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ABSTRACT

In this paper a potential solution is given to the con‡ict in Bayesian infer-
ence between the desire to employ di¤use priors to represent ignorance and
the desire to report proper posterior probabilities for alternative models. Us-
ing the concept of Stiefel manifolds, di¤use priors are speci…ed on dimension
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and direction of subspaces of parameter spaces within the context of a lin-
ear regression model and a cointegration model. The approach is illustrated
using a CAPM and a term structure of interest rates model.

1 Introduction.
In a Bayesian approach to model selection, equal prior probabilities are often
assigned to alternative models in order to represent ‘objective’, ‘reference’ or
‘ignorance’ prior beliefs. A ‡at prior density on the parameters within each
model is used for the same reason. Such a ‡at prior speci…ed on the entire
real line is an improper density. While commonly employed improper priors
result in a well de…ned and proper posterior density for the parameters of
the well known linear regression model, the resulting posterior probabilities
used to compare models are not well de…ned. The intuition of this result
may be explained as follows. Consider the case where one compares the
sharp null hypothesis of a mean return of zero on some …nancial asset with
the di¤use alternative hypothesis of a mean return that can take on any
positive or negative value. Let the posterior probability of the sharp null of
a mean return of zero have some …nite positive value. Let the alternative
hypothesis start from a range of, say, -3 to +3 percent return, which has
some positive probability. When one increases this range to (-30, +30) the
posterior probability of the alternative hypothesis is 10 times as low. In the
limit when the range is (-1, +1) the posterior probability of the alternative
will be zero and one will always choose the null hypothesis. So, comparing
the posterior probabilities of a sharp null with a di¤use alternative will always
lead to choosing the null, regardless of prior probabilities and regardless of
information in the data, see Section 2 for details.

This is a manifestation of the Lindleys-Je¤reys paradox, which has been
studied extensively in the literature and a range of solutions have been pro-
posed. However, as argued in Berger and Perrichi (1996), these proposed so-
lutions are often pseudo-Bayesian in approach, application speci…c, propose
a particular speci…cation of the prior to ‘…x’ the issue, or use an informative
prior. We propose a strictly Bayesian approach that uses a proper, unin-
formative prior to provide well de…ned posterior probabilities of alternative
models. Our approach is based on a simple procedure to construct a proper
di¤use prior on alternative hypotheses using concepts from vector and matrix
spaces, in particular Stiefel manifolds. We show how our approach is related
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to the orthogonal regression concept in classical analysis.
In this paper we focus on a linear combination of variables. We start with

a simple mean(s) problem. Next, we discuss testing for a sharp null in a Cap-
ital Assets Pricing Model (CAPM). Our main application is the cointegration
model for the term structure of interest rates. We note that our approach is
also useful for factor models and other multivariate or matricvariate models
where linear combinations of variables are used.

The outline of the paper is as follows. In the next section we outline the
problem with using improper priors when the aim is model comparison within
a linear regression model. In subsection 2.1 we set up the issue of analysis of
cointegration spaces. We do this for two reasons: …rst, to give a context for
application of our proposed approach; second, the analysis of cointegrating
spaces presents unique issues for which our approach is particularly well
suited. In Section 3 we outline the concept of orthogonal regression and
introduce our prior for this model setup. Simple econometric applications are
presented in Section 4, including the derivation of well de…ned Bayes factors
for cointegration analysis. Section 5 contains some remarks and suggestions
for further research.

2 Bayes factors and improper priors in a lin-
ear model

One may think of a model as being implied by a particular hypothesis in
which some of the parameters in an encompassing model are restricted to
speci…c values, thus nesting the restricted model within the encompassing
model. The simplest example is the case where a set of i.i.d. observations
on some variable, say returns on a …nancial asset, is available and one wants
to test whether the mean return is zero. A comparison of the encompassing
and nested models proceeds from the posteriors for the parameters in these
models. Although this description implies that one of the models nests within
the other, one of the attractive features of the Bayesian is that this is not a
requirement. This nested case, however is attractive for exposition because
of its simplicity and is su¢cient to incorporate the important issues we wish
to discuss. Further, this situation is frequently encountered in practice.

Consider the constant mean process xt; t = 1; : : : ; T;

xt ¡ ¹ = "t: (1)
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Consider, next, the relative support for a model with ¹ = 0 and the model
in which this equality does not hold. We denote the model in which ¹ = 0
as M0 and the model in which ¹ 6= 0 as M1. We denote by y all of the data
on explanatory and response variables in the model. A useful summary of
the support for such restrictions is the posterior probability for the model,
Pr (Mijy) ; i = 0; 1, which is implied by the posterior distributions for the
parameters for the various models and the prior probabilities for the models.

To obtain a posterior density for a particular model, which we denote
Mi; we make use of the data density fi (yjµi) where this density fi is known
as is the dimension of the parameter vector, µi: Let the support of µi under
Mi be £i. On this support the parameter vector µi 2 £ is given a prior
density denoted ¼i (µi) = cihi (µi) where hi (µ) is a kernal of a density. The
normalising constant ci is de…ned by the integral c¡1i =

R
£ hi (µi) (dµi) : Thus

the posterior is proportional to fi (yjµi)hi (µi) and is well de…ned provided
the integral pi =

R
£ fi (y jµi) hi (µi) converges.

