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INTRODUCTION 
 

Pediatric renal tumors comprise approximately 5% of malignancies in children under 15 

years old and 3.6% of malignancies in children under 20 years old (1).  Among 9731 

patients registered with the National Wilms Tumor Study Group (NWTSG) (1969-2002), 

Wilms tumor composed the vast majority of childhood renal tumors (92%), followed by 

clear cell sarcoma of the kidney (3.4%), congenital mesoblastic nephroma (1.7%), 

malignant rhabdoid tumor (1.6%), and rare miscellaneous neoplasms including primitive 

neuroectodermal tumor (PNET), synovial sarcoma, neuroblastoma, and cystic nephroma 

(1.1%).  Although not historically included on NWTSG studies, renal cell carcinoma 

accounts for 8% of renal tumors in children age 0-19 years according to data from the 

Surveillance, Epidemiology, and End Results (SEER) program (1). 

 

The study of Wilms tumor has had significant impact on the field of oncology.   Tenets of 

cancer biology, such as Knudson’s two-hit model, tumor suppressor genes, and alteration 

of genomic imprinting as a cancer initiator, were pioneered in Wilms tumor.  Wilms tumor 

also provided a paradigm for multidisciplinary treatment approaches and the conduct of 

cooperative group studies.  Through the efforts of the NWTSG, International Society of 

Pediatric Oncology (SIOP), United Kingdom Children’s Cancer Study Group (UKCCSG) 

and others, the overall durable survival rate for Wilms tumor now approximates 90%.   

This remarkable feat has been achieved while reducing radiation and anthracycline 

exposure in most patients. 

 

Despite this success, it is premature to declare victory in the battle against Wilms tumor.  

A significant minority of patients do not fare well, including those with anaplastic 

histology, blastemal-predominant histology (among patients treated up-front 

chemotherapy), bilateral disease, and favorable histology with loss of heterozygosity 

(LOH) at chromosomes 1p and 16q.  Together, these groups comprise 15-20% of Wilms 

tumor patients.  An additional 10-15% of patients with favorable histology Wilms tumor 

experience recurrence without clear risk factors.  Taken together, 25-30% of Wilms tumor 

patients have disease that is challenging to treat and resistant to first-line therapy.   

The research contained in this PhD thesis focuses on the identification of patients with 

high-risk Wilms tumor and strategies to improve clinical outcome.  The first two articles 
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describe research that identified telomerase expression level as a prognostic marker for 

favorable histology Wilms tumor.  The studies indicate that high telomerase RNA 

expression may identify a group of patients who warrant additional therapy.   The third 

article presents a large institution’s experience with recurrent Wilms tumor and 

documents the significantly improved salvage rate that has occurred since the 1980s.  The 

fourth article describes the results of the fifth National Wilms Tumor Study’s treatment 

regimens for anplastic histology Wilms tumor.   The fifth article describes the genetic and 

clinical characterization of Wilms tumor xenografts that were developed for pre-clinical 

testing of novel agents.  The final article presents the results of a phase II study to 

evaluate the anti-tumor activity of topotecan, one of the agents predicted in the xenograft 

screens to be active against Wilms tumor.   

 

 

Reference 

(1)  Ries LAG, Eisner MP, Kosary CL, Hankey BF, Miller BA, Clegg L, et al. SEER Cancer 
Statistics Review, 1975-2000. National Cancer Institute, Bethesda, MD 2003Available from: URL: 
http://seer.cancer.gov/csr/1975_2000/index.html 
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ABSTRACT 

 

Telomerase is a reverse transcriptase that maintains chromosome ends, compensating for 

the progressive loss of DNA that occurs during replication.  High telomerase enzyme activity 

is an unfavorable prognostic feature for several types of cancers.  We investigated whether 

telomerase level predicts outcome for patients with the pediatric renal malignancy Wilms 

tumor.  In a case-cohort study of 78 patients with favorable histology Wilms tumor, we 

compared tumor telomerase levels in patients with and without eventual recurrence.  Three 

measures of telomerase were employed: 1) telomerase enzyme activity, 2) expression of 

hTR, the RNA component of telomerase, and 3) mRNA expression of hTERT, the gene 

that encodes the catalytic component of the enzyme. Of the evaluable samples, 81% had 

detectable telomerase activity, 97% had detectable hTERT transcript, and 100% had 

detectable hTR.  Weak correlations were observed between telomerase activity and hTR 

level (r=0.34, p=0.02) and between telomerase activity and hTERT mRNA level (r=0.32, 

p=0.04).  Of the variables assessed, only hTERT mRNA expression correlated with outcome.  

The median hTERT mRNA level in tumors with recurrence was higher than that in tumors 

without recurrence (1.42 units versus 0.97 units, p=0.023, Wilcoxon).  Univariate analysis of 

hTERT mRNA level as a continuous variable suggested that each unit increase in hTERT 

mRNA level increased the risk of recurrence (RR) by a factor of 1.66 (95% confidence interval 

(CI) 1.2-2.3, p<0.005).  Compared to tumors with hTERT mRNA levels of 0-1 units, tumors 

with hTERT mRNA levels of 1-2 units had a RR of 2.72 (95% CI  0.91-8.13, p=0.074) and 

tumors with hTERT mRNA levels >2 units had a RR of 6.40 (95% CI 1.49-27.67, p=0.013).  

Multivariate analysis of hTERT mRNA level as a predictor of recurrence, which adjusted for 

tumor stage and age at diagnosis, revealed a RR of 1.48 (95% CI 0.9 to 2.6, p=0.16).  

Measurement of hTERT mRNA level may therefore enable clinicians to identify a population 

of patients at high risk for recurrence, and to adjust their therapy accordingly.  A larger 

study will be necessary to determine whether hTERT expression is an independent 

prognostic indicator.  Further biological investigation is warranted to discern whether the 

link between high hTERT expression and unfavorable prognosis is causative or correlative.
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Introduction 

 

Telomerase is a specialized reverse transcriptase that adds nucleotide repeats to 

telomeres, counteracting the progressive loss of DNA that occurs during replication and 

maintaining karyotypic stability.   Because telomerase is present in approximately 85-

95% of cancer specimens, but absent in most normal tissue (1, 2), it has become a focus of 

active clinical investigation.  Studies have demonstrated that the presence of telomerase 

activity can be used to distinguish malignant from normal tissue in various organs 

including the prostate (3), thyroid (4), cervix (5-7), and breast (8).  Additionally, studies of 

neuroblastoma (9, 10), gastric cancer (11, 12), breast cancer (13), acute myelogenous 

leukemia (14), chronic lymphocytic leukemia (15), and meningioma (16) have revealed 

that high telomerase activity is associated with tumor recurrence or poor therapeutic 

outcome. 

 

The renal malignancy Wilms tumor, the fourth most common cancer of childhood (17), is 

broadly classified into two histologic subtypes, favorable and anaplastic (18).  Approximately 

85-90% of patients with favorable histology tumors are cured with relatively light treatment, 

whereas only 50-60% of patients with anaplastic tumors are cured, despite aggressive 

therapy.  Because histologic classification and staging fail to detect a subset of patients at 

high risk of recurrence, it would be beneficial to establish other prognostic markers for this 

disease.  Based on the promising findings in other malignancies, we sought to survey 

telomerase expression in Wilms tumor and to determine whether telomerase level correlates 

with clinical outcome.   

 

In a pilot study of 35 Wilms tumors, we observed a trend towards higher telomerase 

activity level in tumors with advanced stage disease and anaplastic histology 

(unpublished observation).  We also found that tumors with low telomerase activity had a 

significantly lower relapse rate than tumors with high telomerase activity (unpublished 

observation).  To confirm these findings, we designed a case-cohort study to compare 

telomerase levels in tumors that eventually recurred to levels in tumors that never 

recurred.  In this study, we targeted patients with favorable histology disease because the 

therapy for this group would be amenable to intensification, if justified by an unfavorable 

prognostic feature.  Moreover, patients with favorable histology disease constitute over 
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90% of the Wilms tumor population. We evaluated levels of three measures of telomerase 

by semi-quantitative methods: 1) telomerase enzyme activity, 2) expression of hTR, the 

RNA component of telomerase, and 3) mRNA expression of hTERT, the gene that encodes 

the catalytic component of the enzyme.  Additionally, we ascertained whether DNA ploidy 

and proliferative index correlate with telomerase level and patient outcome.  

 

Materials and Methods 

 
Sample selection and tissue acquisition 

A case-cohort design was employed to optimize our ability to compare biological differences 

in tumor samples from patients with and without relapsed disease.  A cohort of 523 cases of 

favorable histology Wilms tumor was defined from patients enrolled on the National Wilms 

Tumor Studies (NWTS) 4 and 5 between 1988 and 1996 who were treated according to 

protocol and had samples submitted to the National Wilms Tumor Study Group (NWTSG) 

tumor bank.  Patients were treated similarly according to stage.  Following the methods of 

Prentice (19), an approximate 10% sample (60 patients) was selected from the identified 

cohort and defined as the “subcohort.”  To this group were added 39 cases from the initial 

cohort who were known to have relapsed as of March, 1997.  Because tissue from several 

patients was depleted from the tumor bank, the final analysis was performed on 90 tumor 

samples from 88 patients.  Two patients with bilateral disease had tissue from more than 

one tumor available; only the highest values for telomerase level, DNA ploidy, and S-phase 

fraction were used in the outcome analysis.  The study was conducted in a blinded fashion; 

the assays were performed without knowledge of the patient characteristics, including 

outcome, corresponding to the tumor samples. 

 

Wilms tumor specimens, which were snap frozen in liquid nitrogen, were obtained 

through the Cooperative Human Tissue Network.  Because personal identifiers were not 

furnished and there was no risk of violation of patient confidentiality, formal review for 

this study was waived by the Johns Hopkins Hospital Joint Committee on Clinical 

Investigation.  A frozen section of each sample was obtained for hematoxylin and eosin 

(H&E) staining to confirm the presence of viable tumor.  From the cut edge of each 

specimen, an approximately 50 mg slice of tumor was removed with a clean scalpel and 

divided into two aliquots, one for the telomerase enzyme activity assay and one for RNA 
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isolation.  Additional tissue was later taken from the original cut surface for DNA content 

and S-phase fraction analysis.  Tissue from two normal adult kidneys in our tumor bank 

was also evaluated. 

 

Determination of Telomerase Enzyme Activity  

Telomerase enzyme activity determination was performed using a commercial telomeric 

repeat amplification protocol (TRAP) assay, according to the manufacturer’s 

recommendations (TRAPeze, Oncor, Gaithersberg, MD).  Tissue lysates were prepared in 

CHAPS lysis buffer as previously described (20) and 4 g of protein were used for each 50 l 

TRAP assay.  In order to decrease primer-dimerization, hot-start reaction conditions were 

used (21).  Paired samples were inactivated by preincubation with RNAse A (Boehringer 

Mannheim, Indianapolis, IN).   A 30 minute extension step was performed at room 

temperature, followed by a 2-step PCR reaction with the following conditions: (94oC/30sec, 

57oC/30sec) x 27 cycles.  The linearity of the TRAP assay under these conditions was 

confirmed using a representative Wilms tumor sample.  Reaction products were loaded on 

10% nondenaturing polyacrylamide gel in 0.5X TBE (22) and products were visualized with 

a phosphorimager (Molecular Dynamics, Sunnyvale, CA).  Densitometry was performed with 

IPLabGel software (Signal Analytics, Vienna, VA).  Quantitation was performed according to 

the TRAPeze kit protocol, with “telomeric products generated” (TPG) units calculated as 

described, except that final values were not multiplied by a factor of 100.  Samples were 

considered to have detectable telomerase activity if they produced a characteristic telomeric 

repeat ladder that was extinguished by the addition of RNAse A.  All of the reactions were 

repeated several months apart to ensure reproducibility of the assay over time.   

 

Determination of hTR and hTERT mRNA levels  

Expression levels of hTR and hTERT mRNA were determined by reverse transcriptase 

polymerase chain reactions (RT-PCR).  Total RNA was isolated from approximately 25 mg of 

tissue using the Tri-Reagent protocol (Molecular Research Center, Inc., Cincinnati, OH).  

RNA was treated with DNAse 1 and quantified by UV spectrophotometry (22).  2 g of RNA 

were used for each 50 l RT reaction, which was run with pDN6 random primers and 

MMLV-RT (Gibco BRL, Gaithersberg, MD).  For hTR detection, 2.5 l of a 1:10 dilution of 

RT product, corresponding to an RNA input of 10 ng, was PCR-amplified using primers RF: 
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5’-ACCCTAACTGAGAAGGGCGTAG-3’ and RR: 5’-GTTTGCTCTAGAATGAACGGTG-3’, 

kindly donated by Dr. N. Kim (Geron Corporation), yielding a 122 bp fragment 

corresponding to nucleotides 143-264 of the hTR gene (Genbank accession # U86046).  To 

control for differences in RNA quantity, as well as for differences in the PCR reaction, a 158 

bp fragment of the human acidic ribosomal phosphoprotein PO housekeeping gene (36B4, 

Genbank accession # M17885) was coamplified with the hTR fragment in a one-tube reaction 

(36B4F: 5’-GATTGGCT 

ACCCAACTGTTGCA-3’ and 36B4R 5’-CAGGGGCAGCAGCCACAAAGGC-3’).  Each 25 l 

reaction contained 1x PCR Buffer (Perkin Elmer, Foster City, CA), 2.5mM MgCl2, 2 M of 

primers RR and RF, 0.5 M of primers 36B4F and 36B4R, 320 M dNTPs, and 0.5 U Taq 

polymerase. The reaction mixtures were thermal cycled as follows: (94oC/1 min., 62oC/1 min., 

72oC/1 min.) x 25 cycles; (72oC/5 min) x 1 cycle. The linearity of the hTR and 36B4 reactions 

under these conditions was validated using RNA derived from the MCF-7 breast cancer cell 

line.  Products were resolved on 2% agarose gels in TBE buffer and stained with ethidium 

bromide. Gels were imaged on a gel documentation system (UVP, Upland, CA) and 

densitometry was performed using IPLab Gel software.  The corrected values for hTR were 

calculated by dividing the hTR level by the 36B4 level.  For hTERT mRNA detection, 2.5 l 

of a 1:10 dilution of RT product was amplified using primers MS113: 5’-

AGAGTGTCTGGAGCAAGTTGC-3’ and MS114: 5’-CGTAGTCCATGTTCACAATCG-3’, 

yielding a 183 bp fragment corresponding to nucleotides 1789-1971 of hTERT cDNA 

(Genbank accession # AF018167).  Because this primer set spans intron 4 of the hTERT 

gene, contaminating genomic DNA was not a factor in our analysis.  The primer set does not 

encompass any regions reported to be involved in alternative splicing of the hTERT gene 

(23).  Each 25 l reaction contained 1x PCR Buffer (60mM Tris-HCl (pH 8.5), 15 mM 

ammonium sulfate, 2.5mM MgCl2), 1 M of each primer, 320 M dNTPs, 2.5 Ci -32PdCTP, 

and 0.5 U Taq polymerase.  Cycling conditions were as follows: (94oC/45 sec., 60oC/45 sec, 

72oC/2 min) x 32 cycles; (72oC/5 min) x 1 cycle.  A quantitative control using the primers for 

the 36B4 gene was performed, but in this case, a separate tube was required because of the 

difference in levels of hTERT and 36B4 transcripts.  For the 36B4 amplification, the reaction 

conditions described for the hTR reaction above were used, except that 2.5 Ci -32PdCTP 

was added to each assay and that only 20 cycles were performed.  The linearity of the 

hTERT and 36B4 reactions under these conditions was validated using RNA isolated from 
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MCF-7 cells. Additionally, all tumor samples were run at three different dilutions of RNA 

input to ensure that each individual sample was in the linear range of detection for the PCR 

reaction.  Both hTERT and 36B4 amplification products were loaded into a single lane of a 

10% polyacrylamide gel and fractionated by electrophoresis at 350 volts for 2 hours.  Images 

were visualized with a Phosphorimager screen and quantitated with Multi-Analyst 

(BioRAD, Hercules, CA) software.  Corrected hTERT mRNA levels were obtained by 

dividing the hTERT level by the 36B4 level.  

 

Flow Cytometric Determination of DNA ploidy and S-phase fraction 

Samples containing 106 cells were centrifuged and resuspended in 1ml of propidium iodide 

staining solution (0.05 mg/ml propidium iodide, 0.1% sodium citrate, 0.1% Triton X-100).  

Immediately prior to analysis by flow cytometry, each sample was treated at room 

temperature with DNAse-free RNAse (Calbiochem, San Diego, CA) at a final concentration 

of 0.0005 mg/ml for thirty minutes and filtered through 40 m nylon mesh.  Fluorescence at 

wavelength 563-607 nm emitted from propidium iodide-DNA complexes was measured from 

approximately 20,000 cells with a FACScan flow cytometer (Becton Dickinson 

Immunocytometry, San Jose, CA).  The percentages of cells within the G1, S, and G2/M 

phases of the cell cycle were determined by analysis with the computer program Mod Fit 

(Verity Software House, Topsham, ME). 

 

Statistical Analysis 

Associations between biological variables were measured with Pearson correlation 

coefficients and p-values were determined by linear regression.  Because of the right 

skewness of the distribution of telomerase activity, this variable was transformed by taking 

its natural logarithm. The value 0.1 was added to all records to avoid an infinite logarithm 

for those samples with a telomerase activity of zero. Outcome analysis was based on the 

relative risk regression model of Cox (24).  Regression coefficients were estimated much as if 

complete cohort data were available, and they have the same interpretation.  Standard 

errors of the coefficients, however, were adjusted by the robust method of Barlow (25), to 

account for the fact that only a fraction (<10%) of patients who did not relapse were included 

in the analysis.  Both univariate and multivariate analysis, accounting for age at diagnosis 
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and tumor stage, were performed.  Levels of clinical and biological parameters for patients 

with and without recurrence were compared with the Wilcoxon rank sum test.  

 

Results 

 
Sample selection and patient characteristics 

Prior to performing the biological analyses, frozen sections of the selected Wilms tumor 

samples were stained with hematoxylin and eosin to confirm the presence of malignant cells.  

Histologic confirmation is necessary to minimize false-negative results for telomerase 

activity (2).  Of the 90 samples originally selected by the statisticians, 10 had no evidence of 

malignant tissue or were completely necrotic.  Of the remaining 80 tumors, representing 78 

patients (two patients with bilateral disease had more than one tumor analyzed), the 

median fraction of non-necrotic malignant cells in the section was 80%.   Of the 78 patients 

studied, 34 had recurrent disease. Four of the cases with recurrence were originally selected 

in the subcohort group, but were later added to the case group once relapse was documented.  

The median follow-up times for the original subcohort group and for the group of patients 

without recurrence were 2.6 years and 2.9 years, respectively.  Most Wilms tumor 

recurrences occur within two years of diagnosis.  The clinical characteristics of the analyzed 

patients are described in Table 1. 

 

Linearity of the TRAP, hTR, and hTERT assays 

Conditions for the TRAP, hTERT, and hTR reactions were optimized before performing 

assays on the patient samples.  All three assays were in the linear range of detection for the 

amount of protein or RNA used and for the number of PCR cycles selected (Figure 1). 

 

Telomerase activity, hTR, and hTERT levels 

Samples were deemed to have evaluable levels of telomerase activity, hTR, and hTERT 

transcript if their corresponding internal PCR controls or housekeeping genes amplified 

correctly. Of the evaluable samples, 62/77 (81%) had detectable telomerase activity, 75/77 

(97%) had detectable hTERT transcript, and 80/80 (100%) had detectable hTR.  The median 

values of telomerase activity, hTERT mRNA, and hTR, in corrected units, were 0.37 (range, 

0-15.29), 1.24 (range, 0-4.64), and 0.77 (range, 0.17-2.39), respectively.  Two normal adult 

kidney samples were negative for telomerase activity and hTERT mRNA, but expressed 
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hTR at levels comparable to tumor tissue.  In the tumor samples, there was a 78.4% 

concordance between the detection of telomerase activity and hTERT expression (Table 2).  

Most discordant cases had undetectable telomerase activity, but detectable hTERT 

transcript; only two cases had detectable telomerase activity in the setting of undetectable 

hTERT transcript.   

Table 1.   

Patient characteristics and univariate regression analysis of risk of recurrence. 

 

Variable Relapse

d Cases 

Controls Relative 

Risk 

95% confidence 

interval 

p value 

Gender 
     

Male 20 20 1.0   

Female 14 24 0.66 (0.27, 1.61) 0.36 

Stage 
     

I 4 13 1.0   

II 14 11 5.35 (1.39, 20.6) 0.015 

III 6 12 1.77 (0.42, 7.37) 0.43 

IV and V 10 8 4.58 (1.09, 19.4) 0.038 

Age at diagnosis 

(yrs.) 

     

0-2 6 14 1.0   

2-4 8 17 1.25 (0.35, 4.39) 0.73 

4+ 20 13 3.44 (1.07, 10.9) 0.037 

Biological variables 
     

hTERT mRNA 

level 

  1.66 1.2 to 2.3 <0.005 

log 

(telomerase+0.1) 

  1.15 0.8 to 1.7 0.46 

hTR level   1.31 0.5 to 3.4 0.51 

DNA ploidy>1   .757 0.3 to 2.0 0.56 

S phase fraction   .996 0.9 to 1.0 0.81 
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Figure 1. Validation of the semi-quantitative nature of the TRAP, hTR, and hTERT assays.  
Arrows above the curves indicate the amount of protein or RNA that was used for the assays of 
patient samples.  A, TRAP assay of a representative Wilms tumor sample showing a linear 
relationship between the amount of protein added and the corrected telomerase activity.  Reaction 
products were separated on a 10% nondenaturing polyacrylamide gel and visualized using a 
phosphorimager (Molecular Dynamics). The 36 base pair band at the bottom of the gel represents 
an internal PCR control. B, RT-PCR assay amplifying hTERT and 36B4 transcripts from RNA 
isolated from the MCF-7 breast cancer cell line.  Reactions were performed in separate tubes 
because of the vast difference between transcript levels of hTERT and 36B4, but products were 
separated on a single10% nondenaturing polyacrylamide gel and visualized using a 
phosphorimager. C, RT-PCR assay amplifying hTR and 36B4 transcripts.  Reactions were 
performed in a single tube and products were separated on a 2% agarose gel and stained with 
ethidium bromide.   
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DNA Ploidy and S-Phase fraction 

Seventy-nine of 80 tumor samples were evaluable for DNA content determination by flow 

cytometry.  A DNA index of 1.0 is indicative of diploid DNA content.  The median value for 

DNA index was 1.0, with a range from 0.93 -1.87.  Sixty-nine of 80 samples yielded evaluable 

results for S-phase fraction.  The median value was 21.4%, with a range from 4.2-53.8%.  

 

Relationships between biological and clinical variables  

The randomly chosen subcohort, but not the selected relapsed cases, was used in the 

correlation analyses because it represents an unbiased sampling of the Wilms tumor 

patient population.  Weak correlations were observed between telomerase activity and hTR 

level (r=0.34, p=0.02) and between telomerase activity and hTERT mRNA level (r=0.32, 

p=0.04) (Figure 2).  The correlation analysis of telomerase activity and hTR level included 

two outlying data points with high values that appeared to influence the analysis (Figure 2).  

When these points were omitted, the correlation between hTR and telomerase activity 

persisted (r=0.36, p=0.02).   

 

A. B. C.
 

 
Figure 2. Correlation between telomerase activity, hTERT mRNA level, and hTR level in 
evaluable tumors from the randomly selected subcohort (n=48).  Associations were measured with 
Pearson correlation coefficients and p-values were determined by linear regression.  A, Correlation 
between log (telomerase+0.1) and hTR level (r=0.34, p=0.02). B, Correlation between log 
(telomerase+0.1) and hTERT mRNA level (r=0.32, p=0.04).  C, Correlation between hTR level and 
hTERT mRNA level (r=0.11, p=0.48). 
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One concern regarding the telomerase activity analysis was the potential for false-negative 

results due to enzyme inactivation or inhibition.  Correlation analyses were therefore 

repeated omitting samples with zero telomerase activity.  In such analyses, the correlations 

between telomerase activity and hTR level (r=0.49, p=0.006) and between telomerase 

activity and hTERT mRNA level (r=0.40, p=0.04) strengthened.  No relationships between 

hTR and hTERT mRNA level (r=0.11, p=0.48) or between any of the telomerase 

measurements and DNA content or proliferative index emerged (data not shown).  

