
Railway Crew Rescheduling with Retiming

Lucas P. Veelenturf1∗, Daniel Potthoff2, Dennis Huisman2,3, Leo G. Kroon1,3

1 Rotterdam School of Management and ECOPT,
Erasmus University Rotterdam, P.O. Box 1738, NL-3000 DR Rotterdam,

The Netherlands
2 Econometric Institute and ECOPT,

Erasmus University Rotterdam, P.O. Box 1738, NL-3000 DR Rotterdam,
The Netherlands

3 Department of Logistics, Netherlands Railways,
P.O. Box 2025, NL-3500 HA Utrecht,

The Netherlands

ECONOMETRIC INSTITUTE REPORT EI 2009-24

September 15, 2009

Abstract

Railway operations are disrupted frequently, e.g. the Dutch railway network experiences about
three large disruptions per day on average. In such a disrupted situation railway operators need
to quickly adjust their resource schedules. Nowadays, the timetable, the rolling stock and the
crew schedule are recovered in a sequential way. In this paper, we model and solve the crew
rescheduling problem with retiming. This problem extends the crew rescheduling problem by the
possibility to delay the departure of some trains. In this way we partly integrate timetable adjust-
ment and crew rescheduling. The algorithm is based on column generation techniques combined
with Lagrangian heuristics. In order to prevent a large increase in computational time, retiming is
allowed only for a limited number of trains where it seems very promising. Computational exper-
iments with real-life disruption data show that, compared to the classical approach, it is possible
to find better solutions by using crew rescheduling with retiming.

1 Introduction

Passenger railway operations face unforeseen events like infrastructure malfunctions, accidents or
rolling stock breakdowns every day. As a consequence of these events, parts of the railway infras-
∗Corresponding author. E-mail: lveelenturf@rsm.nl, Phone: +31 10 4081567

1

tructure may be unavailable temporarily. Therefore, it may not be possible to operate the timetable
as planned. Jespersen-Groth et al. (2007) describe the disruption management process as the accom-
plishment of three interconnected tasks: Timetable adjustment and rolling stock and crew reschedu-
ling. Because of their complexity and the limited time available for decision making, these steps are
carried out sequentially. First, an adjusted timetable is constructed by canceling, delaying or rerouting
trains. In the next two steps it is checked whether modified rolling stock and crew schedules compat-
ible with the adjusted timetable can be found. However, if during rolling stock or crew rescheduling
no rolling stock or crew for a task of the adjusted timetable can be found, another iteration through
the three steps is necessary. Then a different timetable, where some trains run on different times or
are canceled, is needed.

An infeasibility of the crew rescheduling step suggests a new adjusted timetable where additional
trains are canceled. If this is compatible with the rolling stock schedule this would be a solution. In
this paper we will show that sometimes other solutions exist where no additional trains need to be
canceled if the departures of some trains are just delayed by a couple of minutes. Given the high time
pressure, always present during disruptions, and the complexity of the problems, dispatchers may or
may not find the latter solutions. It is quite clear however, that up to 1,000 passengers waiting for a
train on a busy station during peak hours would appreciate such solutions.

Recently, Operations Research (OR) models have been developed for the different tasks in rail-
way disruption management. The paper of Nielsen (2008) deals with rolling stock rescheduling.
Rezanova (2009) and Potthoff et al. (2008) present models and solution approaches for crew resche-
duling. Clearly, integration of the different steps is beneficial. Walker et al. (2005) presents a model
that does timetabling and crew rescheduling at the same time. However, because of the limited compu-
tation time that is available and the high detail of the timetabling decisions, integration seems reaching
too far for large scale problems at this point in time.

In this paper, we look at an extension of the crew rescheduling problem, where some timetabling
decisions are integrated into crew rescheduling. More precisely, the departure of trains may be de-
layed. This gives more flexibility to the third step in the disruption management process and may
avoid undesired iterating. Moreover, this new approach is able to provide high quality solutions from
a service level point of view.

The first contribution of this paper is a new formulation for crew rescheduling with retiming,
where retiming options are modeled as discrete choices. Moreover, we show how to adapt the solution
approach of Potthoff et al. (2008) in order to keep the increase in computation time for the extended
model moderate. We evaluate our approach using real life data from Netherlands Railways (NS), the
largest passenger railway operator in the Netherlands. Finally, we show that retiming allows to find
better solutions compared to crew rescheduling without retiming.

The remainder of this paper is organized as follows. A problem description is provided in Sec-
tion 2. The existing literature is reviewed in Section 3. In Section 4 we present the mathematical
formulation. Our solution approach is discussed in Section 5. Computational results are presented

2

Ut

Asd

Amr

Ht

Bd

Nm

Std

Mt

Ehv

Rm

Sgn

Figure 1: Part of the Dutch railway network used by NS

in Section 6. In Section 7 we draw some conclusions and give some recommendations for further
research.

2 Problem description

We first introduce some railway terminology which is necessary to clearly describe the problem. Most
of the services offered by passenger railway operators are regular service trips (commonly known as
trains) on specified lines according to a published timetable. A line is determined by a start and an end
station and a number of intermediate stops. NS operates all lines with a frequency of once or twice
per hour. An example of such a line is the 800-line between Maastricht (Mt) and Alkmaar (Amr) with
13 intermediate stops. In the rush hours the 800-line is extended to a line between Maastricht and
Schagen (Sgn) with 15 intermediate stops.

In order to operate the timetable, trains are split into trips between relief points. A relief point
is a station where a driver can switch from one rolling stock unit to another. The work that must be
performed by crew members is divided into tasks. Several tasks may correspond to the same trip. E.g.
the task for driving the train, as well as one or more tasks for conductors. Note, that in this paper we
will limit ourselves to train drivers.

The relief points on the 800-line are Maastricht, Sittard (Std), Roermond (Rm), Eindhoven (Ehv),
’s-Hertogenbosch (Ht), Utrecht (Ut), Amsterdam (Asd) and Alkmaar (see Figure 1). Note that the end
station during peak hours, Schagen, is not a relief point, so the driver has to stay on the rolling stock
and drive the next train of the 800-line from Schagen back to Alkmaar. This results in a task from
relief point Alkmaar to relief point Alkmaar.

3

A duty is a sequence of tasks which is performed by one crew member on a single day. Duties
start and end at the same crew base to ensure that a crew member who starts at a certain crew base
will be back at the same crew base after his duty. The set of crew bases is a subset of the set of
relief points. Sometimes a duty contains a so called deadhead task, which is used for repositioning. A
deadhead task means that the driver is not driving the train, but he is a passenger on that train. Another
possibility is that the duty contains a repositioning task. The repositioning task is comparable with
the deadhead task, with the difference that it uses another way of transportation, for example a bus, a
taxi or a train of another operator.

The operational crew rescheduling problem (OCRSP) takes an adjusted timetable and modified
rolling stock schedule as input and tries to find a replacement duty for every original duty, such that
as many tasks as possible of the adjusted timetable are covered. A replacement duty is consisting
of an already performed (possibly empty) part of an original duty and a feasible completion. A
feasible completion is a sequence of tasks following the already performed part of a duty, resulting in
a replacement duty which has to satisfy a number of rules. For NS these rules are given below:

• A replacement duty needs to start and end at the same crew base as the original duty.

• A replacement duty may end up to 60 minutes later than the planned end time of the original
duty.

