Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Neurological adverse effects caused by cytotoxic and targeted therapies

Abstract

Historically, body tissues with a high rate of cell turnover, such as the bone marrow, have been most susceptible to chemotherapy-induced damage. The widespread use of hematopoietic colony-stimulating factors, as well as the development of new agents, has led to improved outcomes in many types of cancer. As a consequence, neurotoxicity has become increasingly important as a cause of dose-limiting chemotherapy toxicity. An understanding of the neurologic complications of these new agents is crucial in order to prevent irreversible neurologic injury. Moreover, chemotherapy complications that require discontinuation of a potentially effective drug need to be distinguished from other causes of neurotoxicity including the tumor itself, paraneoplasia, radiation and surgery, which may require a different therapeutic strategy. We review the prevalence, prevention, and management of important and unusual neurotoxicities related to chemotherapy and targeted agents approved by the FDA since January 1999. These agents include DNA-damaging agents such as oxaliplatin and temozolomide, microtubule poisons like ixabepilone, proteasome inhibitors (bortezomib), and signal transduction inhibitors such as imatinib, sunitinib and bevacizumab.

Key Points

  • Peripheral neuropathy often represents the dose-limiting toxicity for thalidomide, bortezomib, Abraxane®, ixabepilone, and oxaliplatin

  • Sensory neuropathy from microtubule poisons typically recovers quickly after drug discontinuation; however, neuropathy from oxaliplatin and bortezomib improves more slowly (over several months), and recovery from thalidomide neuropathy is variable and incomplete

  • The addition of temozolomide to fractionated radiotherapy is associated with an increased risk of peritumoral contrast enhancement and vasogenic edema, attributed to blood–brain barrier breakdown that mimics early tumor progression

  • Among the new purine and pyrimidine analogs, nelarabine commonly produces peripheral neuropathy and encephalopathy, and liposomal cytarabine routinely causes arachnoiditis warranting corticosteroid prophylaxis

  • Muscle cramps and myalgias frequently arise in patients receiving imatinib and generally respond to supportive measures; rhabdomyolysis is rarely seen

  • All drugs that target the VEGF pathway convey a small risk of producing reversible posterior encephalopathy syndrome, probably because they all are capable of producing hypertension

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pseudoprogression from radiation and temozolomide: a 69-year-old woman presented with right-sided weakness and underwent stereotactic biopsy of a left frontal mass that demonstrated glioblastoma.
Figure 2: Imatinib-associated hemorrhage: a 45-year-old man with grade 2 oligoastrocytoma who had failed radiation and temozolomide was placed on a clinical trial of imatinib.

Similar content being viewed by others

References

  1. Posner, J. B. Neurologic Complications of Cancer (F. A. Davis Company, Philadelphia, 1995).

    Google Scholar 

  2. Schiff, D. & Wen, P. Y. Cancer Neurology in Clinical Practice (Humana Press, Totowa, 2002).

    Google Scholar 

  3. Roche, H. et al. Phase II clinical trial of ixabepilone (BMS-247550), an epothilone B analog, as first-line therapy in patients with metastatic breast cancer previously treated with anthracycline chemotherapy. J. Clin. Oncol. 25, 3415–3420 (2007).

    CAS  PubMed  Google Scholar 

  4. Perez, E. A. et al. Efficacy and safety of ixabepilone (BMS-247550) in a phase II study of patients with advanced breast cancer resistant to an anthracycline, a taxane, and capecitabine. J. Clin. Oncol. 25, 3407–3414 (2007).

    CAS  PubMed  Google Scholar 

  5. Aghajanian, C. et al. Phase I study of the novel epothilone analog ixabepilone (BMS-247550) in patients with advanced solid tumors and lymphomas. J. Clin. Oncol. 25, 1082–1088 (2007).

    CAS  PubMed  Google Scholar 

  6. Lee, J. J. et al. Changes in neurologic function tests may predict neurotoxicity caused by ixabepilone. J. Clin. Oncol. 24, 2084–2091 (2006).

    CAS  PubMed  Google Scholar 

  7. Galsky, M. D. et al. Multi-institutional randomized phase II trial of the epothilone B analog ixabepilone (BMS-247550) with or without estramustine phosphate in patients with progressive castrate metastatic prostate cancer. J. Clin. Oncol. 23, 1439–1446 (2005).