Regarding clinical variables, no relationships between telomerase activity, hTR, or hTERT 

mRNA level and age at diagnosis or tumor stage were detected (data not shown).   

 

Outcome analysis 

Median values of the biological variables for patients with and without recurrence are listed 

in Table 2.  Of the assessed parameters, only levels of hTERT transcript were significantly 

different between the relapsed and non-relapsed groups (median 1.42 versus 0.97, p=0.023, 

Wilcoxon).  The median age at diagnosis was also significantly higher in patients with 

recurrence than in patients without recurrence (56.5 months versus 29.5 months, p=0.003).  

 

Relative risks of recurrence (RR) were determined by Cox regression analysis.  Of the five 

biological parameters measured, only hTERT expression level correlated with outcome.  

Univariate analysis of hTERT mRNA as a continuous variable suggested that each unit 

increase in hTERT mRNA level increased the RR by a factor of 1.66 (95% CI 1.2-2.3, 

p<0.005) (Table 1).  Likewise, an analysis based on the grouping of hTERT transcript levels 

into three categories revealed a strong association between relapse and high hTERT mRNA 

level (Table 4).   

 

The results of the outcome analysis were unchanged when two data points with outlying 

hTR and hTERT mRNA levels were omitted from consideration (data not shown).  Relative 

risks of recurrence were also determined for clinical variables.  Compared to diagnosis before 

the age of 2 years, diagnosis after the age of four years was associated with a RR of 3.44 

(95% CI 1.07-10.9, p=0.037).   
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Table 3 

Median values of clinical and biological variables for patients with and without recurrence. 

 

Variable Median (Interquartile 

range) 

p-value 

(Wilcoxon) 

Telomerase activity 
  

Relapse 0.38 (0.15 to 1.43) 0.36 

No Relapse 0.40 (0.02 to 0.73)  

hTERT mRNA level 
  

Relapse 1.42 (1.03 to 2.00) 0.0225 

No Relapse 0.97 (0.71 to 1.64)  

hTR level 
  

Relapse 0.81 (0.68 to 0.98) 0.56 

No Relapse 0.71 (0.57 to 1.03) 

 

 

DNA ploidy   

Relapse 1.00 (1.00 to 1.15) 0.44 

No Relapse 1.00 (1.00 to 1.12)  

S-phase % 
  

Relapse 21.25 (18.57 to 28.93) 0.40 

No Relapse 20.90 (11.60 to 31.20)  

Age at diagnosis (months) 
  

Relapse 56.5 (31.0 to 84.0) 0.0034 

No Relapse 29.5 (21.0 to 56.0)  

 

Compared to children with stage I disease, patients with stage II disease had a RR of 5.35 

(95% CI 1.39-20.6, p=0.015) and patients with stages IV and V disease had a RR of 4.58 (95% 

CI 1.09-19.4), P=0.038) (Table 1).  The high RR for stage II disease reflects, in part, the 

relatively high rate of recurrence of stage II patients in the NWTS-4 study (26).   
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Table 4 

Unvariate analysis of risk of recurrence by hTERT mRNA level 

 

hTERT mRNA 

level  

(corrected units) 

Relapse 

No             Yes 

Relative 

Risk 

95% confidence 

interval 

p value 

0-1 21                 7 1.0   

1-2 16               18 2.72 (0.91, 8.13) 0.074 

2+ 4                  9          6.40 (1.49, 27.67) 0.013 

Test for trend    0.014 

 

 

This finding is possibly related to undertreatment of patients with Stage II disease with 

peritoneal spillage of tumor (27).  The multivariate analysis of hTERT mRNA level as a 

predictor of relapse, which adjusted for age at diagnosis and tumor stage, revealed a RR of 

1.48 (95% CI 0.86-2.56, p=0.16) for each unit increase in hTERT mRNA level (Table 5).  

Although the RR of increasing hTERT expression persisted, statistical significance was lost. 

 

Table 5 

Multivariate regression analysis of relapse-free survival 

 

Variable Relative Risk 95% confidence interval p value 

hTERT mRNA level 1.48 0.9 to 2.6 0.16 

Age at diagnosis 1.03 1.0 to 1.1 0.04 

Stage II 10.7 0.98 to 118.2 0.05 

Stage III .931 0.1 to 8.3 0.95 

Stage IV and V 4.768 0.48 to 47.3 0.18 

 

Discussion 

 

In this study, we explored the prognostic utility of telomerase in favorable histology Wilms 

tumor.  Telomerase levels were measured in patients with and without eventual recurrence 

by measuring telomerase enzyme activity, expression of hTR (the RNA component of the 
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telomerase complex), and mRNA expression of hTERT (the gene that encodes the catalytic 

component of the enzyme).  We employed a case-cohort design, which compared the features 

of relapsed cases to a random sampling of the overall Wilms tumor population, to allow for 

the study of clinical variables as risk factors in their own right.  By contrast, a case-control 

study, in which relapsed cases are matched by clinical variable to controls, precludes such an 

analysis.  Of the biological variables assessed, only hTERT mRNA expression correlated 

with outcome.  Univariate analysis of hTERT mRNA as a continuous variable suggested 

that each unit increase in hTERT level increased the risk of recurrence (RR) by a factor of 

1.66 (95% confidence interval (CI) 1.2-2.3, p<0.005).  Measurement of hTERT mRNA may 

therefore enable clinicians to identify a population of patients at high risk for recurrence, 

and to adjust their therapy accordingly.  A caveat to this finding is that although the 

elevated risk of high hTERT mRNA expression persisted in the multivariate analysis, 

statistical significance was lost.  It is possible that high hTERT mRNA expression is not 

independent of patient age and tumor stage, but it is also possible that statistical 

uncertainty was introduced because of insufficient sample size.  Of note, no relationship 

between hTERT mRNA level and age at diagnosis or tumor stage was detected.  Further 

studies will be necessary to determine the true clinical utility of measuring tumor hTERT 

transcript levels in patients with Wilms tumor. 

 

We did not detect a correlation between telomerase enzyme activity or hTR level and patient 

outcome.  It was surprising that telomerase activity was not prognostic because it was this 

measurement that correlated with outcome in our pilot study and in the neuroblastoma 

studies.  We attribute this disparity in findings to limitations of the TRAP assay, which 

measures telomerase activity.  Although this assay has internal controls for PCR inhibition 

and spurious telomerase activity, it does not control for enzyme inhibition by tissue 

inhibitors, degradation of the RNA template, or enzyme inactivation with heat or time.  The 

latter two issues may be especially problematic in multi-center studies in which tissue 

preservation technique is not uniform.  By contrast, the hTERT RT-PCR assay accounts for 

RNA degradation with the amplification of a housekeeping gene. Moreover, because the 

RNA is purified, tissue inhibitors of the PCR reaction are inconsequential.  It is possible that 

measuring hTERT mRNA expression, rather than telomerase activity, would increase the 

prognostic value of telomerase in other tumor types.  The lack of association between hTR 
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level and tumor recurrence was not surprising because it is known that hTR is constitutively 

expressed in both normal and malignant tissue (28-33).  Nevertheless, we report a weak 

positive correlation between hTR and telomerase activity, and other studies have indicated 

that hTR is upregulated during tumorigenesis (29, 34, 35).  Although telomerase activity and 

hTR expression are clearly related, the overlap between hTR levels in normal and malignant 

tissue appears to limit the utility of hTR as a tumor marker. 

 

Several studies have generated enthusiasm for the utility of telomerase as a prognostic 

indicator for human cancer.  The relationship between high telomerase activity level and 

adverse clinical outcome was first suggested in an analysis of untreated neuroblastoma, 

which demonstrated that advanced stage disease, amplified MYCN, and poor survival were 

associated with high telomerase enzyme activity (9, 10).  Strikingly, metastatic 

neuroblastoma classified as Stage 4S, a subtype that usually regresses spontaneously, had 

low or undetectable activity (9, 10, 36).  High telomerase activity was later associated with 

unfavorable outcome in gastric cancer (11, 12), breast cancer (13), acute myelogenous 

leukemia (14, 37), chronic lymphocytic leukemia (15), and meningioma, but other reports 

have questioned these findings (38-40).  It is unclear whether the conflicting results are due 

to differences in assay methodology, patient population, tumor type, tumor stage, or other 

unrecognized factors. 

 

It is not immediately apparent how high levels of telomerase could contribute to tumor 

progression once the threshold of activation has been breached.  One possibility relates to 

the telomere hypothesis of aging, which asserts that telomere length is a biological clock that 

regulates the number of divisions a cell can achieve.  In the absence of telomerase, telomeres 

erode to a point at which signals are given for a cell to undergo senescence or apoptosis 

(reviewed in (41)).  Based on this hypothesis, tumors without telomerase would be predicted 

to have a limited life span, as exemplified by stage 4S neuroblastoma (9, 10, 36).  Most 

tumors, however, possess measurable telomerase activity.  It is noteworthy that low levels of 

telomerase activity are not sufficient to arrest telomeric shortening, as demonstrated in 

hematopoietic stem cells (42, 43).  If this observation applies to cancer cells, tumors with 

high telomerase activity may have a proliferative advantage over those with low telomerase 

activity.   Hence, clinical outcome may be poorer in patients with tumors with high 

telomerase activity.  A second reason that high telomerase level may correlate with poor 
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prognosis is that in addition to maintaining telomeres, telomerase appears to function as a 

chromosome healing enzyme (44-46).  In this capacity, excess telomerase may mediate 

resistance to DNA damaging therapy.  In support of this postulate, inhibition of telomerase 

in glioblastoma cells resulted in an increased sensitivity to the DNA-damaging agent 

cisplatin (47).  Finally, it is possible that high telomerase activity represents a surrogate 

marker for an advanced malignant state.  In this case, even if telomerase does not contribute 

to tumor proliferative capacity or resistance to therapy, it could still be a useful clinical tool. 

 

Our data indicate that telomerase activity and hTERT transcript levels do not correlate 

with proliferative index in Wilms tumor.  This contrasts with studies that indicate that 

telomerase activation is tightly linked to cellular division in normal (48-50) and 

malignant (13) tissue.  The coupling is not absolute, however, as demonstrated by the lack 

of telomerase activity in cultured fibroblasts prior to crisis (41) and in hyperplastic 

conditions such as uterine fibroids and benign prostatic hypertrophy (3).   Moreover, 

telomerase activity did not correlate with proliferative index in reports of acute 

myelogenous leukemia (14), breast cancer (51, 52), and gastric carcinoma (12).  Although 

telomerase activity is clearly linked with proliferation in some cell types, certain tumors 

appear to upregulate telomerase independent of proliferation.  

 

The relationship between cellular DNA content and telomerase level remains to be 

determined.  Our study, which did not reveal a relationship between DNA ploidy and 

telomerase level, is consistent with reports of renal cell carcinoma (38) and breast cancer 

(51).  By contrast, other studies of breast cancer (13), breast ductal carcinoma in situ (52), 

and gastric cancer (12) revealed a positive correlation between DNA index and telomerase 

activity level.   A number of factors, including differences in assay methodology, patient 

population, tumor type, and tumor stage, can be invoked to explain the lack of consistency 

amongst studies. 

 

In conclusion, our findings indicate that tumor hTERT mRNA expression level correlates 

with outcome in patients with favorable histology Wilms tumor.  A larger study will be 

necessary to determine whether hTERT mRNA expression is predictive of outcome 

independent of patient age and tumor stage.  If so, determination of hTERT mRNA level 

may be a valuable clinical tool for stratifying patients with favorable histology Wilms tumor 
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into risk-appropriate treatment groups.  Further biological studies are warranted to discern 

whether the link between high hTERT expression and unfavorable prognosis is causative or 

correlative.  Such studies will lend insight into the value of telomerase inhibition as a 

therapeutic modality for cancer. 
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ABSTRACT 

 

 

Purpose 

A primary objective of the fifth National Wilms Tumor Study (NWTS-5) was to identify 

prognostic indicators for patients with favorable histology (FH) Wilms tumor (WT).  The 

prognostic significance of telomerase expression level in primary tumor samples was 

assessed.   

Patients and Methods 

A case-cohort study was conducted involving 291 NWTS-5 registrants.  Telomerase 

activity was measured using the telomeric repeat amplification protocol (TRAP).  

Expression levels of TERT mRNA (encoding the telomerase catalytic component) and 

TERC/hTR (the telomerase RNA template) were measured using quantitative real-time 

PCR.   

Results 

After excluding samples due to lack of viable tumor, RNA degradation, or insufficient 

clinical information, 244 patients remained for the final analysis: 96 with relapse and 148 

without relapse. Univariate analysis revealed a positive correlation between relative risk 

of relapse (RR) and levels of TERT mRNA and TERC expression.  For each doubling in 

TERT mRNA and TERC level, the RR increased by a factor of 1.16 (95% CI 1.04-1.29, 

p=0.01) and 1.35 (95% CI 1.11-1.64, p=0.003), respectively.  The third of patients whose 

tumors had the highest TERC expression level had a RR of 2.06 (95% CI 1.14-3.70, 

p=0.02) compared to those with the lowest level.  TERC expression level remained a 

significant prognostic indicator in a multivariate analysis adjusting for TERT mRNA, 

tumor stage and patient age.  TRAP level did not correlate with RR of relapse.  

Telomerase expression levels were not predictive of overall survival. 

Conclusion 

Telomerase RNA expression level may provide a clinically useful adjunct to the current risk 

classification schema for FH WT.   
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Introduction 

 

Modern treatment approaches for favorable histology Wilms tumor have yielded cure 

rates of approximately 90%.1    The current challenge for the cooperative groups is to limit 

therapy, and its associated toxicities, for patients at low risk of relapse while intensifying 

therapy, and improving cure rates, for patients at high risk of relapse.2  Towards this end, 

the primary aim of the fifth National Wilms Tumor Study (NWTS-5) was to evaluate 

novel biological prognostic factors for Wilms tumor. 

 

Telomerase is a specialized reverse transcriptase that adds nucleotide repeats to 

telomeres, counteracting the progressive loss of DNA that occurs during replication.   The 

enzyme, which plays a key role in cellular immortalization, is minimally composed of a 

catalytic subunit (TERT), and an RNA subunit (TERC/hTR), which provides the template 

for nucleotide repeat generation.3-5  Because telomerase is expressed in approximately 85-

95% of cancer specimens, but absent in most normal tissue 6;7, it has been proposed as 

tumor marker and therapeutic target.  Moreover, the presence of telomerase expression 

has emerged as a predictor of adverse outcome in a variety of adult and pediatric 

malignancies.8  

 

In a pilot study of 78 Wilms tumor samples of favorable histology, we demonstrated a 

positive correlation between expression level of TERT mRNA and risk of relapse.9   

Univariate analysis of TERT mRNA level as a continuous variable suggested that each unit 

increase in TERT mRNA level increased the risk of relapse by a factor of 1.66 (95% 

confidence interval (CI) 1.2-2.3, p<0.005).   This study did not detect an association 

between levels of telomerase enzyme activity or TERC and patient outcome, but was 

limited by its relatively small sample size.  In the present study, we sought to further 

evaluate whether telomerase expression level provides an independent prognostic 

indicator for favorable histology Wilms tumor.   
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Patients and Methods 

 

Patients 

A stratified sampling design was employed to optimize our ability to compare biological 

differences in primary tumor samples from patients with and without relapsed or 

progressive disease.  Patients were selected from NWTS-5, which was a multi-

institutional therapeutic and biology study of pediatric renal tumors that was open to 

accrual from August, 1995 through May, 2002.  Participating institutions obtained local 

Institutional Review Board (IRB) approval to activate the study and patients provided 

written informed consent to be treated on the study and to bank frozen tumor, serum, and 

urine for biological studies.  Additionally, the St. Jude Children’s Research Hospital IRB 

approved the laboratory component of this specific study.  Patients were treated similarly 

according to stage, as previously described.10   

 

A cohort of 1013 patients with favorable histology Wilms tumor was defined from patients 

who registered on NWTS-5 before July 1st 1999 and had pre-treatment tumor tissues 

available in the biologic specimens bank.  Following the design of Prentice 11, an 

approximate 20% random sample, known as the “subcohort,” was selected from the 

identified cohort.  To this group, all patients not already included who relapsed or had 

progressive disease prior to August 2001 were added.  A total of 291 patients (195 

subcohort and 96 relapsed cases outside of the subcohort) were selected in this manner.  

Because the subcohort was randomly selected, it contained patients with tumor relapse or 

progression.  A first event of metachronous Wilms tumor in the contralateral kidney was 

not considered as a relapse for this study because the occurrence of metachronous Wilms 

tumor was not thought to relate biologically to telomerase expression in the primary 

tumor.  One subcohort patient who died of infection in the absence of disease was treated 

as “censored” at the time of this event.   

 

Tissue processing and analysis 

Snap-frozen primary tumor tissue from the selected 291 Wilms tumor cases and 16 adjacent 

normal kidney specimens were obtained through the Cooperative Human Tissue Network 

(CHTN).  A frozen section of each sample was stained with hematoxylin and eosin (H&E) to 
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confirm the presence of at least 80% viable tumor.  Approximately 50 mg of tumor was 

divided into two aliquots, one for protein isolation and one for RNA isolation.   

Molecular assays of telomerase expression 

Three distinct measures of telomerase expression were undertaken: telomerase enzyme 

activity, mRNA expression of TERT, and expression of TERC.  Telomerase enzyme activity 

determination was performed using the TeloTAGGG-telomerase PCR-ELISA telomeric repeat 

amplification protocol (TRAP) assay (Roche, Indianapolis, IN), which was quantitative 

through a broad range of telomerase activity levels and reproducible.   Tissue lysates were 

prepared in CHAPS lysis buffer as previously described 12 and 4 g of protein were used for 

each 50 l TRAP assay.  The levels of telomerase activity that we report represent the optical 

density (OD) readings from tumor samples relative to those of a standard 293 cell protein 

extract, as specified in the manufacturer’s instructions. Because TRAP activity can degrade 

with heat and time, we assessed whether alkaline phosphatase activity can serve as a quality 

control measure for enzymatic activity, as previously suggested. 13  Alkaline phosphatase 

activity was stable for up to 24 hours in five Wilms tumor samples maintained at room 

temperature, whereas TRAP activity showed a gradual degradation.  Therefore, measurement 

of alkaline phosphatase activity was not considered to be a suitable control for TRAP activity 

degradation in Wilms tumor. 

 

Expression levels of TERC and TERT mRNA were determined by quantitative real-time 

reverse transcriptase polymerase chain reactions (RT-PCR) 14-16.  Total RNA was isolated 

from approximately 25 mg of tissue using the Tri-Reagent protocol (Molecular Research 

Center, Cincinnati, OH).  RNA was quantified by UV spectrophotometry and 2 g of RNA 

were used for each 50 l reverse transcriptase reaction, which was run with pDN6 random 

primers and M-MLV reverse transcriptase (Invitrogen, Grand Island, NY).   Two l of cDNA 

product were used for each 50 l real-time PCR reaction.  To detect TERT mRNA 

expression, we used previously reported primer-probe sets (forward: 

CGGAAGAGTGTCTGGAGCAA; reverse:GGATGAAGCGGAGTCTGGA; probe: 6FAM-

TTGCAAAGCATTGGAATCAGACAGCACT-TAMRA).16  To measure the ++ TERT splice 

form, we generated a novel primer-probe set using Primer Express software (Applied 

Biosystems, Foster City, CA) (forward: CTTTGTCAAGGTGGATGTG ; reverse: 

TACGGCTGGAGGTCTGT; probe: 6FAM-ACACCATCCCCCAGGACAGGCT 
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C-TAMRA). Likewise, for TERC expression, we designed and optimized a novel primer-probe 

set (forward: TGAGCTGTGGGACGTGCA; reverse: CCACCAACAGGAAAGCG 

AA; probe: 6FAM-CCAGGACTCGGCTCACACATGCA-TAMRA)  The increase in 

fluorescence intensity resulting from degradation of the probe, as measured by the ABI 

PRISM 7900 Sequence Detector (Applied Biosystems), was proportional to the amount of 

PCR product accumulated.  The fractional cycle number (Ct) at which the amount of 

fluorescence reached a defined threshold was taken as a measure of the quantity of target 

sequence initially present.  For quantification, each reaction was normalized to a standard 

curve (RNA isolated from SY5Y neuroblastoma cells).  Each sample was analyzed in 

triplicate and the reported results represent the mean of the three assays.   

 

For each sample, we assessed expression levels of the housekeeping genes glyceraldehyde 

phosphate dehydrogenase (GAPDH) and RNAse P using commercially available primer-

probe sets (Applied Biosystems) and 36B4 using a primer-probe set that we optimized 

(forward:GGCGACCTGGAAGTCCAACT; reverse: CCATCAGCACCACAGCCTTC; 

probe:VIC-ATCTGCTGCATCTGCTTGGAGCCCA-TAMRA).  We found that levels of all 

three housekeeping genes were significantly lower in normal kidney samples compared to 

tumor samples, alerting us to the possibility that levels of the housekeeping genes varied 

according to tissue biology, thus defeating the purpose of such controls.  Therefore, we used 

expression of GAPDH only to exclude samples with very low RNA content; we did not 

incorporate GAPDH into the final calculations of TERC and TERT mRNA expression.   

 

The molecular assays were conducted in a blinded fashion; the assays were performed 

without knowledge of the patient characteristics, including outcome, corresponding to the 

tumor samples.  To ensure the reproducibility of the measurements of telomerase activity, 

TERT mRNA, and TERC over time, approximately 10% of the samples were randomly 

selected for a repeat assay that was conducted several months from the original assays.  All 

three assays were highly reproducible over time, with correlation coefficients (r) between 

values for the first and second assays greater than 0.9 (data not shown). 

 

Statistical Analysis 

A sampling weight for non-relapsed patients was first determined so that the relapse-free 

survival curve for all patients included in the statistical analyses matched the curve for 
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comparable NWTS-5 patients. Multiplying this weight by the number of subcohort patients 

whose tissues were successfully assayed for telomerase expression yielded an effective main 

cohort sample size of 771.  Relative risks (RR) of relapse were estimated by a Cox regression 

analysis that was adjusted using the sampling weight to account for the case-cohort 

design.17;18  Very similar estimates of RR were obtained using the original method of analysis 

proposed by Prentice 11, which does not require specification of a sampling weight.  Kaplan-

Meier 19 estimates of the relapse-free survival curves within patient subgroups defined by 

telomerase expression levels were also weighted. 

 

Results 

 

Sample selection  

Of the 291 patients selected for this study, 35 whose tumors contained less than 80% 

viable tumor on H&E stain were excluded from the analysis.  Nine patients with viable 

tumor were further excluded due to RNA degradation, as determined by very low 

expression of the housekeeping gene GAPDH.  Among the 247 patients remaining, of 

whom 164 had been sampled for the subcohort, 96 had tumor relapse or progression 

(henceforth referred to as relapse), 148 did not have relapse, and 3 had missing or 

incomplete outcome data..  One subcohort patient who did not relapse had ample tissue 

available to evaluate telomerase enzyme activity, but not TERT mRNA or TERC 

expression.  Hence, the final analysis of telomerase expression as a prognostic marker 

was conducted on 243 or 244 patients, depending on which variables were analyzed.  

 

Telomerase expression in Wilms tumor versus adjacent normal kidney 

Three distinct measures of telomerase expression were undertaken: telomerase enzyme 

activity (henceforth referred to as “TRAP activity”), mRNA expression of TERT, and 

expression of TERC.  We first evaluated whether telomerase is differentially expressed 

between Wilms tumors and adjacent normal kidneys.  Of the 164 Wilms tumor samples 

for subcohort patients in which TRAP level was assessed, 157 (95.7%) had detectable 

TRAP activity.  Of the 163 Wilms tumor samples in which TERT mRNA and TERC 

expression were evaluated, 161 (98.8%) had detectable levels of TERT mRNA and 163 

(100%) had detectable levels of TERC.   Of the 16 adjacent normal kidneys, four had 

detectable TERT mRNA, 16 had detectable TERC, and two had detectable TRAP activity.  
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The few normal kidneys that had detectable TERT mRNA and TRAP activity had very 

low levels of expression; mean levels of TERT mRNA and TRAP activity were 

significantly higher in Wilms tumor compared to normal kidneys (Table 1).   

