s, (21)
b2t = (1 — Ga(t))d3 + Ga(t)pa- (22)

For all three diagnostic tests, the only difference with the corresponding tests in the
STAR model is that one needs to include the gradient of e; with respect to the fractional
differencing parameter d, evaluated under the null hypothesis, in the auxiliary regressions

which are used to compute the test statistics. Under the null hypothesis e; = €, such that

O D2 ey
odly, od = j

Note that this is exactly identical to the difference between the linearity tests against
STAR and FISTAR alternatives, as discussed in Section 3.1.

3.4 Further issues

Forecasts from the FISTAR model can be obtained from the infinite order STAR. rep-

resentation given in (6). Of course, in practice, only a finite past of the time series y;



is available, so that the STAR representation has to be truncated at some point, which
introduces an additional prediction error. Closed-form expressions for multiple-step ahead
forecasts from STAR models are not available, such that one has to resort to Monte Carlo
or bootstrap methods to obtain these, see Granger and Terasvirta (1993, Section 8.1).

Criteria such as the Akaike Information Criteria [AIC] and the Schwarz Information
Criteria [BIC] can be used to choose between competing models, such as ARFI or STAR
and FISTAR models.

A useful way of examining the dynamic behaviour of an estimated FISTAR model is to
consider the effects of the shocks €; on the future patterns of the time series y; by means of
impulse response analysis. It is well-known that in nonlinear models the impact of a shock
depends on the history of the process, on the sign and the size of the shock, and on the
shocks that occur between the time the impulse is given, say, ¢, and the time the response
is measured, say, t + h for some h > 0. The generalized impulse response function [GI],
introduced by Koop, Pesaran and Potter (1996), offers a convenient way to deal with these

issues. The GI for a specific shock ¢; = ¢ and history w;—1 = {y;—1,y1—2,... } is defined as
GIy(h,0,wi—1) = Elysynler = 6, wi—1] — Elyspnlwi—1], (23)

forh=0,1,2,.... Inthe GI, the expectation of y; given that a shock J occurs at time ¢ is
conditioned only on the history and this shock. Put differently, the problem of dealing with
shocks occurring in intermediate time periods is handled by averaging them out. Given
this choice, the natural benchmark profile for the impulse response is the expectation of
yrrn conditional only on the history of the process wy—;. Thus, in the benchmark profile
the current shock is averaged out as well.

The GI is a function of § and w;_1 that are realizations of the random variables ; and

Q1. Hence, GI,(h, 6, w;_1) itself is a realization of a random variable, defined as
GIy(h, e, 1) = E[ysinlet, Q1] — Elysgn|Q—1]- (24)

In addition, one might consider the GI to be random conditional on particular subsets &
and M of shocks and histories respectively, that is, GI,(h,S,#). For example, one might
condition on all histories in a particular regime and consider only negative shocks.

If the time series y; is not persistent, the impulse responses eventually converge to zero
for all possible shocks and all possible histories. Hence, the distribution of GI,(h, e, 24—1)
collapses to a spike at 0 as h — o0o. By contrast, for persistent time series the dispersion
of the distribution of GI(h,es, ;1) is positive for all h. Koop et al. (1996) suggest that
the dispersion of the distribution of GI,(h,e;,Q;—1) at finite horizons can be interpreted
as a measure of the persistence of shocks.

The absorption rate developed by van Dijk, Franses and Boswijk (2000) is an alter-

native measure of the speed at which the effect of a shock dies out. Assume that the

10



eventual response to a shock GI,(00,d,w;—1) is finite and define the indicator function
Iy(m, h,0,wi—1) as

Iy(m, h,0,wi—1) = I[|GIy(h, 6, wi—1) — Gl (00,0, w;—1)| < 7|6 — GI (00, d,wi—1)|]

for certain 7 such that 0 < 7 < 1, where I[A] = 1 if the event A occurs and 0 otherwise.
In words, the indicator function I(m, h,d,w;—1) is equal to 1 if the absolute difference
between the GI at horizon h and the eventual response to the shock ¢ is less than or equal
to a fraction m of the absolute difference between the shock §, which is equal to the initial
impact of the shock or the GI at horizon 0, and the eventual response. Put differently,
Iy(m, h,0,wi—1) =1 if at least a fraction 1 — 7 of the initial effect of § has been absorbed
after h periods.

The ‘m-life’ or ‘m-absorption time’ of the shock d at time ¢, denoted as Ny (m, 6, wi—1),
can now be defined as the minimum horizon beyond which the difference between the
impulse responses at all larger horizons and the eventual response is less than or equal to
a fraction 7 of the difference between the initial impact and the eventual response. That
is, Ny(m,0,wi—1) = m if Iy (m, h,6,wi—1) = 1 for all h > m and I(m,m — 1,0,w;—1) = 0.