• If, in a replacement duty, two subsequent tasks must be performed on different rolling stock
units, a certain minimum transfer time has to be taken into account.

• A replacement duty which is longer than 5 1/2 hours must contain a meal break of at least 30
minutes at a relief point with a canteen. Moreover, the time before and after the meal break
must be less than 5 1/2 hours.

• A replacement duty can only perform a task if the driver is qualified for the route and is licensed
for the rolling stock type.

Not all original duties in the crew schedule have tasks assigned to them. There exist a number of
reserve duties, where the driver is on stand-by for a specified amount of time at a major station. The
purpose of these reserve duties is that they can be utilized during crew rescheduling.

If in a solution to the OCRSP a task cannot be covered by any crew member, it means that no
compatible crew schedule for the adjusted timetable has been found. The railway operator has to
come up with another adjusted timetable, for which it is possible to find a compatible crew schedule.

The idea of allowing retiming is to evaluate not just one fixed timetable but a number of similar
timetables at once. By delaying the departure of some tasks more connections for drivers will become
possible and hence more feasible completions may exist. Therefore, it may be possible to find a better
crew schedule. Compared to classical crew rescheduling, the objective of the extension with retiming
also aims for keeping the amount of delay as small as possible.

4

a) /e /a /a /b /c /d MB /a /b /c /d

3043 3048 3653 3666

Ah Nm Ah Nm Ht Bd Rsd RsdBd Ht Nm Ah

b) /e /a /a /b 16054/a 861/e MB /c /d

3043 3048 3653 3666

Ah Nm Ah Nm Ht Ut Ht Ht Nm Ah

c) /e /a /a /b 4456/a MB 4463/a /c /d

3043 3048 3653 3666

Ah Nm Ah Nm Ht Nm Nm Ht Ht Nm Ah

13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00

Time of rescheduling

task deadheading MB meal break retimed task

Figure 2: Replacement duties for duty “Ah 114”

In Figure 2.a we show the original duty Ah 114 from crew base Arnhem in case the two south-
bound routes from ’s-Hertogenbosch to Breda and Eindhoven are blocked from 15:30 to 18:30. The
duty has started with driving task 3043/e (the fifth task of train 3043) from Arnhem (Ah) to Nijmegen
(Nm). At 15:30, when the disruption started, the driver has completed his next two tasks and is per-
forming task 3653/c. The meal break was planned in Roosendaal, thereafter the duty was supposed to
end with driving train 3666 from Roosendaal to Arnhem, 3666/a–3666/d. However, due to the route
blockage, task 3653/c is canceled. Therefore, original duty Ah 114 has become infeasible. A replace-
ment duty is shown in Figure 2.b. Note that because the rescheduling takes place at 15:30, the first
four tasks of the duty cannot be changed. After those 4 tasks, the driver arrives in ’s-Hertogenbosch
at 15:48. If the next task has to be performed on different rolling stock, a minimal transfer time of
10 minutes must be respected. So the replacement duty is allowed to perform task 16054/a to Utrecht
at 16:02, which is operated with a different rolling stock than task 3653/b. From Utrecht the driver
could go back to ’s-Hertogenbosch by driving task 861/e. After that the duty could end by performing
tasks 3666/c and 3666/d just as in the original duty.

The motivation for allowing retiming is to make replacement duties possible that are not possible
in a fixed timetable. For example, the planned departure time of task 4456/a is 15:56 and the task is
operated by a different rolling stock than task 3653/b, which means that due the minimum transfer
time a transfer between task 3653/b and task 4456/a is only allowed if the latter task is delayed by
more than 2 minutes. In Figure 2.c we show a replacement duty, not feasible without retiming, where
tasks 4456/a is delayed by 2 minutes.

5

conflict

Time
15:00 16:00 17:00 18:0015:30 16:30 17:30 18:30

36
50

36
52

36
54

36
56

36
58

36
60

36
62

3651

3653

3655

3657

3659

3661

36634453

4455

4457

4459

4461

4463

4465

44
50

44
52

44
54

44
56

44
58

44
60

44
62

44
64

+2
m

in
+9

m
in

Ht

Nm

Figure 3: An example of a delayed task between ’s Hertogenbosch (Ht) and Nijmegen (Nm)

Modeling flexibility of departure times in a railway timetable is far from trivial due to a large
number of interdependencies. Throughout the paper we will assume that: (i) A delayed departure of
a task by χ minutes leads to a delayed arrival of the task by χ minutes. (ii) A delayed task does not
affect other tasks using different rolling stock.

The first assumption is not always true in practice. On the one hand, the planned running time
for a task may include some buffer time that could be utilized to (partly) absorb delays. On the other
hand, a task that is running later than planned could experience an additional delay due to conflicts
with other trains. For example, it might be possible that a delayed train has to wait at a signal in a
station area. Conversely, a delayed task may affect other trains. A faster train may, for example get
stuck behind a slower delayed train. Figure 3 shows part of the 2007 timetable for the route between
’s-Hertogenbosch and Nijmegen. Two lines use this route, the 3600 intercity line from Roosendaal
to Arnhem and the 4400 regional line from ’s-Hertogenbosch to Nijmegen. If the departure of the
regional train 4456 is delayed by e.g. 9 minutes, it still departs before the intercity train 3656. As
indicated in the figure the faster intercity train 3656 catches up with the delayed regional train 4456.
This causes a conflict in the timetable. If overtaking on the last part of the route is not possible, the
intercity train will be stuck behind the regional train and experience a delay. This example shows
that assumption (ii) does not always hold, however at this point in time it seems reasonable since the
objective of this paper is to analyze the potential retiming in crew rescheduling might offer. However,
if train 4456 would be delayed by 2 minutes, assumptions (i) and (ii) hold.

We would like to take into account the special structure of railway timetables and rolling stock
schedules. Since the dwell times at intermediate stations are quite small, it seems likely that a de-
lay of a task will propagate due to the rolling stock schedule. In Figure 3 the rolling stock sched-
ule is indicated by dotted lines. The rolling stock assigned to task ’s-Hertogenbosch- Nijmegen or
Nijmegen - ’s-Hertogenbosch of the 3600 line is also assigned to the subsequent task from Nijmegen

6

to Arnhem and ’s-Hertogenbosch- Breda respectively. If the train 3658 would arrive 5 minutes late in
’s-Hertogenbosch, where its dwell time is 2 minutes, it is impossible that train 3658 can depart from
’s-Hertogenbosch towards Arnhem on time.

3 Literature review

While Walker et al. (2005) was the first paper looking at railway crew rescheduling, in the domain
of airlines, crew rescheduling received the first attention much earlier in Johnson et al. (1994). Note
that crew rescheduling is also know as crew recovery. For a recent review of literature on airline crew
rescheduling we refer the interested reader to Clausen et al. (2009). Stojković and Soumis (2001) and
Abdelghany et al. (2004) are the first papers that extend crew rescheduling by the possibility to retime
flights.

In Stojković and Soumis (2001) some flights may be delayed within specified time windows while
new duties for pilots are generated simultaneously. The problem is formulated as a multi-commodity
network flow problem with time windows and flight precedence constraints. The purpose of the flight
precedence constraints is to ensure that minimum turnaround times in the underlying aircraft rotations
are not violated and to keep important passenger connections. The problem is separable per pilot and
is solved with a branch-and-price algorithm.