    CAS  PubMed  Google Scholar 

  8. Rook, J., Rosser, T., Fangusaro, J. & Finlay, J. Acute transient encephalopathy following paclitaxel treatment in an adolescent with a recurrent suprasellar germinoma. Pediatr. Blood Cancer 50, 699–700 (2008).

    PubMed  Google Scholar 

  9. Ziske, C. G. et al. Acute transient encephalopathy after paclitaxel infusion: report of three cases. Ann. Oncol. 13, 629–631 (2002).

    CAS  PubMed  Google Scholar 

  10. Nieto, Y. et al. Acute encephalopathy: a new toxicity associated with high-dose paclitaxel. Clin. Cancer Res. 5, 501–506 (1999).

    CAS  PubMed  Google Scholar 

  11. Ibrahim, N. K. et al. Multicenter phase II trial of ABI-007, an albumin-bound paclitaxel, in women with metastatic breast cancer. J. Clin. Oncol. 23, 6019–6026 (2005).

    CAS  PubMed  Google Scholar 

  12. Gradishar, W. J. et al. Phase III trial of nanoparticle albumin-bound paclitaxel compared with polyethylated castor oil-based paclitaxel in women with breast cancer. J. Clin. Oncol. 23, 7794–7803 (2005).

    CAS  PubMed  Google Scholar 

  13. Ibrahim, N. K. et al. Phase I and pharmacokinetic study of ABI-007, a cremophor-free, protein-stabilized, nanoparticle formulation of paclitaxel. Clin. Cancer Res. 8, 1038–1044 (2002).

    CAS  PubMed  Google Scholar 

  14. Kelly, H. & Goldberg, R. M. Systemic therapy for metastatic colorectal cancer: current options, current evidence. J. Clin. Oncol. 23, 4553–4560 (2005).

    CAS  PubMed  Google Scholar 

  15. Schmoll, H.-J. & Cassidy, J. Integrating oxaliplatin into the management of colorectal cancer. Oncologist 6, 24–28 (2001).

    CAS  PubMed  Google Scholar 

  16. Lehky, T. J., Leonard, G. D., Wilson, R. H., Grem, J. L. & Floeter, M. K. Oxaliplatin-induced neurotoxicity: acute hyperexcitability and chronic neuropathy. Muscle Nerve 29, 387–392 (2004).

    CAS  PubMed  Google Scholar 

  17. Grothey, A. Oxaliplatin-safety profile: neurotoxicity. Semin. Oncol. 30, 5–13 (2003).

    CAS  PubMed  Google Scholar 

  18. Wilson, R. H. et al. Acute oxaliplatin-induced peripheral nerve hyperexcitability. J. Clin. Oncol. 20, 1767–1774 (2002).

    CAS  PubMed  Google Scholar 

  19. Cersosimo, R. J. Oxaliplatin-associated neuropathy: a review. Ann. Pharmacother. 39, 128–135 (2005).

    CAS  PubMed  Google Scholar 

  20. Krishnan, A. V., Goldstein, D., Friedlander, M. & Kiernan, M. C. Oxaliplatin-induced neurotoxicity and the development of neuropathy. Muscle Nerve 32, 51–60 (2005).

    CAS  PubMed  Google Scholar 

  21. Taieb, S., Trillet-Lenoir, V., Rambaud, L., Descos, L. & Freyer, G. Lhermitte sign and urinary retention: atypical presentation of oxaliplatin neurotoxicity in four patients. Cancer 94, 2434–2440 (2002).

    CAS  PubMed  Google Scholar 

  22. Gilles-Amar, V. et al. Evolution of severe sensory neuropathy with oxaliplatin combined to the bimonthly 48h leucovorin (LV) and 5-fluorouracil (5FU) regimens (FOLFOX) in metastatic colorectal cancer [abstract]. Proc. Am. Soc. Clin. Oncol. 18 246a (1999).

    Google Scholar 

  23. von Delius, S. et al. Carbamazepine for prevention of oxaliplatin-related neurotoxicity in patients with advanced colorectal cancer: final results of a randomised, controlled, multicenter phase II study. Invest. New Drugs 25, 173–180 (2007).

    CAS  PubMed  Google Scholar 

  24. Argyriou, A. A. et al. Efficacy of oxcarbazepine for prophylaxis against cumulative oxaliplatin-induced neuropathy. Neurology 67, 2253–2255 (2006).

    CAS  PubMed  Google Scholar 

  25. Cascinu, S. et al. Neuroprotective effect of reduced glutathione on oxaliplatin-based chemotherapy in advanced colorectal cancer: a randomized, double-blind, placebo-controlled trial. J. Clin. Oncol. 20, 3478–3483 (2002).