Just like the shock- and history-specific GI in (23) can be regarded as a realization
of the random variable GI,(h, e, £%—1) in (24), the m-absorption time N, (7,0, w;—1) can
be regarded as a realization of the random variable N, (m, e, _1). Conditional versions
Ny(m,S,H) for particular subsets S and # of shocks and histories, respectively, can be
defined in a straightforward manner, see van Dijk, Franses and Boswijk (2000) for details.

The GI can also be used to assess the significance of nonlinear or asymmetric effects
over time. Potter (1994) defines a measure of asymmetric response to a particular shock
g¢ = § given a particular history w;_1 as the sum of the GI for this particular shock and

the GI for the shock of the same magnitude but with opposite sign, that is,
ASY,(h,d,wi—1) = Gl (h, 6, wi—1) + GI,(h, =0, wi—1). (25)
Alternatively, one could consider the distribution of the random asymmetry measure
ASYy(h, e, Q1) = GIy(h, e, Q1) + GLy(h, —&¢, Q—1). (26)

ASY,(h,et,€2—1) should be equal to zero almost surely if positive and negative shocks
have exactly the same effect (with opposite sign). More generally, we say that shocks
have a symmetric effect (on average) when ASY,(h,P,€_1), where P = {e;]e; > 0} is
the set of all positive shocks, has a symmetric distribution with mean equal to zero. The
dispersion of this distribution might be interpreted as a measure of the asymmetry in the
effects of positive and negative shocks.

Possible asymmetry in the absorption of positive and negative shocks can be examined

in a similar way. For a specific shock ¢; = § and history w; 1, a measure of asymmetric

11



absorption can be defined as the difference in 7w-absorption times of § and —¢, that is,
ASYNy (7, 6,wi—1) = Ny(m,6,wi—1) — Ny(m, =0, w;_1). (27)

If 6 has symmetric absorption speed at w;—1, ASYNy(m,d,wi—1) = 0 for all values of =.
As before, the asymmetry measure in (27) can be regarded as a realization of the random

variable
ASYNy (7'(', Et, Qt—l) = Ny(’/T, Ety Qt—l) - Ny(’ﬂ', —Et, Qt—l)- (28)

If positive and negative shocks have symmetric effects, in the sense that they are absorbed
at the same speed on average, ASYNy (m, P,;_1) should have a distribution with mean
equal to zero.

Note that symmetry in GI,(h,d,w;—1), that is, ASY,(h,d,wi—1) = 0 for all A > 0 in
(25), implies symmetry in the absorption speed, that is, ASYN, (7, d,w;—1) = 0 for all
m > 0. Interestingly, the reverse does not hold, that is, a shock can have symmetric
absorption speed but an asymmetric impulse response. Also, ASYN, (7,0, w;—1) # 0 for
certain m > 0 implies that ASY, (h,d,w;—1) # 0 for certain h > 0, whereas the reverse does
not hold.

4 Monthly US unemployment rate

In this section, we apply the FISTAR model to characterize the persistence and nonlin-

earity properties in the monthly US unemployment rate.

4.1 Data

The series we consider represents the seasonally adjusted unemployment rate, covering the
period July 1968 until December 1999 (378 observations). The series is constructed by
taking the ratio of the unemployment level and civilian labor force, which are obtained

from the Bureau of Labor Statistics.
- insert Figure 1 about here -

From Figure 1 which plots the series, it is clearly seen that the two dominant features
of the unemployment rate are asymmetric behaviour over the business cycle and high
persistence. The behaviour of the unemployment rate over the business cycle can be
characterized as steep increases during recessions, followed by slow(er) declines during
expansions. Several theories, such as asymmetric labor adjustment costs of enterprises,
insider-outsider relationships, and asymmetries in job destruction and reconstruction have
been developed to explain this asymmetry in the dynamic behaviour of the unemployment

rate. Both TAR and STAR models have been applied to unemployment rates to describe
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this type of nonlinearity, see Hansen (1997), Montgomery et al. (1998), Rothman (1998),
Koop and Potter (1999), Caner and Hansen (2000), and Skalin and Terasvirta (2000),
among others. In general, it is found that these models improve upon linear models both
in describing the in-sample properties of the unemployment rate and in out-of-sample
forecasting.

From Figure 1 it is also clear that the unemployment rate is persistent. In fact, the
persistence of the unemployment rate also has received much attention. The two competing
viewpoints are the ‘natural rate’ hypothesis and the hysteresis hypothesis of Blanchard
and Summers (1987). Under the natural rate hypothesis, the unemployment rate is mean-
reverting, whereas it is non-stationary under the hysteresis hypothesis. Thus, the two
hypotheses imply that different transformations (levels and first differences, respectively)
of the unemployment rate can be appropriate. Using a fractionally integrated model we
avoid having to take position on the persistence properties of the unemployment rate a
priori, but instead we let the data decide which characterization is most appropriate. It
should be noted that (both theoretical and empirical) models which allow the natural
rate to change over time have been put forward as another alternative for the hysteresis
hypothesis, see Coakley et al. (2000) for a recent review, but this is not a direction we

pursue here.