 

Table 1 

Mean level of telomerase expression (± standard error of the mean) in Wilms tumors and 

adjacent normal kidneys  

 Normal kidney 

(n = 16) 

Wilms tumor  

(n = 164) 

P-value 

(t-test) 

TERT mRNA 0.05 (±0.01) 5.98 (±0.67) 0.006 

TERC 3.80 (±1.13) 12.65 (±1.03) 0.009 

TRAP activity 0.05 (±0.01) 1.06 (±0.04) 0.001 

 

In analyzing the raw data for TERT mRNA and TERC expression, we found that the 

mean values greatly exceeded the median values, suggesting that the distributions of 

TERT mRNA and TERC levels were highly skewed to the right.  To eliminate this 

asymmetry, and to give the relative risk coefficients a desired interpretation in terms of 

doubling of the assay levels, the statistical analyses used base 2 log-transformed TERT 

mRNA and TERC levels.  This resulted in covariates that were more normally distributed 

although skewed slightly to the left.  

 

Based on the biological relationship between TERT mRNA, TERC, and TRAP activity, we 

expected that these three measurements would correlate with each other.  As shown in 

Figure 1, there were indeed correlations between log2 (TERT mRNA) and TRAP activity, 

log2 (TERC) and TRAP activity, and log2 (TERT) and log2 (TERC), although the 

correlations were not strong.   
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Figure 1.  Correlation between measures of telomerase expression in favorable histology 
Wilms tumor. 

 
 

Association between telomerase expression and risk of relapse 

Table 2 shows the results from case-cohort analyses of the relative risk of relapse using a 

single regression variable.  Among the demographic and biological variables, tumor stage, 

log-transformed TERT level, and log-transformed TERC level were significant prognostic 

factors for tumor relapse.  Treating TERT and TERC expression as continuous variables, 

each doubling of TERT mRNA and TERC level increased the relative risk of relapse (RR) 

by a factor of 1.16 (95% CI 1.04-1.29, p=0.01) and 1.35 (95% CI 1.11-1.64, p=0.003), 

respectively.  TRAP activity level did not correlate with the risk of relapse.   

 

To evaluate the risk of relapse in the tumors with the highest TERT mRNA or TERC 

expression, we further categorized log-transformed TERT mRNA and TERC levels into 

three approximately equal groups representing low, medium, and high expression levels. 

In this analysis, the relative risk associated with a high TERT mRNA level was 1.77 (95% 

CI 0.96-3.23) compared to the low level (p=0.07).   
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Table 2 

Baseline characteristics of cases and controls, with relative risks (RR) of relapse 

estimated from univariate case-cohort analyses. 

 No. of 

relapsed cases* 

No. of 

controls* 

RR 95% C.I. P-value 

Sex 

Male 40 64 1.0   

Female 56 84 1.10 (0.68-1.80) 0.70 

Stage 

I 11 45 1.0   

II 37 53 2.78 (1.30-5.94) 0.01 

III 25 37 2.55 (1.14-5.68) 0.02 

IV & V 23 13 5.65 (2.41-13.2) 0.0001 

Age at diagnosis (yr) 

0-2 26 58 1.0   

2-4 24 43 1.25 (0.65-2.39) 0.51 

4+ 46 47 2.00 (1.12-3.55) 0.02 

Log2 (TERT mRNA) 

Low (-5.40-0.87) 25 55 1.0   

Medium (0.87-2.42) 34 47 1.56 (0.85-2.85) 0.15 

High (2.42+) 37 45 1.77 (0.96-3.23) 0.07 

Log2 (TERC) 

Low (-2-2.72) 27 54 1.0   

Medium (2.72-3.87) 27 53 1.07 (0.58-1.98) 0.83 

High (3.87+) 42 40 2.06 (1.14-3.70) 0.02 

Continuous biological variables 

TRAP activity   1.44 (0.90-2.31) 0.13 

Log2 (TERT mRNA)   1.16 (1.04-1.29) 0.01 

Log2 (TERC)   1.35 (1.11-1.64) 0.003 

 

 

The relative risk associated with a high TERC level was 2.06 (95% CI 1.14-3.70) compared 

to the low level (p=0.02) (Table 2).  Weighted estimates of the relapse-free survival curves 

by TERC tertile are shown in Figure 2.  Patients with the highest TERC levels had double 
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the relapse risk compared to patients with the lowest TERC levels (4 year RFS: 78.7% v 

89.4%).  Combining the variables of TERT mRNA and TERC expression did not enhance 

the association with risk of relapse beyond that observed with TERC expression alone.   

 

 
Figure 2.  Relapse-free survival estimates according to level of log2  (TERC) expression. 

 
 

Levels of TERT mRNA and TERC expression were not predictive of overall survival, 

though the relatively small number of deaths precluded accurate assessment of the 

survival outcome.  

 

We next evaluated telomerase expression level as a prognostic indicator in the context of 

other known prognostic factors.  Patient age and tumor stage were not significantly 

associated with any measures of telomerase expression (data not shown).  A case-cohort 

analysis of the separate effects of TERT mRNA level and TERC level after adjustment for 

age at diagnosis, tumor stage, and each other revealed that age, high stage, and TERC 

level all had statistically significant effects (Table 3).  After adjustment for the other 

variables, each doubling of the TERC level increased the RR by a factor of 1.30 (95% CI 

1.06-1.60; P=0.007). 
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Table 3 

Relative risks (RR) of relapse estimated by multivariate case-cohort analysis. All RR are 

adjusted for the remaining variables shown. 

 

  RR 95% C.I. P-value 

Log2 (TERC) 1.30 (1.06-1.60) 0.007 

Log2 (TERT mRNA) 1.07 (0.94-1.23) 0.33 

Age at diagnosis (yr) 1.11 (1.01-1.21) 0.04 

Stage    

I 1.0   

II 2.14 (0.94-4.88) 0.07 

III 1.93 (0.79-4.68) 0.15 

IV & V 4.25 (1.71-10.55) 0.002 

 

Expression of TERT mRNA alternative splice forms in Wilms tumor 

It was recently recognized that human cells generate multiple alternative splice forms of 

TERT mRNA.  A total of seven alternative splicing sites (four insertions and three 

deletions) have been identified.20-24  Deletions , , and  and insertions 1 and 2 are 

predicted to abrogate telomerase catalytic activity because they interfere with the reverse 

transcriptase (RT) domains (Figure 3A).  Insertions 3 and 4 occur distal to the RT 

domains and are not predicted to alter the catalytic function of the protein (although this 

has not been tested formally).   Alternative splicing of TERT mRNA is responsible for 

telomerase repression after week 15 during the development of the fetal kidney.22 Because 

Wilms tumors arise from embryonal kidney, we surmised that alternative splicing of 

TERT mRNA may regulate telomerase activity in Wilms tumor.   

 

Using a primer set that encompasses the region of the  and  deletions (Figure 3A), we 

evaluated the TERT mRNA alternative splicing patterns in 30 Wilms tumors.  As 

demonstrated in Figure 3B, the +- splice form, predicted to encode a catalytically 

inactive protein, was the predominant splice variant.  The ratio of the full length/active 

++ variant to the inactive +- variant was variable from tumor to tumor. 
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Motifs: 

 
Figure 3.  (A) Schematic diagram of TERT mRNA.  The telomerase (T) and reverse 
transcriptase (1,2, A-E) motifs are shown.  Alternative splice forms predicted to encode 
inactive protein are illustrated. (B)  RT-PCR reaction demonstrating four alternative 
splice forms involving the  and  splice forms in Wilms tumors.  HFF+TERT represents 
human foreskin fibroblasts with ectopic TERT expression. 

 
 

The primer set that was utilized to assess the prognostic significance of TERT mRNA 

expression level was directed against a region of cDNA that amplifies all TERT mRNA 

splice forms, both active and inactive (Figure 3A).  We therefore designed a real-time PCR 

primer-probe set to specifically measure levels of the “active” ++ splice form.  There was 

strong correlation between levels of total TERT mRNA and levels of the ++ splice form 

(r=0.836, p<0.0001).  Levels of the ++ TERT mRNA splice form were no more predictive 

of relapse than were levels of total TERT mRNA (data not shown).   
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Discussion 

 

This study demonstrated a positive correlation between risk of recurrence in patients 

with favorable histology Wilms tumor and tumor expression level of telomerase RNA 

(TERC and, to a lesser extent, TERT mRNA).  The third of patients with the highest 

TERC expression level had twice the risk of relapse compared to those with the lowest 

TERC expression level.  TERC expression level remained a significant predictor of relapse 

after adjustment for the known prognostic factors of tumor age and patient stage.  These 

results indicate that measurement of TERC expression may be a useful adjunct to the 

current risk classification schema for favorable histology Wilms tumor.   

 

Our findings add to a growing body of evidence that high telomerase expression level is 

associated with unfavorable outcome in human cancer.8   In pediatric cancer, detectable or 

high level of telomerase expression has been associated with unfavorable prognosis in 

neuroblastoma 25-28, hepatoblastoma 29, osteosarcoma 30, and AML 31.  The biological basis 

for this correlation is poorly understood.  The simplest explanation is that tumors with 

low or absent telomerase expression are unable to maintain telomeres and therefore have 

limited proliferative potential.32  It is also possible that excess telomerase expression may 

mediate resistance to DNA damaging agents because telomerase can act as a chromosome 

healing enzyme.33-35  In support of this premise, studies of in vitro drug sensitivity have 

shown that cell lines become more sensitive to various classes of chemotherapy agents 

upon the inhibition of telomerase.36-39  Finally, recent studies using mouse models have 

shown that the telomerase complex may promote tumorigenicity and metastatic potential 

in a manner independent of telomere lengthening.40;41    

 

The optimal assay for telomerase expression has not been established and may vary 

according to tumor type.  We assessed three measures of telomerase expression, each with 

distinct advantages and disadvantages.  Telomerase enzyme activity, assessed by the 

TRAP assay, is the most widely used measure for telomerase expression because it 

provides a functional readout of the protein and was the first telomerase assay to be 

developed.  In contrast to the findings in other cancers, TRAP level was not predictive of 

relapse in our study of Wilms tumor.  A potential explanation for this lack of correlation is 

that TRAP activity is subject to inactivation with heat and time 13, which could be 
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particularly problematic in a multi-institutional study such as ours in which the 

processing of tumor tissue was not uniform.    Additionally, Wilms tumor may differ from 

other tumors with regard to the extent of variation of telomerase activity level between 

tumors.  Nearly all Wilms tumors in our study had TRAP activity, whereas other cancers 

had a more dichotomous pattern of activity (either absent or present).26;28;30;42-45  When 

quantitative, rather than qualitative, measurement of activity is important, the TRAP 

assay may have limitations.   

 

The second telomerase assay we undertook was quantitative RT-PCR to measure 

expression level of TERT mRNA, which encodes the catalytic component of the telomerase 

enzyme complex.   TERT mRNA expression level was more predictive of relapse than 

TRAP activity in a univariate analysis, but was not predictive after adjustment for 

patient age and tumor stage, corroborating the findings of our pilot study. 9  A limitation 

of the TERT mRNA expression assay is that TERT mRNA undergoes alternative splicing, 

generating splice forms that encode inactive protein.  We attempted to correct for this by 

exclusively amplifying the ++ splice form, which is predicted to encode active protein.  

However, in contrast to results for neuroblastoma 28, our analysis of the ++ splice form 

did not reveal a strong correlation with patient outcome.  An important caveat to the 

++ splice form analysis is that it accounted for only two of the known TERT mRNA 

splice variants.   It is possible that a subset of the “active” ++ TERT splice forms 

contained other insertions or deletions that would render them inactive.  Unfortunately, 

the distance between TERT mRNA alternative splice sites precludes the development of 

PCR primer sets that amplify mRNA species that exclusively encode active protein. 

 

The third telomerase assay used in our study was quantitative PCR of TERC, the RNA 

template component of the telomerase enzyme complex.  Interestingly, TERC expression 

was the best prognosticator of the three telomerase measures, which differs from the 

conclusions of our pilot study. 9  This difference likely relates to the larger sample size and 

improved assays (ie, real-time quantitative PCR) in the current study.   However, the 

confidence intervals indicate that the differences observed between the two studies are 

within the bounds of expected statistical variation.  Although TERC is constitutively 

expressed in both normal and malignant cells, TERC is known to be upregulated during 
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the process of tumorigenesis. 46-50  A high level of TERC expression has been linked with 

adverse outcome in neuroblastoma and breast cancer.27;51-53  Recent studies of individuals 

with the autosomal dominant form of dyskeratosis congenita have revealed that TERC 

haploinsufficiency results in impaired telomere length maintenance and clinical 

phenotype, indicating that the level of TERC expression is physiologically important.54;55  

Likewise, in a mouse model system, haploinsufficiency of TERC was limiting for telomere 

maintenance.56  Although correlative, our findings suggest that level of TERC expression 

may be of biological significance in human cancer and that measurement of TERC level 

deserves further consideration as a prognostic indicator.   

 

In summary, our findings indicate that high TERC expression level in primary favorable 

histology Wilms tumors is predictive of relapse, even after adjustment for patient age and 

tumor stage.   These results suggest that measurement of TERC expression may provide a 

clinically useful adjunct to the current risk stratification schema for favorable histology 

Wilms tumor.  Because this is the first study demonstrating a correlation between TERC 

level and relapse in Wilms tumor, further validation of this molecular marker will be 

required before the results of this test can be utilized for treatment stratification. 
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ABSTRACT 

 

 

Purpose 

Reported estimates of survival for patients with recurrent Wilms tumor (WT) are 24% to 

43%.  Because published survival data are more than a decade old and do not reflect 

advances in therapy, we reviewed our experience in treating recurrent WT to determine 

whether the probability of survival has increased. 

Patients and Methods 

We reviewed the cases of 54 patients with recurrent WT who were treated on one of six 

consecutive clinical trials at St. Jude Children’s Research Hospital between 1969 and 

2000.  

Results 

Five-year overall survival estimates after relapse were 63.6% ± 15.7% for patients treated 

during or after 1984 (n=20) and 20.6% ± 6.5% for patients treated before 1984 (n=34) 

(p=0.002).  When the analysis was restricted to patients with high-risk clinical features, 

5-year overall survival estimates were 47.6% ± 15.7% for those treated in the modern era 

(n=16) and 11.1% ± 5.2% for those treated in the earlier era (n=25) (p=0.005).  Only three 

patients received high-dose chemotherapy with autologous stem cell rescue; one survived.  

No patients with recurrent anaplastic histology disease survived. 

Conclusions 

Significant progress has been achieved in the treatment of recurrent favorable histology 

WT using multi-modality salvage regimens with conventional doses of chemotherapy.  

Novel therapeutic strategies will be necessary to cure patients with recurrent anaplastic 

Wilms tumor.   
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INTRODUCTION 

 

Because of advances in therapy, approximately 90% of patients with Wilms tumor can 

now be cured.  Despite this remarkable success, reported estimates of durable survival 

after relapse are only 24% to 43% (1-4). Patients who have favorable histology disease, 

long duration of remission, isolated pulmonary recurrence, abdominal recurrence in the 

absence of prior irradiation, low-stage disease at presentation, or have had up-front 

treatment with only vincristine and actinomycin D have a relatively good prognosis after 

relapse (1-4).    

 

Before the mid-1980s, recurrent Wilms tumor was treated with combinations of 

vincristine, actinomycin D, doxorubicin, radiation therapy, or surgery.  In many cases, the 

identical chemotherapy agents were used for the treatment of both primary and recurrent 

disease.  In recent years, cyclophosphamide, ifosfamide, cisplatin, carboplatin, and 

etoposide have been used to treat recurrent Wilms tumor, but their impact on long-term 

survival remains poorly defined (5). Trials of high-dose chemotherapy with autologous 

stem cell rescue have yielded markedly improved survival estimates compared to 

historical controls (6, 7), but it is uncertain whether this approach is superior to 

conventional chemotherapy with the newer agents.  

 

In 1985, we reported a survival rate of 25% among 32 patients with recurrent Wilms 

tumor treated at St. Jude Children’s Research Hospital (2). Because published survival 

data are more than a decade old and do not reflect advances in therapy, we reexamined 

our experience in treating recurrent Wilms tumor to determine whether the probability of 

survival has increased. 

 

PATIENTS AND METHODS 

 

Patients 

The records of 388 children with renal tumors treated at St. Jude Children’s Research 

Hospital on one of six consecutive clinical trials between 1969 and 2000 were reviewed. As 

of March 2000, 65 of these patients (16.8%) had experienced recurrence.  Seven of the 65 

patients were excluded from this study because either their histologic diagnoses were not 
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consistent with Wilms tumor (n=4) or because they did not have a complete response to 

primary treatment (n=3).  An additional four patients with bilateral Wilms tumor were 

excluded because their recurrences involved the kidney and an unequivocal distinction 

between new primary tumors and recurrent disease could not be made.  Thus, 54 patients 

were included in this analysis. 

 

Wilms Tumor Treatment Protocols 

Nephrectomy was generally performed before chemotherapy and radiation therapy (RT) 

were given.  Tumor stage and histologic type were assigned according to the guidelines of 

the National Wilms Tumor Study Group (NWTSG).  Patients were treated on the St. Jude 

institutional Wilms-1 (1969-1972), Wilms-2 (1973-1978), Wilms-3 (1979-1988), Wilms-4 

(1989-1995), and Wilms-5 (1994-1998) protocols, which are outlined in Figure 1.  Some 

patients with measurable disease on the Wilms-3 study, including one patient in this 

analysis, were treated with an up-front window of etoposide.   The Wilms-4 and Wilms-5 

studies were complementary: patients with stages I-III favorable histology disease and 

patients with stage I anaplastic histology disease were enrolled on the Wilms-4 study; 

patients with unresectable (including stage IV) favorable histology disease and patients 

with stages II-V anaplastic histology disease were enrolled on the Wilms-5 study.  After 

the Wilms-4 and Wilms-5 studies closed, eligible patients were enrolled on the National 

Wilms Tumor Study (NWTS)-5 (8).  

 

Treatment for recurrent Wilms tumor was individualized.  In the earlier era, treatment 

generally included chemotherapy with vincristine and actinomycin D, with or without 

doxorubicin.  In more recent years, patients have often been treated with combinations 

such as ifosfamide, carboplatin, and etoposide; cisplatin and etoposide; or 

cyclophosphamide, carboplatin, and etoposide.  There was no uniform approach to surgery 

or radiation therapy at the time of relapse.  The use of these modalities was based on the 

resectability of the tumor and on whether the recurrence occurred in a previously 

irradiated site. 

 

 



Figure 1.  Outline of the St. Jude Children’s Research Hospital Wilms tumor protocols 1 
through 5 (1969-1998). FH= favorable histology, UH= unfavorable histology, RT= 
radiation therapy, CT= chemotherapy 
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Abbreviations used in Figure 1 

V= vincristine 1.5 mg/m2; A= actinomycin D, 0.4 mg/m2 (0.6 mg/m2 in Wilms-5 study and first three 

doses of Wilms 4 study for Stage IV patients); D= doxorubicin, 25 mg/m2, I= ifosfamide 2g/m2 /day x 

3 days ; C= carboplatin targeted to an area under the curve (AUC) of 6 mg/ml x min x 1 day ; E= 

etoposide 100 mg/m2 /day x 3 days.  
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Analysis of Factors Predictive of Survival after Recurrence  

To determine the effect of treatment era on survival, we classified the 54 patient records 

according to tumor recurrence during the modern treatment era (on or after January 1, 

1984; n=20) or during the previous era (1983 or before; n=34).  This date was selected 

because combinations of new and effective chemotherapy agents first came into routine 

use at St. Jude in 1984, which was also the year in which our previous analysis of 

recurrent Wilms tumor ended.    

 

We examined the patient records to investigate whether factors previously shown to affect 

patient outcome were predictive in our study group.  These factors were initial tumor 

stage, tumor histology, chemotherapy and radiation therapy used to treat the primary 

disease, duration of complete response, site of recurrence, and number of pulmonary 

metastases.  We also assessed whether the extent of surgical resection of recurrent tumor 

and the use of RT to treat recurrence were predictive of survival.  Finally, we created a 

new variable: we analyzed the number of active chemotherapy agents that were 

administered at the time of recurrence, but not during primary therapy.  By measuring 

the effect of using drugs to which the tumor cells were naive, this variable assessed the 

impact of the expanded repertoire of drugs available in the modern era.  For this analysis, 

we considered vincristine, actinomycin D, doxorubicin, cyclophosphamide, ifosfamide, 

carboplatin, cisplatin, and etoposide to be active against Wilms tumor (5, 9-14). 

 

Statistical Methods 

The duration of overall survival (OS) after relapse was defined as the interval between 

the date of first relapse and either the date of death from any cause or the date of the 

patient’s most recent follow-up contact.  The duration of event-free survival (EFS) after 

relapse was defined as the interval between the date of first relapse and either the date of 

subsequent disease progression or relapse, as documented by radiologic studies, or the 

date of the most recent follow-up contact, or the date of death.  The probabilities of OS 

and EFS (± one standard error) were estimated by the method of Kaplan and Meier (15).    

The predictive value of prognostic factors for OS was analyzed by using the exact log-rank 

test or the Mantel-Haenszel test for factors with more than two levels.  Pairwise 

comparisons were made only if the overall p-value was less than 0.05.   No adjustments 

 51 



for multiple comparisons were made.  Risk ratios estimated from univariate Cox models 

(16) are presented with 95% confidence intervals.  Associations among variables were 

examined by Fisher’s exact test, the exact chi-square test, the exact Wilcoxon rank sum 

test, or the Kruskal-Wallis test.  SAS (version 6.12, SAS Institute, Cary, NC) and 

StatXact (version 4, CYTEL Software Corporation, Cambridge, MA) software were used 

for statistical analysis. 

 

RESULTS 

 

Patients 

Among 388 children with renal tumors treated on one of six consecutive clinical trials 

between 1969 and 2000, 5-year event-free survival estimates were 73.8%  3.4% for 

patients treated before 1984 and 81.4%  3.1% for patients treated during or after 1984 

(p=0.054).  The 5-year overall survival estimates were 79.3%  3.2% for patients treated 

in the earlier era and 90.6%  2.3% for patients treated in the modern era (p=0.008). 

 

The clinical characteristics of the 54 patients with recurrent Wilms tumor who were 

included in our analysis are described in Table 1.  There were no detectable differences in 

tumor histology, age at diagnosis, gender, or race.  However, a comparison of patients 

treated in the modern and previous eras revealed a trend toward lower-stage disease in 

the patients who were treated in the modern era (p=0.060).  The median time between 

primary diagnosis and recurrence was 9.9 months (range, 3-83.5 months).  Interestingly, 

the median time to recurrence was greater among patients whose relapses occurred after 

1983 (16.9 months; range, 4.1- 60.0 months) than among patients in the earlier group (9.4 

months; range, 3.0-83.5 months) (p=0.060).  Thirty-seven patients had isolated pulmonary 

recurrence; these included 2 patients with hilar disease only.  Twelve patients had local 

recurrence; these included one patient with both abdominal and pulmonary recurrence.  

Five patients had recurrence at other sites (bone, brain, or liver).   

 

 

Table 1 

Characteristics of the Study Group Overall and by Treatment Era  
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Characteristic Entire Study 

Population 

Study Population 

According to Treatment Era 

 (N=54) Before 1984 

(N=34) 

1984 and after 

(N=20) 
 

 N N  N  P-value* 

Primary disease stage 

     I 

     II 

     III 

     IV 

 

7  

12  

23  

12  

 

2  

8  

14  

10  

 

5  

4  

9  

2  

 

0.060 

Histology 

     Favorable 

     Anaplastic 

 

45  

9  

 

29  

5  

 

16  

4  

0.71 

Gender 

     Female 

     Male    

 

29  

25  

 

19  

15  

 

10  

10  

0.78 

Race 

     Caucasian 

     African-American 

 

33  

21  

 

23  

11  

 

10  

10  

0.25 

Age at diagnosis (years) 

     Median 

     Range 

 

4.5 

0.7 – 13.9 

 

4.0 

0.9 – 13.9 

 

5.5 

0.7 – 13.3 

0.47 

Time from diagnosis to 

recurrence (months) 

     Median 

     Range 

 

 

9.9 

3-83.5 

 

 

9.4 

3.0-83.5 

 

 

16.9 

4.1-60.0 

 

0.060 

Site of relapse 

     Lung/hilum only 

     Abdomen 

     Other 

 

37 

12 

5 

 

24 

7 

3 

 

13 

5 

2 

0.9 

Survival status 

   Alive 

   Expired 

 

20  

34  

 

7  

27  

 

13  

7  

0.002 

* P values were obtained by using the exact Kruskal-Wallis test, Fisher’s exact test, exact 
Wilcoxon rank sum test, or the exact log rank test. 
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There was no detectable difference between treatment-era groups in the sites of 

recurrence (p=0.9).  Twenty of the 54 patients remained alive with a median follow-up of 

7.2 years (range, 1.3-27.4 years) after relapse.  The median follow-up of survivors treated 

for recurrence before 1984 was 22.0 years (range, 17.7-27.4 years) whereas that for 

patients treated in the modern era was 4.0 years (range 1.3-13.4 years).  Fourteen of the 

20 survivors had been followed for more than 4 years after relapse.  Seventeen of the 20 

survivors had had follow-up contact within the past 12 months; the other three survivors 

were last contacted in 1995, 1998, and 1999.   