The formulation of Stojković and Soumis (2001) is extended to the multi-crew case in Stojković
and Soumis (2005). In the multi-crew case every flight has to be covered by exactly ν crew members.
This is achieved by deriving ν tasks per flight which need to be covered exactly once. Again the
departure time of some flights may be chosen within a time window. Same departure time constraints
are added to the formulation to make sure that the same delay is chosen for all tasks derived form a
flight. Two options are presented in order to deal with flights that cannot be covered ν times. In one
option covering less than ν tasks is accepted while in the second option either all ν or non of the tasks
derived form a flight may be covered. As in Stojković and Soumis (2001) the problem is solved with
a branch-and-price algorithm using specialized branching decisions.

Abdelghany et al. (2004) present a rolling approach for multi-crew rescheduling with retiming of
flights. The approach tries to resolve as many conflicts as possible in crew duties, that occur during
irregular operations. In a preprocessing step flights from duties with conflicts and flights from selected
candidate crews are divided into sets of resource independent flights, each leading to a recovery stage.
Flights are resource independent if they cannot appear in a resource schedule together. In the rolling
approach the recovery stages are tackled in increasing order of time. For each recovery stage an
assignment problem with additional continuous variables for the departure times is solved with a
Mixed Integer Programming solver. In the model every flight has three crew positions. Additional
constraints enforce that neither duty limits nor connection times are violated. The model allows to
assign less than three crew members to a flight, which means that the flight will be an open flight in
the final solution.

7

Abdelghany et al. (2008) present an integrated approach to recover the flight schedule, aircraft and
crew at the same time. The overall approach follows Abdelghany et al. (2004) but the Mixed Integer
Program for the recovery stages is extended to deal with different resources, namely aircraft, pilots
and flight attendants. Either the required number of resource units per type has to be assigned to a
flight, or no resource units at all. The latter means that the flight is canceled. Moreover, qualification
constraints are added. The pilot must, for example, be qualified for the assigned aircraft type.

Crew scheduling with flight retiming in the planning phase is discussed by Klabjan et al. (2002).
Mercier and Soumis (2007) introduce an integrated aircraft routing, crew scheduling and flight reti-
ming model.

Walker et al. (2005) present a model for simultaneous railway timetable adjustment and crew
rescheduling. A timetabling part where the departure of tasks can be chosen within time windows is
linked to a crew scheduling part where generic driver shifts are chosen. Here a generic driver shift is a
sequence of tasks that is feasible with respect to the start and end locations of consecutive tasks. Shift
length and task (piece-of-work) sequencing constraints ensure that the departure times are chosen such
that only the break rule may be violated in the selected shifts. Breaks are added into the shifts during
the branching process. A conflict free timetable could be achieved by adding an enormous number of
train crossing and overtaking constraints. The authors propose to relax these constraints in the initial
model and to resolve violations by branching on the waiting decisions between involved train pairs.

Recently, Rezanova and Ryan (2009) and Rezanova (2009) presented a solution approach for
railway crew rescheduling under the assumption that the timetable is fixed. The problem is formulated
as a set partitioning problem and possesses strong integer properties. The proposed solution approach
is therefore a depth-first search in a branch-and-price tree. The problem is first initialized with a very
small disruption neighborhood, which contains only duties that cover delayed, canceled or re-routed
tasks and is limited by a recovery period. As long as constraints are uncovered, while solving the
LP-relaxation, the disruption neighborhood is extended by either adding more duties to the problem
or by extending the recovery period. In order to deal with new information becoming available the
author(s) propose to use the crew rescheduling algorithm in a rolling time horizon approach similar to
the one proposed by Nielsen (2008) for rolling stock rescheduling.

Also the paper of Potthoff et al. (2008) deals with railway crew rescheduling without retiming.
The problem is modeled in a similar way as in Rezanova and Ryan (2009) and Rezanova (2009) with
the difference that tasks may be covered by more than one duty. The presented solution approach
uses a heuristic combining Lagrangian relaxation and column generation to explore core problems.
First, an initial core problem containing the infeasible duties and some candidate duties is solved with
the heuristic. If tasks cannot be covered, new core problems representing the neighborhood of an
uncovered task are explored.

8

4 Mathematical formulation

In this section, we formulate the operational crew rescheduling problem with retiming as an integer
linear program. Therefore, we will first introduce some notation. We will use copies of tasks to
represent the retiming possibilities, as proposed by Mercier and Soumis (2007). The copies differ from
each other in their departure and arrival times. Using copies of tasks limits the retiming possibilities
since the departure time cannot be chosen continuously and the retiming possibilities of a task must
be determined beforehand.

Denote by N , indexed by i, the set of tasks. Let sdep
i (sarr

i) denote the departure (arrival) station of
task i. The planned departure and arrival time are given as tdep

i and tarr
i , respectively. The minimum

required dwell time after task i is wi. Moreover, for every task i ∈ N a penalty fi is defined for
not covering it. Furthermore, we derive a number of copies e ∈ Ei for every task i ∈ N . Ei

contains at least the copy representing the planned departure time of task i. Denote by N c ⊆ N

the tasks i for which |Ei| ≥ 2. E is the union of all sets Ei. With i(e) we refer to the source task
copy e is derived from. With every copy e ∈ E we associate the delay de compared to the planned
departure time tdep

i(e) and a cost parameter ge representing the penalty for the delay. Furthermore, let
Be = {e′ ∈ Ei(e) | de′ ≤ de}.

If two tasks i and j are operated after each other in the same rolling stock duty, there is a minimum
turnaround time uij . Note that the turnaround time is 0 if the same rolling stock composition is
continuing in the same direction. Let hij = max(wi, uij) be the minimum time that is needed after
the arrival of task i before the rolling stock is available for task j. Let L̂e = arg minf∈Ej{df | (t

dep
j +

df)− (tarr
i + de) ≥ hij} be the copy representing task j with the smallest delay such that the rolling

stock is available if copy e would be used for task i. Furthermore, let

Le =

∅ if ∃ e′ ∈ Ei(e) with de′ > de and L̂e = L̂e′ ,

L̂e otherwise.
(1)

∆ = ∆A ∪ ∆R is the set of unfinished original duties, where ∆A are active duties and ∆R are
stand-by duties. Let Kδ be the set of all feasible completions for duty δ ∈ ∆. With every feasible
completion k ∈ Kδ we associate cost cδk and binary parameters aδik and bδek. aδik is equal to 1 if
feasible completion k for duty δ is qualified to drive task i and 0 otherwise. bδek is equal to 1 if
feasible completion k for duty δ is making use of copy e and 0 otherwise. Note that bδek is 1 if feasible
completion k is using copy e for deadheading.

Let xδk and ve be binary variables indicating if feasible completion k, or respectively copy e are
chosen xδk = 1 (ve = 1), or not xδk = 0 (ve = 0). Furthermore, we introduce a binary variable zi for
every task i ∈ N . If task i is canceled, zi will be set to 1, or otherwise zi will be set to 0.