For our model M1 in (1), we might assume xt s i:i:d:N (¹; ¾2) and µ1 =
(¾2; ¹)0 with support R1£R+: With a prior h1 (µ1) = h1;¹ (¹)h1;¾2 (¾2), the
resultant posterior for µ1 will be proportional to

f1 (y jµ1) h1 (µ1) = ¾¡T exp
½

¡ 1
2¾2

£
ºs2 + T (¹¡ x)2

¤¾
h1 (µ1) p¡11

where º = T ¡ 1;and s2 and x are the least squares estimates of ¾2 and ¹
respectively. Assuming a prior density for ¾2 of h1;¾2 (¾2) = ¾¡1, then inte-
grating with respect to ¾2 we obtain the posterior for ¹ inM1 as proportional
to £

ºs2 + T (¹¡ x)2
¤¡T=2

h1;¹ (¹) :

For details, see a standard textbook such as Zellner (1971).
A researcher will hold some belief about the veracity of each model and

this belief is usually represented by the prior probabilities for each model,
Pr (Mi). Given this prior belief we can obtain the posterior probabilities of
two models from the posterior odds ratio which is de…ned by

Pr (Mijy)
Pr(Mjjy)

=
Pr (Mi)
Pr(Mj)

ci
R
£ fi (yjµi) hi (µi)

cj
R
£ fj (yjµj) hj (µj)

=
Pr (Mi)
Pr(Mj)

Bij:
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The …rst term in the above expression, Pr (Mi) =Pr(Mj), is the prior odds
ratio and the second term, Bij; is the Bayes factor. For the remainer of
this paper we will assume equal prior probabilities for the models under
comparison such that Pr (Mi) =Pr (Mj) = 1 and our interest is in calculating
Bij: A useful representation of the Bayes factor for model Mi to model Mj
is as the ratio of the marginal likelihoods mi = pici,

Bij =
mi
mj

=
pi
pj
ci
cj
: (2)

For a range of reasons, including actual ignorance, it is common practice
to endeavour to report results that re‡ect no or weak prior beliefs, ie. igno-
rance, about a model or its parameters. Therefore improper priors on the
parameters and equal prior probabilities on the models are used to represent
this uninformativeness or ignorance and only the resulting Bayes factors are
reported rather than the posterior probabilities for two models of interest. A
problem arises, however, in calculating Bayes factors when using improper
priors on the parameters of interest.

As is clear from the expression (2), the Bayes factor is proportional to
the ratio & = ci=cj under the conditions that pi and pj are convergent inte-
grals. If both priors are improper then the constants ci and cj are in…nite
as nonconvergent integrals such that the ratio & is unde…ned. Usually this
result arises because the dimensions of the parameter spaces di¤er, such as
occurs when one model is nested within another. If only one of the priors
is improper such that only ci or cj is in…nite, then Bij = 0 or 1 a priori.
This e¤ect can be demonstrated for the zero mean example discussed earlier
by beginning with a proper ‡at prior density for ¹ over [¡M;M ] under the
alternative. The prior and posterior densities for this example are presented
in Figure 1. The Bayes factor for the zero mean model to the model with
mean in the interval [¡M;M ] has the form

B01 =
[ºs2 + T x2]¡T=2

R M
¡M

£
ºs2 + T (¹¡ x)2

¤¡T=2
d¹ÁM

:

For large T andM; the integral
RM
¡M

£
ºs2 + T (¹¡x)2

¤¡T=2 d¹ ¼ p
¼Á (ºs2)(T¡1)=2

such that B01 ¼ M [ºs2+ Tx2]¡T=2 (ºs2)(T¡1)=2 Á
p
¼: As we increase M to-

wards 1; we see B01 ¡! 1 and the null will be prefered regardless of the
information in the data. More extensive discussion of this issue can be found
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in Zellner (1971), Berger and Perrichi (1996), O’Hagan (1995) and Lindley
(1997).

The Posterior

M-M

The Prior

µ 0

Figure 1: The sharp null prior occurs at ¹0 and the di¤use alternative extends
from ¡M to M:

A number of approaches have been proposed to deal with this issue. One
approach is to reject improper priors as nonsensible for model comparison,
other approaches allow the approximate calculation of posterior probabilities
while retaining ignorance priors. This latter approach generally involves
approximations to the Bayes factor.

Berger and Perrichi (1996) proposed developing a posterior using a min-
imum size training sample such that this posterior will be proper. O’Hagan
(1995) presents another approach which follows the same principle of us-
ing a fraction of the sample to remove indeterminancy of the Bayes factor.
However, it is nontrivial to determine which fraction of the data to use as a
training sample. Robustness of this data-based prior approach needs to be
investigated. One example of this approach is the Bayesian unit root analy-
sis of Schotman and van Dijk (1991) where the initial value of the series of
observations is used to construct an informative prior.
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Lindley (1997) argues that only proper priors should be employed to
represent uncertainty and used model comparison as one motivating example.
However, it is nontrivial to …nd informative priors for rather complex models.
Further, one may have an interest in the information content in the likelihood
compared with ‘vague’ or ‘di¤use’ prior information. So, we still have no
general guidelines as to how this principle could be implemented consistently
across models and it is likely that researchers will continue to wish to present
results with uninformative or ignorance priors.