 

Treatment of Recurrence  

Patients were treated for relapsed disease on individualized treatment plans.   Thirty-

eight patients (70.3%) received chemotherapy.  Not surprisingly, patients whose disease 

recurred in the later era were more likely to have received two or more active agents that 

were not included in their primary treatment regimens (p<0.001).  Forty-two patients 

(77.8%) received radiation therapy at relapse.  Nineteen of 20 (95%) patients received RT 

for relapsed disease in the modern era, as compared to 23 of 34 (67.6%) in the previous 

era (p=0.022).  All patients except one received RT with curative intent.  Twenty patients 

(37.0%) had a complete (gross total) surgical resection of recurrent tumor, eight (14.8%) 

had a partial resection, eight (14.8%) had a biopsy, and 18 (33.3%) had no surgery.  We 

found no statistically significant difference between the two treatment-era groups in the 

frequency of complete surgical resection (p=0.56).   Three patients in the modern era 

underwent high-dose chemotherapy with autologous stem cell rescue as part of their 

salvage therapy. 

 

Patient Outcomes 

The patient outcomes are summarized in Figure 2.  Thirty-eight of the patients had a 

second complete response (CR).  There was no significant difference in the percentage of 

patients who had a second complete response according to treatment era (Table 2).   Of 

the 16 patients who did not have a second complete response, 15 died of Wilms tumor.  

The single surviving patient in this group showed evidence of recurrent disease at the 

most recent follow-up examination.   
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 Alive  Expired 

 
Figure 2. Outcomes of patients with recurrent Wilms tumor.  CR= complete response, 
PD= progressive disease, CCR= continuous complete response, RL2= second relapse. 

 
 

Twenty-six of the 38 patients who achieved a second complete response had subsequent 

disease recurrence.  The 12 patients who did not have subsequent disease recurrence were 

alive without disease at their last follow-up examinations.  Of the 26 patients who had a 

second recurrence, 19 died of Wilms tumor at a median time of 0.8 years (range 0.01-2.2 

years) from their second recurrence and seven were alive with no evidence of disease at 

0.9, 1.3, 2.1, 4.8, 5.8, 20.5, and 26.4 years after their second recurrence.   
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Table 2 

Comparison of Patient Outcomes By Treatment Era 

 Pre-1984 1984-2000 p-value 

2nd Complete Response 22/34 (64.7%) 16/20 (80.0%) 0.356* 

2nd Relapse 17/22 (77.2%) 9/16 (56.2%) 0.064** 

Survival after 2nd Relapse 2/17 (11.7%) 5/9 (55.6%) 0.069** 

*Fisher’s exact test 

** Exact log rank test 

 

The second recurrences of the seven survivors were treated with surgery only (1), RT only 

(1), surgery and RT (2), surgery and chemotherapy (1), or surgery, RT, and chemotherapy 

(2).  None of the survivors of second recurrences received consolidation with high-dose 

therapy and stem cell rescue.  Patients treated during the modern era were less likely to 

have a second recurrence, but more likely to survive after a second recurrence, than were 

patients treated during the previous era; these differences were marginally significant 

(Table 2).   
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Figure 3. Estimated event-free survival (A) and overall survival (B) after recurrence of 
Wilms tumor. Both event-free survival (p=0.012) and overall survival (p=0.002) increased 
significantly in the more recent treatment era. 

 
As shown in Figure 3, the estimated 5-year EFS was 21.5%  6.3% for the entire study 

group, 33.3%  13.6% for patients whose relapses occurred in the modern era, and 14.7%  

5.5% for patients whose relapses occurred before 1984 (p=0.012).    The estimated 5-year 

OS was 34.9%  7.8% for the entire study group, 63.6% ± 15.7% for the modern-era cohort, 

and 20.6% ± 6.5% for the pre-1984 cohort (p=0.002).  It is possible that the shorter 

duration of follow-up for the patients in the modern era may have overestimated the 

survival of these patients, particularly those with more than one recurrence.  It is notable 

that of the 13 survivors from the modern era treatment group, only three had been 

followed for less than three years after their relapses.  In the early group, 26/27 deaths 

occurred within three years of relapse.  

 

The International Society of Paediatric Oncology (SIOP) identified adverse prognostic 

factors for recurrent Wilms tumor including initial stage IV disease, unfavorable 

histology, time to recurrence 6 months or less after diagnosis, and recurrence in multiple 
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organs, liver, bone, brain, lymph nodes, or a previously irradiated field (17). In our study 

group, 13 patients (24.1%) had none of these adverse factors and 41 patients (75.9%) had 

at least one factor.  Patients with none of the adverse factors had a 5-year survival 

estimate of 71.4% ± 14.4%, compared to 23.4% ± 7.7% for patients with at least one 

adverse factor (p<0.001).  Among the latter group, 5-year survival estimates were 47.6% ± 

17.2% for patients treated in the modern era (n=16) and 11.1% ± 5.2% for those treated in 

the earlier era (n=25) (p=0.005).   

 

Factors Predictive of Survival after Relapse 

Table 3 summarizes the univariate analysis of prognostic factors.  Factors that were 

significantly predictive of survival after relapse were time from diagnosis to recurrence, 

tumor histology, treatment era, initial stage, extent of resection of recurrent disease, and 

the number of active drugs given for the first time at relapse.  There was a trend toward 

improved survival in patients who did not receive RT for their primary disease.  

Moreover, of 15 patients who experienced recurrence within a previously irradiated field, 

only one survived.   
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Table 3 

Univariate Analysis of Prognostic Factors for Patients with Relapsed Wilms Tumor 

Factor N 5-year OS Estimate 

(SE) (%) 

Relative Risk 

 (95% CI) 

P-value 

Stage 

    I, II 

    III, IV 

 

19 

35 

 

47.8 (14.1) 

26.8 (8.1) 

2.1 (1.0 – 4.6) 0.039 

Histology 

    Favorable 

    Unfavorable 

 

45 

9 

 

41.9 (8.9) 

0 (0) 

4.2 (1.9 – 9.6) 0.004 

Treatment era 

    Relapse after 1984 

    Relapse before 1984 

 

20 

34 

 

63.6 (15.7) 

20.6 (6.5) 

3.3 (1.4 – 7.5) 0.002 

Time from Dx to recurrence 

    < 6 months 

    >6 to <12 months 

    > 12 months 

 

10 

20 

24 

 

## 

24.0 (9.4) 

54.6 (12.3) 

 

4.1 (1.6 – 10.3) 

2.7 (1.2 – 6.0) 

1.0 

 0.004# 

   

   

Chemotherapy for the primary tumor 

    No drugs 

    One or two drugs  

    Three or more drugs 

 

1 

18 

35 

 

### 

42.8 (11.4) 

30.1 (10.3) 

     0.7 (0.3 – 1.4) 

 

0.28 

 

Irradiation during initial therapy 

    No  

    Yes 

 

14 

40 

 

57.1 (18.7) 

27.9 (7.5) 

0.5 (0.2 – 1.1) 0.070 

Surgical response at relapse 

    Partial resection, biopsy, no surgery 

    Complete resection 

 

34 

20 

 

19.6 (7.9) 

60.0 (12.6) 

3.3 (1.5 – 7.3) 0.001 

Irradiation at relapse 

    No  

    Yes 

 

12 

42 

 

25.0 (10.8) 

37.7 (9.4) 

1.5 (0.7 – 3.1) 0.35 

Radiation field at relapse 

    Previously irradiated field or no RT 

    Previously unirradiated field 

 

21 

33 

 

16.7 (7.6) 

46.0 (10.7) 

2.6 (1.3 – 5.1) 0.009 

Active drugs first given at relapse 

    None or one 

    Two or more 

 

 36 

18 

 

         22.2 (6.5) 

65.0 (17.2) 

     3.2 (1.3 – 7.6) 0.005 

First relapse site 

    Lung/Hilum only 

    Abdomen 

    Other 

 

37 

12 

5 

 

36.5 (8.8) 

  #### 

60.0 (21.9) 

 

1.0 

1.9 (0.9 – 4.1) 

0.6 (0.1 – 2.5) 

 0.169# 

Number of pulmonary lesions* 

    Single 

    Multiple 

 

18 

17 

 

53.5 (12.9) 

17.6 (9.2) 

3.2 (1.3 – 7.6) 0.009 
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     Reference group 

   P values were obtained by exact log-rank tests except where indicated by superscript #.  
Pairwise comparisons for analyses with multiple variables are indicated by brackets.  
#   P values were obtained by Mantel-Haenszel tests. 
## No five-year estimate was available; 9 of 10 patients died within 3 years and one patient is alive 
38.1 months after recurrence.  
### No five-year estimate was available; only one patient did not receive chemotherapy at initial 
presentation; this patient is alive 38.1 months post-recurrence.  Comparisons for this variable 
exclude this one patient 
#### No five-year estimate was available; 9 of 12 patients died within 3 years and three patients are 
alive 15.8 (with disease), 29.3, and 38.1 months post-recurrence. 
*   Subset analysis for patients with lung recurrence only.  

 
 

Although the use of RT in general to treat recurrent disease was not prognostically 

significant, the use of RT in a previously unirradiated field was associated with a higher 

probability of survival than was RT in a previously irradiated field or no RT.   The 

relatively small number of patients in this study precluded a multiple regression analysis 

of all of the prognostic variables.  

 

DISCUSSION 

 

Our findings indicate that substantial progress has been made in the treatment of 

relapsed Wilms tumor at St. Jude Children’s Research Hospital.   Patients treated for 

recurrence during or after 1984 had significantly improved event-free and overall survival 

estimates compared to patients treated in the previous era.  The improvement in survival 

after recurrence occurred concurrently with a decrease in the primary relapse rate.  The 

combination of the lower relapse rate and the higher salvage rate translated into 

significantly improved overall survival for the Wilms tumor patient population as a 

whole. The improvement in survival after Wilms tumor recurrence may be attributed to 

the decreased second recurrence rate and the increased salvage rate after second 

recurrences (Table 2).  Several factors are likely to have contributed to these 

improvements.  First, patients whose tumors recurred in the modern era were more likely 

to receive at least two agents that were not included in their primary treatment regimens.  

Most of these patients received combinations of oxazaphosphorines (ifosfamide or 

cyclophosphamide), platinum drugs (carboplatin or cisplatin), and etoposide, all of which 

have demonstrated significant activity against Wilms tumor (5, 9-14).  Second, patients 
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whose tumors recurred in the modern era were more likely to receive RT as part of their 

salvage therapy.  In particular, the administration of RT to a previously unirradiated field 

was associated with a higher probability of survival.  The more conservative use of RT for 

primary therapy in the modern era may have allowed for increased use at relapse, 

contributing to the improved patient outcomes.  Finally, advances in less quantifiable 

factors such as diagnostic imaging, surgical technique, and supportive care are likely to 

have improved the outcome of patients with recurrent Wilms tumor.   

 

It is possible that differences in the clinical characteristics between the two treatment-era 

groups contributed to the observed improvement in survival in the modern era.  Although 

we did not detect differences in tumor histology, site of recurrence, or age at diagnosis, we 

observed trends toward lower-stage disease and longer interval to recurrence in patients 

treated in the modern era.  When our analysis was restricted to patients with the high-

risk clinical features identified by SIOP (17), the improved survival in the modern era 

persisted.  This indicates that improvement in therapy, and not simply clinical differences 

between the patient groups, accounted for the superior patient outcomes in the modern 

era.  

 

High-dose chemotherapy with autologous stem cell rescue has been evaluated in several 

clinical trials for recurrent Wilms tumor, with overall survival estimates ranging from 36-

60% (6, 7, 18).  Only three patients in our analysis were treated with high-dose therapy; 

one survived.  Although direct comparisons are limited by differences in patient selection, 

it is interesting that survival in our modern era patients with high-risk clinical features is 

similar to the survival attained in the autologous transplant studies.  A prospective 

randomized trial is warranted to clarify whether high-dose chemotherapy with stem cell 

rescue is superior to conventional chemotherapy for the treatment of recurrent Wilms 

tumor. 

 

Although the outcome for patients with recurrent favorable histology Wilms tumor has 

improved dramatically over time, it is notable that there were no survivors of recurrent 

anaplastic histology Wilms tumor in our cohort.   Two of the nine patients with recurrent 

anaplastic histology disease were treated with high-dose therapy with autologous stem 

 61 



cell rescue.  It is apparent that novel therapies will be necessary to improve outcomes for 

this unfortunate group of patients. 

 

Prognostic factors may help to identify patients with recurrent Wilms tumor who may be 

candidates for relatively non-intensive treatment.  In our study population, favorable 

histology, a long interval (>12 months) between diagnosis and relapse, and low stage (I or 

II) of primary disease were associated with improved post-relapse survival.  Although site 

of recurrence was not predictive of outcome, patients with solitary pulmonary nodules had 

a significantly higher probability of survival than did those with multiple nodules.  Our 

analysis also indicated that patients who underwent a complete surgical resection of 

recurrent tumor had a higher probability of survival than did patients who had a partial 

resection or no surgery.  It is tempting to speculate that surgery plays an important role 

in treating recurrent disease, but we cannot exclude the possibility that patients who 

underwent a complete surgical resection had less aggressive disease than did other 

patients.  A caveat to our analysis of prognostic factors is the relatively small sample size 

of our study population.  Factors such as the site of recurrence and the number of 

chemotherapy drugs given for primary treatment may have shown prognostic significance 

had our sample size been larger.  

 

In conclusion, significant progress has been achieved during the past two decades in the 

treatment of recurrent favorable histology Wilms tumor.  The improvement is likely due 

to a combination of factors including the availability of new chemotherapy agents, the 

increased use of radiation therapy, and advances in supportive care.   Novel treatment 

approaches will be necessary to improve the outcome for patients with recurrent 

anaplastic Wilms tumor.  
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ABSTRACT 

 

 

Background 

An objective of the fifth National Wilms Tumor Study (NWTS-5) was to evaluate the 

efficacy of treatment regimens for anaplastic histology Wilms tumor (AH). 

Methods 

Prospective single-arm studies were conducted.  Patients with stage I AH were treated 

with vincristine/dactinomycin x 18 weeks. Patients with stages II-IV diffuse AH were 

treated with vincristine/doxorubicin/cyclophosphamide/etoposide x 24 weeks and 

flank/abdominal radiation.   

Results 

2596 patients with Wilms tumor were enrolled on NWTS-5, of whom 281 (10.8%) had AH.  

Four-year event-free (EFS) and overall survival (OS) estimates for evaluable patients 

with stage I AH (n=29) were 69.5% (95% CI 46.9, 84.0) and 82.6% (95% CI 63.1, 92.4).   By 

comparison, 4-year EFS and OS estimates for patients with stage I favorable histology 

(FH) (n=473) were 92.4% (95% CI, 89.5 to 94.5) and 98.3% (95% CI, 96.4 to 99.2).  Four-

year EFS estimates for patients who underwent immediate nephrectomy with stages II 

(n=23), III (n=43), and IV (n=15) diffuse AH were 82.6% (95% CI 60.1, 93.1), 64.7% (95% 

CI 48.3, 77.7), and 33.3% (95% CI 12.2, 56.4).  OS was similar to EFS for these groups.  

There were no local recurrences among patients with stage II AH.  Four-year EFS and OS 

estimates for patients with bilateral AH (n=29) were 43.8% (95% CI 24.2, 61.8) and 55.2% 

(95% CI 34.8, 71.7).  

Conclusions 

The prognosis for patients with stage I AH is worse than that for patients with stage I 

FH.  Novel treatment strategies are needed to improve outcomes for patients with AH, 

especially those with stages III-V disease. 
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Introduction 

 

In 1978, Beckwith and Palmer published a detailed histopathological review of Wilms 

tumors that were collected on the first National Wilms Tumor Study (NWTS-1). 1 

Approximately 6% of the tumors had cells with nuclear enlargement, nuclear atypia, and 

irregular mitotic figures and were considered to have anaplastic histology (AH).   The 

presence of anaplasia was prognostically significant; 44% of patients with AH died of 

disease, whereas only 7.1% of patients without anaplasia, the so-called “favorable 

histology (FH)” subtype, died of disease. 1  Subsequent studies from the NWTSG and 

other groups have confirmed the adverse prognostic significance of anaplasia. 2-5  

 

The first NWTS to stratify patients with AH into a distinct treatment group was NWTS-3 

(1979-1986).  On this study, and on NWTS-4 (1986-1993), patients received 15 months of 

vincristine (VCR), dactinomycin (AMD), and doxorubicin (DOX), and were randomized to 

receive or not receive cyclophosphamide (CYCLO). 6  Patients with stages II-IV diffuse AH 

had an estimated 4-year overall survival of 27.1% when treated without CYCLO, 

compared with 52.2% when treated with CYCLO (p=0.04). 7  On NWTS-4, patients with 

stage I AH had good outcomes when treated with only VCR and AMD, with 2-year OS 

estimates of 85.5 to 93.3%, depending on the AMD administration regimen. 8 

 

Although the addition of CYCLO provided a clear benefit for patients with stages II-IV 

diffuse AH, about half of these patients experienced tumor recurrence and disease-related 

death.  A primary objective of NWTS-5 was to improve the outcomes for these patients 

using a new treatment regimen containing the combination of CYCLO and etoposide, 

agents shown to be active against recurrent Wilms tumor in phase II studies.9;10  In this 

report, we present the outcomes of patients with AH who were treated on NWTS-5. 

 

Patients and Methods 

 
Patients 

NWTS-5 was open to accrual between August, 1995 and June, 2002.  Each participating 

institution obtained local Institutional Review Board approval to conduct the study.   

Eligibility criteria included no prior chemotherapy or radiation therapy before study 
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enrollment; histologic diagnosis of Wilms tumor (favorable or anaplastic), clear cell 

sarcoma of the kidney (CCSK), or rhabdoid tumor of the kidney (RTK); nephrectomy or 

biopsy performed, and provision of informed consent to participate by a parent/legal 

guardian.   

 

Tumor Stage and Histologic Classification 

Patients underwent nephrectomy before chemotherapy using previously described 

surgical guidelines 11 unless the tumor was considered to be unresectable by the treating 

surgeon, in which case a biopsy was obtained.  A tumor stage was assigned using the 

NWTSG surgical-pathological staging system.11 

 

Pathology slides, institutional pathology reports, and NWTSG pathology forms were 

reviewed by the study pathologists.  The designation of anaplasia was applied to tumors 

with cells having major diameters at least three times those of adjacent cells, increased 

chromatin content (hyperchromaticity), and the presence of atypical polyploid mitotic 

figures.  The criteria distinguishing focal from diffuse anaplasia were based on the 

distribution of anaplasia within a tumor sample. 12  Tumors with focal anaplasia had 

anaplastic changes confined to sharply restricted foci within the primary tumor sample.  

Anaplasia occurring outside the primary tumor, in an extra-renal site such as vessels of 

the renal sinus, or in a random biopsy specimen was considered to be diffuse anaplasia.   

 

Treatment Regimens 

The treatment regimens are outlined in Figure 1.  Patients who received pre-nephrectomy 

chemotherapy received Regimen DD-4A.  All regimens called for 50% reductions of AMD 

and DOX doses during the six weeks following irradiation if the radiation field included 

the whole lung or whole abdomen.  All treatment regimens recommended 50% 

chemotherapy dose reductions in infants <12 months old.  Patients with stage I focal or 

diffuse AH did not receive radiation therapy.  Patients with stages II-IV focal or diffuse 

AH received 1080 cGy to the abdomen or flank, depending upon the extent of disease, 

with a boost of 1080 cGy to areas of bulky residual tumor.  Patients with lung metastases 

received 1200 cGy to the whole lung.  
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Regimen EE-4A: Stage I focal or diffuse anaplastic histology

Week     0   1    2    3    4    5    6    7    8    9   10   11 12     15     18

A              A                A               A        A A      A              

V   V    V    V    V   V   V    V    V    V  V*     V*     V*              

Regimen DD-4A: Stages II-IV focal anaplastic histology

Week     0   1    2    3    4    5    6    7    8    9   10   11 12     15     18    21      24

A              D*              A               D*        A      D       A      D      A          

V   V    V    V    V   V   V    V    V    V  V*      V*      V*     V*     V* 

XRT           

Regimen I: Stages II-IV diffuse anaplastic histology

Week     0    1    2    3    4     5    6    7    8    9   10   11    12    13    15    18    21    24

D* D*          D* D*            D*

V    V        V     V    V    V    V        V     V     V*     V*            V*            V*

C*               C                C*   C            C*     C     C*     C

E                                   E                  E              E

XRT

Regimen EE-4A: Stage I focal or diffuse anaplastic histology

Week     0   1    2    3    4    5    6    7    8    9   10   11 12     15     18

A              A                A               A        A A      A              

V   V    V    V    V   V   V    V    V    V  V*     V*     V*              

Regimen DD-4A: Stages II-IV focal anaplastic histology

Week     0   1    2    3    4    5    6    7    8    9   10   11 12     15     18    21      24

A              D*              A               D*        A      D       A      D      A          

V   V    V    V    V   V   V    V    V    V  V*      V*      V*     V*     V* 

XRT           

Regimen I: Stages II-IV diffuse anaplastic histology

Week     0    1    2    3    4     5    6    7    8    9   10   11    12    13    15    18    21    24

D* D*          D* D*            D*

V    V        V     V    V    V    V        V     V     V*     V*            V*            V*

C*               C                C*   C            C*     C     C*     C

E                                   E                  E              E

XRT

 

Figure 1.  Schema for Regimen I.  D-Doxorubicin (1.5 mg/kg; 45mg/m2 for patients>30kg); V-
Vincristine (0.05 mg/kg; 1.5mg/m2 for patients>30kg, max dose 2mg); V*-Vincristine (0.067 mg/kg; 
2 mg/m2 for patients>30kg, max dose 2mg)  
C -Cyclophosphamide (14.7 mg/kg/day x 5; 440mg/m2/day for pts>30kg); 
C*-Cyclophosphamide (14.7 mg/kg/day x 3; 440mg/m2/day for pts>30kg);   
E-Etoposide (3.3 mg/kg/day x 5; 100mg/m2/day for patients>30kg)  
XRT- 1080 cGy to flank/abdomen.  

 

 

Statistical Design and Analysis 

The study was a prospective single-arm study to evaluate the efficacy of Regimen I, a 

novel treatment regimen for patients with stages II-IV diffuse AH.  The study also 

included descriptive analyses of patients with stage I AH, stage V (bilateral) AH, and 

stages II-IV focal AH.  Of 281 patients with AH enrolled, eight with focal AH and 73 with 

diffuse AH were not considered evaluable for the outcomes analyses because they had 

major protocol violations such as a late change in treatment protocol after central 

pathology review (n=60), administration of the incorrect treatment regimen (n=9), or 

other violations such as incomplete data submission (n=12).  Sixty-five patients received 

pre-operative chemotherapy because their primary tumors were considered to be 

unresectable.  As recommended by the protocol, most of these patients started treatment 
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with Regimen DD-4A.  Patients were considered evaluable as long as they changed to the 

correct treatment regimen upon nephrectomy (n=47).  One patient over 16 years of age at 

diagnosis was excluded as an evaluable patient because previous NWTSG studies 

excluded such patients.  