9

We can now formulate the operational crew rescheduling problem with retiming (OCRSPT) as

min
∑
δ∈∆

∑
k∈Kδ

cδkx
δ
k +

∑
i∈N

fizi +
∑
e∈E

geve (2)

s.t.
∑
δ∈∆

∑
k∈Kδ

aδikx
δ
k + zi ≥ 1 ∀i ∈ N (3)

∑
k∈Kδ

xδk = 1 ∀δ ∈ ∆ (4)

|∆̄|ve −
∑
δ∈∆

∑
k∈K

bδekx
δ
k ≥ 0 ∀e ∈ E (5)∑

e∈Ei

ve + zi = 1 ∀i ∈ N (6)

zi +
∑
e′∈Be

ve′ −
∑
f∈Le

vf ≥ 0 ∀i ∈ N c,∀e ∈ Ei (7)

xδk ∈ {0, 1} ∀δ ∈ ∆, ∀k ∈ Kδ (8)

ve ∈ {0, 1} ∀e ∈ E (9)

zi ∈ {0, 1} ∀i ∈ N (10)

We will refer to Model (2)–(10) as OCRSPRT1. In the objective function (2) the deviation from the
planned crew schedule, the penalties for canceling tasks, and the penalties for delays are minimized.
Constraints (3) ensure that every task is either assigned to one or more qualified drivers, or is canceled.
By (4) exactly one feasible completion must be selected for every original duty. Constraints (5) make
sure that the binary variable ve is set to 1 if copy e is used in any selected feasible completion. That
only one copy per task may be used is modeled by Constraints (6). Moreover, these constraints
guarantee that deadheading on tasks which are canceled is not possible. Constraints (7) model that
the rolling stock must be idle for at least hij time units if task j is operated directly after task i by
the same rolling stock. We assume that stand-by rolling stock may be used if necessary. If a task
is canceled, the next task in the rolling stock duty will be served by stand-by rolling stock and may
therefore depart at every possible departure time. Note that Constraints (7) are only required for tasks
for which multiple copies are derived. Essential in Constraints (7) is that |Le| ≤ 1. If |Le| ≥ 2 we
must use a Constraint (7) for every f ∈ Le.

We will give an example to illustrate how the sets Le and Be interact in Constraint (7). Therefore
we consider train 3552 from Eindhoven to Hoofdorp Shunt Yard (Hfdo) which consists of three tasks
assigned to the same rolling stock schedule. Assume we derive two copies for the first two tasks with
0 and 3 minutes delay respectively. Detailed information about the copies are shown in Table 1. Let
us assume that hij = 2 minutes between tasks i(d) and i(e) as well as between i(d) and i(f). Then
according to (1): Ld = {e}, Ld′ = {e′}, Le = ∅ and Le′ = {f}. The last two result from the fact that
the planned idle time in Utrecht is 6 minutes, so even if train 3552 arrives with a delay of 3 minutes
in Utrecht, the next task can still depart at the planned time. This is an example where an introduced
delay can be absorbed due to margins in the timetable.

10

Copy Delay (min) Origin Detstination Departure Arrival
d 0 Ehv Ht 14:47 15:06
d′ 3 Ehv Ht 14:50 15:09
e 0 Ht Ut 15:08 15:37
e′ 3 Ht Ut 15:11 15:40
f 0 Ut Hfdo 15:43 16:27

Table 1: Example of copies for train 3552 from Eindhoven (Ehv) to Hoofdorp Shunt Yard (Hfdo)

An alternative formulation OCRSPRT2 can be obtained by replacing Constraints (5) in OCRSPRT1

by

ve −
∑
k∈Kδ

bδekx
δ
k ≥ 0 ∀δ ∈ ∆,∀e ∈ E (11)

Proposition 1. (11) implies (5).

Proof. If ve −
∑

k∈Kδ bδekx
δ
k ≥ 0 ∀δ ∈ ∆, then∑

δ∈∆

(
ve −

∑
k∈Kδ

bδekx
δ
k

)
≥ 0⇒ |∆|ve −

∑
δ∈∆

∑
k∈Kδ

bδekx
δ
k ≥ 0

Proposition 2. The reverse implication of Proposition 1 is not true.

Proof. E.g. consider ∆ = {1, 2, 3}, E = {1, 2, 3} and
∑

k∈K b
δ
1kx

δ
k = 0.5 for δ ∈ {1, 2} and∑

k∈K b
δ
1kx

δ
k = 0.0 for δ = 3. Then with v1 = 1/3 Constraint (5) would hold, but Constraint (11)

would be violated for δ = 1 and δ = 2.

Denote by LP1 the linear relaxation of model OCRSPRT1 and by LP2 the linear relaxation of
model OCRSPRT2.

Proposition 3. LP2 ≥ LP1

Proof. The proof follows directly from Proposition 1 and 2.

Proposition 3 states that using Constraints (11) results in a tighter LP relaxation. However, |E|
constraints of type (5) are replaced by |E||∆| constraints of type (11). Thus the number of constraints
of type (11) is much larger than that of type (5).

After several experiments with the solution approach described in Section 5, we discovered that
the approach of model OCRSPRT2 resulted in less uncovered tasks and less retimed tasks than the
approach of model OCRSPRT1. In principle the models have the same integer solutions, but since
we use an heuristical approach, we do not always find an optimal solution. We also noticed that the
problem is solved slower if we use model OCRSPRT2 instead of model OCRSPRT1. However, we
will accept the increase in computation time to receive better results. So, in the remainder of this
paper we only consider model OCRSPRT2.

11

Define an initial core prob-
lem without retimed copies

Compute an initial solu-
tion using the CG heuristic

Get the list of
uncovered tasks

Explore the core problem
using the CG heuristic

Update the list of
uncovered tasks

List empty? STOP

Define the core problem Select tasks which
may be retimed

Remove a task
from the list

YES

NO

Figure 4: Iterative neighborhood exploration with retiming (INER)

5 Solution approach

On an average workday a crew schedule of NS contains about 1,000 duties for drivers covering in total
more than 10,000 tasks. Our aim is to provide solutions of good quality within a couple of minutes of
computation time. Therefore, we will not consider all original duties and all tasks, but we will extract
core problems containing only a subset of the duties and tasks. Moreover, we will use a Lagrangian
heuristic embedded in a column generation scheme very similar to the one proposed by Potthoff et al.
(2008). In this paper we will investigate two approaches, which use the same heuristic to explore the
core problems, but differ in the way the core problems are defined.

Our first approach is outlined in Figure 4. We first define an initial core problem where retiming
is not allowed. A solution for this core problem is computed using the column generation based
heuristic. If the computed solution covers all tasks we stop, otherwise we iterate over the uncovered
tasks and define one new core problem per uncovered task. We use a neighborhood definition to select
the tasks for which we allow retiming and for constructing the core problems. The core problems are
explored using the column generation (CG) heuristic and the list of uncovered tasks is updated. We
will refer to this approach as iterative neighborhood exploration with retiming (INER). The difference
to the approach presented by Potthoff et al. (2008) is that in INER retiming of some tasks is allowed
in the neighborhood exploration phase.

Our second method, outlined in Figure 5, does not use an iterative neighborhood exploration.
If the solution of the initial core problem contains some uncovered tasks, a second core problem is
constructed and solved. This second core problem is an extension of the initial core problem, which
is obtained by adding retiming possibilities. In the remainder of this paper we refer to this approach
as extended core problem with retiming (ECPR).