4.2 An empirical FISTAR model

Following the modelling cycle as outlined in Section 3, we start by specifying a linear ARFI
model. We allow for a maximum autoregressive order of pyax = 18, such that the effective
estimation sample runs from January 1970 until December 1999 (360 observations). Both
AIC and BIC indicate that an ARFI model with p = 4 is adequate. The third column of
Table 1 contains summary statistics and diagnostic tests for this model. In particular, the
estimate of d is equal to 0.84, suggesting that the unemployment rate is non-stationary but
mean-reverting, confirming the findings of Diebold and Rudebusch (1989), Tschernig and
Zimmermann (1992), Koustas and Veloce (1996), and Crato and Rothman (1998). This
linear long-memory model appears adequate in that the errors seem serially uncorrelated,
whereas the excess kurtosis and heteroskedasticity appear to be caused entirely by large

positive residuals in January 1975, April 1980 and February 1986.
- insert Table 1 about here -

The next stage is to test linearity against FISTAR nonlinearity using the LM-type
statistics developed in Section 3.1. As we are concerned with the behaviour of the unem-
ployment rate over the business cycle, the transition variable in the FISTAR model should
reflect the property that recession and expansion regimes are sustained periods of increase

and decline in the unemployment rate, respectively. This makes the monthly change in
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the unemployment rate unsuitable as an indicator of the business cycle regime as it is
too noisy. Following Skalin and Terasvirta (2000), we therefore consider the twelve-month
difference as transition variable, that is, ss = Ay 1 =y 1 — Y112, L =1, ... , lmax- We
set the maximum value of the delay parameter /5« equal to 6.

The upper panel of Table 2 contains p-values of the F-version of the LM, statistic,
k =1,2,3, as given in (14), with Aoy, I = 1,...,6, as transition variable. LM-type
tests against the alternative of smoothly changing parameters, where s; = ¢, are given as
well. Linearity is rejected quite convincingly against the alternative of a FISTAR model
with sy = Aqoy;; for all values of [ considered, where the minimum p-values are attained
in case [ = 1. Constancy of the autoregressive parameters (based on the tests with ¢ as
transition variable) is also rejected by the LM; test, but the evidence for structural change

is much less compelling that the evidence for nonlinearity.
- insert Table 2 about here -

Based on these test results, we proceed by estimating a FISTAR model with s; =
A1oy;—1 and an autoregressive order equal to 4 in both regimes. The AML estimates of

the parameters in this model are:

1-LYy =2, d= 043 , (29)
(0.15)
Tt — (— 0.050 + 0.30 Tt—1 + 0.22 Tt—2 + 0.15 LTt—3 =+ 0.14 xt_4) X (1 — Gl(Anyt_l;’Ay,é))
(0.016) (0.17) (0.079) (0.078) (0.081)

—+ (0.074 + 0.80 z¢—1+ 0.18 z4—2 — 0.019 243 — 0.11 :Et_4) X Gl(Alzyt_l;'Ay, é), (30)
(0.15) (0.17) (0.11) (0.11) (0.077)

Gr(Ar2ye-15%,6) = (1 +exp{— 145 (Ar2gs—1— 0.15 )/oasy P, (31)
(14.4) (0.077)

where standard errors are given in parentheses below the parameter estimates.

The second column of Table 1 and the lower panel of Table 2 contain diagnostic tests
for the estimated model. It is seen that the FISTAR does not improve the distributional
properties of the residuals very much, in the sense that it cannot account for the positive
skewness, excess kurtosis and ARCH effects that were found in the linear ARFI model, but
again these deviations from normality and homoskedasticity appear to be due to only a
few observations. Results of the diagnostic tests in the lower block of Table 2 suggest that
the FISTAR model is adequate as there is no evidence for time-variation in the parameters
or remaining nonlinearity. Note that AIC prefers the FISTAR model whereas BIC prefers
the parsimonious ARFI model.

Figure 2 shows plots of the transition function in the estimated FISTAR model, both
over time and against the transition variable Ajsy;_1. The estimates of the parameters

v and ¢ are such that the change of the logistic function G(Ai2y;—1;%,¢) from 0 to 1
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takes place for values of Aoy, between -0.2 and 0.5. The bottom panel of Figure 2
also contains the (rescaled) unemployment rate, where circles indicate individual peaks
and troughs as dated by the NBER. These peaks and troughs differ from the reference
business cycle turning points, as the unemployment rate is, on average, leading at peaks
and lagging at troughs. The two regimes in the FISTAR model correspond reasonably
close with the contractions and expansions as identified by these turning points simply
because G(A12y:-1;7, ¢) is a monotonic transformation of the transition variable Ajoy; 1.
As the transition variable is the change in the unemployment rate over the previous year,
the switches between the regimes do not coincide exactly with the peaks and troughs of

the unemployment rate but usually take place a few months later.
- insert Figure 2 about here -