 

Event free survival (EFS) and overall survival (OS) percentages at 4 years past diagnosis 

were estimated by actuarial methods of Kaplan and Meier.  Comparisons of EFS and OS 

between patient subgroups were made with the log-rank test.  Comparisons of mean age 

at diagnosis by histology were made using the t-test.  Comparisons of gender and stage 

distribution by histology were made using the Fisher exact and related tests.  

 

Results 

Patient characteristics 

2596 patients with Wilms tumor were enrolled on NWTS-5, of which 59 had focal AH and 

222 had diffuse AH by central pathology review.   Anaplasia was not originally recognized 

by institutional pathologists in 74 of 190 (38.9%) patients who underwent immediate 

nephrectomy and were considered to have anaplastic histology by central pathology 

reviewers.  An additional nine patients were considered to have focal AH by institutional 

pathologists, but diffuse AH by central reviewers.   The analyses in this report are based 

on the central pathology histology designation.  Among 158 patients with unilateral 

anaplastic Wilms tumor for whom a local tumor stage was assigned (regardless of distant 

metastases), discordance between institutional stage and central pathology stage was 

noted in 30 patients (19%).  The analyses in this report use the overall stage assigned by 

the treating institution, which was based on local pathology stage and the presence of 

distant metastases. 

 

More patients with unilateral Wilms tumor had AH on NWTS-5 (10.1%) compared to 

NWTS-4 (7.5%).  More patients with unilateral Wilms tumor received pre-nephrectomy 

chemotherapy on NWTS-5 (14.0%) compared to NWTS-4 (9.0%).  Anaplasia was more 

frequently detected in unilateral tumors after pre-operative chemotherapy (18.6%) than 

in tumors resected immediately (8.7%).  
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The clinical characteristics of the patients with AH are described in Table 1.  For 

demographic comparison, patients with FH Wilms tumor are included in this table.  The 

female to male ratio among patients with AH was 2 to1; in comparison, the female to 

male ratio among patients with FH was 1.2 to 1.  Of patients with unilateral AH, 65.4% 

presented with high-stage (III+IV) disease, whereas 45.6% of patients with unilateral FH 

presented with high-stage disease (OR 2.26, p<0.001).  Stage V (bilateral) disease was 

present in 12.5% of patients with AH and 5.6 % of patients with FH.  The mean age at 

presentation for patients with AH was 56.5 months compared to 43.3 months for patients 

with FH (p<0.001).   

 

Table 1 

Demographics of patients with Wilms tumor enrolled on NWTS-5*  

 

 Favorable Histology 

(n=2315) 

Focal Anaplasia  

(n=59) 

Diffuse Anaplasia  

(n=222) 

Gender    

     Male 1036 (44.8%) 15 (25.4%) 78 (35.1%) 

     Female 1279 (55.2%) 44 (74.6%) 144 (64.9%) 

Median Age at Diagnosis 

(months) 

38.0 45.0 52.5 

Age at Diagnosis (years)    

0 – 1 693 (29.9%) 3 (5.1%) 20 (9.0%) 

2 – 3 743 (32.1%) 31 (52.5%) 70 (31.5%) 

> 4 879 (38.0%) 25 (42.4%) 132 (59.5%) 

Average Age at Diagnosis 

(months) 

43.30 50.49 58.04 

Stage    

     I 511 (22.1%) 12 (20.3%) 32 (14.4%) 

     II 678 (29.3%) 5 (8.5%) 36 (16.2%) 

     III 693 (29.9%) 16 (27.1%) 88 (39.6%) 

     IV 304 (13.1%) 15 (25.4%) 42 (18.9%) 

     V 129 (5.6%) 11 (18.6%) 24 (10.8%) 

*Excludes patients 16 and older at diagnosis 
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Patient outcomes  

Of the 200 patients considered evaluable for outcome analyses, 118 were followed alive 

beyond two years from diagnosis and 63 beyond 4 years. Three of 77 events were due to 

death in the absence of Wilms tumor; one patient with stage IV diffuse AH died of 

secondary acute myelogenous leukemia (AML) one patient with stage II diffuse AH died 

of rhabdomyosarcoma, and one patient with stage V diffuse AH died of infectious 

complications while on dialysis after bilateral nephrectomy.   The outcomes according to 

stage and histologic subtype are summarized in Table 2.   

 

Patients with stage I focal or diffuse AH were treated with VCR/AMD without irradiation, 

based on satisfactory results with this approach in previous NWTSG studies.  The 4-year 

EFS and OS estimates for 29 patients in this group were 69.5% (95% CI, 46.9 to 84.0) and 

82.6% (95% CI, 63.1 to 92.4), respectively (Figure 2).   

 

 

 

Figure 2.  Event-free and overall survival for patients with stage I focal or diffuse anaplastic 

Wilms tumor (n=29). 

 

 

By contrast, 4-year EFS and OS estimates for 473 evaluable patients with stage I FH 

Wilms tumor were 92.4% (95% CI, 89.5 to 94.5) and 98.3% (95% CI, 96.4 to 99.2), 
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Table 2 

EFS and OS by stage and subtype of anaplastic Wilms tumor 

 # patients EFS at 4 years OS at 4 years 

 Total Events Deaths % 95% CI % 95% CI 

Overall 200 77 67 59.9 (56.8,70.2) 65.9 (58.6,72.2) 

     Focal AH 51 12 8 74.9 (59.9,85.0) 82.4 (67.6,90.8) 

     Diffuse AH 149  65 59 54.9 (46.2,62.7) 60.4 (51.8,67.9) 

Stage I 29 8 5 69.5 (46.9,84.0) 82.6 (63.1,92.4) 

     Focal AH 10 2 1 67.5* (16.2,91.9) 88.9* (43.3,98.4) 

     Diffuse AH 19 6 4 68.4 (42.8,84.4) 78.9 (53.2,91.5) 

Stage II  28 5  5 82.1 (62.3,92.1) 81.2 (60.3,91.7) 

     Focal AH 5 1 1 80.0* (20.4,96.9) 80.0* (20.4,96.9) 

     Diffuse AH 23 4 4 82.6 (60.1,93.1) 81.5 (57.7,92.6) 

Stage III- IN 51  16 14 68.3 (53.6,79.3) 72.0 (57.3,82.4) 

     Focal AH 8 1 0 87.5 (38.7,98.1) 100.0 - 

     Diffuse AH 43 15 14 64.7 (48.3,77.7) 66.7 (50.2,78.8) 

Stage III- POCT 23 10 9 54.2 (31.6,72.2) 58.0 (34.6,75.6) 

     Focal AH 7 2 2 71.4 (25.8,92.0) 71.4 (25.8,92.0) 

     Diffuse AH 16 8 7 45.7* (20.1,68.3) 53.3* (26.3,74.4) 

Stage IV-IN 16 10 10 37.5* (15.4,59.8) 37.5 (15.4,59.8) 

     Focal AH 1 0 0 - - - - 

     Diffuse AH 15 10 10 33.3* (12.2,56.4) 33.3* (12.2,56.4) 

Stage IV-POCT 24 13 11 44.6 (24.3,63.2) 55.9 (33.1,73.6) 

     Focal AH 11 4 3 61.4 (26.6,83.5) 71.6 (35.0,89.9) 

     Diffuse AH 13 9 8 30.8* (9.5,55.4) 44.0* (16.8,68.4) 

Stage V 29 15 13 43.8 (24.2,61.8) 55.2 (34.8,71.7) 

     Focal AH 9 2 1 76.2* (33.2,93.5) 87.5* (38.7,98.1) 

     Diffuse AH 20 13 12 25.1* (5.88,51.0) 41.6* (19.7,62.2) 

*Fewer than 5 patients have survived 4 years: result must be interpreted with caution 

AH: anaplastic histology; EFS: event-free survival; OS: overall survival; CI: confidence 

interval 

 

Comparison of EFS and OS curves between patients with Stage I FH and Stage I AH 

demonstrated a highly significant difference (p<0.001). 
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Patients with stages II-IV diffuse AH were treated with the novel regimen I.   The EFS 

and OS estimates for these patients are shown in Table 2 and Figure 3.  Forty seven 

evaluable patients with unilateral AH underwent tumor biopsy and preoperative 

chemotherapy before tumor resection was performed.  Among 39 evaluable patients for 

whom both biopsy and nephrectomy histology results were available, only four (10.3%) 

had anaplasia detected in the biopsy sample.  Patients who received preoperative 

chemotherapy were analyzed separately because most switched treatment regimens as a 

result of the change in histologic diagnosis.  No difference in outcome was observed 

between patients who received preoperative chemotherapy and those who had immediate 

nephrectomy; the estimated hazard ratios for preoperative chemotherapy versus 

immediate nephrectomy (stratified by stage) were 0.991 for EFS (p=0.972) and 0.952 for 

OS (p=0.862).  
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Figure 3.  Event-free survival for patients with stages II-IV diffuse anaplastic Wilms tumor. 
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Patients with bilateral (stage V) AH were treated heterogeneously.  Among 25 patients 

with bilateral AH for whom biopsy and nephrectomy histology were available for review, 

only two had anaplasia detected in the initial biopsy sample (8%).  Upon definitive 

surgery (nephrectomy or partial nephrectomy), anaplasia was present on both sides in 3 

patients, on one side in 8 patients, and the status of one of the sides was unknown in 14 

patients.  Among the 26 patients with bilateral AH who were evaluable for response, 4/6 

patients who started treatment with Regimen EE-4A, 2/17 patients who started 

treatment with Regimen DD-4A, and 0/3 patients who started treatment with Regimen I 

had progressive disease.  The survival estimates for patients with bilateral AH are shown 

in Table 2 and Figure 4. 

 

Figure 4.  Event-free and overall survival for patients with stage V (bilateral) anaplastic Wilms 

tumor. 

 

 

Because a substantial proportion of patients were considered “non-evaluable,” we 

assessed the difference in outcomes between the non-evaluable and evaluable patients.  
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Patterns of Recurrence 

On NWTS-3 and -4, the prescribed dose of flank/abdominal radiation for patients with 

anaplastic Wilms tumor increased with patient age.  The frequency of operative bed 

relapse was not greater among patients treated with lower, compared to higher, radiation 

doses. 7  Based on this observation, NWTS-5 prescribed a uniform dose of 10.8 Gy for all 

patients with stages II-IV AH.  To estimate the effectiveness of local control, we analyzed 

the rates of recurrence in the operative bed or the abdomen/pelvis outside the operative 

bed, which also may have been included in the radiation field (Table 3).  None of the 

patients with stage II disease had first recurrences in the operative bed or abdomen, 

indicating that local control for these patients was excellent with 10.8 Gy.  The rates of 

operative bed or abdominal recurrences for patients with stages III, IV, and V disease 

were 12/74 (16.2%), 6/40 (15%), and 11/29 (37.9%), respectively. 

 

Table 3 

Sites of initial recurrence by stage in evaluable patients with anaplastic Wilms tumor* 

Stage # of 

patients 

# of patients with recurrence or progression  

  All Sites Lung Op bed Abd/pelvis 

outside op bed 

Liver Other 

sites 

I 29 8  1 1 2 2 2 

II 28 4 3 0 0 1 0 

III-immediate 

nephrectomy 

51 16 9 2 3 2 0 

III-

preoperative 

chemotherapy 

23 10 1 5 2 1 1 

IV-immediate 

nephrectomy 

16 9 2 1 1 0 1 

IV-

preoperative 

chemotherapy 

24 13 0 3 1 2 0 

V 29 14 1 6 5 2 0 

Total 200 74 17 18 14 10 4 
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* Two patients with lung recurrence had contemporaneous recurrence in the lung and 

other sites.  11 patients with stage IV tumors had persistent Wilms tumor or progressive 

disease.  Other sites include bone and the contralateral kidney.   

 

Toxicity of Regimen I 

Among 91 patients who received Regimen I as their initial treatment regimen, common 

grade 3 or 4 toxicities were absolute neutrophil count (n=65), total white blood cell count 

(n=49), hemoglobin level (n=55), platelet count (n=27), and infection (n=32).  Other grade 

3 or 4 toxicities occurred in fewer than 5% of patients.  Two patients had second 

malignant neoplasms.  One of these patients with stage IV diffuse AH developed AML 14 

months from the diagnosis of Wilms tumor.  The other patient had stage II diffuse AH 

with a focus of rhabdomyosarcoma within the primary tumor (not therapy-related).  It is 

possible that this focus represented Wilms tumor with muscle differentiation, but the 

histologic appearance was more consistent with rhabdomyosarcoma.  This patient 

subsequently developed disease consistent with rhabdomyosarcoma in the orbit, which is 

an unusual site for Wilms tumor.   

 

Discussion 

 

Despite remarkable success in the treatment of FH Wilms tumor, the treatment of AH 

Wilms tumor remains a clinical challenge.  A primary objective of NWTS-5 was to 

improve the outcomes of patients with stages II-IV diffuse AH using Regimen I, a novel 

treatment regimen containing the CYCLO/etoposide combination.  The outcomes of 

patients treated with Regimen I compared favorably to historical controls.  On NWTS-3 

and -4, patients with diffuse AH treated with nephrectomy followed by VCR, AMD, DOX, 

and CYCLO had 4-year OS estimates of 70.1% for stage II (n=11), 56.3% for stage III 

(n=13), and 16.7% for stage IV (n=6) disease. 7  By comparison, the 4-year OS estimates 

for patients treated on NWTS-5 with immediate nephrectomy and Regimen I were 81.5% 

for stage II (n=23), 66.7% for stage III (n=43), and 33.3% for stage IV (n=15) disease.  The 

local control rate among patients with stage II disease was 100% with a radiation dose of 

10.8 Gy. 
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Although Regimen I itself likely contributed to the observed improvement in outcomes 

between NWTS-4 and NWTS-5, the effect of shifts in the patient population cannot be 

discounted.   A higher percentage of patients with unilateral tumors received pre-

nephrectomy chemotherapy on NWTS-5 (14%) compared to NWTS-4 (9%).   The reason for 

this alteration in clinical practice is unclear, but the result was a migration from stage II 

to stage III because pre-operative chemotherapy was a defining criterion for stage III 

disease.  Additionally, there was a higher prevalence of AH among patients enrolled on 

NWTS-5 (10.1%) compared to NWTS-4 (7.5%), which is partially explained by the 

increased detection of anaplasia in tumors treated with pre-operative chemotherapy.   

 

What was the cost, in terms of adverse effects, of the switch from Regimen J to Regimen 

I?  The key differences between the two regimens are that Regimen I incorporated 

etoposide and used a higher cumulative dose of CYCLO.  While augmenting these 

components of therapy, Regimen I eliminated AMD, lowered the cumulative dose of DOX, 

lowered the flank radiation doses for most patients, and shortened the duration of 

therapy (Table 4).  Short-term toxicities of Regimen I were manageable, though one 

patient developed secondary AML, an uncommon complication that occurs in Wilms 

tumor patients even without etoposide therapy. 13  The effects on fertility of the higher 

cumulative CYCLO dose remain to be determined.    

 

Table 4 

Comparison of Regimens J and I 

Cumulative Doses (mg/kg)  

Drug Regimen J Regimen I 

Cyclophosphamide 300 467 

Doxorubicin 10 7.5 

Vincristine 1.4 0.7 

Etoposide 0 67 

Dactinomycin 0.46 0 

Flank Radiation variable, mostly> 32 Gy  10.8 Gy 

Duration of Therapy 

(weeks) 

67 25 
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Patients with stage I AH had significantly worse outcomes compared to patients with 

stage I FH.  This finding was unexpected because previous NWTSG studies showed that 

patients with stage I AH had good outcomes.6;8;14  It is unclear why the EFS estimate for 

patients with stage I AH on NWTS-5 (n=29, 4-year EFS 69.9%) was inferior to the EFS 

estimates reported for patients with stage I AH treated on NWTS-4 (n=21, 2-year EFS 

87.5% or 93.8%, depending on the AMD schedule).8  The apparent discrepancy may relate 

to the small number of patients studied and the wide confidence intervals surrounding 

the survival estimates.  Among 23 patients with stage I AH treated on the International 

Society of Paediatric Oncology (SIOP) -6 and -9 trials, six had recurrence and four died of 

disease. 4  These results are similar to the results of NWTS-5.  A recent report from the 

SIOP 93-01 study suggested that patients with stage I AH had good outcomes, but the 

number of patients with anaplastic histology and their outcomes were not specified.15     

 

Previous NWTSG studies have suggested that anaplasia per se is not a marker of 

aggressiveness. 12;14 The somewhat higher than expected recurrence and death rates for 

patients with stage I AH on NWTS-5 seem to question that suggestion.  Ongoing studies 

of molecular prognostic markers of tumor invasiveness and metastatic potential will help 

clarify whether anaplastic Wilms tumors are inherently aggressive. 

 

The molecular biology of anaplastic Wilms tumor is only beginning to be defined.  

Approximately 65% of anaplastic Wilms tumors studied to date had detectable mutations 

of the TP53 tumor suppressor gene, whereas such mutations were rare in FH Wilms 

tumors. 16-19   The restriction of TP53 mutations to areas of anaplasia within a Wilms 

tumor indicates that anaplasia arises in a clonal fashion on a background of favorable 

histology. 20  Because p53 protein plays a central role in the cellular response to DNA-

damaging agents 21, it is likely that TP53 mutations contribute to the relative 

unresponsiveness of anaplastic Wilms tumors to treatment.  However, 35% of anaplastic 

Wilms tumors lack detectable TP53 mutations.  While these tumors may harbor 

alterations of other molecules in the p53 pathway, it is possible that TP53 mutations are 

neither necessary nor sufficient to generate anaplasia.  The 2:1 female to male ratio 

observed in patients with anaplastic Wilms tumor raises the possibility that gender is a 

determinant of susceptibility to anaplasia.  Gene expression studies have uncovered 
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several candidate genes associated with anaplasia, but their role in the pathogenesis of 

anaplasia remains to be confirmed. 22  

 

Anaplasia was not detected by institutional pathologists in about 40% of immediate 

nephrectomy specimens deemed to have anaplasia by the central reviewers.   As a result, 

a substantial proportion of patients switched treatment regimens in the middle of the 

study and were considered non-evaluable for the primary outcomes analysis.   

Interestingly, comparison of outcomes in the evaluable and non-evaluable patients 

showed that survival rates were essentially identical between the two groups.  Similarly, 

patients who received pre-operative chemotherapy for what eventually proved to be AH 

did not have compromised outcomes, even though most of these patients initially received 

treatment regimens for FH.  The upcoming Children’s Oncology Group (COG) studies will 

require central pathology review to be completed before treatment is initiated. 

 

The results of NWTS-5 provide the framework for future COG studies of anaplastic Wilms 

tumor.  Based on the lower than expected survival rate for patients with stage I AH, the 

upcoming study will augment therapy for this group of patients.  Although NWTS-5 

outcomes for patients with stage II-IV diffuse AH were improved compared to historical 

regimens, a considerable percentage of patients experienced disease recurrence.  A new 

treatment regimen including carboplatin, which has shown activity against Wilms tumor 

23-25, will be used for this patient group.  Patients with stage IV disease are particularly 

challenging to treat.  A priority of future pre-clinical and clinical studies will be to identify 

novel agents.    
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ABSTRACT 

 

 
Purpose 

Despite overall success in Wilms tumor (WT) treatment, some patients have poor clinical 

outcomes.  To assist prioritization of novel drugs for Phase II studies, WT xenograft 

models were generated for preclinical testing. This study was conducted to evaluate the 

extent of genetic change that occurs during the establishment of WT xenografts from 

primary tumors. 

Experimental Design 

Nine WT xenografts were generated from primary tumor specimens. Genomic copy 

number was compared in six xenograft/primary tumor pairs using Affymetrix GeneChip 

Human Mapping 100K single nucleotide polymorphism arrays.  Gene expression analysis 

was performed using Affymetrix HG-U133A GeneChip microarrays.  Antitumor activity of 

several classes of chemotherapy agents was determined. 

Results 

Unsupervised hierarchical clustering analysis according to gene copy number showed that 

xenografts invariably clustered adjacent to their primary tumors. Gene expression 

analysis showed no evidence of differential expression between primary WT/xenograft 

pairs beyond that expected by chance; 291 out of 22,215 probe sets (<2%) were 

differentially expressed at a p-value <0.01 (estimated false discovery rate 71.6%).  

Unsupervised hierarchical clustering analysis according to gene expression level showed 

that WT xenografts clustered with other WT, but not always adjacent to their 

corresponding parent tumors.  Expression levels of genes encoding proteins targeted by 

agents undergoing phase I and II clinical testing were not significantly different between 

xenografts and primary tumors.  The xenograft models demonstrated sensitivity to 

vincristine, dactinomycin, cyclophosphamide, and topotecan, consistent with the known 

clinical efficacy of these agents. 

Conclusions 

Gene copy number and expression levels were concordant between WT xenografts and 

parent primary tumors.  The results suggest that the WT xenografts provide a biologically 

relevant model for preclinical testing. 
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Introduction 

 

Wilms tumor accounts for 7% of pediatric cancers in children under age 15 (1).   In spite of 

the overall success of Wilms tumor treatment, approximately 15% of patients have tumors 

that are resistant to current treatment regimens (2).  The identification of novel active 

agents for this group of patients is warranted. 

 

The number of new anti-cancer drugs has grown tremendously in the past decade.  While 

the overall progress in the area of cancer therapeutics has been remarkable, drug 

development for pediatric malignancies is hampered by the relative paucity of patients 

available for clinical trials (3).   The conduct of phase II clinical studies for pediatric cancer 

often requires a several year commitment, underscoring the need to rationally prioritize 

agents for clinical testing.   Toward this end, preclinical models of pediatric cancers 

including cell lines, genetically engineered mice, and mice bearing human tumors 

(xenografts) have been developed to screen agents for potential antitumor activity (3).   

 

The preclinical testing of novel agents for Wilms tumor has been limited by a lack of Wilms 

tumor cell lines.  Only a few Wilms tumor cell lines have been reported (4-8), and some of 

these were subsequently shown to be derived from other tumor types, such as malignant 

rhabdoid tumor (9).  It was recently demonstrated that SK-NEP1, a widely used anaplastic 

Wilms tumor line, has a gene expression profile similar to Ewing sarcoma and contains the 

characteristic t(11;22) translocation (10).  Mice heterozygous for the Wilms tumor suppressor 

gene (WT1), do not develop Wilms tumor (11;12) nor do mice bearing WT1 mutations of 

Denys Drash Syndrome, which confers a strong Wilms tumor predisposition in humans (13).  

Likewise, mouse models of Beckwith-Wiedemann Syndrome do not develop Wilms tumor 

(14).    

 

Given the dearth of preclinical models for Wilms tumor, we established Wilms tumor 

xenografts from the primary tumors of nine different patients.  Four of these models have 

been included in the xenograft panel of the National Cancer Institute-sponsored Pediatric 

Preclinical Testing Program (PPTP) (15).  Previous gene expression profiling analyses have 

indicated that Wilms tumor xenografts cluster with other Wilms tumor xenografts (16) and 

with unmatched primary Wilms tumors (17).  To gain further insight into the extent of 
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genetic evolution that occurs during the process of xenograft establishment, we compared 

gene copy number and expression profiles between Wilms tumor xenografts and their 

matched parent tumors.  We also report the pre-clinical testing results of a panel of cytotoxic 

drugs with known activity against Wilms tumor to assess the accuracy of the xenograft 

models in predicting true clinical response in patients. 

 

Patients and Methods 

Establishment of Wilms Tumor Xenografts 

To screen novel anti-cancer agents for activity against Wilms tumor, xenograft models 

were generated from the primary tumors of nine patients with Wilms tumor (8 favorable 

histology, 1 anaplastic histology) who were treated at St. Jude Children’s Research 

Hospital.  The legal guardians of these patients provided informed consent to participate 

in the St. Jude Bank 97 study, a tumor banking protocol that was approved by the 

Institutional Review Board.  Eight xenografts were derived from patients whose 

nephrectomies were performed before chemotherapy was given and one was derived from 

a patient who had undergone treatment with ifosfamide, carboplatin, etoposide, 

doxorubicin, vincristine, and cyclophosphamide before nephrectomy.  The procedures for 

xenograft generation and determination of chemosensitivity have been reported 

previously (18;19).  Briefly, CB17/Icr female SCID mice (Charles River, Wilmington, MA) 

were implanted with single tumor fragments subcutaneously in the flank.  The mice were 

observed until tumors were 0.20-1 cm in diameter before being treated with 

chemotherapy drugs.  All mice were maintained under barrier conditions.  All 

experiments were conducted using protocols and conditions approved by the Institutional 

Animal Care and Use Committee.   