12

Define an initial core prob-
lem without retimed copies

Compute an initial solu-
tion using the CG heuristic

Get the list of
uncovered tasks

List empty? STOP

Create the extended
core problem by adding

retiming possibilities

Explore the extended
core problem using
the CG heuristic

YES

NO

Figure 5: Extended core problem with retiming (ECPR)

In both approaches INER and ECPR we relax the initial core problems by only using Con-
straints (3), (4), (8) and (10). Note that in this model it can happen that feasible completions are
chosen that contain deadheading on tasks which are canceled. However, in the next core problem
which is considered in both approaches, these deadheadings are not allowed anymore and a different
solution will be computed. The reason we decided to use the relaxed model in the initial core problem
is that the computation time for using OCRSPRT2 is too long compared to the relaxed model.

5.1 Defining the initial core problems

The initial core problems in INER and ECPR are constructed in the same way as in Potthoff et al.
(2008). The intention is to select the duties that are affected by the timetable adjustments and to add
some duties which contain some tasks close in space and time to the modified tasks.

5.2 Neighborhoods for uncovered tasks in the INER approach

Given an uncovered task, we define a neighborhood which will be extended by retiming possibilities
in a subsequent step. First we select a number of candidate duties. These duties can possibly cover the
uncovered task. In order to offer some reassignment possibilities we also select a number of similar
duties for each candidate duty.

The candidate duties are selected as follows. Given the departure time and station of the uncovered
task j we look at the latest task j− that departs from the same station before task j. Then we consider
the replacement duty σ that covers j− in the current solution and check heuristically, considering the
qualification of the driver, if σ could cover j. If yes, then we select σ as a candidate and continue
with the previous task that departs from station sdep

j before j− until we have selected r candidates.
We repeat the procedure considering tasks that depart from station sdep

j after task j.

13

Furthermore, we select the replacement duty which covers task ̂, the first task that leaves sarr
j and

goes back to station sdep
j such that a driver can transfer from j to ̂. Including this original duty ensures

that it is possible to perform task j and then deadhead back to sdep
j .

In the next step we select for every candidate the s most similar duties that have not been selected
yet. We define similarity between duties in terms of the numbers of stations that are visited around
the same time. We refer to Potthoff et al. (2008) for the exact definition.

5.3 Core problems with retiming possibilities

The primary goal of retiming is to enable solutions where less tasks need to be canceled. In order to
limit the computational effort we allow retiming only for a subset of the tasks. If we have an uncovered
task which starts, for example, at ’s Hertogenbosch, this indicates that there is at the start time of the
task a shortage of crew in ’s Hertogenbosch. By delaying some tasks starting at ’s Hertogenbosch,
we can probably prevent the shortage. Therefore, we propose the following procedure to determine
this subset. Let Nu be the uncovered tasks after solving the initial core problem. Then, for an
uncovered task i ∈ Nu we construct a set N c

i with tasks that may be retimed as N1
i ∪ N2

i , where
N1
i = {j ∈ N | sdep

j = s
dep
i and tdep

j ∈ [tdep
i − p, t

dep
i + p]} and N2

i is recursively defined as the set of
all tasks which are linked to tasks in N1

i or N2
i .

For INER N c = N c
i for the uncovered task i currently under consideration. For the extended core

problem in the ECPR approach the tasks that may be retimed are N c = ∪i∈NuN c
i .

Let N̈ contain all tasks covered by an original duty in the neighborhood of the uncovered task
under consideration when using INER . For the ECPR approach N̈ is the set of tasks of the initial
core problem. The core problems are then defined by a subset of the original duties ∆̄ and a subset of
the tasks N̂ . Here ∆̄ = {δ ∈ ∆ | δ is using a task i ∈ N̈ ∪N c} and N̂ is the set of all tasks used by at
least one original duty δ ∈ ∆̄. Note that due to overcovering and deadheading it can happen that for a
task j ∈ N̂ not all duties δ using task j are in ∆̄. By definition of ∆̄ retiming is not allowed for these
tasks. Denote by N̄ = {i ∈ N̂ | δ ∈ ∆̄ ∀δ ∈ ∆ using task i}.

Given ∆̄ and N̄ we define Ē = ∪i∈N̄Ei. Moreover, we denote by K̄δ the set of feasible comple-
tions for duty δ which only use tasks i ∈ N̂ . The mathematical model for a core problem is obtained
by replacingN with N̄ , ∆ with ∆̄,E with Ē andK with K̄ in the Formulations (2)–(10), respectively.

5.4 Exploring a core problem

For computing near optimal solutions and lower bounds for the core problems we adapt the heuristic,
based on a combination of column generation and Lagrangian relaxation, presented in Potthoff et al.
(2008). For an introduction to column generation we refer to Desrosiers and Lübbecke (2005). Let
us first describe the building blocks, before we present our column generation based heuristic in
Section 5.4.4.

14

5.4.1 Combining column generation and Lagrangian relaxation

A lower bound for a given core problem can be obtained by Lagrangian relaxation. In this section
we will present the details for model OCRSPRT2. We relax Constraints (3), (11) and (7) of the core
problems in a Lagrangian fashion using multiplier vectors λ, µ and η, respectively.

For simplicity we introduce γe =
∑
{d∈Ē | e∈L̄d} ηd −

∑
{d∈Ē | e∈B̄d} ηd. Then, the Lagrangian

subproblem equals:

Θ(λ, µ, η) = min
∑
i∈N̄

λi +
∑
δ∈∆

∑
k∈K̄δ

(cδk +
∑
e∈Ē

µδeb
δ
ek −

∑
i∈N̄

λia
δ
ik)x

δ
k +

∑
i∈N̄

(fi − λi −
∑
e∈Ēi

ηe)zi

+
∑
i∈N̄

∑
e∈Ēi

(ge + γe −
∑
δ∈∆̄

µδe)ve (12)

s.t. (4), (6), (8), (9) and (10)

For given vectors λ, η and µ, Θ(λ, η, µ) can be calculated with a simple procedure. First, we determine
the values for all xδk variables. To ensure that Constraints (4) are not violated, for every duty δ ∈ ∆̄
we set xδk equal to 1 for exactly one k ∈ arg min

{
c̄δk(λ, η, µ)

∣∣ k ∈ K̄δ
}

. Here c̄δk(λ, η, µ) = (cδk +∑
e∈Ē µ

δ
eb
δ
ek −

∑
i∈N̄ λia

δ
ik) is the Lagrangian reduced cost of feasible completion k. The values

of the zi and ve variables can be determined independently from the xδk variables. The algorithm in
Figure 6 determines for every task i ∈ N̄ the values for the variables zi and ve (∀e ∈ Ēi) such that
Constraints (6) are not violated.

For all e ∈ Ēi determine ḡe = (ge + γe −
∑

δ∈∆̄ µ
δ
e);1

Select e∗ ∈ arg min
{
ḡe
∣∣e ∈ Ēi};2

if ḡe∗ ≤ fi − λi −
∑

e∈Ēi ηe then3

Set zi = 0, ve∗ = 1 and for all e ∈ Ēi \ {e∗}, set ve = 04

else5

Set zi = 1 and for all e ∈ Ēi, set ve = 06

end7

Figure 6: Algorithm to determine zi and ve

The Lagrangian dual problem is to find the best Lagrangian lower bound Θ∗:

Θ∗ = max Θ(λ, η, µ), λ ≥ 0, η ≥ 0 and µ ≥ 0 (13)

Since the number of feasible completions can be enormous for some original duties, we combine
Lagrangian relaxation with column generation. Instead of considering all feasible completions we
consider only a subset in a restricted master problem (RMP). Denote by K̄δ

n the feasible completions
present in the nth RMP. A lower bound Θ∗n for the nth RMP is obtained by subgradient optimization
(see e.g. Fisher (1981); Beasley (1993)).