2.1 Cointegration analysis and improper priors
A simple generalisation of the linear regression model is the multivariate
linear model, that is, a system of linear equations. Here we consider as a
special case the cointegration model. In simple terms, cointegration analysis
involves the study of systems of variables that are nonstationary, such as
variables that are I (1) ; with the aim of …nding linear combinations of these
nonstationary variables that are stationary, such that these combinations
may be, for example, I (0) : In cointegration analysis the researcher has two
aims: the …rst aim is to …nd the number of stationary combinations that exist;
and the second aim is to …nd the actual combinations. The coe¢cients that
form these linear combinations are collected into vectors called cointegrating
vectors and the number of these vectors match the dimension of the space.
The two aims are met by estimating what is called the cointegrating space
since we …rst estimate the dimension of the cointegrating space and then
estimate the direction of the space given its dimension by estimating the
cointegrating vectors.

A particular space implies a particular linear combination of the variables
entering the cointegrating relation. Consider, for example, the following
process xt = (x1;t; x2;t)0 in which st s I (1).

x1;t = ast + º1;t
x2;t = bst + º2;t:

This bivariate system has a one dimensional cointegrating space. Taking a
linear combination of the above processes

¯1x1;t + ¯2x2;t = ¯ 0xt = (¯1a + ¯2b) st + "t

where ¯ = (¯1; ¯2)
0, "t = ¯1º1;t + ¯2º2;t; we are particularly interested in

the case ¯1a + ¯2b = 0 or ¯2 = ¡ab¯1 such that ¯xt s I (0) : Note that any
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vector proportional to ¯; such as ¯·;will also solve the relation ¯¡11 ·¡1·¯2 =
¯¡11 ¯2 = ¡ab¡1: The vectors which solve this relation lie on the dashed line in
Figure 2 and this line is the cointegrating space. Note that both vector A and
the negative of vector A will both lie in the cointegrating space. We present
two examples of such vectors of di¤erent length in Figure 2- vectors A and
B - to emphasise the point that the length of the vector is not important, or
even its exact direction, only the direction of the space it spans (the dashed
line in Figure 2). The quantity of interest might be thought of as tan µ where
µ is the angle shown in Figure 2. Thus if we were to restrict the vectors to
unit length, that is use the Euclidean norm ¯ 0¯ = 1; this has no implications
for inference on the cointegrating space.

β 1

β 2

Vector A

Vector B

θ

Figure 2: Although they are of di¤erent lengths and point in opposite direc-
tions, Vectors A and B span the same space (the dashed line).

We can generalise this visual analysis slightly to a trivariate system such
as the following process xt = (x1;t; x2;t; x3;t)

0 in which the scalar st s I (1) :

x1;t = ast + º1;t
x2;t = bst + º2;t
x3;t = cst + º3;t:
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This trivariate system has a two dimensional cointegrating space. Taking a
linear combination of the above processes

¯i1x1;t + ¯i2x2;t + ¯i3x3;t = ¯ 0xt
= (¯i1a + ¯i2b+ ¯i3c)st + "t

where ¯i = (¯i1; ¯i2; ¯i3)
0, "t = ¯i1º1;t+¯i2º2;t+¯i3º3;t: If ¯i is a cointegrating

vector then ¯i1a + ¯i2b + ¯i3c = 0: Assuming ¯i1 = ±¯i2 does not hold for
both i = 1 and i = 2; it can be shown that all solutions to this restriction
will be some linear combination of the vectors

2
4

1
0

¡ac

3
5 and

2
4

0
1

¡ bc

3
5 :

An example of such two vectors are shown in Figure 3. It can be seen that
the vectors lie on a two dimensional plane (the cross-hatched plane in Figure
3) and any linear combination of these vectors will lie in this plane and this
plane is what we refer to as the cointegrating space. So to restate more clearly
our interest in the cointegrating vectors - or our objective in estimating the
cointegrating space - we are not interested in the length of the vectors, nor
in their direction speci…cally. Our interest is in the direction of the space
spanned by by the vectors.

A distinguishing feature of these combinations is that there is no depen-
dent variable per se in a cointegrating relation upon which one could sensibly
normalise in a regression. However some form of normalisation is required to
identify the elements of the cointegrating vectors.

Linear identifying restrictions - in which the relations between a set of
coe¢cients is assumed known - is almost always employed in Bayesian coin-
tegration analysis. Imposing linear identifying restrictions has several limita-
tions of which we mention the following ones. First it assumes that we know
something about the cointegrating relations which we may rather not assume
and, as demonstrated in Strachan (2003), may turn out to be invalid. Even
if one has correctly chosen the coe¢cients upon which to normalise there
remain several theoretical and practical issue with obtaining inference with
linear restrictions. For example, the posterior for the cointegrating vectors
which have had linear identifying restrictions imposed, has been shown in
several studies to be of a rather peculiar form (see, for example, Bauwens
and Lubrano 1996 and Kleibergen and van Dijk 1994). This brings us to the
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 β i2

β i1

 β i3

Figure 3:

second limitation that the general features of the posterior in this case are
that it is bimodal and has no moments. As inference on the cointegrating
space proceeds from the estimates of the cointegrating vectors, this inference
may be di¢cult to obtain if these cointegrating vectors have no mean to es-
timate and a unique, global, mode is di¢cult to obtain. Marginal medians
o¤er a possible alternative, however, again, obtaining these even in simple
models is not as simple or e¢cient as estimating an extant mean. For the
purpose of model averaging, obtaining expectations from each model to av-
erage over the models is a more consistent procedure than averaging modes
or medians.