4.3 Comparison with other models

The estimate of the fractional differencing parameter d (= 0.43) in (29) is significantly
different from both 0 and 1. To further examine whether the FISTAR model improves
upon STAR models for levels and first differences of the unemployment rate, we estimate
FISTAR models with d = 0 and d = 1 imposed. The fourth and fifth columns of Table 1
contain estimates of the parameters in the transition functions and summary statistics for
these models. The FISTAR model is preferred over the STAR model in first differences
according to both AIC and BIC. AIC is indifferent between the FISTAR model and the
STAR model for levels, whereas BIC prefers the latter model. The diagnostic tests for
these models reveal that the STAR model for first differences is not adequate, as the null
hypothesis of no remaining nonlinearity is rejected. Parameter constancy is rejected in the
STAR model for levels. Detailed results of these misspecification tests are available upon
request. Finally, we also estimate a STAR model for first differences, augmented with a

lagged level term, that is,

P
Ay, = | 10+ prye—1 + Z Pryi—j | (1= G(st:7,¢))
i=1

P
+ | $20 + p2yi—1 + Z¢2,jyt—j G(si;7,0) + e (32)

=1
This model has been put forward by Skalin and Terésvirta (2000) as a stationary nonlinear
model which can suggest nonstationarity when analyzed with linear tools and which can
generate the typical asymmetry of unemployment rates. The final column of Table 1
contains relevant summary statistics for this model. Both AIC and BIC are smaller than

for the FISTAR model. Unreported diagnostic tests of no remaining nonlinearity and
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parameter constancy are satisfactory as well, as neither of these hypotheses can be rejected
at conventional significance levels.

To understand the properties of the estimated FISTAR model and to compare it with
the other models, it is useful to consider the skeleton of the model, that is, the deterministic
part of (29)-(31). The skeleton is such that the FISTAR model contains a limit cycle of 292
months in which the unemployment rate fluctuates between 4% and 8%. This limit cycle is
shown in Figure 3. The range of the cycle corresponds quite closely with the unemployment
rates observed during the 1990s, suggesting that the high unemployment rate during the
1980s only was a temporary phenomenon. The periodicity of the cycle is much longer than
that observed in the empirical time series, which is about 10 years. The limit cycle also
contains marked asymmetry, as the parts of the cycle during which the series increases and
decreases are much different in length (86 and 206 months, respectively). Figure 3 also
shows deterministic extrapolation with the estimated STAR model for first differences
which includes a lagged level term. It turns out that this model also contains a limit
cycle, with a comparable range (5-8%), but a much higher periodicity (136 months) and
somewhat more pronounced asymmetry (the increase and decrease in the unemployment

rate last for 35 and 91 months, respectively).
- insert Figure 3 about here -

To gain further insight in the dynamic properties of the estimated FISTAR model, we
assess the propagation of shocks by computing generalized impulse response functions. We
compute history- and shock-specific GIs as defined in (23) for all observations in the period
from July 1974 until December 1999 and values of the normalized initial shock equal to
§/0. = £3,42.8,... ,4£0.4,40.2, where 6. denotes the estimated standard deviation of
the residuals from the FISTAR model. For each combination of history and initial shock,
we compute Gl (h,d, w;—1) for horizons h = 0,1,... , N with N = 120. To generate future
sample paths of y, from the FISTAR model, we use the infinite order STAR representation
truncated at 120 lags. The conditional expectations in (23) are estimated as the means
over 1000 realizations of y;1 5, with and without using the selected initial shock to obtain
y; and using randomly sampled residuals of the estimated FISTAR model elsewhere. We
follow the same procedure to compute Gls for the STAR model in first differences with a
lagged level term. All GIs are normalized such that they equal §/6. at h = 0.

The G1’s for specific histories and shocks are used to estimate the density of GI, (h,S,H),
where & and H denote sets of selected shocks and histories, respectively. The set of shocks
S is the set of all negative or positive shocks, whereas the set H consists of the histories for
which the value of the transition function G(Aj2y;—1;79,¢) in (31) is greater (‘recession’)
and less (‘expansion’) than 0.5. The densities are obtained with a standard Nadaraya-

Watson kernel estimator, using ¢(0/6.) as weight for GI, (h,d,w;—1), where ¢(z) denotes
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the standard normal probability distribution. The reason for using this weighting scheme
is that the standardized shocks /6. then effectively are sampled from a discretized nor-
mal distribution and the resulting distribution of GI, (h, 4, €2;—1) should resemble a normal
distribution if the effect of shocks is symmetric and proportional to their magnitude (as is
the case in linear models). Finally, highest density regions are then estimated using the
density quantile method outlined in Hyndman (1995, 1996).