    CAS  PubMed  Google Scholar 

  26. Grolleau, F. et al. A possible explanation for a neurotoxic effect of the anticancer agent oxaliplatin on neuronal voltage-gated sodium channels. J. Neurophysiol. 85, 2293–2297 (2001).

    CAS  PubMed  Google Scholar 

  27. Gamelin, L. et al. Prevention of oxaliplatin-related neurotoxicity by calcium and magnesium infusions: a retrospective study of 161 patients receiving oxaliplatin combined with 5-fluorouracil and leucovorin for advanced colorectal cancer. Clin. Cancer Res. 10, 4055–4061 (2004).

    CAS  PubMed  Google Scholar 

  28. Hochster, H. S., Grothey, A. & Childs, B. H. Use of calcium and magnesium salts to reduce oxaliplatin-related neurotoxicity. J. Clin. Oncol. 25, 4028–4029 (2007).

    PubMed  Google Scholar 

  29. Hochster, H. S. & Grothey, A. In reply. J. Clin. Oncol. 26, 1189 (2008).

    Google Scholar 

  30. Nikcevich, D. A. et al. Effect of intravenous calcium and magnesium (IV CaMg) on oxaliplatin-induced sensory neurotoxicity (sNT) in adjuvant colon cancer: Results of the phase III placebo-controlled, double-blind NCCTG trial N04C7 [abstract]. ASCO Meeting Abstracts 26, 4009 (2008).

    Google Scholar 

  31. Patel, M., McCully, C., Godwin, K. & Balis, F. M. Plasma and cerebrospinal fluid pharmacokinetics of intravenous temozolomide in non-human primates. J. Neurooncol. 61, 203–207 (2003).

    PubMed  Google Scholar 

  32. de Wit, M. C., de Bruin, H. G., Eijkenboom, W., Sillevis Smitt, P. A. & van den Bent, M. J. Immediate post-radiotherapy changes in malignant glioma can mimic tumor progression. Neurology 63, 535–537 (2004).

    CAS  PubMed  Google Scholar 

  33. Brandes, A. A. et al. MGMT promoter methylation status can predict the incidence and outcome of pseudoprogression after concomitant radiochemotherapy in newly diagnosed glioblastoma patients. J. Clin. Oncol. 26, 2192–2197 (2008).

    PubMed  Google Scholar 

  34. Taal, W. et al. Incidence of early pseudo-progression in a cohort of malignant glioma patients treated with chemoirradiation with temozolomide. Cancer 113, 405–410 (2008).

    CAS  PubMed  Google Scholar 

  35. Mason, W. P. et al. Canadian recommendations for the treatment of glioblastoma multiforme. Curr. Oncol. 14, 110–117 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Berg, S. L. et al. Phase II study of nelarabine (compound 506U78) in children and young adults with refractory T-cell malignancies: a report from the Children's Oncology Group. J. Clin. Oncol. 23, 3376–3382 (2005).

    CAS  PubMed  Google Scholar 

  37. Cohen, M. H., Johnson, J. R., Justice, R. & Pazdur, R. FDA drug approval summary: nelarabine (Arranon) for the treatment of T-cell lymphoblastic leukemia/lymphoma. Oncologist 13, 709–714 (2008).

    CAS  PubMed  Google Scholar 

  38. Berg, S. L. et al. Plasma and cerebrospinal fluid pharmacokinetics of nelarabine in nonhuman primates. Cancer Chemother. Pharmacol. 59, 743–747 (2007).

    CAS  PubMed  Google Scholar 

  39. Berg, S. L. et al. Plasma and cerebrospinal fluid pharmacokinetics of clofarabine in nonhuman primates. Clin. Cancer Res. 11, 5981–5983 (2005).

    CAS  PubMed  Google Scholar 

  40. Faderl, S. et al. A randomized study of clofarabine versus clofarabine plus low-dose cytarabine as front-line therapy for patients aged 60 years and older with acute myeloid leukemia and high-risk myelodysplastic syndrome. Blood 112, 1638–1645 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Kantarjian, H. M., Jeha, S., Gandhi, V., Wess, M. & Faderl, S. Clofarabine: past, present, and future. Leuk. Lymphoma 48, 1922–1930 (2007).