Let λn, ηn and µn be the vectors of the Lagrangian multipliers corresponding to Θ∗n. In the pricing
problems of our column generation algorithm we check, per original duty, if feasible completions exist

15

that are not in the RMP, but have lower Lagrangian reduced cost than the feasible completions in the
RMP. We will refer to them as promising feasible completions. The pricing problems are formulated
as shortest path problem with resource constraints (see Section 5.4.3). If promising feasible comple-
tions exist we add them to the RMP. Let pδn = min{c̄δk(λ, η, µ) | k ∈ K̄δ} be the solution value of
the pricing problem for duty δ and let rδn = min{c̄δk(λ, η, µ) | k ∈ K̄δ

n} be the smallest Lagrangian
reduced cost of a feasible completion for duty δ in the nth RMP. After solving the pricing problems for
all duties δ ∈ ∆̄ we can compute a lower bound for the core problem as LBn = Θ∗n+

∑
δ∈∆̄(pδn−rδn).

5.4.2 Feasible solutions

Next to a good lower bound, we are especially interested in near optimal feasible solutions. Based
on Lagrangian multiplier vectors λ, η and µ we try to generate feasible solutions with a Lagrangian
heuristic called GREEDY shown in Figure 7.

In procedure GREEDY, we select for every duty the best feasible completion. If it is the first time
that a certain task appears in a selected feasible completion, the copy which is used for that task, will
be the only copy that is allowed to be used in all duties. So after a certain copy for a task is selected, all
feasible completions which use another copy of the same task will be ignored. Moreover, we ignore
feasible completions which use copies, which would violate the minimum idle time constraints (7).
Since every set K̄δ

n contains the artificial completion without any copies, it is ensured that for every
duty at least one feasible completion is left to select.

If, after the feasible completions of the duties have been selected, still some tasks are uncovered,
we check if the idle stand-by duties can cover those tasks. A stand-by duty is idle if the selected
feasible completion does not cover any tasks.

GREEDY does not always find a feasible solution, however in most cases it will. Only in the
extraordinary case that a crew member is assigned to be a passenger on a train which is not covered
by a driver, the solution is infeasible. This condition is checked in Line 22.

5.4.3 Solving the pricing problems

For every duty in a core problem, we construct a directed acyclic graph that contains all possible
feasible completions. The nodes represent arrivals or departures of copies derived from the tasks. An
arc goes from an arrival node to a departure node if it is possible to use the corresponding copies after
each other in a feasible completion. Besides the cost, every arc has two additional parameters: A time
consumption and a boolean value indicating if the arc can represent a meal break. The problem of
finding the path corresponding to the feasible completion with the smallest Lagrangian reduced cost is
solved as resourced constrained shortest path problem. For that purpose, we have adapted the generic
dynamic programming algorithm presented in Irnich and Desaulniers (2005).

16

Order the original duties δ ∈ ∆̄;1

Set zi = 1 for all i ∈ N̄ and set ve = 0 for all e ∈ Ē;2

Set λ̂ = λ, η̂ = η and µ̂ = µ;3

forall δ ∈ ∆̄ do4

Choose k∗(δ) ∈ arg min{c̄δk(λ̂, η̂, µ̂) | k ∈ K̄δ
n} and set the corresponding xδk∗(δ) = 1;5

Set λ̂i = 0 and zi = 0 for all i ∈ N̄ with aδik∗(δ) = 1;6

forall e ∈ Ē with bδek∗(δ) = 1 do7

Define E∗: the set of copies which, by using copy e, are not allowed to be used;8

Define K∗: the set of completions which use at least one copy d ∈ E∗;9

Ignore ∀δ ∈ ∆̄ the completions k ∈ K∗ out of K̄δ
n;10

Set ve = 1 and η̂e = 0;11

end12

end13

forall i ∈ N̄ do14

Set λ̂i = fi, if zi = 1;15

end16

Construct the set of idle stand-by duties ∆̄I = {δ ∈ ∆̄R | aδik∗(δ) = 0 for all i ∈ N̄};17

forall δ ∈ ∆̄I do18

Set xδk∗(δ) = 0;19

Repeat lines 5 until 12;20

end21

Check if
∑

e∈Ēi
∑

δ∈∆̄

∑
k∈Kδ bδekx

δ
k = 0 for all i ∈

{
i ∈ N̄ | zi = 1

}
. If this condition holds,22

a feasible solution is found.

Figure 7: Procedure GREEDY to construct feasible solutions

5.4.4 The column generation based heuristic

Our column generation based heuristic using the building blocks as described in Section 5.4.1–5.4.3
is outlined in Figure 8. It can be seen as a depth first search in a branch-and-bound tree with column
generation in every node. This is a common way of designing column generation based heuristics
for crew scheduling problems (see Desaulniers et al. (2001)). In Line 5 a dual solution for the RMP
is obtained by Lagrangian relaxation as explained above. Another specialty in our approach is that
we generate solutions throughout the algorithm (see Line 6). We denote by UB∗ the cost of the best
found feasible solution. When solving the pricing problems for the original duties, we do pricing
and stop if we have found promising columns for more than maxPP of the duties. In Line 9 we use
three criteria to decide if we stop column generation in the current node. First, we stop if no columns
have been added to the RMP. Second, we stop if Θ∗n is close to LBn. As a third criterion we use a

17

maximum number of column generation iterations maxItCG to perform in the current node. In the
root node, where no feasible completions have been fixed, maxItGC = ∞, in the other nodes we can
use a relatively small number to speed up the algorithm.

After terminating column generation for a node we check in Line 13 if the best feasible solution
of value UB∗ is close to the lower bound LBF which is the sum of the fixed part UBF and the lower
bound of the free variables Θ∗n. If this is the case, we can terminate the algorithm since we know that it
is unlikely to find a better feasible solution if we only fix more variables. Otherwise, we fix the feasible
completions for more original duties. This is done based on the number of times a feasible completion
was set to 1 in the solution of a Lagrangian subproblem during the last subgradient optimization.

stopF ix = false, LBF = −∞, UB∗ =∞, UBF = 0;1

while stopFix = false do2

stopColGen = false;3

while stopColGen = false do4

Compute the lower bound Θ∗n for the RMP with subgradient optimization;5

Call GREEDY with at most maxMV multiplier vectors and update UB∗;6

Solve pricing problems and add promising feasible completions;7

Compute LNn if all pricing problems have been solved;8

if any stopping criteria for column generation is met then9

stopColGen = true, LBF = UBF + LBn;10

end11

end12

if any stopping criteria for fixing is met then13

stopF ix = true;14

else15

Fix the feasible completions for at most maxFix original duties and update UBF ;16

end17

end18

Figure 8: The algorithm to solve a core problem

6 Computational results

We will evaluate our two new approaches with retiming INER and ECPR on three disruption scenar-
ios, Ac:1, Ht:1, and Ztm:1. These scenarios are based on past real life disruptions. Some information
about the scenarios is presented in Table 2. Furthermore, we used a crew schedule from NS that was
planned for some workday in September 2007. In order to evaluate the benefits of retiming, we com-
pare our new methods with the method proposed in Potthoff et al. (2008). We will refer to the latter

18

Location ID Time Type

Abcoude Ac:1 11:00-14:00 two sided blockage, some trains are rerouted

’s-Hertogenbosch Ht:1 15:30-18:30 two sided blockage

Zoetermeer Ztm:1 08:00-11:00 reduced number of trains

Table 2: Information about the disruption scenarios

as iterative neighborhood exploration (INE). Moreover, we will investigate the effect of considering
stand-by duties. For that reason, we determine two cases. In the first case we do not use any stand-by
duty and in the second case we use a set of 46 stand-by duties.