- insert Figure 4 about here -

Figure 4 shows HDRs for distributions of GI,(h,S,B) for h = 0,6,12,... ,120 for the
FISTAR model. It appears that several interesting asymmetries in the impulse responses
exist. First, shocks occurring during recessions tend to be magnified during the first 12
months, after which their effect declines gradually towards zero. Shocks occurring during
expansions reach their maximum effect only after 18 months. Second, the effect of positive
shocks during expansions is much larger than the effect of negative shocks during the
first 3 years after impact. On the other hand, there does not appear so much asymmetry
between the impulse responses for positive and negative shocks occurring during recessions.
The latter observations are confirmed by the measure of asymmetric impulse response
ASY,(h,d,w;—1) defined in (25). The upper panel of Table 3 contains means of the random
asymmetry measures ASY,(h,S,H) for h = 12,24,36,48 and 60, for different sets of
shocks S defined as A(ll) = {etlex > 0}, S(mall) = {&|l > &/6. > 0}, M(edium) =
{€t|2 > €1/6. > 1} and L(arge) = {e¢|3 > €;/6. > 2}. The set H consists of all histories
(‘unconditional’) or only of those histories for which the transition function G(Aj2y:—1;7,¢)
in (31) is larger (‘recession’) and smaller (‘expansion’) than 0.5. To judge whether the
mean of ASY, (h, S, H) is significantly different from zero, we use oasy, (n,s,2)//Ns, where
OASY,(h,s,) 18 the standard deviation of ASY,(h,S,H) and ng is the number of shocks §
in the set S for which ASY,(h,d,w;—1) is computed, as standard error for the mean. The
reason for dividing by ns is that different realizations ASY, (h,d,w;—1) are not independent
across histories w; 1 but are independent across shocks 4. It is seen that the absolute
value of the mean asymmetry measure is invariably larger (in absolute value) for shocks
occurring during expansions. Also noteworthy is that the mean asymmetry is actually
negative for small shocks during expansions at horizons up to 4 years and beyond 6 years,
suggesting that negative shocks have a larger impact than positive shocks. For medium-
sized and large shocks, mean asymmetry is positive at these horizons. Symmetry of the
impulse responses to shocks occurring during recessions is rejected only for large shocks
at horizons between 2 and 3 years and between 5 and 6 years. Asymmetry for shocks
occurring during expansions is detected for all sizes of shocks at horizons up to 3 years,

while asymmetry is found for medium-sized and large shocks at longer horizons as well.

- insert Table 3 about here -

17



Figure 5 contains HDRs for distributions of GI, (h, S, H) for h = 0,6, 12,... ,120 for the
STAR model for first differences with lagged level term. Comparing these with the HDRs
for the FISTAR model in Figure 4, it appears that roughly the same type of asymmetries
are captured by the two models. In the STAR model it also is the case that shocks
occurring during recessions reach their maximum impact sooner than shocks occurring
during expansions, while the asymmetry between positive and negative shocks appears to

be somewhat more pronounced for shocks occurring during expansions.
- insert Figures 5 and 6 about here -

A notable difference between the GIs of the two models, which is not immediately
apparent from the HDRs is that the impulse responses for the STAR model decay in
an strongly oscillatory fashion, such that, for example, the largest positive shocks actually
generate the most negative responses at horizons between 48 and 96 months, and vice versa.
The impulse responses in the FISTAR model also oscillate, but to a much lesser extent.
The response to positive shocks is negative at horizons between 54 and 75 months, while
this effect also is much less pronounced than in the STAR model. This is seen clearly from
Figure 6, which shows the mean of GI,(h,S,H) for S = {g/|e; = ko}, k= -3,-2,...,3.
Also note that the mean asymmetry measures for the STAR model, reported in the lower
panel of Table 3, show a similar cyclical pattern, which again is much more pronounced
than the pattern in the mean asymmetry measures for the FISTAR model. Another
difference between the impulse responses in the two models, which can be seen from Figures
4 and 5 is that the GIs in the STAR model decay much faster than the GIs in the FISTAR

model.
- insert Tables 4 and 5 about here -

Finally, we report absorption times of shocks in the FISTAR and STAR models in
Table 4. It appears that in both models large shocks are absorbed somewhat faster than
small shocks, and shocks in recessions are absorbed slower than shocks in expansions.
The half-lives of shocks (m = 0.50) are similar in the two models, but the differences in
absorption times can be seen to become larger for smaller values of .

Asymmetry measures of the absorption times are given in Table 5. In both models,
medium-sized and large positive shocks in recessions are absorbed faster than negative
shocks of equal size, while small positive shocks are absorbed slower. The reverse holds
for expansions. Note that the asymmetry is more pronounced in FISTAR model than in
the STAR model. In sum, it appears that the FISTAR model does highlight interesting
features of the data, which are not captured by the STAR model.
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5 Concluding remarks

In this paper we proposed a new time series model which can capture long memory and
nonlinearity at the same time. Upon fitting it to three decades of monthly US unemploy-
ment, we found that a rather parsimonious version of the model fits the data well. When
we compared the model with various possible competitive models, we found that a linear
fractionally integrated model could certainly be improved by including nonlinear features.
Indeed, once we added these, there remained no evidence of nonlinearity and time-varying
parameters. However, the introduction of long-memory into a STAR model did not give
a much better fit. The key distinction between these two models lies in the fact that our
combined model has other long-run properties. We highlighted these using various impulse
response functions.