 

Single Nucelotide Polymorphism (SNP) Arrays 

SNP analysis was performed in the St. Jude Hartwell Center core laboratory using the 

Affymetrix GeneChip Human Mapping 100K assay.  Purity and integrity of DNA samples 

was confirmed by UV spectrophotometry and by agarose gel electrophoresis. Processing of 

samples was performed according to the Affymetrix 100K SNP protocol (20).  In brief, 250 

ng genomic DNA was digested to completion with either XbaI or HindIII.  After ligation of 
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adapters, digested DNA was amplified using thermocycling conditions that enrich 

fragments 250 to 2000 bp in size. Forty micrograms of amplified DNA were fragmented by 

digestion with DNaseI and end-labeled with biotinylated nucleotide using terminal 

deoxynucleotidyl transferase. Labeled DNA was added to a hybridization cocktail 

containing probe array controls and blocking agents, then incubated overnight at 48 C on 

a GeneChip array. Arrays were washed, stained with streptavidin-phycoerythrin, washed 

again and then scanned using the Affymetrix GeneChip Scanner 3000. Genotype calls 

were determined using the Affymetrix Gene DNA Analysis Software (GDAS) version 3.0. 

DNA copy number estimates were determined using the Copy Number Analysis Tool 

version 2.0 (21;22) in conjunction with the diploid reference dataset supplied by 

Affymetrix. 

 

Gene Expression Analysis 

Gene expression analysis was performed using the Affymetrix HG-U133A GeneChip 

microarray. This array contains 22,215 probesets that interrogate 18,400 transcripts and 

variants (full details available at www.affymetrix.com). Total RNA was prepared from 

tumor samples using the TriReagent method (Molecular Research Center). RNA quality 

was confirmed by UV spectrophotometry and by analysis on the Agilent 2100 Bioanalyzer. 

Processing of RNA samples was performed according to the Affymetrix gene expression 

protocol (23).  In brief, 5ug of total RNA were annealed to a T7-oligodT(24) primer and 

double-stranded cDNA generated using the SuperScript II cDNA synthesis kit according 

to the manufacturer’s conditions (Invitrogen). Following phenol/chloroform extraction, the 

cDNA was used as template to synthesize biotin-labeled anti-sense cRNA by using the T7 

RNA polymerase Bioarray high-yield kit (ENZO Diagnostics, Inc). Ten micrograms of the 

biotin-labeled cRNA was fragmented by heating and metal induced hydrolysis, added to a 

hybridization cocktail containing probe array controls and blocking agents and then 

incubated overnight at 45 C on a GeneChip array. Following hybridization arrays were 

washed, stained with streptavidin-phycoerythrin, washed again and then scanned using 

an Affymetrix GeneChip Scanner 3000. Expression signals were calculated using the 

MAS5 statistical algorithm in the Affymetrix GCOS software (version 1.1). Signal values 

were scaled using the global normalization method using a 2% trimmed mean target 

value of 500. Detection calls for each gene (absent, marginal, or present) were determined 

using the default parameters of the software. 
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Hierarchical Clustering Analysis 

Unsupervised hierarchical clustering was performed using GeneMaths XT software 

version 1.6 (Applied Maths, Belgium). Similarity between samples or genes was 

calculated using the Pearson’s correlation method while linkage between groups was 

calculated using the Unweighted Pair Group Method with Arithmetic mean (UPGMA) 

method. For expression analyses, log2-transformed Affymetrix signals were scaled across 

arrays to a mean of zero and a standard deviation of one. Cluster analysis was performed 

using the expression profiles of 15592 probesets with at least one Present Call across the 

dataset. For copy number analysis, SNP signal intensity relative to the reference dataset 

as reported by the Affymetrix copy number tool (Log2Ratio) was used for cluster analysis 

as described above. Clustering was performed using 761 SNPs with high variation across 

the samples (variance of Log2Ratio >1). 

 

The microarrays for the primary Wilms tumor and xenograft samples were conducted at 

St. Jude.  The microarrays for the fetal kidneys, clear cell sarcomas of the kidney, and 

hyperplastic perilobar nephrogenic rests were conducted at Children’s Memorial Hospital 

in Chicago as previously described (24).   

 

Statistical Analysis 

Similarities in global gene expressions between Wilms tumor xenografts and their parent 

primary tumors and between Wilms tumor xenografts and other primary kidney tumors 

were assessed by Pearson’s correlation coefficient. Differential gene expression between 

Wilms tumor xenografts and primary tumors was analyzed by paired t tests, and differential 

gene expression between Wilms tumor xenografts and other tumors was analyzed by 

analysis of variance (ANOVA). False discovery rates (FDR) were estimated by the method of 

Cheng (25).  

 

Results 

Comparison of genomic stability between Wilms tumor xenografts and parent tumors 

Among the nine xenograft models established, six had RNA from both primary tumor and 

matching xenograft that passed quality control tests for gene expression microarray 

studies.  To confirm that these six Wilms tumor xenografts originated from their parent 

primary tumors, assessment of single nucleotide polymorphisms (SNP) was undertaken 
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using Affymetrix 100K SNP chips.  A strong correlation of genotypes between xenografts 

and matched primary tumors was observed, as indicated by concordance rates of SNP 

calls >98% in each of the six xenograft/primary tumor pairs (Figure 1A). By contrast, 

concordance rates between xenografts and mismatched primary Wilms tumors ranged 

from 54.9–67.4%.  This result provided confidence that the six xenograft/primary tumor 

pairs were indeed matched.   

 
A. B.

 

Figure 1.  100K single nucleotide polymorphism (SNP) chip analysis of primary Wilms 
tumor/xenograft pairs.  A. Heat map showing fraction of concordance in SNP calls between 
primary tumors and xenografts.  B.  Unsupervised hierarchical cluster analysis of 760 SNPs with 
log2 ratio of copy number variance >1 (compared to normal).  Scale bar represents relative signal 
intensity of each SNP; units are log2 (sample/diploid reference). 

 

 
The SNP chip analysis also afforded the opportunity to assess genomic stability between 

primary tumor/xenograft pairs.  An unsupervised hierarchical cluster analysis of gene 
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copy number changes demonstrated that xenografts invariably clustered adjacent to their 

primary tumors (Figure 1B).  Areas of genomic amplification and deletion within the 

primary tumors tended to be preserved in the xenografts.  Together, these results indicate 

that the genomes of Wilms tumor xenografts are stable in comparison to their matched 

primary tumors.  

 

Comparison of gene expression between Wilms tumor xenografts and parent tumors  

Correlation analysis was used to evaluate the variation in global gene expression that 

occurs when primary Wilms tumors are implanted into immunodeficient mice.  When the 

log-transformed signal intensities for probe sets with present calls were considered, the 

correlation coefficients (r2) between xenografts and parent tumor pairs were 0.85, 0.76, 

0.88, 0.76, 0.80, and 0.78 for pairs 1 though 6, respectively (Figure 2A).  This strong 

correlation of global gene expression may reflect the fact that these tissues all originated 

from pediatric kidney.  To place these results in the context of an unrelated type of 

pediatric kidney tumor, correlation of gene expression levels between Wilms tumor 

xenografts and clear cell sarcoma of the kidney (CCSK) was assessed.  When probe sets 

with present calls were considered, the r2 values between random pairings of the six 

Wilms tumor xenografts and six primary CCSK tumors were 0.65, 0.65, 0.70, 0.66, 0.62, 

and 0.70 (Figure 2B).  These correlations were weaker than those observed between the 

xenograft/primary tumor pairs. 
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Figure 2. Representative correlation analyses of gene expression between Wilms tumor xenografts 
and primary tumors.  Correlation between Wilms tumor xenograft WT1 and its matching primary 
tumor using all probe sets (A) or probe sets with present calls (B).  Correlation between xenograft 
WT1 and a primary CCSK sample using all probe sets (C) or only probe sets with present calls (D).   
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The similarity in gene expression between xenografts and their parent primary tumors 

was further assessed with paired t test and ANOVA analyses for each individual probe 

set.  Figure 3 shows a histogram of the percentage of probe sets with each p-value.  In the 

comparison between xenografts and primary tumors, the distribution of p-values was 

nearly uniform; only 291 out of 22215 (less than 2%) of probe sets were differentially 

expressed at a p-value <0.01 (estimated false discovery rate 70.9%).   In this case, the 

percentage of differentially expressed probe sets did not exceed that which would be 

expected to occur by chance.  By contrast, comparison of expression between Wilms 

xenografts and primary CCSK samples revealed that 3942 of 22,215 (17.7%) probe sets 

were differentially expressed with a p-value<0.01 (estimated false discovery rate 2.66%).   

 

Xenografts vs. Primary Wilms tumors Xenografts vs. CCSK

 

Figure 3. Histogram of p-values to evaluate differential expression of all 22,215 probe sets 
between 6 Wilms tumor xenografts and matching primary tumors (A) or between 6 Wilms tumor 
xenografts and  6 CCSK samples (B).    

 

 

An unsupervised hierarchical cluster analysis, including two fetal kidney samples, three 

hyperplastic perilobar nephrogenic rests (precursors to Wilms tumor), and the six CCSK 

samples was performed to evaluate the relationship between Wilms tumor xenografts and 

their primary tumors.   This analysis revealed that the samples clustered into four 

categories: the CCSKs comprised one, the fetal kidneys, nephrogenic rests, and one Wilms 

tumor comprised the second, and other Wilms tumors and xenografts comprised the third 
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and fourth (Figure 4).  Four of six xenografts clustered in the same groups as their 

primary tumors.  

 

Figure 4. Unsupervised hierarchical cluster analysis including 6 Wilms tumor xenograft/primary 
tumor pairs, 2 fetal kidney samples, 3 hyperplastic perilobar nephrogenic rests, and 6 clear cell 
sarcomas of the kidney.  Scale bar represents relative expression of transcripts; units are standard 
deviations from the mean.  

 
 

Changes in gene expression between primary tumor/xenograft pairs for pathways of 

clinical interest in Wilms tumor 

The previous analyses suggested that on a global scale, gene expression was not 

substantially altered between Wilms tumor xenografts and parent primary tumors.  
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                                                             Table 1 

Gene expression levels for therapeutic targets or modifiers 
 

Drug Relevant 
Targets or 

Modulators 

Probe P values 
(Primary 

vs. 
Xenograft) 

Primary 
median 

Xenograft 
median 

Erlotinib, 
gefitinib, 
lapatinib 

EGFR 201983_s_at 0.89 645.6 665.9 

 EGFR 201984_s_at 0.82 413 284.3 
 EGFR 210984_x_at 0.60 57.2 59.3 
 EGFR 211550_at 0.44 36.4 21.4 
 EGFR 211551_at 0.52 382.4 348.1 
 EGFR 211607_x_at 0.52 40.1 40.3 

Imatinib KIT 205051_s_at 0.71 438.5 368.5 
 ABL1 202123_s_at 0.22 1154.9 1704.8 
 PDGFRA 203131_at 0.17 1378.7 844.9 
 PDGFRA 211533_at 0.52 33.4 47.7 
 PDGFRA 215305_at 0.52 30.2 31.8 

Lapatinib ERBB4 206794_at 0.40 139.8 83.8 
 ERBB4 214053_at 0.02 321.7 163.7 

Trastuzumab, 
lapatinib 

ERBB2 210930_s_at 0.09 37.6 117.1 

 ERBB2 216836_s_at 0.86 839.7 879.3 
Bevacizumab KDR 203934_at 0.08 287.2 183.4 

 FLT1 204406_at 0.19 63.4 38.4 
 FLT1 210287_s_at 0.21 29.7 22.4 
 FLT1 222033_s_at 0.05 386.5 172.3 
 VEGF 210512_s_at 0.09 1040.5 421.2 
 VEGF 210513_s_at 0.15 528.8 401.6 
 VEGF 211527_x_at 0.34 232.1 168.9 
 VEGF 212171_x_at 0.12 988 689.5 

SAHA, 
depsipeptide 

HDAC1 201209_at 0.70 1020.3 1011.8 

 HDAC2 201833_at 0.91 1651.7 1558.7 
 HDAC3 216326_s_at 0.12 606.2 965.6 

IMCA12, 
Everolimus, 

Temsirolimus 

FRAP1 202288_at 0.40 186.7 195.4 

 FRAP1 215381_at 0.90 29.3 28.6 
 PTEN 204053_x_at 0.07 1140.5 678.4 
 PTEN 204054_at 0.29 181 123 
 PTEN 211711_s_at 0.19 583.1 295.9 
 PTEN 222176_at 0.18 49.3 22.5 
 FKBP1A 200709_at 0.47 2482.5 2838.7 
 FKBP1A 210186_s_at 0.46 734.8 858.8 
 FKBP1A 210187_at 0.06 353.2 230.1 
 FKBP1A 214119_s_at 0.76 1532.3 1364 
 AKT1 207163_s_at 0.38 516.9 730.8 
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Because the xenografts were developed as pre-clinical models to test new agents, we 

assessed whether pathways targeted by novel classes of drugs are differentially expressed 

between xenografts and primary tumors.  Table 1 provides a sampling of genes that 

encode proteins that are targeted by agents undergoing phase I/II pediatric testing.  Only 

the ERBB4 gene, which had lower expression levels in xenografts compared to primary 

tumors, showed differential expression at a p-value <0.05.  This differential expression 

was observed in only one of two ERBB4 probe sets.  Interestingly, the VEGF receptor 

genes FLT1 and KDR showed trends towards lower expression in xenografts compared to 

primary tumors.  The gene for VEGF itself also showed a trend towards lower expression 

in the xenografts. One of the probe sets for the PTEN tumor suppressor gene showed 

lower expression in xenografts compared to primary tumors (p=0.07).   

 

Anti-tumor activity in xenografts of agents with known clinical responsiveness 

The gene expression data indicated that the Wilms tumor xenograft models provide a 

reasonable representation of the parent primary tumors.  To gain insight into how 

faithfully the xenograft models correlate with clinical responsiveness, we subjected nine 

Wilms tumor models to a battery of conventional cytotoxic drugs, many of which have 

known clinical response rates from phase II trials.  The xenografts were divided into two 

categories based on the clinical responsiveness of the primary tumors in actual patients.   

Six “clinically responsive” favorable histology tumors were derived from patients who did 

not experience tumor recurrence.  Three “clinically resistant” tumors included two 

favorable histology tumors and one anaplastic histology tumor taken from patients who 

ultimately had tumor recurrence.  Figure 5 shows representative growth curves for one of 

the xenografts, WT-7. 
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Figure 5.  Representative tumor response assays for xenograft model WT7.  A minimum of 5 
xenografts were tested for each agent.  

 
A summary of xenograft responsiveness to a panel of cytotoxic chemotherapy agents is 

shown in Figure 6.  Overall, the “clinically responsive” xenografts were more sensitive to 

cytoxic drugs than the “clinically resistant” xenografts, although there were exceptions.   

 

 

 
Figure 6.  Heat map of sensitivity of Wilms tumor xenografts to cytotoxic agents. 

0.1 

1 

1

0 2 4 6 8 1 1

Control 

0.

1

1

0 2 4 6 8 1 1

Vincristine   
1.0 mg/kg IV q7d 

0.

1

1

0 2 4 6 8 1 1

Cyclophosphamide 
 150 mg/kg IV q7d x 

T
U
M
O
R  

 1 Temozolomide   
66 mg/kg p.o. [(dx5)1]3 

1

 
V
O
L
U
M
E  

0. 0 2 4 6 8 1 1

1
1 Irinotecan Topotecan   

1.25 mg/kg IV 2.0mg/kg IV 

1

WEEKS 

0.

1

0 2 4 6 8 1 1
0.

0 2 4 6 8 1 1

(cm3) 

 Clinically Sensitive Clinically Resistant 

    BCNU 

Paclitaxel

Ixabepilone

Temozolomide

Irinotecan

Topotecan

Cisplatin

Etoposide

Cyclophosphamid

Dactinomycin

Doxorubicin

 Vincristine

AH FH* FH* FH FH FH FH FH FH Histology 
WT13 WT11 WT6 WT10 WT9 WT8 WT7 WT5 WT1 Tumor Line

      KEY MCR CR PR SD PD   No Data 

 95 



FH: favorable histology; AH anaplastic histology; MCR: maintained complete response; CR: 
complete response; PR: partial response; SD: stable disease; PD: progressive disease.  The doses 
and schedules of drugs used were as follows: 
 
Drug Dose 

(mg/kg) 
Schedulea Route of 

administration 
1 Q7days x 6b I.V. Vincristine 

Doxorubicin 4 Q7days x 2 I.V. 
Dactinomycin 0.375 Q21 days x 2 I.P. 
Cyclophosphamide 150 Q7 days x 6 I.V. 
Etoposide 10 Daily x 5 Q 21d I.V. 
Paclitaxel 15 Q4 days x 3 Q21 days I.V. 
Cisplatin 7 Q 21 days I.V. 
BCNU 35 Single administration I.V. 
Topotecan 0.6 Daily x 5 x 2 Q 21 days I.V. 
Irinotecan 1.25 Daily x 5 x 2 Q 21 days I.V. 
Temozolomide 200 Daily x 5 Q 21 days  P.O 
Ixabepilone 10 Q4 days x 3 q21days I.V. 

 

 

Table 2 compares the phase II response rates to various drugs in Wilms tumor patients to 

the response rates in the xenograft models.    

 

Table 2 

Single-agent response rates in Wilms tumor xenografts and clinical trials 

 

Drug Xenograft 

Response Rate* 

Clinical Response 

Rate* 

Reference 

BCNU 0/7 (0%) 0/1 (0%) Green, 1985 

Doxorubicin 2/8 (25%) 31/52 (60%) Green, 1985 

Dactinomycin 3/7 (43%) 17/44 (39%) Green, 1985 

Cisplatin 2/8 (25%) 3/19 (15.8%) Green, 1985 

Cyclophosphamide 7/10 (70%) 10/37 (27%) Green, 1985 

Etoposide 1/8 (12.5%) 15/38 (39.5%) Pein, 1993 

Ixabepilone 5/7 (71.4%) 0/10 (0%) Widemann, 2008 

Paclitaxel 0/7 (0%) 2/15 (13.3%) Harris, 1999 

Vincristine 7/10 (70%) 17/27 (63%) Green, 1985 

* Partial and complete responses are considered to be responses 
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Discussion 

 

We developed Wilms tumor xenograft models with which to screen new drugs for anti-

tumor activity.  A potential limitation of xenografts is that they may undergo extensive 

genetic change in the process of establishment from primary tumors.  Whiteford et al 

studied gene expression profiles of a large panel of pediatric xenografts with disparate 

histologic types and found that like histiotypes nearly always clustered together by 

hierarchical cluster analysis (16).  Six of eight Wilms tumor xenografts clustered with 

other Wilms tumor xenografts, whereas two clustered with rhabdomyosarcoma 

xenografts.  Neale et al subsequently conducted molecular characterization of the 

xenograft and cell line panel that is utilized in the Pediatric Preclinical Testing Program 

(PPTP), an NCI-sponsored program that screens new agents.  The four Wilms tumor 

xenografts included in the PPTP panel, which were also included in the present report, 

were shown to cluster together when analyzed among 87 samples of various histiotypes 

(17).  The Wilms tumor xenografts also clustered with unrelated primary Wilms tumors, 

though within the Wilms tumor group, the xenografts were segregated from the primary 

tumors.  A similar observation was made with other histiotypes; immune-related genes 

and angiogenesis-related genes were found to be expressed at higher levels in primary 

tumors as compared to xenografts. 

 

Our current data expand on the previous results by comparing genomic and gene 

expression profiles in xenografts matched with their parent tumors.  Genomic copy 

number was strikingly similar in xenograft/ primary tumor pairs, with concordance rates 

of SNP calls >98% (Figure 1).  There was less correlation of gene expression, though the 

number of differentially expressed genes between xenografts and primary tumors was not 

greater than that expected by chance.  Hierarchical clustering analysis showed that 

Wilms xenografts clustered with other Wilms tumors as opposed to clear cell sarcomas of 

the kidney, though the xenografts did not uniformly cluster adjacent to their matched 

primary tumors.  This discordance could be due to selective growth of certain Wilms 

tumor cell types (blastemal, epithelial, or stromal) in xenografts, a change in gene 

expression when tumors are grown in an ectopic milieu, the lack of an immune response 

in the SCID mouse models, or the inefficiency of the microarray to detect infiltrating 

stromal cells derived from the mouse host.   
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Because the xenografts were developed with the intent of screening novel therapeutic 

agents, we interrogated whether molecular pathways of biological and clinical interest are 

differentially expressed between xenografts and primary tumors.  Gene expression levels 

of members of the IGF, EGFR, and VEGF pathways, pathways known to be altered in 

Wilms tumor, were not significantly different between primary tumors and xenografts.   

 

Although the global similarity in gene copy number and expression between xenografts 

and parent tumors was encouraging, several caveats should be considered.  First, 

relatively few xenograft/primary tumor pairs were available for the current study.  The 

number of genetically characterized xenografts was too small to meaningfully correlate 

gene expression profile with responsiveness to specific agents.  A future goal is to expand 

the number of Wilms tumor models to enable this type of analysis.  Second, the xenografts 

tested were obtained at early passages after implantation into mice (passage 2 or 3).  It is 

possible that as these xenografts are passaged further, their gene expression profiles will 

diverge from those of their parent tumors.  Third, the gene copy number and expression 

studies did not account for potential changes in protein expression or post-translational 

modifications.   

 

The correlation between xenograft and clinical chemo-responsiveness varies according to 

the tumor type and the agent tested.  The National Cancer Institute’s screening initiative 

of adult tumors showed that with the exception of non-small cell lung cancer (NSCLC), 

the xenografts did not correlate with phase II clinical data of the same tumor type (26).  A 

retrospective literature-based study comparing published results of xenograft models with 

phase II studies showed that xenograft models were predictive for NSCLC and ovarian 

cancer, but not breast and colon cancer (27).  Studies of pediatric xenografts have been 

predictive of clinical responses, notably for camptothecin analogues in neuroblastoma and 

rhabdomyosarcoma (19;28-30).  The panel of nine Wilms tumor xenografts presented here 

identified vincristine, dactinomycin, and cyclophosphamide as active agents, in agreement 

with clinical efficacy data.  Overall, tumors that were sensitive to therapy in patients 

(defined as lack of recurrence) showed greater responsiveness in the xenograft models.  

Among the agents tested in Wilms tumor xenograft panel were the topoisomerase I 

poisons topotecan and irinotecan.  When administered on the protracted schedule of 
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administration (daily x 5 for two consecutive weeks) at dose levels that give clinically 

relevant systemic exposures to their active metabolites, both agents showed significant 

activity. In subsequent phase II testing, topotecan has demonstrated good activity against 

Wilms tumor at relapse, pointing to the value of the preclinical models (31).   

 

Not all agents, however, showed concordant results between mice and humans.  

Doxorubicin and etoposide, agents with known activity in Wilms tumor, showed weak 

activity in the xenograft models.  This may relate to the very different pharmacology of 

these agents in mouse and man.  SCID mice are extremely sensitive to doxorubicin, where 

the maximum tolerated dose is ~40% that tolerated in athymic mice.  Etoposide is rapidly 

cleared in mouse (T1/2 ~12 min) compared to humans, where clearance is far slower (T1/2 ~ 

6 hr). Thus, in SCID mice the systemic exposure to these agents may be significantly 

lower than can be achieved in children. Conversely, another problem in accurately 

translating preclinical activity to clinical activity is that often the systemic exposure to 

drugs in mice cannot be achieved in patients due to host toxicity (32;33).  Evaluating the 

activity of drugs in human tumor models should attempt to use dose levels that 

approximate clinically achievable systemic exposures.  There also was discordance 

between the high level of ixabepilone activity observed in the xenograft models and the 

low level of activity seen in the recently completely phase II study.  It is possible that 

different administration schedules (daily x 5 in the clinical study, every 4 days in the 

xenograft study) are responsible for this discordance.  