All approaches have been implemented in C++. The tests have been performed under Windows
XP on a quad core 2.99 GHz CPU machine with 3.25 GB RAM memory. However, only a single core
was used in the tests.

6.1 Parameter settings

First of all, we have some settings which are required to determine the core problems. In the definition
of N1 we set p = 30 minutes. For every task in N̄ c we derive four copies with delays de equal to 0,1,
3 and 5 minutes.

In the column generation based heuristic, we use the following settings. For partial pricing we set
maxPP = 0.3. For calling GREEDY we set maxMV = 100. In the root node of our depth-first search
maxItCG =∞, in all other nodes we use maxItCG = 10. Furthermore, maxFix was set to 0.05.

6.2 Cost parameters for the objective function

We use the following settings to account for the different aspects in the objective function. First, the
cost of changing a duty is set to 400. The cost for sending home a stranded driver by taxi is 3000.
Using a task in a feasible completion costs 0 if the corresponding original duty was already covering
that task, and 50 otherwise. Moreover, the cost of a transfer is 0 if the transfer was already in any
original duty, and 1 otherwise. The usage of new repositioning tasks costs 1,000. The penalty for
retiming a task is 200 per minute of delay.

The penalties fi for canceling task i depend on the characteristic of the task. We say a task is of
type A-B if sdep

i 6= sarr
i and of type A-A if sdep

i = sarr
i . We set fi = 20, 000 if task i is of type A-B and

fi = 3, 000 otherwise. This is motivated by the overall disruption management process. If only tasks
of type A-A are canceled, the crew schedule is compatible with the underlying rolling stock schedule
under the assumption that the rolling stock assigned to the canceled A-A tasks can remain idle at the
platform or can be shunted to a nearby shunt yard and pulled out again for its next trip.

19

Method It |∆̄| |N̄ | |Ē| LB UB Gap Sol TT A-B A-A DT TD
(%) (s) (min)

Ac:1 INE 1 176 629 0 58718 59211 0.8 59211 98 1 0 0 0
Ac:1 INE 2 98 259 0 25324 25324 0.0 59211 110 1 0 0 0
Ac:1 INER 2 115 317 106 31202 31202 0.0 59212 137 1 0 0 0
Ac:1 ECPR∗ 2 187 670 30∗ 58718 59116 0.7 59116 493 1 0 0 0

Ht:1 INE 1 126 660 0 61661 61744 0.1 61744 95 1 1 0 0
Ht:1 INE 2 77 391 0 30637 30637 0.0 61694 106 1 1 0 0
Ht:1 INE 3 72 372 0 30450 30450 0.0 61694 118 1 1 0 0
Ht:1 INER 2 87 455 37 17637 17809 1.0 45649 169 0 1 3 9
Ht:1 INER 3 79 413 56 14007 14007 0.0 45649 190 0 1 3 9
Ht:1 ECPR 2 147 835 119 43241 43751 1.2 43751 602 0 1 2 6

Ztm:1 INE 1 117 432 0 51940 51991 0.1 51991 25 2 0 0 0
Ztm:1 INE 2 99 247 0 43264 43264 0.0 51991 36 2 0 0 0
Ztm:1 INE 3 100 301 0 23563 23563 0.0 32339 50 1 0 0 0
Ztm:1 INER 2 133 398 175 5355 5667 5.8 13392 167 0 0 1 3
Ztm:1 ECPR† 2 186 768 185† 11982 12389 3.4 12389 572 0 0 1 3

Table 3: Results with stand-by drivers.

6.3 Numerical results

For the numerical results we use some abbreviations in Tables 3 and 4: “It” is the iteration number of
the general solution approach as given in Figures 4 and 5. The costs in the columns “LB” and “UB”
respectively are the lower bound on the optimal solution and the cost of the best found solution of the
core problem. “Gap” represents the relative difference between the best solution and the lower bound
of the core problem. The column “Sol” represents the cost of the total solution: the cost of the core
problem (“UB”) plus the rescheduling cost of the other duties that were selected in previous iterations,
and that are needed to complete the solution. The total computation time in seconds including the
current iteration is given in the column “TT”. The columns “A-B” and “A-A” represent the number of
uncovered tasks for the respective types. The last two columns give information about the used retimed
copies. The column “DT” displays the number of delayed tasks and the column “TD” represents the
total number of delayed minutes.

With INER and ECPR we solve formulation OCRSPRT2. We compare the results with the INE
method. Since the rescheduling model without retiming is used in the initial core problem of all three
approaches, the results of the first iteration are the same. Therefore, we report this result only once
for the method INE in Tables 3 and 4. A remark must be made that we were not able to use the ECPR
approach with p = 30 in the definition of N1 since it ran out of memory. For Ac:1 (∗) we had to set
p = 5 and for Ztm:1 (†) we had to set p = 20.

In Table 3 we show the results of the three approaches in case we use the 46 stand-by duties and in
Table 4 we show the results without using stand-by duties. By using stand-by duties we notice that the
ECPR method has in all cases the best solution. However, the computation times of this approach are

20

Method It |∆̄| |N̄ | |Ē| LB UB Gap Sol TT A-B A-A DT TD
(%) (s) (min)

Ac:1 INE 1 130 629 0 61136 62187 1.7 62187 86 1 0 0 0
Ac:1 INE 2 59 287 0 27235 27235 0.0 62187 97 1 0 0 0
Ac:1 INER 2 79 351 106 34066 34066 0.0 62136 146 1 0 0 0
Ac:1 ECPR∗ 2 141 670 30∗ 60967 62390 2.3 62390 539 1 0 0 0

Ht:1 INE 1 90 660 0 65567 65803 0.4 65803 94 1 2 0 0
Ht:1 INE 2 44 407 0 34489 34489 0.0 65803 105 1 2 0 0
Ht:1 INE 3 39 407 0 31080 31080 0.0 65803 115 1 2 0 0
Ht:1 INE 4 40 405 0 29941 29941 0.0 63657 124 1 1 0 0
Ht:1 INER 2 52 454 37 23200 23208 < 0.1 52861 144 0 3 2 6
Ht:1 INER 3 45 439 56 16747 16747 0.0 50364 163 0 2 2 6
Ht:1 INER 4 54 429 82 17812 17812 0.0 46666 205 0 1 2 6
Ht:1 ECPR 2 114 871 157 44502 44660 0.4 44660 641 0 1 2 6

Ztm:1 INE 1 71 432 0 51991 51992 0.0 51992 16 2 0 0 0
Ztm:1 INE 2 54 249 0 42058 42058 0.0 51992 23 2 0 0 0
Ztm:1 INE 3 55 306 0 42159 42159 0.0 51992 36 2 0 0 0
Ztm:1 INER 2 86 390 175 5354 5818 8.7 14046 138 0 0 1 3
Ztm:1 ECPR† 2 140 768 185† 12058 12441 3.2 12441 477 0 0 1 3

Table 4: Results without stand-by drivers.

more than three times longer compared to the other two approaches. In terms of uncovered tasks the
INER approach performs the same as ECPR, except for case Ht:1 where in the solution of INER an
additional task is delayed. By delaying at most 3 tasks, both retiming approaches have in cases Ht:1
and Ztm:1 less uncovered tasks than the INE approach. In case Ac:1, retiming did not result in better
crew schedules. However, a remark must be made that the solution of the method INE for Ac:1 is a
crew schedule which is not compatible with the adjusted timetable since it has one driver deadheading
on a canceled task.