There are various directions for further research. The first one originates from the
fact that we considered seasonally adjusted data, while perhaps it would have been better
to consider the original unemployment rate series. This would require to augment the
FISTAR model with an explicit description of the seasonal patterns of the series. Second,
our model assumes that the long-memory and nonlinear characteristics of the time series
are constant over time, whereas recent research indicates that structural change might be
an important feature of unemployment rates, see Bianchi and Zoega (1998), Papell et al.
(2000) and Coakley et al. (2000). Extending the FISTAR model to allow for structural
changes, possibly along the lines of the time-varying STAR model put forward by Lund-
bergh et al. (2000), might be worthwhile. Both these extensions would lead to a time series
model that captures three features jointly. A third further research topic amounts to com-
paring ARFI, STAR and FISTAR models in terms of out-of-sample forecasting properties.
In particular, one would hope that long-memory models would forecast better for long
horizons and that nonlinear models would outperform linear models if nonlinearity is an
important feature of the data. However, Ray (1993) and Crato and Ray (1996) demon-
strate that using AR(MA) models to predict long-memory time series does not result in
a large loss of forecasting accuracy. Similarly, Clements and Krolzig (1998) show that
AR models have a competitive forecasting performance for nonlinear (Markov Switching
and threshold autoregressive) time series. Finally, extensions to allow for more than two

regimes and to multivariate series also seem interesting areas for further research.
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Table 1: Summary of estimated models for US unemployment rate

STAR
FISTAR ARFI d=0 d=1 d=1, Ayi;
d 0.425 0.835 - - -
5 14.55 - 13.72 15.02 14.12
é 0.153 - 0.106 0.077 0.109
T62 8.44 9.50 8.53 8.85 8.37
AIC —3.68 —3.61 —3.68 —-3.65 —3.69
BIC 354 ~355 ~3.56 353 ~355
SK 0.34 0.37 0.34 0.15 0.33
(4.6x1073)  (2.0x1073)  (4.7x1073) (0.12) (5.3x1073)
EK 1.35 1.73 1.10 1.57 1.11
(8.9x1078)  (L1x10711)  (9.9x10%)  (6.7x1071%)  (8.2x10°F)
JB 34.0 53.1 25.0 38.1 25.1
(4.1x1078)  (3.0x107'2)  (3.8x107%)  (5.4x107?) (3.6x1076)
ARCH(1) 10.9 15.4 12.3 10.5 10.4
(9.8x107%)  (8.7x107%)  (4.6x107%)  (1.2x107%) (1.3x1073)
ARCH(4) 18.1 20.5 18.2 15.9 14.7
(1.2x1073)  (4.0x10™%)  (1.1x1073)  (3.2x107%) (5.3x1073)
ARCH(12) 28.0 28.4 27.8 25.7 25.8
(56x1073)  (4.8x1073)  (5.9x1073) 0.012 0.012
LMsc(1) 0.17 2.62 0.41 0.34 0.18
(0.68) (0.11) (0.52) (0.56) (0.67)
LMsc(4) 1.51 1.26 2.42 1.66 1.35
(0.20) (0.29) (0.048) (0.16) (0.25)
LMsc(12) 1.05 1.11 1.43 1.54 1.04
(0.40) (0.35) (0.15) (0.11) (0.41)

The table presents diagnostic tests for the estimated FISTAR and ARFI models, and STAR models for

levels (d = 0), first differences (d = 1) and first differences with lagged level term (d = 1, Ay;—1) for
the US unemployment rate over the sample period January 1970-December 1999 (T = 360). &2 denotes

the residual variance, SK is skewness, EK excess kurtosis, JB the Jarque-Bera test of normality of the

residuals, ARCH(r) is the LM test of no Autoregressive Conditional Heteroscedasticity [ARCH] up to
order r, and LMsc(q) denotes the (F variant of the) LM test of no serial correlation in the residuals up
to and including order q. The numbers in parentheses below the test statistics are p-values.
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Table 2: LM-type tests of (no remaining non-)linearity and
parameter constancy