When employing linear identifying restrictions, a third serious issue arises
in particular speci…cations of cointegrating models. Kleibergen and van Dijk
(1994, 1998) demonstrate a seemingly sensible speci…cation in which the
resulting posterior for the cointegrating vectors is not proper. Another im-
portant model feature which is commonly employed in cointegration analysis
and has a strong economic justi…cation in many cases, is weak exogeneity.
This restriction is commonly investigated and imposed as it has either or
both theoretical as well as empirical support in many applications. How-
ever, as demonstrated in Strachan and van Dijk (2003), a fourth limitation
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of linear identifying restrictions is that when coupled with weak exogene-
ity an improper posterior results. It is di¢cult to imagine a more serious
impediment to Bayesian inference than an improper posterior.

3 Orthogonal regression and proper di¤use
priors.

Given the problems associated with employing linear identifying restrictions
with di¤use priors in Bayesian cointegration analysis, it makes sense to esti-
mate the cointegrating vectors prior to normalisation on a particular coe¢-
cient. This can be achieved using Euclidean normalisation which is, in very
special cases, equivalent to orthogonal regression and in general displays the
same features as orthogonal regression. In this paper we demonstrate the
application in a form equivalent to orthogonal regression. Using Euclidean
normalisation o¤ers a way of obtaining posterior probabilities, posterior mo-
ments, and posterior modes even when such restrictions as weak exogeneity
are imposed. Most importantly for model averaging, it allows us to use un-
informative priors with well de…ned, …nite normalising constants such that
Bayes factors are well de…ned.

Reconsider the model for the mean of a series as given in (1) but respecify
the model as

®0xt ¡ ®1 = "t = ®0yt (3)

where ® = (®0; ®1)0 ; yt = (xt; 1)0 and ®0® = 1. We ignore the rescaling of ¾2

from this transformation as this is easily dealt with in the Bayesian set up.
The speci…cation in (3) can be linked to the one in (1) by the obvious

transformation ¹ = ®1=®0: Although there is a simple relationship between
normal regression and orthogonal regression, there are implications for infer-
ence from this respeci…cation. One example is for the interpretation of the
least squares method.

In least squares estimation, for example, the error is taken to be a linear
combination of xt and 1 with a normalisation on the coe¢cient for xt; "t =
xt¡¹: Thus the estimate of ¹ is obtained by minimising (the quadratic mean
of) this ‘vertical’ distance between xt and the estimated line (or plane) b¹:
This distance is shown in Figure 4 as "A and we minimise ; §Tt=1"2tA. If we were
instead to estimate from the regression of 1 on xt; "t = 1¡ °xt; and take b°¡1
as our estimate of ¹; the estimator would minimise the ‘horizontal’ distance
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ε A

ε C

ε B

Figure 4:

between 1 and the estimated line (or plane) b°xt; the distance denoted in
Figure 4 as "B: In this case we minimise §Tt=1"2tB: However, in orthogonal
regression the distance that is minimised is the shortest distance between
the point (xt; 1) and the line implied by b®yt = 0; "t = ®0xt ¡ ®1 = ®0yt
(Malinvaud, 1970), the distance denoted as "C in Figure 4. We minimise
§Tt=1"2tC = §Tt=1 (®0yt)

2 subject to ®0® = 1 and take b®1=b®0 as our estimate of
¹. This approach de…nes orthogonal least squares regression as an eigenvalue-
eigenvector problem.

Next we consider the form of the marginal posterior density for ® with the
restriction ®0® = 1: Taking the set of parameters in the model as µ0 = (¾2; ®) ;
then given a prior h0 (µ0) ; the posterior is now proportional to

f0 (yjµ0) h0 (µ0) = ¾¡T exp
½

¡ 1
2¾2
®0

¡
§Tt=1yty

0
t
¢
®
¾
h0 (µ0) p¡10 : (4)

Again apply the prior for ¾2 of ¾¡1 such that h0 (µ0) = h0;® (®) =¾: Integrating
with respect to ¾2 we obtain the posterior for ® proportional to

¯̄
®0

¡
§Tt=1yty0t

¢
®
¯̄¡T=2 h0 (®) : (5)
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To impose the restriction to model M1 implied by ¹ = 0; we set ®1 = 0
and therefore ®0 = 1. The prior is simply a discrete prior probability mass
function ¼1 (®0) = 1 for ®0 = 1 and zero otherwise. The resultant marginal
posterior (marginalised with respect to ¾2) is then

¡
§Tt=1x2t

¢¡T=2 :
In the following subsection we complete the posterior in (5) by developing

the explicit form for h0 (®) :

3.1 A proper di¤use prior
An important implication of this speci…cation for the estimation of Bayes fac-
tors and posterior probabilities is that the support for the parameters is now
compact. This implies that the normalising constant for the prior is known
such that the Bayes factors for comparing models of di¤erent dimensions
will be well de…ned. That is the restriction ®0® = 1 implies ®1 2 [¡1; 1] and
®0 =

p
1¡ ®21 and the support for the vector® describes the upper hemishere

of a unit circle centered at the origin. We only care about the upper half
hemisphere since we are interested in the implied value for ¹, and the two vec-
tors ® and ¡® imply the same value for ¹ since ¹ = ®1=®0 = (¡®1) = (¡®0) :
The vectors ® and ¡® lie on the same line passing through the origin, that
is they span the same space. Thus we only care about the space spanned by
the vector ®:

A useful representation of the vector ® to demonstrate this concept is in
polar coordinates. That is we express the direction of ® as a function of a
single angle, µ 2 [0; ¼] : Thus, ®0 = cos µ and ®1 = sin µ such that ¹ = tan µ:
The parameter of interest no longer refers to the particular coe¢cients, rather
it is the direction (or space) of the vector ® or, equivalently, the angle µ;
and we can think of the prior on the direction as a prior on µ: If we have no
prior beliefs about the direction for the vector ®; we can represent this with a
uniform prior on the support for µ: Thus we have the prior ¼0 (µ) = c0 = ¼¡1:

Using angles is useful for exposition in the simple bivariate case, however
it is not simple to undertake analysis using angles as parameters of interest
in the general case. Moreover, this approach produces a Jacobian that grows
with the dimension of the model and involves more accounting of parameters
than simply regarding the vector (or, in some applications, the matrix) as
the parameter of interest.

Next, we are going to make use of some results on manifolds, in particular
the notion of a Stiefel manifold. The support for the n¡dimensional vector ®
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subject to ®0® = 1 is known as a the Stiefel manifold and denoted as V1;n:We
can think of this space as an n¡dimensional sphere centered at the origin. To
derive a uniform distribution for V1;n; we can use the fact that the direction
of an n¡dimensional vector z in which each element of z is independently
distributed as standard normal is uniformly distributed over V1;n (James,
1954). Since x has Euclidean length l = (z0z)

1
2 ; we can decompose z into l

and ® = zl¡1; integrate with respect to l to obtain the uniform prior for ® on
V1;n: As we are only interested in the half sphere, we take as our normalising
constant

¼0 (®) =
¡

¡
n
2

¢

¼ n2
= c0:

To link this idea with the earlier discussion about the angle of the vector, µ,
we note that in the bivariate case (n = 2) discussed above this ‡at prior on
V1;2 implies a ‡at prior on µ.

Je¤reys (1961) argued for the use of proper priors for model selection
and hypothesis testing. One prior he argued for was the Cauchy prior for
the parameter of interest which is consistent with our prior. Partition ® as
® = (®0; ®1) where ®0 is the …rst element of ® such that ®1 is the vector
of the remaining elements. The Jacobian for the transformation from ® to
¹ = ®1=®0 is proportional to (1 +¹0¹)¡n=2 (see Phillips 1994, Appendix p.
86) which is the kernel for the Cauchy density. That is, a ‡at prior on the
direction of the vector implies a Cauchy prior for ¹: This last implication is
a general result for the transformation from the Stiefel manifold to the real
line.

We now brie‡y discuss some of the important properties of the posterior.
Using the ‡at prior on V1;n, the resulting posterior in (5) is proportional to

k (®) =
¯̄
®0

¡
§Tt=1yty 0t

¢
®
¯̄¡T=2 :

Denote the smallest eigenvalue of the matrix
¡
§Tt=1yty0t

¢
by ¸. As ¸ will be

positive with probability one, we know by the Poincaré separation theorem
(see, for example, Schott 1997) that the function ®0

¡
§Tt=1yty0t

¢
® subject to

®0® = 1 will have a …nite lower bound ¸: This implies that the function
k (®) will have the …nite upper bound À = ¸¡T=2: As the support for ® is
compact, we know the integral ¨ = À

R
(®0d®) will be …nite. As the integralR

k (®) (®0d®) will be less than ¨; we can therefore say that the posterior
will be proper and all …nite absolute moments will exist. This is important
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for model averaging as we can now say that pi is …nite, such that Bij is well
de…ned as are the posterior probabilities.

As we know that the posterior is proper, that is pi is …nite, and we know
the prior normalising constant ci; from expression (2) we can see that our
Bayes factors and therefore our posterior probabilities, will be well de…ned.
In this model above, the Bayes factor will have the form Bij = mi

mj
= pici
pjcj

where
pi =

Z

V1;n

¯̄
®0

¡
§Tt=1yty

0
t
¢
®
¯̄¡T=2 (®0d®)

and
c¡1i =

Z

V1;n
(®0d®) :

The integral for ci is known and an example has been given above. However,
as the integral in pi is often of a very nonstandard form, and analytical
expressions for the integral do not have a closed form (this can be shown
using the expression given in Muirhead 1982, p. 279) except in simple cases,
it is usual to use an approximation. Two approximations that have been used
are the Laplace approximation (James 1969 and Strachan and Inder 2003)
and Markov Chain Monto Carlo integration (Strachan 2003).

A comment on the notation for the di¤erential term (®0d®) is in order.
This measure is in the exterior product di¤erential form. Interested readers
are directed to Muirhead (1982) and James (1954) for details on this topic.
For our purposes, we can think of (®0d®) as doing the job of the usual di¤er-
ential for x; (dx), the only di¤erence is that ® has a compact support which
forms a manifold in Rn.