 

In summary, gene copy number and expression levels were concordant between WT 

xenografts and parent primary tumors.  Agents with known clinical efficacy in patients with 

WT were generally found to be active in the xenograft models, though the models were not 

predictive for all agents tested.  Together, the results suggest that the WT xenografts 

provide a biologically and clinically relevant model for future preclinical testing. 
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Purpose 

A phase II study was conducted to evaluate the activity and safety of topotecan in 

pediatric patients with recurrent Wilms tumor. 

Patients and Methods 

Patients with favorable histology Wilms tumor (FHWT) and recurrence after at least one 

salvage chemotherapy regimen or anaplastic histology Wilms tumor (AHWT) in first or 

subsequent recurrence were eligible.  Patients were stratified according to histology, with 

statistical considerations based on the FHWT stratum.  Topotecan was administered 

intravenously over 30 minutes for 5 days on two consecutive weeks [(daily x 5) x 2].  

Treatment dosages were adjusted to achieve a target area under the curve (AUC) of 80  

10 ng-hr/ml.  Tumor responses were measured after 2 cycles of treatment.   

Results 

Thirty-seven patients (26 FHWT) were enrolled and received a total of 94 cycles of 

topotecan (range, 1 - 6 cycles). The median topotecan dosage required to achieve the 

target AUC was 1.8 mg/m2 (range, 0.7 to 3.2 mg/m2).  Of 25 assessable patients with 

FHWT, 12 had partial response (PR), 6 had stable disease (SD), and 7 had progressive 

disease (PD), for an overall response rate of 48% (95% confidence interval, 27.8-68.7%).  

Of 11 assessable patients with AHWT, 2 had PR, 1 had SD, and 8 had PD.  The main 

toxicities were grade 3 and 4 neutropenia (median duration 13 days) and 

thrombocytopenia (median duration 7.5 days).  

Conclusion 

Topotecan given on a protracted schedule is active against recurrent FHWT.  Inclusion of 

topotecan in front-line clinical trials for patients with recurrent Wilms tumor should be 

considered.   
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INTRODUCTION 

 

The treatment of Wilms tumor is one of the great success stories in oncology, but certain 

subgroups of patients do not fare well, including those with anaplastic histology, bilateral 

disease, and recurrent disease.1-3  For patients with recurrent Wilms tumor, relapse-free 

survival (RFS) has improved significantly since the 1980s with the use of intensive 

chemotherapy or high-dose therapy with autologous stem cell rescue.1,4-9  Despite the use 

of modern treatment regimens, 4-year RFS for patients treated initially with 

vincristine/dactinomycin is about 70% and 4-year RFS for patients treated initially with 

vincristine/dactinomycin/doxorubicin is about 40%.7,10  Patients with recurrent anaplastic 

Wilms tumor have particularly poor salvage rates; fewer than 15% of such patients 

achieve durable survival.2 Novel agents and treatment strategies are needed for patients 

with high-risk or recurrent Wilms tumor.  

 

Topotecan is a camptothecin analogue that interacts with topoisomerase I and causes 

DNA double-strand breaks in an S-phase-dependent manner.11  Topotecan has previously 

shown activity against various pediatric solid tumors including neuroblastoma, 

rhabdomyosarcoma, Ewing sarcoma, and medulloblastoma.12-16  Xenograft studies have 

suggested that the activity of topotecan is schedule-dependent, producing a higher 

frequency of responses when given on a protracted schedule of administration rather than 

an intermittent high-dose regimen.17  In Wilms tumor xenograft models, six of eight 

favorable histology models and one anaplastic histology model responded to topotecan at 

systemic exposures that are achievable in patients. 18   

 

Based on the pre-clinical data and promising results of phase I studies,19 we conducted a 

phase II study to estimate the response rate of topotecan in patients with recurrent 

Wilms tumor.   

 

MATERIAL AND METHODS 

 

Patient selection 

The study of topotecan in children with recurrent Wilms tumor (WILTOP) was a multi-

institutional phase II trial including St. Jude Children’s Research Hospital, Dana Farber 
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Cancer Institute, Alberta Children’s Hospital, Texas Children’s Hospital, Children’s 

Hospital of Atlanta, and the Hospital for Sick Children in Toronto.  Patients were eligible 

if they had recurrent or progressive favorable histology Wilms tumor (FHWT) after 

primary treatment and at least one standard salvage treatment regimen or if they had 

recurrent or progressive anaplastic histology Wilms tumor (AHWT) after primary 

treatment. Other eligibility requirements included age ≤ 21 years, absolute neutrophil 

count (ANC) ≥ 1,000 /mm3 and platelet count ≥ 100,000 /mm3 unsupported by transfusion, 

a serum bilirubin < 1.5 times the upper limit of normal for age and an ECOG performance 

status20 of 0 to 2.   

 

The protocol was approved by the Institutional Review Boards of all participating 

institutions and all patients, parents or guardians, as appropriate, were required to 

provide written informed consent in accordance with institutional and federal guidance. 

 

Treatment Regimen 

Topotecan was administered intravenously over 30 minutes daily for 5 days for each of 2 

consecutive weeks [(daily x 5) x 2]. The initial dosage (2.4 mg/m2/day, later modified to 1.8 

mg/m2/day) was adjusted to attain a target topotecan lactone systemic exposure (AUC) of 

70 to 90 ng-hr/ml. Although a phase I study recommended a topotecan lactone AUC of 100 

ng-hr/ml as the systemic exposure to target in phase II studies,19 the current study used a 

target AUC of 70 to 90 ng-hr/ml based on early clinical experience showing significant 

toxicity in patients with recurrent Wilms tumor at the higher systemic exposure (Dome, 

unpublished data).  Subsequent cycles of topotecan were given approximately 28 days 

after the beginning of the previous cycle once patients had achieved an ANC > 1,000 /mm3 

and platelet count > 50,000 /mm3.  Patients received filgrastim at 5 mcg/kg/day 

subcutaneously 24 hours after the last dose of topotecan until the ANC exceeded 5,000 

/mm3 after the expected nadir.  Trimethoprim-sulfamethoxazole for Pneumocystis carinii 

prophylaxis was withheld during the 2 weeks of topotecan administration.21  Aerosolized 

pentamidine was used as an alternative prophylactic regimen. 

 

Pharmacokinetically Guided Topotecan Dosing 

Pharmacokinetically guided topotecan dosing was performed as previously described.15,19 

During the first and second cycle, plasma samples (2.5ml) were obtained prior to infusion, 
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at 5 minutes, 2 hours and 3 hours after the end of topotecan infusion and processed 

immediately.15,19 If the single day topotecan lactone AUC was within target range after 

the first dose, then no dose adjustment and no further pharmacokinetic sampling was 

necessary for that cycle.  If not, then the topotecan dosage was adjusted linearly based on 

the patient’s topotecan lactone clearance to attain the target AUC and repeat 

pharmacokinetic studies were performed until the patient’s topotecan systemic exposure 

was within the target range.  Up to three dose adjustments were permitted per cycle. 

Patients who required dose adjustments on cycle 2 also had pharmacokinetic studies 

performed in cycle 3. No pharmacokinetic studies were performed beyond the third cycle.  

 

A two-compartment model was fit to the topotecan lactone plasma concentration using a 

maximum a posteriori Bayesian algorithm as implemented in ADAPT II22 with published 

values (mean and variance) used as the Bayesian priors.19  Model parameters estimated 

for each patient included the volume of the central compartment, elimination rate 

constant, and the intercompartment rate constants.  These parameters were used to 

simulate the plasma concentration-time profile for each patient, from which the AUC 

from time zero to infinity (AUC0) was calculated.  As in our previous studies, we used 

the following equation to adjust topotecan dosage: adjusted dosage (mg/m2) = current 

topotecan dosage (mg/m2)/current AUC X target AUC.15,19 

 

Evaluations during Study 

Baseline evaluations included a complete medical history and physical examination; 

computed tomography (CT) of the chest, abdomen, and pelvis; complete blood count (CBC) 

with differential; complete metabolic panel including electrolytes, liver and kidney 

function studies; urinalysis; and glomerular filtration rate (GFR) determined either by a 

Tc99m-DTPA renal/plasma clearance study or by a 24-hour urine collection for creatinine 

measurement. At the completion of 2 cycles of topotecan therapy, patients underwent 

diagnostic imaging of the primary and metastatic sites.  Toxicity was assessed according 

to the National Cancer Institute Common Toxicity Criteria, version 2.0. 

 

Response Criteria 

Response to treatment was defined according to the Response Evaluation Criteria in Solid  
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Tumors (RECIST).23  Diagnostic, end of the first cycle (when available), second cycle and 

off therapy images were centrally reviewed by the study radiologist (FAH) at St Jude. A 

measurable lesion was defined as a lesion whose longest diameter was greater than or 

equal to twice the CT scan slice diameter. The longest diameter in the axial plane was 

recorded. All measurable lesions up to a maximum of five lesions per organ and 10 lesions 

in total were defined as target lesions, measured, and recorded at baseline. At baseline, a 

sum of the longest diameter for all target lesions was calculated and reported. All other 

lesions were identified as non-target lesions and were recorded at baseline without 

measurement. In the evaluation of target lesions, complete response (CR) was defined as 

the complete regression of all apparent tumor, a more than 30% decrease in the sum of 

the longest diameter of target lesions constituted a partial response (PR), a greater than 

20% increase in the sum of the longest diameter represented progressive disease (PD), 

and stable disease (SD) was anything that did not qualify for either a PR or PD. In the 

evaluation of non-target lesions, the disappearance of all non-target lesions represented a 

CR; incomplete response or SD was considered, when one or more non-target lesions 

persisted; and the appearance of any new lesion and/or unequivocal progression of 

existing non-target lesions represented PD.  

 

Statistical Considerations 

This trial was designed to estimate the response rate after 2 cycles of topotecan in 

patients with FHWT.  Based on a four-stage group sequential design24 with a type I error 

rate of 10% and 90% power, 25 patients were needed to test whether the true response 

rate was less than 10%; a response rate of 30% was considered promising. The estimated 

response rate was presented with an exact binomial 95% confidence interval (CI). The 

rarity of AHWT precluded a formal statistical design for this group of patients.   

 

Survival was defined as the time interval from date of study enrollment to date of death 

from any cause or to the last follow-up date.  Event-free survival (EFS) was defined as the 

time interval from date of study enrollment to date of first event (relapsed or progressive 

disease, or death from any cause) or to the last follow-up date.  Survival and EFS were 

estimated using the method of Kaplan and Meier.  Fisher’s exact test, the exact Wilcoxon 

rank sum test, and the exact Kruskal-Wallis test were used to compare characteristics 

between responders and non-responders.   Responders were defined as those patients who 
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achieved at least a PR after 2 cycles of topotecan; non-responders were those who had 

either SD or PD after one or 2 cycles of topotecan. 

 

RESULTS 

 

Patient Characteristics 

Between March of 2003 and March of 2006, 37 eligible patients were enrolled; 30 of the 

patients were enrolled at St. Jude and the other centers enrolled one or two patients each. 

Twenty-six (70%) patients had FHWT and 11 (30%) had diffuse AHWT. Patient and 

treatment characteristics for all patients and for patients by histology are shown in Table 

1. Sixty percent of patients (n=22) were female and most were white (n=30; 81%). The 

median age at diagnosis of Wilms tumor was 4.8 years and the median age at enrollment 

on WILTOP was 6.1 years.  

 

Table 1 

Patient and Treatment Characteristics 

All Patients 

(n=37) (%) 

Favorable 

Histology  

(n=26) (%) 

Anaplastic 

Histology  

(n=11) (%) 

Characteristic 

Gender 

     Male 

     Female 

 

15 (40.5) 

22 (59.5) 

 

10 (38.5) 

16 (61.5) 

 

5 (45.5) 

6 (54.5) 

Race 

     White 

     Black 

     Other 

 

30 (81.1) 

3 (8.1) 

4 (10.8) 

 

20 (76.9) 

3 (11.5) 

3 (11.5) 

 

10 (90.9) 

0 (0.0) 

1 (9.1) 

Age at initial diagnosis (yrs) 

     Median 

     Range 

 

4.8 

0.4 – 14.7 

 

4.3 

0.4 – 14.7 

 

4.9 

3.9 – 7.2 

Age at study enrollment  (yrs)  

     Median 

     Range 

 

6.1 

1.3 – 19.0 

 

6.6 

1.3 – 19.0 

 

5.8 

4.7 – 7.9 
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Sites of involvement at study 

enrollmenta 

     Local 

     Distant 

     Local + Distant 

 

 

6 (16.2) 

19 (51.4) 

12 (32.4) 

 

 

3 (11.5) 

14 (53.9) 

9 (34.6) 

 

 

3 (27.3) 

5 (45.4) 

3 (27.3) 

Stage at initial diagnosis 

     I 

     II 

     III 

     IV 

     V 

 

4 (10.8) 

7 (18.9) 

6 (16.2) 

12 (32.4) 

8 (21.6) 

 

2 (7.7) 

4 (15.4) 

3 (11.5) 

12 (46.2) 

5 (19.2) 

 

2 (18.2) 

3 (27.3) 

3 (27.3) 

0 (0.0) 

3 (27.3) 

Prior exposure to topotecan 

     Yes 

     No 

 

1 (2.7) 

36 (97.3) 

 

1 (3.9) 

25 (96.1) 

 

0 (0) 

11 (100) 

Previous A-SCT 

     Yes 

     No 

 

4 (10.8) 

33 (89.2) 

 

4 (15.4) 

22 (84.6) 

 

0 (0) 

11 (0) 

No. of prior recurrences  

     PD 

     1 

     2 

 

11 (29.7) 

18 (48.7) 

8 (21.6) 

 

7 (26.9) 

11 (42.3) 

8 (30.8) 

 

4 (36.4) 

7 (63.6) 

0 (0) 

Local = original tumor bed site; Distant = outside the original tumor site. 
A-SCT = autologous stem cell transplant; PD=progressive disease 
 

Study Withdrawals, Eligibility, and Assessability 

Seven patients discontinued treatment before the end of the second topotecan cycle due to 

progressive disease (three before completing the first cycle, three at the end of the first 

cycle, and one during the second cycle).  One patient was removed from the study during 

the second cycle after suffering a stroke from a hemorrhage within a frontal lobe 

metastasis.  This patient was not assessable for response because the CNS lesion could 

not be accurately measured after the hemorrhage and she did not complete two full 

topotecan cycles.  In total, 22 patients with FHWT and 7 patients with AHWT completed 

at least 2 cycles of topotecan (Table 2).  
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Table 2 

Patient Disposition 

No. of patients 

Patient Disposition Favorable 

Histology 

Anaplastic 

Histology 

Patients enrolled 26 11 

   Patients withdrawing before the end of first cycle for PD 2 1 

Patients treated with ≥ 1 cycle 24 10 

   Patients withdrawing after first cycle for PD 1 2 

   Patient withdrawing at the end of the first cycle for PD 0 1 

   Drug-related adverse event before end of second cycle  1 0 

Patients treated with ≥ 2 cycles 22 7 

   Patients treated with ≥ 4 cycles 9 1 

PD=progressive disease 

 

Topotecan Pharmacokinetics  

The inter- and intrapatient variability in topotecan lactone clearance was assessed using 

the mixed-effect model, which allowed us to account for possible correlations between 

topotecan clearance and cycle with repeated measurements within each subject.  The 

population average topotecan lactone systemic clearance was 20.7 L/hr/m2 with a range of 

7.8 to 43.9 L/hr/m2.  The estimated intersubject and intrasubject variances were 30.3% 

and 15.7%, respectively.  This finding is consistent with several of our other studies in 

which intersubject variability in topotecan clearance exceeded intrasubject variability.13,25  

In the 37 children enrolled on this study, we performed a total of 127 pharmacokinetic 

studies.  The first pharmacokinetic study in each patient (n=37) was performed after a 

fixed topotecan dosage (n=9 at 2.4 mg/m2 or n=28 at 1.8 mg/m2).  All patients studied at 

the 2.4 mg/m2 initial dosage were above the topotecan target (range 97 to 250 ng-hr/ml), 

whereas when the initial dosage was reduced to 1.8 mg/m2, fifteen patients (54%) were 

within the target range on first dose.  In subsequent studies using pharmacokinetically-

guided dosing, the overall pharmacokinetic targeting success rate was 70.2% (AUCs in 59 

of 84 evaluable studies were in the target range), though the target AUC was ultimately 

achieved in all cycles.  The median topotecan dosage in the cycles in which the target 

AUC range was achieved was 1.8 mg/m2 (range, 0.7 to 3.2 mg/m2). 
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Since this patient population was likely to have altered renal function and potentially 

decreased topotecan clearance (and elevated topotecan AUC values), one concern was that 

these patients would be “over-dosed.”  However, only 30 (24%) pharmacokinetic studies 

showed AUCs that were above the target range (i.e., > 90 ng-hr/ml) and only 19 (15%) 

showed AUCs that were more than 10% above the upper end of the target range.  All of 

the AUCs in these patients were brought within the target with further pharmacokinetic 

studies.  Conversely, only eight (6%) pharmacokinetic studies were more than 10% below 

the lower end of the target range (i.e., < 60 ng-hr/ml).  Of these eight studies, three were 

with the initial fixed topotecan dosage, and the remaining five occurred after course 1 

dose 2 (n=1), course 2 dose 1 (n=2), course 2 dose 3 (n=1), and course 3 dose 1 (n=1).  In all 

eight cases, the topotecan target value was attained on subsequent pharmacokinetic 

studies. 

 

Topotecan Response 

Thirty-six of 37 patients were assessable for response (Table 3).   

 

Table 3 

Tumor responses in favorable and anaplastic histology Wilms tumor 

Response Favorable Histology (n=26) 
Number observed 

Anaplastic Histology (n=11) 
Number observed 

Complete Response 0 0 
Partial Response 12 2 
Stable Disease 6 1 

Progressive Disease 7 8 
Not Assessablea 1 0 

Total Responseb 12/25 (48%) 2/11 (18%) 
a Patient removed from study during the second cycle and before response assessment 
after  suffering a stroke from a hemorrhage within a frontal lobe metastasis.   
b Total Response = complete and partial response 
 

The observed response rate for patients with favorable histology tumors (25 patients) was 

48.0% (95% confidence interval, 27.8-68.7%); 12 patients had partial response (PR), 6 

patients had stable disease (SD), and 7 patients had progressive disease (PD).  Among 

patients with AHWT, 2 patients had PR, one patient had SD, and 8 patients had PD. The 
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median duration of response was 158 days (range, 18 days to 899 days).  It was not 

feasible to measure the duration of response specifically to topotecan because most 

responders received additional treatment after discontinuing protocol therapy, including 

surgery, radiation therapy, or high-dose chemotherapy with autologous stem cell rescue.  

Twelve of 37 patients (32%) were alive with a median follow-up of 11.7 months (range, 1.9 

to 37.7 months).  Six of the survivors had no evidence of disease at last follow up and six 

were alive with disease.  All survivors had been seen or contacted within 10 months of the 

analysis.  Estimates of survival and EFS for all patients at one year were 29.5% ± 8.3% 

and 16.4% ± 6.1% respectively. 

 

Table 4 shows patient characteristics among responders and non-responders for the 36 

assessable patients.  The only significant difference between responders and non-

responders was a longer time from initial diagnosis to topotecan study therapy (median 

30.5 months versus 11.9 months) and a longer time from last treatment to study therapy 

(median 3.2 months versus 1.3 months) for responders. We were not able to detect a 

relationship between topotecan systemic exposure and antitumor response (data not 

shown), given that we maintained a very narrow range of systemic exposure values 

(AUC). 

 

Topotecan Toxicity 

Table 5 summarizes the most common grade 3 and 4 toxicities encountered in a total of 94 

cycles of topotecan administered.  The main toxicity was hematologic; all 37 patients had 

grade 3 or 4 toxicities.  The median duration of grade 3 or 4 neutropenia was 13 days per 

episode (range, 2 – 31 days) and the median duration of grade 3 or 4 thrombocytopenia 

was 7.5 days (range, 1 – 40 days).  There were 12 episodes of grade 3 bleeding/hemorrhage 

associated with thrombocytopenia, mostly skin bruises, nosebleeds, and mucosal bleeds.  

As described above, one patient had hemorrhage into a brain metastasis.  There were 61 

admissions for febrile neutropenia reported in 27 patients.  Thirteen patients (35%) had a 

total of 18 episodes of documented infection (6 catheter-related, two infections without 

neutropenia, and 10 episodes related to neutropenia).   
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Table 4 

Characteristics of Patients Assessable for Response to Topotecan 

 Respondersa 
(n= 14) 

 

Non-responders 
(n= 22) 

No. % No. % 

P 

 

Gender 
Male 
Female 

 
6 
8 

 
43 
57 

 
9 
13 

 
41 
59 

1.0* 

Race 
White 
Non-white 

 
10 
4 

 
71 
29 

 
19 
3 

 
86 
14 

0.39* 

Age at initial diagnosis (years) 
Median 
Range 

 
4.8 

0.4 – 13.0 

--  
4.4 

0.9 – 14.7 

-- 0.74^ 

Histology 
Favorable 
Anaplastic 

 
12 
2 

 
86 
14 

 
13 
9 

 
59 
41 

0.142* 

Stage at initial diagnosis 
I/II 
III/IV 
V 

 
5 
5 
4 

 
36 
36 
29 

 
6 
12 
4 

 
27 
54 
18 

1.0b# 
0.44c* 

Months from initial diagnosis 
to study treatment 

Median 
Range 

 
 

30.5 
7.4 – 193.1 

 
 

-- 

 
 

11.9 
5.1 – 34.0 

 
 

-- 

0.001^ 

Months from last treatment to 
study treatment 

Median  
Range 

 
 

3.2 
0.8 – 19.4 

 
 

-- 

 
 

1.3 
0.4 – 13.7 

 
 

-- 

0.030^ 

Ever CR prior to WILTOP 
Yes 
No 

 
12 
2 

 
86 
14 

 
13 
9 

 
59 
41 

0.142* 

Sites of disease at study entry 
Local 
Distant 
Local + Distant 

 
2 
5 
7 

 
14 
36 
50 

 
4 
14 
4 

 
18 
64 
18 

1.0d* 
0.096e# 

Survival 
No. alive 

 
7 

 
50 

 
5 

 
23 

 
- 

a Responders=partial response; non-responders= stable or progressive disease 
b Comparison of stages I/II vs. stages III/IV vs. stage V 
c Comparison of stages I/II vs. stages III/IV 
d Comparison of local only vs. distant/local + distant 
e Comparison of local vs. distant vs. local + distant as an ordered categorical variable 
* P-value derived from Fisher’s exact test; ^ P-value derived from the exact Wilcoxon rank sum 
test; # P-value derived from the exact Kruskal-Wallis test 
 

Renal toxicity consisted mainly of electrolyte imbalance partly attributable to the 

patients’ underlying renal disease and previous therapy. One patient had a creatinine of 
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3.5 mg/dL at study entry and had progressive disease that compromised the function of 

her sole remaining kidney, leading to grade 3 creatinine elevation.  There were no toxic 

deaths. 

 

Table 5 

Grade 3 and 4 toxicities observed during a total of 94 administered cycles 

 No. of patients 
(%) 

No. of episodes  

Hematologic 
Anemia 
Thrombocytopenia 
Neutropenia  

37 (100%) 
36 
37  
36 

318 
98 

101 
100 

Renal 
Electrolytes 
Creatinine 

9 (24%) 
9 
1 

21 
19 
2 

Diarrhea 
Nausea/Vomiting 
Abdominal pain 
Other* 

15 (41%) 
4 

12 
5 
6 

36 
4 

14 
7 

11 

GI 

9 (24%) 9 Anorexia 
13 (35%) 18 Infection 

*Other toxicities included colitis (3 episodes), typhlitis (2 episodes), ileus (1 
episode), mucositis/stomatitis (3 episodes), elevated gamma glutamic transferase 
(GGT) (1 episode), and not otherwise specified (1 episode). 