The uncovered task in Ac:1 is rerouted due to the disruption and takes half an hour longer. The
crew member which was originally assigned to this task does not have the knowledge of the new route
and is therefore not allowed to drive this train. This task has to be performed exactly at the moment
of rescheduling. Therefore, it is not possible to cover the task without retiming it. Because of the
minimum transfer time of 10 minutes, the task must be retimed with at least 10 minutes. The retiming
approaches INER and ECPR only use a maximum retiming possibility of 5 minutes and were therefore
not able to cover the task. In additional tests in which INER and ECPR also constructed retimed copies
of 10 minutes delay, it was still not possible to cover all tasks. It seems to be that the costs of all these
delays are not worth it.

If we do not use any stand-by duties (see Table 4), ECPR resulted twice in the best solution and
INER found once the best solution. In terms of uncovered tasks and delayed minutes, the methods
performed equally well. Except for case Ac:1, retiming of at most 2 tasks results in less uncovered

21

tasks. Again the computation time of ECPR is by far the largest and INER has a computation time
which is at most 2 minutes longer compared to INE.

We notice that the solutions in which stand-by duties are used have lower costs, but if we only
consider the number of uncovered tasks and the number of delayed tasks, it was not necessary to
use the stand-by duties. Moreover, for Ht:1, the use of stand-by duties has increased the number of
delayed tasks.

7 Conclusions and future research

We presented two approaches to solve railway crew rescheduling with retiming. We have compared
our new approaches with an approach that does not allow retiming. In 4 out of the 6 cases (Ht:1 and
Ztm:1, both with and without stand-by drivers), the new approaches found solutions with less canceled
tasks. Moreover, the observed delay that was introduced into the timetable is very small, which makes
it likely that those solutions could be implemented in practice. The computation times of the iterative
neighborhood exploration with retiming (INER) approach are within a range that should make it
applicable within a decision support system for disruption management.

In this paper we have limited ourselves to consider only train drivers. However, in a disrupted
situation conductors need to be rescheduled as well. This could be done as in Stojković and Soumis
(2005) and Abdelghany et al. (2008) by using multiple tasks per trip that represent roles in the opti-
mization model.

In future work conflicts between trains due to retiming decisions should be taken into account
as well. We believe that the presented model and solution approaches could be extended into that
direction without sacrificing computation time too much.

Disruption management takes place in a very uncertain environment, e.g. it can only be estimated
how long it will take before a broken switch is repaired. This means that, at the point in time when the
first rescheduling decisions must be taken, it is not certain how the timetable will be adjusted during
the rest of the day. Stochastic or robust optimization models could be used in order to deal with this
kind of uncertainty.

References

A. Abdelghany, G. Ekollu, R. Narasimhan, and K. Abdelghany. A Procative Crew Recovery Decision
Support Tool for Commercial Airlines during Irregular Operations. Annals of Operations Research,
127:309–331, 2004.

K. F. Abdelghany, A. F. Abdelghany, and G. Ekollu. An integrated decision support tool for airline
schedule recovery during irregular operations. European Journal of Operational Research, 185:
825–848, 2008.

22

J. E. Beasley. Lagrangian relaxation. In C. R. Reeves, editor, Modern heuristic techniques for combi-
natorial problems, pages 243–303. John Wiley & Sons, Inc., New York, 1993.

J. Clausen, A. Larsen, J. Larsen, and N. Rezanova. Disruption management in the airline in-
dustry - Concetps, models and methods. Computers & Operations Research, 2009. doi:
10.1016/j.cor.2009.03.027.

G. Desaulniers, J. Desrosiers, and M. M. Solomon. Accelerating Strategies in Column Generation
Methods for Vehicel Routing and Crew Scheduling Problems. In C. C. Ribeiro and P. Hansen,
editors, Essays and Surveys in Metaheuristics, pages 309–324. Kluwer, Boston, 2001.

J. Desrosiers and M. E. Lübbecke. A Primer in Column Generation. In G. Desaulniers, J. Desrosiers,
and M. M. Solomon, editors, Column Generation. Springer, New York, 2005.

M. L. Fisher. The Lagrangian Relaxation Method for Solving Integer Programming Problems. Man-
agement Science, 27:1–18, 1981.

S. Irnich and G. Desaulniers. Shortest Path Problems with Resource Constraints. In G. Desaulniers,
J. Desrosiers, and M. M. Solomon, editors, Column Generation, pages 33–65. Springer, New York,
2005.

J. Jespersen-Groth, D. Potthoff, J. Clausen, D. Huisman, L. G. Kroon, G. Maróti, and M. Ny-
have Nielsen. Disruption Management in Passenger Railway Transportation. Technical Report
EI 2007-05, Erasmus University Rotterdam, 2007.

V. Johnson, L. Lettovský, G. L. Nemhauser, R. Pandit, and S. Querido. Final report to Northwest
Airlines on the crew recovery problem. Technical report, The Logistic Institute, Georgia Institute
of Technology, 1994.

D. Klabjan, E. L. Johnson, G. L. Nemhauser, E. Gelman, and S. Ramaswamy. Airline crew scheduling
with time windows and plane-count constraints. Transportation Science, 36:337–348, 2002.

A. Mercier and F. Soumis. An integrated aircraft routing, crew scheduling and flight retiming model.
Computers & Operations Research, 34:2251–2265, 2007.

L. K. Nielsen. A Decision Support Framework for Rolling Stock Rescheduling. Technical Report
ARRIVAL-TR-0158, Algorithms for Robust and online Railway optimization: Improving the Va-
lidity and reliAbility of Large scale systems (ARRIVAL), 2008.

D. Potthoff, D. Huisman, and G. Desaulniers. Column generation with dynamic duty selection for
railway crew rescheduling. Technical Report EI 2008-28, Econometric Institute, 2008.

N. J. Rezanova. The Train Driver Recovery Problem - Solution Method and Decision Support System
Framework. PhD thesis, Technical University of Denmark, 2009.

23

N. J. Rezanova and D. M. Ryan. The train driver recovery problem - A set partitioning based model
and solution method. Computers & Operations Research, 2009. doi: 10.1016/j.cor.2009.03.023.

M. Stojković and F. Soumis. An Optimization Model for the Simultaneous Operational Flight and
Pilot Scheduling Problem. Management Science, 47:1290–1350, 2001.

M. Stojković and F. Soumis. The operational flight and multi-crew scheduling problem. Yugoslav
Journal of Operations Research, 15:25–48, 2005.

C. G. Walker, J. N. Snowdon, and D. M. Ryan. Simultaneous disruption recovery of a train timetable
and crew roster in real time. Computers & Operations Research, 32:2077–2094, 2005.

24