    CAS  PubMed  Google Scholar 

  42. Glantz, M. J. et al. Randomized trial of a slow-release versus a standard formulation of cytarabine for the intrathecal treatment of lymphomatous meningitis. J. Clin. Oncol. 17, 3110–3116 (1999).

    CAS  PubMed  Google Scholar 

  43. Jabbour, E. et al. Neurologic complications associated with intrathecal liposomal cytarabine given prophylactically in combination with high-dose methotrexate and cytarabine to patients with acute lymphocytic leukemia. Blood 109, 3214–3218 (2007).

    CAS  PubMed  Google Scholar 

  44. Adams, J. The proteasome: a suitable antineoplastic target. Nat. Rev. Cancer 4, 349–360 (2004).

    CAS  PubMed  Google Scholar 

  45. Richardson, P. G. et al. Frequency, characteristics, and reversibility of peripheral neuropathy during treatment of advanced multiple myeloma with bortezomib. J. Clin. Oncol. 24, 3113–3120 (2006).

    CAS  PubMed  Google Scholar 

  46. Richardson, P. G. et al. Bortezomib or high-dose dexamethasone for relapsed multiple myeloma. N. Engl. J. Med. 352, 2487–2498 (2005).

    CAS  PubMed  Google Scholar 

  47. Oaklander, A. L. et al. Multiple myeloma polyneuropathy before and after initial chemotherapy with single-agent bortezomib. In 131st Annual Meeting of the American Neurological Association (Chicago, IL, 2006).

    Google Scholar 

  48. Richardson, P. G. et al. Extended follow-up of a phase 3 trial in relapsed multiple myeloma: final time-to-event results of the APEX trial. Blood 110, 3557–3560 (2007).

    CAS  PubMed  Google Scholar 

  49. Cavaletti, G. et al. Bortezomib-induced peripheral neurotoxicity: a neurophysiological and pathological study in the rat. Exp. Neurol. 204, 317–325 (2007).

    CAS  PubMed  Google Scholar 

  50. Vredenburgh, J. J. et al. Bevacizumab plus irinotecan in recurrent glioblastoma multiforme. J. Clin. Oncol. 25, 4722–4729 (2007).

    CAS  PubMed  Google Scholar 

  51. Cloughesy, T. F. et al. A phase II, randomized, non-comparative clinical trial of the effect of bevacizumab (BV) alone or in combination with irinotecan (CPT) on 6-month progression free survival (PFS6) in recurrent, treatment-refractory glioblastoma (GBM) [abstract]. ASCO Meeting Abstracts 26, 2010b (2008).

    Google Scholar 

  52. Kreisl, T. N. et al. Phase II trial of single-agent bevacizumab followed by bevacizumab plus irinotecan at tumor progression in recurrent glioblastoma. J. Clin. Oncol. 27, 740–745 (2008).

    PubMed  PubMed Central  Google Scholar 

  53. Glusker, P., Recht, L. & Lane, B. Reversible posterior leukoencephalopathy syndrome and bevacizumab. N. Engl. J. Med. 354, 980–982 (2006).

    CAS  PubMed  Google Scholar 

  54. Ozcan, C., Wong, S. J. & Hari, P. Reversible posterior leukoencephalopathy syndrome and bevacizumab. N. Engl. J. Med. 354, 980–982 (2006).

    PubMed  Google Scholar 

  55. Allen, J. A., Adlakha, A. & Bergethon, P. R. Reversible posterior leukoencephalopathy syndrome after bevacizumab/FOLFIRI regimen for metastatic colon cancer. Arch. Neurol. 63, 1475–1478 (2006).

    PubMed  Google Scholar 

  56. Koopman, M., Muller, E. W. & Punt, C. J. Reversible posterior leukoencephalopathy syndrome caused by bevacizumab: report of a case. Dis. Colon Rectum 51, 1425–1426 (2008).

    PubMed  Google Scholar 

  57. Govindarajan, R., Adusumilli, J., Baxter, D. L., El-Khoueiry, A. & Harik, S. I. Reversible posterior leukoencephalopathy syndrome induced by RAF kinase inhibitor BAY 43–9006. J. Clin. Oncol. 24, e48 (2006).

    PubMed  Google Scholar 

  58. Kapiteijn, E., Brand, A., Kroep, J. & Gelderblom, H. Sunitinib induced hypertension, thrombotic microangiopathy and reversible posterior leukencephalopathy syndrome. Ann. Oncol. 18, 1745–1747 (2007).