4 Posterior probabilities of alternative mod-
els.

To demonstrate the implementation of this approach for the evaluation of
posterior probabilities we outline some simple examples. We begin with the
well known and well understood simple and multiple linear regression models,
and then present a simple model of a cointegrated system. This model of
cointegration slightly generalises that used by Phillips (1994), but is more
restrictive than the vector error correction model. However, it is su¢cient to
demonstrate the main features of the approach.
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4.0.1 Estimating regression equations as vector spaces

In this example we take the simple linear regression model which one would
estimate if it were thought that a linear, or near linear relationship is most
appropriate for the variables under investigation. Thus we have the standard
form for the linear regression model as

x0;i = ¯0 + ¯1x1;i + º i:

Using our speci…cation of orthogonal regression we have

®0x0;i +®1 + ®2x1;i = "i
®0yi = "i

where ®0 = (®0; ®1; ®2), yi = (x0;i; 1; x1;i)
0 and ®0® = 1:

For the multiple regression model in which x1;i and ®02 are (n¡ 2) £
1 vectors and so ® is an n £ 1 vector and ¯ =

¡
¯0; ¯1; : : : ; ¯n¡2

¢
; yi =¡

x0;i; 1; x01;i
¢0 and ®0® = 1: Assuming the prior in the previous section we

obtain the posterior

¼1 (®jy) (®0d®) = c1p¡11

¯̄
®0

¡
§Tt=1yty

0
t
¢
®
¯̄¡T=2 (® 0d®) :

We wish to calculate the posterior probability that ®0 = ®2 (implying
¯1 = ®2

®0
= 1) using an uninformative prior for ®. The form for the posterior is

then achieved by replacing ® by Re® = (®0; ®1; ®0; ®3; : : : ; ®n¡1) and we have
e®0e® = 1: The n£ (n¡ 1) matrix R is de…ned by its orthogonal compliment
R? = (1; 0;¡1; 0; : : : ; 0)0 such that R0?R = 0. The posterior for this restricted
model is then

¼0 (e®jy)
¡
e®0de®

¢
= c0p¡10

¯̄
e®0R0

¡
§Tt=1yty

0
t
¢
Re®

¯̄¡T=2 ¡
e®0de®

¢
:

As an example we consider the regression of the log excess return for
an asset (rt) upon the log excess return of the market portfolio (mt) to
which this asset belongs. We use data on the 30 day bank bill rate, the
price for the National Australia Bank ordinary shares and the Australian All
Ordinary Shares Index which is the standard index for the general level of
the Australian stock exchange. The data are monthly (end of month) …gures
covering the period from December 1988 to June 1988 for a total of 139
observations. The models we are interested in comparing are rt = ¯mt + "t
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with ¯ = 1 (M0) and ¯ 6= 1 (M1) : We use monthly …gures to aggregate out
much of the volatility clustering. This seems successful and we note that
when we estimate this model, although the individual series rt displays some
evidence of correlation in the squared residuals, our estimate of "t does not.
The least squares estimate of ¯ is 0.7068 while the orthogonal regression
estimate is 0.9714, very close to the M0 value. However, we are still able
to distinguish this estimate from the value of one implied by M0: When
we compute the posterior probabilities of M0 and M1 we …nd unambiguous
support for M1 with Pr (¯ 6= 1jy) = 1:

Estimates for ¯
OLS Orthogonal Regression Pr (¯ = 1jy) Pr (¯ 6= 1jy)
0.707 0.971 0 1.0

4.0.2 Cointegration

Our interest in this subsection is in estimating the dimension and space
spanned by the cointegrating space. This is probably the most natural setting
for the approach we propose as in cointegrating relations there is no clear
‘dependent’ variable upon which to normalise. As demonstrated in related
work (Strachan 2003, Strachan and Inder 2003 and Strachan and van Dijk
2003) normalising can in fact complicate attempts to obtain inference. If
we wish to normalise and thereby e¤ectively select a dependent variable,
taking the orthogonal regression approach allows us to evaluate our selection,
however we do not go so far as to investige how to do this in this paper. Our
objective in this section is to demonstrate estimation of the dimension of the
space and the space itself.

We investigate a simple model implied by the rational expectations theory
for the term structure of interest rates (Campbell and Shiller, 1987) in which
interest rates are I (1) while the spread between rates of di¤erent maturity
are I (0) and thus form a cointegrating relation. The data for this example is
94 observations of the 5 year (i5) and 3 year (i3) Australian Treasury Bond
rates from July 1992 to April 2000. A plot of these series is presented in
Figure 5 along with the spread, st = i5;t ¡ i10;t. From this plot we see the
unstable nature of i5;t and i10;t but the relatively stable behaviour of st:We
will employ an error correction model to demonstrate the important aspects
of this method in cointegration analysis. This model nests the model used
by Phillips (1994) to investigate the …nite sample behaviour of his estimator
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for the cointegrating vectors and has the form

¢xt = ¹+ ®¯0xt¡1 + "t

where xt = (i5;t; i10;t) and "t s i:i:d:N (0;§) :We lose one observation due to
the lag term. The structure of this model appears su¢cient in the sense that
both Portmanteau and LM tests for autocorrelation accept the null of no
autocorrelation in the residuals. Although this is a restrictive model in some
senses, it is su¢cient to demonstrate the main features of this technique.

s = i 5 -i 10

i 10

i 5

Figure 5: This …gure shows the plot of i5, i10 and the spread, i5¡i10; over the
period July 1992 to April 2000. The level of each series has been adjusted to
clarify the dynamic relationships among the variables.