 

DISCUSSION 

 

This study demonstrates that topotecan has significant activity in children with FHWT 

when administered on a protracted schedule.  The 48% response rate is especially 

promising given that the responses were observed in a population of heavily pre-treated 

patients whose disease progressed after at least one salvage chemotherapy regimen.   The 

response rate is comparable to response rates seen with other single agents that are 

commonly used for the treatment of Wilms tumor including ifosfamide (20 to 50%),26-28 

etoposide (42%),29 carboplatin (52%),30 and doxorubicin (54%).31 Among patients with 

AHWT, two responses were seen among 11 patients.  Although the study was not 

statistically powered to assess response rate in patients with AHWT, the results suggest 

that topotecan has modest activity in this high-risk subgroup.   
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The results of the present trial differ from previous topotecan trials, which showed no 

responses in five patients with recurrent Wilms tumor.14,16,32  In contrast to the protracted 

schedule [(daily x 5) x 2] that we describe, topotecan was administered on a daily x 5 

schedule (2 mg/m2/day) or as a 72-hour continuous infusion (1.3-1.9 mg/m2/day) in the 

earlier trials.  It is possible that the higher cumulative topotecan dosage in the current 

trial improved the response rate.  It is also possible that the protracted topotecan 

schedule was more active than the shorter schedules used in the previous studies.  The 

selective cytotoxic action of the topoisomerase I poisons during S-phase suggests that 

prolonged exposure to these drugs would maximize the number of cells susceptible to 

drug-induced death. 11,33    

 

Our study featured pharmacokinetically-guided dosing of topotecan.   The Wilms tumor 

patient population was ideal for individualized topotecan therapy because the patients 

had only one kidney, and topotecan primarily undergoes renal elimination.  The 

intersubject variance in topotecan lactone clearance was 30.2% and a range of dosages 

(0.7-3.2 mg/m2, median 1.8mg/m2) was required to achieve the desired AUC.  Despite this 

variability, only 15% of pharmacokinetic studies showed topotecan AUC values more than 

10% above the upper end of the target range and only 6% of studies showed AUC values 

more than 10% below the lower end of the target range.  It would be helpful to have a 

reliable predictor of topotecan clearance (e.g., serum creatinine or GFR), but no predictive 

relationship could be established (data not shown).    

 

To guide future use of topotecan in patients with recurrent Wilms tumor, we assessed 

predictors of topotecan response.  The only significant differences between responders and 

non-responders were the time from initial diagnosis to study therapy and the time from 

most recent treatment to study therapy.  There are several potential mechanisms of 

resistance to topotecan, which can be inherent to the tumor or the host.  Mutations in 

topoisomerase I,34 decreased levels of cellular topoisomerase,35-37 and decreased cellular 

camptothecin accumulation 38 have all been described, however studies of in vivo 

mechanisms of resistance were not performed and warrant further investigation in 

prospective trials. 
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In conclusion, topotecan is active against recurrent FHWT.  Introduction of topotecan 

using this protracted schedule to front-line trials of high risk recurrent Wilms tumor 

should be considered.    
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CHAPTER 7 

 

 

Summary, Conclusions, Perspectives, and Future Directions 

 

 

The oft-quoted 90% survival rate for Wilms tumor imparts a false sense of comfort to 

pediatric oncologists and affected patients.  The 90% figure is largely influenced by the 

extraordinary outcomes for patients with stage I and II favorable histology (FH) Wilms 

tumor, who enjoy predicted survival rates around 98%.   However, it is underappreciated 

that nearly one-third of Wilms tumor patients have event-free survival estimates <70% 

and overall survival estimates <80%.  This high-risk group includes patients with 

anaplastic histology (AH), bilateral, and recurrent FH Wilms tumor.    

 

This thesis defense focuses on the patients with high-risk Wilms tumor.  Chapters 1 and 2 

describe a potential prognostic factor (telomerase) to define a group of patients with high-

risk FH Wilms tumor.  Chapters 3 and 4 report on outcomes of two high-risk Wilms tumor 

populations: those with relapsed disease and those with AH.  Chapters 5 and 6 describe 

efforts to identify novel agents for high-risk Wilms tumor.   

 

Chapters 1 and 2: Telomerase as a prognostic marker for Wilms tumor 

The two most powerful and widely used prognostic factors for Wilms tumor are stage and 

histology.  Tumor stage has long been known to predict outcome and has been used to 

assign risk-based therapy since the earliest cooperative group trials.  Histology was 

recognized as an important factor in the 1970s after a retrospective analysis of NWTS-1 

revealed that anaplasia was strongly predictive of relapse and patient death (1).  More 

recently, blastemal predominance after pre-operative chemotherapy has been identified 

as a powerful prognostic factor (2).  Despite the strength of stage and histology as 

prognostic factors, many patients experience recurrence without readily apparent 

unfavorable features.  This has led investigators to seek molecular and genetic predictors 

of recurrence.  Loss of heterozygosity (LOH) at 16q, and to a lesser extent 1p, was noted to 

predict recurrence in several studies in the 1990s (3;4).  Based on these results, the fifth 
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National Wilms Tumor Study (NWTS-5) sought to prospectively analyze LOH at 1p and 

16q as a prognostic marker (5).  Analysis of more than 1700 study participants with FH 

Wilms tumor confirmed the prognostic significance of LOH, with the strongest effect seen 

in tumors with combined LOH at both loci.  A shortcoming of LOH is that only 4-5% of 

tumors have LOH at both loci and LOH predicts only 8% of Wilms tumor recurrences.  

Moreover, the mechanism for how LOH at 1p/16q confers adverse outcome is unknown.  It 

is possible that LOH is merely a bystander effect for a more important change, such as 

gain of chromosome 1q, another promising adverse prognostic indicator for Wilms tumor 

(6;7).  The United Kingdom Children’s Cancer and Leukemia Group (CCLG) recently 

found that LOH of 16q, but not 1p, is predictive of survival (8).  It is possible that the 

patient numbers were insufficient to detect an effect or the treatment context was 

different.   

 

Although the identification of LOH represents an advance in the field, it would be 

desirable to identify additional prognostic factors for Wilms tumor.  Toward this end, we 

evaluated telomerase expression level as a prognostic marker.  Telomerase is a 

specialized reverse transcriptase that adds nucleotide repeats to telomeres, counteracting 

the progressive loss of DNA that occurs during replication.   The enzyme, which plays a 

key role in cellular immortalization, is minimally composed of a catalytic subunit (TERT), 

and an RNA subunit (TERC/hTR), which provides the template for nucleotide repeat 

generation.  Because telomerase is expressed in approximately 85-95% of cancer 

specimens, but is absent in most normal tissue (9;10), it has been proposed as a tumor 

marker and therapeutic target.  The presence of telomerase expression has emerged as a 

predictor of adverse outcome in a variety of adult and pediatric malignancies, including 

neuroblastoma (11).  

 

Chapter 1 describes a pilot study of 78 favorable histology Wilms tumor samples for which 

telomerase activity level, TERC level, and TERT mRNA level were evaluated (12). The 

study found that nearly all Wilms tumors expressed telomerase activity, which differs 

from the situation in neuroblastoma in which a dichotomy of telomerase-positive and 

telomerase-negative tumors was seen.  The Wilms tumor samples exhibited a wide range 

of telomerase expression levels.  Univariate analysis of TERT mRNA level as a continuous 

variable suggested that each unit increase in TERT mRNA level increased the risk of 
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relapse by a factor of 1.66 (95% confidence interval (CI) 1.2-2.3, p<0.005).   This study did 

not detect an association between patient outcome and levels of telomerase enzyme 

activity or TERC, but was limited by its relatively small sample size.  Moreover, the study 

pre-dated the era of real-time quantitative polymerase chain reaction (PCR), so the 

results were only semi-quantitative.   

 

The promising results of Chapter 1 led us to design the follow-up study described in Chapter 

2.  This study used a case-cohort design involving nearly 300 samples to compare telomerase 

expression in primary tumors with and without eventual recurrence (13).  As with the 

original study, three measures of telomerase expression were assessed: telomerase enzyme 

activity, TERC expression level, and TERT mRNA expression level.  In this study, 

quantitative real-time PCR using Taqman methodology was utilized.  The study 

demonstrated a positive correlation between risk of recurrence and tumor expression level of 

telomerase RNA (TERC) and, to a lesser extent, TERT mRNA.  The third of patients with 

the highest TERC expression level had twice the risk of relapse compared to those with the 

lowest TERC expression level.  TERC expression level remained a significant predictor of 

relapse after adjustment for the known prognostic factors of patient age and tumor stage.  

As seen in the first study, telomerase enzyme activity level was not predictive of recurrence.   

 

These results suggested that measurement of TERC expression may be a useful prognostic 

factor, though they raise several questions.  The original pilot study did not find TERC 

expression level to be predictive of outcome.  This difference likely related to the larger 

sample size and improved assay techniques in the second study.  It was also somewhat 

surprising that TERC emerged as the superior prognosticator compared to TERT because 

TERC is constitutively expressed in both normal and malignant cells, whereas TERT is 

more restricted to cancer cells.  However, several lines of evidence indicate that level of 

TERC expression is biologically relevant, most notably in patients with the autosomal 

dominant form of dyskeratosis congenital in whom TERC haploinsufficiency results in 

impaired telomere length maintenance and clinical phenotype (14;15). 

 

In 2008, Wittmann and colleagues conducted quantitative PCR analysis on 102 tumor 

samples to evaluate 40 prognostic markers that were previously identified for Wilms tumor 

(16).  Levels of only two markers, TERT and HEY2, were predictive of relapse and death 
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after correction of p-values for multiple testing error.  TERT expression level remained 

predictive of outcome in a multivariate analysis, though was not prognostically significant in 

a smaller confirmatory study of 74 independent samples.  The authors concluded that 

further efforts should be undertaken to evaluate TERT as a potential stratifying marker.   

 

The relevant clinical question is whether the predictive value of telomerase expression is 

sufficiently strong to provoke a change in clinical practice.  The third of patients with the 

highest level of TERC expression had a relatively risk of recurrence of 2.06, which translates 

to a 4-year relapse-free survival of 79% in the high-TERC group compared to 90% in the low-

TERC group.  By comparison, among patients with stage I/II FH Wilms tumor, patients with 

LOH at both 1p and 16q had a 4-year RFS of 75% compared to 91% in patients without 

LOH.  Among patients with stage III/IV FH Wilms tumor, patients with LOH at both 1p and 

16q had a 4-year RFS of 66% compared to 83% in patients without LOH.   Hence, the 

magnitude of the LOH effect is greater than that of the telomerase effect.  LOH was also 

predictive of overall survival, whereas telomerase expression was not, though there were 

very few deaths in the telomerase case-cohort study.  Interestingly, an unpublished 

multivariate analysis indicated that both TERC expression level and LOH were predictive of 

relapse.   

 

In conclusion, telomerase expression seems to be a real prognostic marker for Wilms tumor 

that lies at the threshold of clinical utility.  Given the absence of other clear prognostic 

factors, telomerase expression deserves further study, especially for AH Wilms tumor 

because this group has not been studied.   

 

Chapter 3: Improved survival for relapsed Wilms tumor 

Approximately 10% of patients with favorable histology Wilms tumor and 40% of patients 

with AH Wilms tumor develop recurrent disease.  Historical estimates indicated that only 

24% to 43% of patients survive after relapse (17-20).  Before the mid-1980s, recurrent 

Wilms tumor was treated with combinations of vincristine, dactinomycin, doxorubicin, 

radiation therapy, or surgery.  In many cases, the identical chemotherapy agents were 

used for the treatment of both primary and recurrent disease.  In recent years, 

cyclophosphamide, ifosfamide, cisplatin, carboplatin, and etoposide have been used to 
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treat recurrent Wilms tumor, but their impact on long-term survival remained poorly 

defined (21).   

 

To better understand the effect that contemporary agents have on the outcomes of 

patients with relapsed Wilms tumor, we conducted a retrospective study of 54 patients 

with relapsed Wilms tumor treated over years at St. Jude Children’s Research Hospital 

(22).  Patients treated for recurrence after 1984 had significantly higher survival 

estimates than patients treated in the previous era (63.6% versus 20.6%).   The 

improvement was associated with the use of additional chemotherapy agents.   The 

outcomes of patients with high-risk features treated in the modern era in the St. Jude 

study (47.6% overall survival) was similar to outcomes reported in the recently published 

series from the NWTSG (48% overall survival) (23).   

 

These figures are slightly inferior to results reported for high-dose therapy with stem cell 

rescue (48%-63% overall survival) (24-28).  However, the stem cell transplant series have 

an inherent selection bias such that only patients with adequate disease control were able 

to undergo transplant.  The only way to decipher whether stem cell transplant offers a 

survival benefit will be to perform a randomized study comparing conventional 

chemotherapy to stem cell transplant, which does not appear to be feasible within a 

reasonable time frame.  We will probably never fully comprehend the benefit of stem cell 

transplant for recurrent Wilms tumor. 

 

Although the St. Jude study indicated that we have made substantial progress in the 

treatment of recurrent Wilms tumor, an overall survival estimate of 64% is still 

unsatisfactory.  It is possible that additional cytotoxic drugs such as topotecan (see 

Chapter 6) will improve survival to some degree, but it is likely that new cytotoxic agents 

will not be the cure-all.  A combination of chemotherapy and molecularly targeted 

therapies will likely be necessary to push the post-relapse survival rate beyond 90%.  The 

challenge in the next decade will be to identify the best targets and therapies. 

 

Chapter 4:  Treatment of anaplastic Wilms tumor 

Anaplasia has been recognized as an adverse prognostic factor for Wilms tumor since 

1978, but we continue to learn about the biology and treatment of this entity.  Beckwith 
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proposed that anaplasia is a marker of resistance to therapy, but not tumor 

aggressiveness (29).  This model was based largely on the observation that patients with 

stage I AH Wilms tumor had good outcomes.  The analysis of AH Wilms tumor described 

in Chapter 4, the largest cohort of AH Wilms tumor studied to date, provides several 

important insights into the treatment and biology of this Wilms tumor subtype.  Key 

lessons learned from the study are as follows (30). 

 

Insight 1.  Anaplasia is likely a marker of both resistance to therapy AND tumor 

aggressiveness. 

One of the major observations from NWTS-5 is that patients with stage I anaplastic 

Wilms tumor did not fare as well as previously believed.  The 4-year EFS and OS 

estimates for 29 patients with stage I focal or diffuse anaplasia were 69.5% and 82.6%, 

respectively.  By contrast, 4-year EFS and OS estimates for 473 evaluable patients with 

stage I FH Wilms tumor treated with the same regimen (EE-4A, 

vincristine/dactinomycin) were 92.4% (95% CI, 89.5 to 94.5) and 98.3% (95% CI, 96.4 to 

99.2), respectively.  Comparison of EFS and OS curves between patients with Stage I FH 

and Stage I AH demonstrated a highly significant difference (p<0.001).  The poor 

outcomes for stage I anaplastic Wilms tumor suggest that these patients had  

micrometastic disease that was unsatisfactorily controlled by vincristine and 

dactinomycin.  It is possible that the stage I FH and AH tumors had equal prevalence of 

micrometastatic disease, but that the FH micrometastatic disease was sensitive to 

chemotherapy whereas the AH micrometastatic disease was not, consistent with 

Beckwith’s theory.  However, examination of the stage distribution of the favorable 

histology tumors as compared to the AH tumors revealed that 65.4% of patients with AH 

presented with high-stage (III+IV) disease, whereas only 45.6% of patients with FH 

presented with high-stage disease (OR 2.26, p<0.001).    If the histologic types were 

equally aggressive, one would expect a similar stage distribution.  

 

Insight 2.  Anaplasia is a marker of relative, but not complete, resistance to 

chemotherapy. 

The table below summarizes the outcomes of patients with stage II-IV AH Wilms tumor 

on successive treatment regimens from NWTS 3-5.  The randomized study demonstrating 

the benefit of cyclophosphamide in NWTS- 3 and -4 is the most cogent demonstration that 
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additional chemotherapy can be of benefit for this disease.  The more modest 

improvement between Regimen J and Regimen I suggests a benefit of adding etoposide, 

but this was not a randomized comparison.  Other evidence that chemotherapy benefits 

patients with AH Wilms tumor is that patients with stage II disease (treated with 

vincristine/doxorubicin/cyclophosphamide/etoposide/radiation) fared better than patients 

with stage I disease (treated with vincristine/dactinomycin).  The fact that AH Wilms 

tumor is only relatively chemo-resistant is an important consideration for planning future 

studies.  We may not have optimized the use of conventional cytotoxic agents for AH 

Wilms tumor, though we seem to be reaching a point of diminishing returns with cytoxic 

therapy and will likely need to turn to molecularly targeted therapy in the next 

generation of clinical trials. 

 

Table 1. 

4-year RFS % for Patients with Diffuse Anaplastic Wilms Tumor on NWTS 3-5 

Stage Regimen DD-
RT (# of pts.) 

Regimen J 
(# of pts.) 

Regimen I 
(# of pts.) 

 

RegimenEE-4A 
(# of pts.) 

 VDA/XRT VDAC/XRT VDCE/XRT 
 

VA 

I 80% (10) 100% (5) --- 68.4% (19) 
II 40% (12) 72% (11) 82.6% (23) --- 
III 33% (9) 59% (13) 64.7% (43) --- 
IV 0% (8) 

 
17% (6) 33.3% (15) --- 

V-vincristine, D-doxorubicin, A-dactinomycin, C-cyclophosphamide, E-etoposide, XRT-

radiation therapy 

 

Insight 3.  Central pathology review is important for the identification of 

anaplasia. 

In an effort to save costs and improve efficiency, the leaders of the COG have questioned 

the need for central pathology review for Wilms tumor.  The data from NWTS-5 indicate 

that central pathology review remains important; anaplasia was not originally recognized 

by institutional pathologists in 74 of 190 (38.9%) patients who underwent immediate 

nephrectomy.  An additional nine patients were considered to have focal AH by 

institutional pathologists, but diffuse AH by central reviewers.   Among 158 patients with 

unilateral AH Wilms tumor for whom a local tumor stage was assigned (regardless of 
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distant metastases), discordance between institutional stage and central pathology stage 

was noted in 30 patients (19%).  Overall, approximately 50% of patients with AH Wilms 

tumor had an adjustment in therapy based on central pathology review.  Preliminary 

review of patients enrolled on the current COG AREN03B2 Biology and Classification 

study indicates a similar discordance.  Although clear descriptions of the criteria for 

anaplasia have been included in the protocol documents, institutional pathologists are 

likely to see just one case every few years, thereby necessitating the need for central 

review.    

 

Chapters 5 and 6: Developmental therapeutics for Wilms tumor 

As described in Chapters 3 and 4, substantial progress has been made in the treatment of 

recurrent Wilms tumor and AH Wilms tumor.  However, survival rates for these groups 

remain less than 70%.  New treatment approaches are needed.   

 

Table 2. 

Results of COG phase II studies for relapsed disease published since 2000 

Agent Tumor Types Response 
Rate 

Reference 
 

Gemcitabine/vinorelbine Hodgkin 19/25 (76%) Cole, 2009 
TNF/dactinomycin Wilms 3/19 (15.8%) Meany, 2008 
Irinotecan Solid tumors 8/161 (5%) Bomgaars, 2007 
Temozolomide Gliomas 6/104 (5.8%) Nicholson, 2007 
Docetaxel Leukemia 0/12 (0%) Franklin, 2008 
Rebeccamycin Solid tumors 4/126 (3.2%) Langevin, 2008 
Imatinib Solid tumors 1/59 (1.7%) Bond, 2008 
ATRA/IFN-alfa Wilms/neuroblastoma 0/30 (0%) Adamson, 2007 
Oxaliplain Brain tumors 2/43 (4.7%) Fouladi, 2006 
Cytarabine/cisplat/etoposide Hodgkin 31 (68%) Wimmer, 2006 
Docetaxel Solid tumors 8/173 (4.6%) Zwerdline, 2006 
Topotecan (21 day) Sarcomas 2/42 (4.8%) Hawkins, 2006 
Lobradimil/carboplatin Brain tumors 0/38 (0%) Warren, 2006 
Gemcitabine Leukemia 1/30 (3.3%) Angiolillo, 2006 
Ifos/carboplat/etoposide Sarcomas 91 (51%) VanWinkle, 2005 
Nelarabine T-Leukemia 106 (>50%) Berg, 2005 
Idarubicin Brain tumors 91 (<10%) Dreyer, 2003 
Homoharringtonine AML 5/28 (18%) Bell, 2001 
Cyclophos/topotecan Solid tumors 25/83 (30.1%) Saylors, 2001 
Pyrazolozcridine Solid tumors 0/47 (0%) Berg, 2000 
Oral methotrexate Brain tumors 4/78 (5.1%) Mulne, 2000 
TNF-tumor necrosis factor, ATRA-all trans retinoic acid, IFN-interferon 

Combinations with response rates >20% in bold 
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A challenge we face in developing novel agents for Wilms tumor is the paucity of patients 

available to participate in phase I and II trials.  WILTOP, a phase II study of topotecan 

for recurrent Wilms tumor (Chapter 6) required 4 years and significant financial 

investment to complete.  The result was positive, but the majority of recent phase II 

studies for relapsed disease conducted by the COG have yielded negative results (Table 

2).  With a success rate less than 25 % in phase II studies for relapsed disease, the COG 

clearly needs a more efficient way to develop new agents. 

 

To maximize the chance for success before embarking on new clinical studies, it is 

essential that new agents be chosen wisely and that the proper dosage and administration 

schedule be utilized.  There is no perfect way to accomplish this, but the development of 

pre-clinical models may help inform the prioritization of new agents for Wilms tumor.  To 

this end, we wrote a protocol to develop Wilms tumor xenografts from primary tumors 

resected at St. Jude Children’s Research Hospital and collaborated with Dr. Peter 

Houghton to use these models to screen new agents.   

 

A potential shortcoming of the xenograft models is that they may undergo extensive 

genetic change in the process of establishment from primary tumors.  The research 

described in Chapter 5 indicates that this is not the case (manuscript in preparation for 

submission).  The single nucleotide polymorphisms (SNP) chips indicated that there is a 

very high degree of genomic stability during the establishment of xenografts, with 

concordance of SNP calls >98%.  Gene expression levels were less concordant, but the 

number of differentially expressed genes was not greater than what would be expected by 

chance.  Importantly, genes in pathways that are targeted therapies, like the insulin-like 

growth factor (IGF), vascular endothelial growth factor (VEGF), mammalian target of 

rapamycin (mTOR), and epidermal growth factor receptor (EGFR) pathways were not 

differentially expressed.  A caveat to these studies is that they did not evaluate protein 

expression of post-translational modifications.   

 

A screen of agents with known clinical activity in Wilms tumor revealed that for the most 

part, activity level in xenograft models correlated with activity level seen in phase II 

studies.  Caution must be taken in ensuring that the pharmacokinetics of agents in mice 
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is similar to that in humans before translating information from xenograft models to 

human trials. 

 

The agent found to be most active in the xenograft models was topotecan.  Further 

characterization of topotecan in the mice indicated that the schedule of administration 

was important; topotecan administered for 10 days produced superior responses to 

topotecan administered for 5 days, even at the same cumulative dose.  This pre-clinical 

data led to the development of the WILTOP trial (Chapter 6), a phase II study of 

protracted-schedule topotecan for recurrent Wilms tumor (31).  The topotecan dosing was 

pharmacokinetically-guided and designed to achieve an area under the curve (AUC) that 

mirrored active levels in the pre-clinical models.  Patients were stratified into two arms, 

one for FH and one for AH.  The statistical design was based solely on the FH stratum, 

which was wise because the FH tumors had a higher response rate than the AH tumors.  

The study found that 12/25 patients with FH achieved a partial response, which was very 

impressive considering that the patients enrolled in the study were heavily pre-treated, 

including several patients who previously underwent high-dose therapy with autologous 

stem cell rescue.  Two of 11 patients with AH responded, suggesting that topotecan has 

some activity in this subset of patients.   

 

A disadvantage of the topotecan regimen is that it requires 10 days of IV administration, 

meaning frequent visits to the pediatric oncology clinic.  Another key shortcoming is that 

this dose and schedule is associated with significant hematologic toxicity, mainly 

neutropenia and thrombocytopenia.  As expected, many patients were hospitalized for 

neutropenic fever and infection, but there were no toxic deaths. 

 

The promising activity of topotecan has led the COG and SIOP to propose a trial to test 

the feasibility of ifosfamide/carboplatin/etoposide alternating with topotecan (ICE-T) for 

patients with recurrent Wilms tumor.  If ICE-T is feasible to administer (ie, not 

associated with excessive toxicity) and produces satisfactory disease control, we anticipate 

that the regimen will serve as a backbone upon which to incorporate new biologic agents 

such as tyrosine kinase inhibitors, antibodies directed against IGF1R, Wnt pathway 

inhibitors, or mTOR pathway inhibitors. 
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