Transition
variable LM1 LM2 LM3
ARFI model

Ajoyi_1 4.0x107%*  2.1x107* 3.5x10°4

A1ayi_o 2.1x107%  6.7x10~* 1.4x1073

Ajoyi_3 0.012 1.1x1073  8.6x1073

Aloyi_4 0.020 1.1x1073  5.5x107*

Aoy;_s 0.060 8.8x10™* 3.7x1073

A12yi_g 0.090 2.3x107%  5.1x1073

t 0.020 0.093 0.16
FISTAR model

A12yt71 0.62 0.31 0.40

Algyt_g 0.41 0.35 0.39

Aoy 0.51 0.33 0.42

APy 0.50 0.33 0.52

Algyt,;—; 0.32 0.38 0.59

Alzyt_ﬁ 0.47 0.44 0.55

t 0.39 0.41 0.47

p-values of LM-type test statistics of (no remaining non-)linearity
and parameter constancy in the ARFI(p,d) model with p = 4 and the
FISTAR model for the US unemployment rate.
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Table 3: Asymmetry measures for impulse responses in FISTAR and STAR models

Unconditional Recession Expansion
h A S M L A S M L A S M L
FISTAR model
6 -0.00 —-0.12* 0.21* 0.88* —0.01 -0.02 0.03 0.05 —-0.00 —-0.17* 0.28* 1.22*
12 0.01 -0.14  0.27 1.04* -0.02 0.05 -0.14 -0.53 0.02 -0.22* 0.44* 1.67"
24 0.01 -0.14 0.28 1.01*  -0.03 0.10 -0.26 -—0.90* 0.03 -0.23* 0.50* 1.77*
36 0.01 -0.09 0.18 0.64* -0.02 0.06 -0.17 —-0.55* 0.02 -0.15* 0.32* 1.11*
48 0.00 —-0.03 0.07 0.23 —0.01 0.01 —-0.04 -0.09 0.01 -0.05 0.11* 0.35*
60 0.00 0.00 —-0.00 -0.01 —-0.01 —-0.02 0.01 0.10* 0.00 0.01 -0.01 -0.06
72 —-0.00 0.01 -0.02 -0.05 —-0.01 -0.02 0.00 0.07 0.00 0.02 -0.03 -0.10"
84 —0.00 -0.01 0.01 0.04 —-0.01 -0.00 -0.02 -0.03 0.00 -0.01 0.02  0.06
96 0.00 —-0.02 0.04 0.14* 0.00 0.02 -0.03 -0.11 0.00 -0.03  0.06* 0.24*
108 0.01 —-0.02 0.06  0.19* 0.01 0.03 —-0.03 -0.13 0.01 -0.04 0.09* 0.32*
120 0.01 —-0.02 0.06  0.19* 0.01 0.03 -0.03 -0.11 0.01 -0.03  0.09* 0.31*
STAR model

6 —-0.00 —-0.12* 0.19* 0.82* —-0.02 -0.05 0.05 0.18 0.00 -0.15* 0.26* 1.10*
12 0.01 -0.12* 0.24 0.94* -0.02 0.02 -0.08 -0.28 0.02 -0.19* 0.38* 1.49*
24 0.01 -0.10 0.21 0.76* —0.01 0.07 —-0.16 —-0.56 0.02 -0.17" 0.37* 135"
36 0.01 -0.06 0.12  0.45* 0.00 0.02 -0.03 -0.10 0.01 -0.10* 0.19* 0.69*
48 0.00 -0.01 0.03 0.10 0.01 -0.03 0.09* 0.30* —-0.00 —0.00 0.00 0.02
60 —0.00 0.02 -0.04 -0.16 0.02 -0.03 0.11* 0.36* —0.01 0.05 -0.11* —-0.39*
72 —0.00 0.03 -0.06 -0.24* 0.01 —-0.02 0.06 0.19* -0.01 0.05* —0.12* —0.44*
84 -0.00 0.02 -0.04 -0.17" —-0.00 —0.00 0.00 0.00 —0.00 0.03 -0.06* —0.25*
96 0.00 0.01 -0.01 -0.04 —-0.01 0.01 -0.03 -0.10% 0.01 0.01 0.00 —-0.02
108 0.01 0.00 0.02 0.06 -0.00 0.02 -0.03 -0.10* 0.01 -0.01 0.04* 0.13*
120 0.01 -0.00 0.02 0.08* 0.00 0.01 -0.02 -0.05 0.01 —-0.01 0.04* 0.14*

Means of the asymmetry measure ASY,(h,S,H) in the estimated FISTAR model and STAR model for first differences
with lagged level term. Means larger than two times O'Asyy(h,g,';{)/m are marked with an asterisk, where oasy, (1.5,%)
is the standard deviation of ASY, (h,S,#) and n4 is the number of shocks ¢ for which ASY, (h,d,w;—1) is computed. The
different sets of shocks are defined as A(ll) = {e¢|ex > 0}, S(mall) = {e¢|1 > /6. > 0}, M(edium) = {&¢|2 > /6. > 1}
and L(arge) = {e¢|3 > €:/6- > 2}. Recession and expansion relate to histories for which the value of the transition
function G(A12y¢—1;4, ¢) is smaller and larger than 0.5, respectively.
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Table 4: Absorption times in FISTAR and STAR models