De…ne ¯ to be semiorthogonal such that ¯ 0¯ = Ir. We have previously de-
scribed the Stiefel manifold V1;n as the space spanned by an n-vector of unit
length and presented the volume of this space. As the restriction ®0® = 1
imposes one restriction on the vector, the space V1;n is an n¡ 1 dimensional
manifold in n-space. Next we describe the space spanned by the semiorthog-
onal matrix ¯: Each vector in ¯ is of unit length, but the vectors are all or-
thogonal to eachother and the restriction ¯ 0¯ = Ir imposes r(r+1)

2 restrictions
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such that the parameter space is nr ¡ r(r+1)
2 dimensional. Thus each vector

in ¯ describes an n-dimensional sphere centered at the origin. This decribes
an element of the Stiefel manifold, Vr;n, such that we can say ¯ 2 Vr;n:

Placing a ‡at prior on Vr;n such that we have an uninformative prior for
¯; results in the prior1

¼ (¯) (¯ 0d¯) = crh (¯) (¯ 0d¯)

where

h (¯) = 1; and

c¡1r =
Z

vr;n
(¯ 0d¯)

=
2r¼nr=2

¡r
£
n
2

¤ ; where

¡r
hn
2

i
= ¼r(r¡1)=4¦ri=1¡ [(n + 1¡ i) =2] :

Again we direct the reader to Muirhead (1982) for further discussion on the
di¤erential form (¯0d¯) :

To reiterate our aim, we wish to estimate r and the space spanned by ¯:
There has been considerable work in the literature on Bayesian cointegration
analysis outlining the issues associated with local nonideinti…cation (see for
example Kleibergen and van Dijk 1994, Martin & Martin 2000, Martin 2000,
and Martin 2001). It is worth mentioning that our approach will not result
in the same problems associated with local nonidenti…cation (see Strachan
and van Dijk 2003).

The likelihood can be expressed as

L (¹; ®; ¯;§) = (2¼)¡Tr=2 j§j¡T=2 exp
½

¡1
2
tr§

¡
§Tt=1"t"

0
t
¢¾
:

Using a standard prior for § of j§j¡3=2 and combining the priors with the
likelihood gives the posterior proportional to

cr (2¼)¡Tr=2 j§j¡(T+r+1)=2 exp
½

¡1
2
tr§

¡
§Tt=1"t"

0
t
¢¾
:

1This prior does not take into account that the parameter of interest is a Grassman
manifold which is of a lower dimension than the Stiefel manifold. This issue is discussed
fully in related work (see Strachan and van Dijk, 2003).
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As is shown in Strachan and van Dijk (2003), integrating with respect to §; ¹
and ® we obtain the marginal posterior distribution for (¯; r) as proportional
to

2¡r¼¡Tr=2¦ri=1
¡ [(T + 1¡ i)=2]
¡ [(3¡ i) =2] j¯ 0D0¯j¡T=2 j¯ 0D1¯j(T¡2)=2 :

A range of approaches now exist to approximate the integral with respect
to ¯ on the Stiefel manifold. Papers presenting Monte Carlo integration over
this space include Strachan (2003) and Strachan and van Dijk (2003). Stra-
chan and Inder (2003) present an approach using the Laplace approximation
to the same integral. In this paper we use a …rst order asymptotic approxi-
mation similar to that presented in Schwarz (1978), but we incorporate the
correct normalisation of the integral for the cointegrating space.

The cointegrating relation may be written as ¯0xt = b1i5 ¡ b2i10 and
for the hypothesis that the spread is stationary (while xt s I (1)) we are
interested in estmating b = b2=b1: Using the maximum likelihood estimation
procedure to estimate b1 and b2 we obtain an estimate of b equal to -0.9454.
The Bayesian estimate of b is -0.9386. The classical trace and maximum
likelihood tests for the rank select r = 1: The estimated Bayesian posterior
probability of the di¤erent values for r are presented in the table below in the
second column. While there is some support for r = 1 (Pr (r = 1jy) = 0:24),
the mass of the support is for r = 2:

Models: Mi Pr(Mijy) Pr (Mijy)
M0 : r = 0 0.004 0.002
M1 : r = 1 0.240 0.130

M2 : r = 1 and ¯ = (1;¡1)0 - 0.457
M3 : r = 2 0.756 0.411

Next we expand the model set to include the model in which the spread
is treated as the cointegrating relation, that is, the model with r = 1 and
¯ = (1;¡1)0 : Classical likelihood ratio test for this restriction is not rejected
at the 5% level of signi…cance (p-value = 0.065). The estimated posterior
probabilities for these models are presented in the third column of the table
above. This additional model is the most probable model in the set with
a probability of 45.7%. The support for r = 1 is now quite strong with
posterior probability of 58.7% while the relative support for r = 2 falls now
to 41.1%.

It is of interest to observe that a classical analysis would give all weight to
a particular model (r = 1) but that a Bayesian approach gives nonnegligible
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weights to models with r = 1 and r = 2: Thus, indicating that while there is
evidence that this feature of the term structure argument of Campbell and
Shiller (1987) holds, there is also evidence that both series may by stationary.
One may use these results for a forecasting exercise with model averaging.