    CAS  PubMed  Google Scholar 

  59. Martin, G., Bellido, L. & Cruz, J. J. Reversible posterior leukoencephalopathy syndrome induced by sunitinib. J. Clin. Oncol. 25, 3559 (2007).

    PubMed  Google Scholar 

  60. Gijtenbeek, J. M., van den Bent, M. J. & Vecht, C. J. Cyclosporine neurotoxicity: a review. J. Neurol. 246, 339–346 (1999).

    CAS  PubMed  Google Scholar 

  61. van der Veldt, A. A., van den Eertwegh, A. J., Hoekman, K., Barkhof, F. & Boven, E. Reversible cognitive disorders after sunitinib for advanced renal cell cancer in patients with preexisting arteriosclerotic leukoencephalopathy. Ann. Oncol. 18, 1747–1750 (2007).

    CAS  PubMed  Google Scholar 

  62. Kilickap, S., Abali, H. & Celik, I. Bevacizumab, bleeding, thrombosis, and warfarin. J. Clin. Oncol. 21, 3542 (2003).

    PubMed  Google Scholar 

  63. Johnson, D. H. et al. Randomized phase II trial comparing bevacizumab plus carboplatin and paclitaxel with carboplatin and paclitaxel alone in previously untreated locally advanced or metastatic non-small-cell lung cancer. J. Clin. Oncol. 22, 2184–2191 (2004).

    CAS  PubMed  Google Scholar 

  64. Carden, C. P., Larkin, J. M. & Rosenthal, M. A. What is the risk of intracranial bleeding during anti-VEGF therapy? Neuro Oncol. 10, 624–630 (2008).

    PubMed  PubMed Central  Google Scholar 

  65. Pouessel, D. & Culine, S. High frequency of intracerebral hemorrhage in metastatic renal carcinoma patients with brain metastases treated with tyrosine kinase inhibitors targeting the vascular endothelial growth factor receptor. Eur. Urol. 53, 376–381 (2008).

    CAS  PubMed  Google Scholar 

  66. Nghiemphu, P. L., Green, R. M., Pope, W. B., Lai, A. & Cloughesy, T. F. Safety of anticoagulation use and bevacizumab in patients with glioma. Neuro Oncol. 10, 355–360 (2008).

    PubMed  Google Scholar 

  67. Kantarjian, H. et al. Hematologic and cytogenetic responses to imatinib mesylate in chronic myelogenous leukemia. N. Engl. J. Med. 346, 645–652 (2002).

    CAS  PubMed  Google Scholar 

  68. Deininger, M. W., O'Brien, S. G., Ford, J. M. & Druker, B. J. Practical management of patients with chronic myeloid leukemia receiving imatinib. J. Clin. Oncol. 21, 1637–1647 (2003).

    CAS  PubMed  Google Scholar 

  69. Penel, N., Blay, J. Y. & Adenis, A. Imatinib as a possible cause of severe rhabdomyolysis. N. Engl. J. Med. 358, 2746–2747 (2008).

    CAS  PubMed  Google Scholar 

  70. Song, K. W. et al. Subdural hematomas during CML therapy with imatinib mesylate. Leuk. Lymphoma 45, 1633–1636 (2004).

    CAS  PubMed  Google Scholar 

  71. Pollack, I. F. et al. Phase I trial of imatinib in children with newly diagnosed brainstem and recurrent malignant gliomas: a Pediatric Brain Tumor Consortium report. Neuro Oncol. 9, 145–160 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Wen, P. Y. et al. Phase I/II study of imatinib mesylate for recurrent malignant gliomas: North American Brain Tumor Consortium Study 99–08. Clin. Cancer Res. 12, 4899–4907 (2006).

    CAS  PubMed  Google Scholar 

  73. Ghobrial, I. M. & Rajkumar, S. V. Management of thalidomide toxicity. J. Support. Oncol. 1, 194–205 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Glasmacher, A. et al. A systematic review of phase-II trials of thalidomide monotherapy in patients with relapsed or refractory multiple myeloma. Br. J. Haematol. 132, 584–593 (2006).

    CAS  PubMed  Google Scholar 

  75. Plasmati, R. et al. Neuropathy in multiple myeloma treated with thalidomide: a prospective study. Neurology 69, 573–581 (2007).

    CAS  PubMed  Google Scholar 

  76. Cavaletti, G. et al. Thalidomide sensory neurotoxicity: a clinical and neurophysiologic study. Neurology 62, 2291–2293 (2004).