Unconditional Recession Expansion
h A S M L A S M L A S M L
FISTAR model
1.00 27.8 281 269 26.8 30.4 309 29.0 28.8 26.7 27.0 26.0 26.0
0.75 37.0 382 34.2 332 379 39.2 34.8 338 36.7 379 34.0 33.0
0.50 52.0 54.0 47.2 48.2 52.7 54.5 485 47.4 51.7 53.7 46.7 48.5
0.25 88.9 91.2 83.7 8l.1 91.3 93.3 86.9 83.3 88.0 904 824 80.3

STAR model

1.00 25.4 257 247 245 29.7 30.2 287 27.6 235 238 229 232

0.75 35.6 36.1 344 345 377 384 36.1 352 346 350 336 34.2

0.50 50.3 51.3 477 476 51.8 528 49.2 49.1 49.6 50.7 47.0 47.0

0.25 81.4 826 784 783 83.1 84.1 80.7 79.8 80.6 82.0 774 T7.7
Means of Ny (7, S,H) in the estimated FISTAR model and STAR model for first differences with lagged
level term. The different sets of shocks are defined as A(ll) = {e¢|e; > 0}, S(mall) = {g¢|1 > &;/5- > 0},
M(edium) = {&¢|2 > &;/6- > 1} and L(arge) = {e¢|3 > /6. > 2}. Recession and expansion relate to
histories for which the value of the transition function G(A12y:—1;%,¢) is smaller and larger than 0.5,
respectively.

Table 5: Asymmetry measures for absorption times in FISTAR and STAR models

Unconditional Recession Expansion
h A S M L A S M L A S M L
FISTAR model
1.00 —4.1* —-7.0"* 24 59 2.5% 44* -19 —44 —-6.7* —11.5* 4.1* 10.0*
0.75 -3.7" -6.3 26 4.0" 28 46 -10 —4.557 -6.3* —-10.7 4.1 7.5"
0.50 —43 -83 4.2 137 38 75 —-47 =90 —-7.5* —-14.6* 7.8 228"
0.25 -02 -34 6.6 14.0 39 81 —-44 -19.8* -1.8 =80 11.0 27.5*
STAR model
1.00 -3.8 —-6.7 2.7 6.3* 1.1 19 -07 =21 —-6.1* —-10.6* 4.2* 10.1*
0.75 —4.1* =72 26 7.9* 1.6 34 -27 =30 —-6.7* —11.9* 5.0* 12.7*
0.50 -34* -66 36 94* 3.5 6.2 -24 -70 —-6.5* —-12.3* 6.3* 16.7*
0.25 -01 -19 36 7.2* 35 55 =10 =37 -1.8 =52 5.7 12.1*

Means of the asymmetry measure ASYN, (h,S,#) in the estimated FISTAR model and STAR model for
first differences with lagged level term. Means larger than two times O’ASYNy(h,S,H)/\/’IE are marked with an
asterisk, where oasyn, (n,s,7) is the standard deviation of ASYN, (h,S,H) and n4 is the number of shocks
d for which ASYNy (h,d, w¢—1) is computed. The different sets of shocks are defined as A(ll) = {g:]e; > 0},
S(mall) = {e¢|1 > e¢/6. > 0}, M(edium) = {&¢|2 > &;/6. > 1} and L(arge) = {e¢|3 > €:/6- > 2}. Recession
and expansion relate to histories for which the value of the transition function G(A12y:—1;%,¢) is smaller
and larger than 0.5, respectively.
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Figure 1: Monthly seasonally adjusted US unemployment rate, July 1968-December 1999.
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Figure 2: Transition function in FISTAR model for monthly US unemployment rate against
the transition variable Ajoy; 1 and over time. The dotted line represents the rescaled
monthly unemployment rate. Solid circles indicate NBER-dated unemployment peaks (P)

and troughs (T).
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Figure 3: Deterministic extrapolation of the FISTAR model (dashed line) and the STAR
model for first differences with a lagged level term (dotted line).
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Figure 4: 50% (black), 75% (hatched) and 90% (white) highest density regions for gener-
alized impulse responses in the FISTAR model estimated for the US unemployment rate.
Recession and expansion relate to histories for which the value of the transition function
G(A12yi—1;7,¢) is larger and smaller than 0.5, respectively.
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Figure 5: 50% (black), 75% (hatched) and 90% (white) highest density regions for gen-
eralized impulse responses in the STAR model for first differences with lagged level term
estimated for the monthly US unemployment rate. Recession and expansion relate to his-
tories for which the value of the transition function G(A12y;—1;7,¢) is larger and smaller
than 0.5, respectively.
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Figure 6: Mean of generalized impulse responses in the FISTAR model and STAR model
for first differences with lagged level term estimated for the monthly US unemployment
rate. Recession and expansion relate to histories for which the value of the transition
function G(A12y;-1;7,¢) is larger and smaller than 0.5, respectively.
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