5 Final Remarks.
In this paper we proposed a potential solution to the con‡ict in Bayesian
inference between the desire to employ di¤use priors to represent ignorance
and the desire to report proper posterior probabilities to alternative models.
Using the concept of Stiefel manifolds we speci…ed di¤use priors on dimension
and direction of subspaces of parameter spaces within the context of a linear
regression model and a cointegration model. We illustrated the approach
using a CAPM and a term structure of interest rates model.

The proposed approach may be extended in several ways. Here, we men-
tion the following ones. In …nancial econometrics one is often interested in the
number of factors of an Arbitrage Pricing Theory (APT) factor model, see
e.g. Campbell, Lo and MacKinlay (1997, Chapter 6). Issues of endogeneity
and overidenti…cation within systems of equations can also be analysed.

An other extension is to consider the issue of cointegration and the num-
ber of unit roots within the context of models that have a richer dynam-
ics, more deterministic terms and possibly nonlinear characteristics such as
Markov-switching. We note that the extension to lagged variables is not
trivial.

Finally, within the class of large and empirically richer models one faces
the issue of e¢cient computation of the posterior probabilities. Markov Chain
Monte Carlo and Laplace approximations may be used. We refer to Strachan
and Van Dijk (2003) for a study where a medium size model involving ten
stochastic equations is successfully analysed.

6 References.
Bauwens, L. and M. Lubrano, 1996, Identi…cation restrictions and posterior
densities in cointegrated Gaussian VAR systems, in Advances in Economet-
rics, Vol. 11B, Bayesian Methods Applied to Time Series Data, T.B. Fomby,
ed., (JAI Press) 3-28.

21



Berger, J. O. and L. R. Perrichi (1996), “The intrinsic Bayes factor for model
selection and prediction” Journal of the American Statistical Association, 19,
109-122.

Campbell J. Y., A. W. Lo and A. C. MacKinlay (1997), The Econometrics
of Financial Markets, Princeton University Press, Princeton, New Jersey.

Campbell J. Y. and R. J. Shiller (1987), “Cointegration and tests of present
value models” The Journal of Political Economy, 95, 5, 1062-1088.

James, A. T., 1969, Test of equality of the latent roots of the covariance
matrix, in: P.R. Krishnaiah, ed., Multivariate Analysis, Vol. II (Academic
Press, New York) 205–218.

James, A.T., 1954, “Normalmultivariate analysis and the orthogonal group”,
Annals of Mathematical Statistics, 25, 40-75.

Je¤reys, H. (1961), Theory of Probability, London: Oxford University Press.

Kleibergen, F. and H.K. van Dijk, (1994), “On the shape of the likeli-
hood/posterior in cointegration models”, Econometric Theory, 10, 514-551.

Kleibergen, F. and H.K. van Dijk, (1998), “Bayesian simultaneous equations
analysis using reduced rank structures”, Econometric Theory, 14, 701-743.

O’Hagan A. (1995), “Fractional Bayes factors for model comparisons” Jour-
nal of the Royal Statistical Society, Series B, 57, 99-138.

Lindley, D. V. (1997), “Discussion Forum: Some comments on Bayes factors”
Journal of Statistical Planning and Inference, 61, 181-189.

Malinvaud, E., 1970, Statistical Methods of Econometrics, North-Holland,
Amsterdam.

Martin, G.M., 2000, US De…cit Sustainability: a New Approach Based on
Multiple Endogenous Breaks, Journal of Applied Econometrics, 15, 83-105.

Martin, G.M., 2001, Bayesian Analysis of a Fractional Cointegration Model,
Econometric Reviews, Vol. 20, No. 2, 217-234 .

Martin, G.M.and V.L. Martin, 2000, Bayesian Inference in the Triangular
Cointegration Model Using a Je¤reys Prior, Communications in Statistics,
Theory and Methods, 29, No. 8.,1759-1785.

Muirhead, R. J., 1982, Aspects of Multivariate Statistical Theory, John Wiley
and Sons, New York.

22



Phillips, P.C.B., 1994, “Some Exact Distribution Theory for Maximum Like-
lihood Estimators of Cointegrating Coe¢cients in Error Correction Models”,
Econometrica, 62, 1, 73-93.

Schotman, P. and H. K. van Dijk, (1991), “A Bayesian analysis of the unit
root in real exchange rates”, Journal of Econometrics, 49, 195-238.

Schott, J.R. (1997). Matrix Analysis for Statistics. John Wiley and Sons,
New York.

Schwarz, G., (1978), Estimating the dimension of a model, Annals of Statis-
tics, 6:2, 461-464.

Strachan, R.W. (2003), “Valid Bayesian estimation of the cointegrating error
correction model”, Journal of Business and Economic Statistics, 21, 185-195.

Strachan, R. W. and B. Inder, 2003, “Bayesian Analysis of The Error Cor-
rection Model.”, Journal of Econometrics, forthcoming.

Strachan, R.W., and van Dijk, H. K. (2003), “The value of structural infor-
mation in the VAR”, Discussion paper, University of Liverpool, Liverpool.

Zellner, A. (1971) An Introduction to Bayesian Inference in Econometrics,
John Wiley and Sons Inc., New York.

Zellner, A. (1986) “On assessing prior distributions and Bayesian regression
analysis with g-prior distributions”, in: Bayesian Inference and Decision
Techniques - Essays in Honour of Bruno de Finetti, eds., P.K. Goel and A.
Zellner, Amsterdam: North-Holland, pp. 233-423.

23