    CAS  PubMed  Google Scholar 

  77. Chaudhry, V. et al. Thalidomide-induced neuropathy. Neurology 59, 1872–1875 (2002).

    CAS  PubMed  Google Scholar 

  78. Briani, C. et al. Thalidomide neurotoxicity: prospective study in patients with lupus erythematosus. Neurology 62, 2288–2290 (2004).

    CAS  PubMed  Google Scholar 

  79. Mileshkin, L. et al. Development of neuropathy in patients with myeloma treated with thalidomide: patterns of occurrence and the role of electrophysiologic monitoring. J. Clin. Oncol. 24, 4507–4514 (2006).

    CAS  PubMed  Google Scholar 

  80. Tosi, P. et al. Neurological toxicity of long-term (>1 yr) thalidomide therapy in patients with multiple myeloma. Eur. J. Haematol. 74, 212–216 (2005).

    CAS  PubMed  Google Scholar 

  81. Bastuji-Garin, S. et al. Incidence and risk factors for thalidomide neuropathy: a prospective study of 135 dermatologic patients. J. Invest. Dermatol. 119, 1020–1026 (2002).

    CAS  PubMed  Google Scholar 

  82. Offidani, M. et al. Common and rare side-effects of low-dose thalidomide in multiple myeloma: focus on the dose-minimizing peripheral neuropathy. Eur. J. Haematol. 72, 403–409 (2004).

    CAS  PubMed  Google Scholar 

  83. Sharma, R. A. et al. Toxicity profile of the immunomodulatory thalidomide analogue, lenalidomide: phase I clinical trial of three dosing schedules in patients with solid malignancies. Eur. J. Cancer 42, 2318–2325 (2006).

    CAS  PubMed  Google Scholar 

  84. Richardson, P. G. et al. Immunomodulatory drug CC-5013 overcomes drug resistance and is well tolerated in patients with relapsed multiple myeloma. Blood 100, 3063–3067 (2002).

    CAS  PubMed  Google Scholar 

  85. Fine, H. A. et al. A phase I trial of lenalidomide in patients with recurrent primary central nervous system tumors. Clin. Cancer Res. 13, 7101–7106 (2007).

    CAS  PubMed  Google Scholar 

  86. Dimopoulos, M. A., Kastritis, E. & Rajkumar, S. V. Treatment of plasma cell dyscrasias with lenalidomide. Leukemia 22, 1343–1353 (2008).

    CAS  PubMed  Google Scholar 

  87. Terpos, E. et al. The combination of bortezomib, melphalan, dexamethasone and intermittent thalidomide is an effective regimen for relapsed/refractory myeloma and is associated with improvement of abnormal bone metabolism and angiogenesis. Leukemia 22, 2247–2256 (2008).

    CAS  PubMed  Google Scholar 

  88. Pineda-Roman, M. et al. VTD combination therapy with bortezomib–thalidomide–dexamethasone is highly effective in advanced and refractory multiple myeloma. Leukemia 22, 1419–1427 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Palumbo, A. et al. Bortezomib, melphalan, prednisone, and thalidomide for relapsed multiple myeloma. Blood 109, 2767–2772 (2007).

    CAS  PubMed  Google Scholar 

  90. Ciolli, S. et al. The addition of liposomal doxorubicin to bortezomib, thalidomide and dexamethasone significantly improves clinical outcome of advanced multiple myeloma. Br. J. Haematol. 141, 814–819 (2008).

    CAS  PubMed  Google Scholar 

  91. Richardson, P. et al. Lenalidomide, bortezomib, and dexamethasone (Rev/Vel/Dex) in patients with relapsed or relapsed/refractory multiple myeloma (MM): preliminary results of a phase II study [abstract]. Blood (ASH Annual Meeting Abstracts) 110, 2714 (2007).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Schiff.

Ethics declarations

Competing interests

D. Schiff is a Consultant for Genentech and Schering-Plough and he receives grant/research support from Genentech. P. Wen receives grant/research support from Genentech. M. van den Bent is a Consultant and receives grant/research support from Roche and Schering-Plough; he is also on the Speakers bureau for Schering-Plough.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schiff, D., Wen, P. & van den Bent, M. Neurological adverse effects caused by cytotoxic and targeted therapies. Nat Rev Clin Oncol 6, 596–603 (2009). https://doi.org/10.1038/nrclinonc.2009.128

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2009.128

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing