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Abstract

Adaptive radial-based direction sampling (ARDS) algorithms are specified for Bayesian
analysis of models with nonelliptical, possibly, multimodal target distributions. A key step
is a radial-based transformation to directions and distances. After the transformations a
Metropolis-Hastings method or, alternatively, an importance sampling method is applied
to evaluate generated directions. Next, distances are generated from the exact target
distribution by means of the numerical inverse transformation method. An adaptive
procedure is applied to update the initial location and covariance matrix in order to
sample directions in an efficient way.

Tested on a set of canonical mixture models that feature multimodality, strong cor-
relation, and skewness, the ARDS algorithms compare favourably with the standard
Metropolis-Hastings and importance samplers in terms of flexibility and robustness. The
empirical examples include a regression model with scale contamination and a mixture
model for economic growth of the USA.
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1 Introduction

In recent decades Markov Chain Monte Carlo (MCMC) methods, in particular Metropolis-
Hastings (MH) and Gibbs sampling (GS) and, to a lesser extent, independent sampling meth-
ods like importance sampling (IS), have been applied extensively and successfully within
Bayesian analyses of statistical and econometric models.

Although Monte Carlo (MC) methods revolutionized the applicability of Bayesian infer-
ence, there is, in practice, a substantial variation in their convergence behaviour. The special
features of the sampling method, the complex structure of the model, or the nature of the
data may be the culprit of such behaviour. Hobert and Casella (1996) show for instance
that the Gibbs sampler does not converge for the case of a hierarchical linear mixed model
when the prior is uniform. Other examples of complex models are the ones with reduced rank
structures. Kleibergen and Van Dijk (1994,1998) demonstrate near reducibility of MCMC
methods when there exists near nonidentifiability and nonstationarity in econometric models
with flat priors. Justel and Peña (1996) emphasize the convergence problems of the Gibbs
sampler when there are outliers in the data. The performance of the Gibbs sampler is also
seriously hampered by strong correlation in the target distribution. Convergence problems of
importance sampling using a simple normal or Student t candidate density have been docu-
mented by Van Dijk and Kloek (1984) and Geweke (1989). A multimodal target density may
pose problems to all methods. If the MH candidate density is unimodal, with low probability
of drawing candidate values in one of the modes, this mode may be missed completely, even
when the sample size is large. More generally stated, the acceptance probability may be very
low, as many candidate values lying between the modes have to be rejected. With the Gibbs
sampler, reducibility of the chain may occur in this case. Using a unimodal normal or Student
t candidate function the method of importance sampling ends up with many drawings having
only negligible weights. A common difficulty encountered in all samplers is the choice of a
candidate or importance density when little is known about the shape of the target density.
In such a case, updating the candidate density sequentially is a partial solution.1

In this paper we introduce the class of adaptive radial-based direction sampling (ARDS)
methods to sample from a target (posterior) distribution which is possibly multi-modal, skew,
and exhibits strong correlation, in summary it is nonelliptical. The ARDS algorithms feature
a composite transformation. The key step is one where the m-dimensional parameter space
is transformed into radial coordinates which consist of a distance measure and a (m − 1)-
dimensional vector of directions. A MH or an IS algorithm is applied to sample a direction.
Next, distances are sampled conditionally on the directions, from the (transformed) exact
target density, by the inverse transformation method. A location-scale transformation is used
as part of the transformation to radial coordinates and this transformation is sequentially
updated, using the posterior first and second order moments obtained in successive rounds
of the algorithm. The adaptive procedure is intended to improve the acceptance rate within
the MH step and to give a more uniform distribution of the weights in the IS step.

The advantages of the ARDS algorithms are threefold. Firstly, the algorithms are par-

simonious in their use of information on the shape of the target density. Only location and
scale need to be specified as initial values. Secondly, the algorithms are flexible and robust:
they can handle a large variety of features of target distributions, in particular multimodality,

1This corresponds to the experimental results obtained by local adaptive importance sampling when the
posterior is ill behaved, see e.g. Van Dijk and Kloek (1980), Oh and Berger (1992), and Givens and Raftery
(1996).
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strong correlation, extreme skewness, and heavy tails. We claim that the ARDS algorithms
avoid the often time-consuming and difficult task, especially for non-experts, of choosing and
tuning a sampling algorithm for a specific application, such as computation of posterior mo-
ments in Bayesian inference. They can be applied without the need to study in depth the
shape of the posterior density in order to design a sophisticated approximation to it. It can
be argued that for any specific model and data combination, a more efficient algorithm than
ARDS may be designed, but our viewpoint is that the extra effort (in research time) required
to achieve this may not be rewarding. Furthermore, we point out that one may apply ARDS
algorithms as a first step to explore the shape of the posterior. Given knowledge of this
shape one may design a specific algorithm more tailored to the problem studied. Thirdly, the
algorithms can handle multiple linear inequality conditions on the parameter space without
any additional complications for the implementation. In practice researchers often make use
of bounds on parameters.

The ARDS algorithms extend earlier methods like the method of Box and Muller (1958),
the adaptive direction sampling (ADS) algorithms proposed by Gilks, Roberts, and George
(1994), the mixed integration method by Van Dijk, Kloek, and Boender (1985), and the
spherical integration method by Monahan and Genz (1997). Details are given in Subsection
2.4.

The outline of the paper is as follows. In Section 2 the algorithms are introduced. In
Section 3 mixture models are used for experimenting with ARDS and for comparing its per-
formance with that of the standard Metropolis-Hastings and importance sampling algorithms.
The models feature multimodality, high correlation and skewness. As empirical examples we
use a regression model with scale contamination in order to investigate a study from Justel
and Peña (1996) concerning the oxidation of ammonia to nitric acid in a plant. Next, we an-
alyze economic growth of the USA using a mixture model as in Frühwirth-Schnatter (2001).
Conclusions are presented in Section 4.

2 Adaptive radial-based direction sampling

Most simulation algorithms for posterior distributions generate random drawings in the orig-
inal parameter space. Several researchers advocate to simulate in a transformed space, where
the simulation is more efficient in some sense, see e.g. Gilks and Roberts (1996). For example,
if there exists a strong correlation between two random variables, an orthogonalising trans-
formation reduces serial dependence in a Gibbs sampling scheme. Another example arises in
the context of importance sampling: an efficient importance function is easier to construct
when an adequate transformation yields a distribution that is much closer to a symmetric
one than the original one. The adaptive radial-based sampling algorithms rely on this general
idea. They are based on a composite transformation to radial coordinates. Heuristically,
the original parameter space is transformed into a (m − 1)-dimensional space of directions
and a unidimensional complementary space of distances. When the target or candidate den-
sity is a member of the elliptical family one can use the following result. The transformed
density of the (m − 1)-dimensional directions is uniform on the unit sphere and this density
is independent of the density of the unidimensional distance which has a known analytical
form (e.g. a member of the gamma family when the candidate is normal); see e.g. Muirhead
(1982) (section 1.5). This result is the basis for the Box-Muller method of generating normal
random variables; see Box and Muller (1958). In our approach, one key step is the creation
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of directions, or lines, where the target density has non-trivial mass. A second key step is
generating distances, or points on the lines, from the exact target density by means of the
numerical inverse transformation method.

In this section, we concentrate on two members of the radial-based algorithms, one is of
the Metropolis-Hastings type, and the second one is of the importance sampling type. These
variants will be referred to as adaptive radial-based Metropolis-Hastings sampling (ARMS)
and adaptive radial-based importance sampling (ARIS), respectively.

2.1 The radial transformation

Since the radial transformation is at the heart of the algorithms, we start by describing
the transformation from Cartesian coordinates to radial coordinates. For ease of exposition,
we distinguish between the two-dimensional case and the general m-dimensional case. In our
notation, y denotes the Cartesian coordinates of a point, and (ρ, η) denotes the corresponding
radial coordinates. Here η = (η1, . . . , ηm−1) indicates the direction of the point relative to the
origin, and ρ is related to the Euclidean distance.

2.1.1 The two-dimensional case

The two-dimensional transformation from (y1, y2) ∈ IR2 to (ρ, η) ∈ IR × (−1, 1) is given by

ρ = sgn(y2)
√

y2
1 + y2

2, (1)

η =
y1

ρ
, (2)

with inverse transformation

y1 = ρ η, (3)

y2 = ρ
√

1 − η2 . (4)

Note that (η,
√

1 − η2 ) is located on the unit circle. Figure 1 illustrates the one-to-one
relationship between the Cartesian coordinate system and the radial coordinate system. The
Jacobian of the transformation is

Jy1,y2
(ρ, η) = det





∂y1(ρ,η)
∂η

∂y1(ρ,η)
∂ρ

∂y2(ρ,η)
∂η

∂y2(ρ,η)
∂ρ



 = det







ρ η

− ρ η√
1−η2

√

1 − η2






=

ρ
√

1 − η2
.

2.1.2 The m-dimensional case

The m-dimensional transformation from (y1, . . . , ym) ∈ IRm to (ρ, η) = (ρ, η1, . . . , ηm−1) ∈
IR × {η ∈ IRm−1 : η′η < 1} is given by

ρ = sgn(ym)
√

y′y, (5)

ηj =
yj

ρ
, j = 1, . . . , m − 1, (6)

with inverse transformation

yj = ρ ηj , j = 1, . . .m − 1, (7)

ym = ρ
√

1 − η′η . (8)
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Figure 1: The relationship between Cartesian coordinates and radial coordinates in the two-
dimensional case.

By defining ỹ = (y1, . . . , ym−1), the Jacobian of the transformation is

Jy(ρ, η) = det





∂ỹ(ρ,η)
∂η′

∂ỹ(ρ,η)
∂ρ

∂ym(ρ,η)
∂η′

∂ym(ρ,η)
∂ρ



 = det





ρ Im−1 η

− ρ η′

√
1−η′η

√
1 − η′η





=
ρm−1

√
1 − η′η

= Jy(ρ)Jy(η), (9)

where

Jy(ρ) = ρm−1, (10)

Jy(η) = (1 − η′η)−1/2. (11)

Thus, the generalization of (1)-(4) to the m-dimensional case is straightforward.

2.1.3 A generalization

In an earlier version (Bauwens, Bos, Van Dijk, and Van Oest (2002)), we made use of the
polar transformation. We prefer the radial transformation for ease of exposition and for
computational efficiency. However, both transformations can just be regarded as special
cases of a more general transformation such that the inverse transformation is of the form
y = ρ h(η), where h is some m-dimensional differentiable function. In any case the Cartesian
coordinates y are transformed to a distance ρ and a position h(η) on the unit circle. The
Jacobian of this general transformation is of the form Jy(ρ, η) = Jy(ρ)Jy(η), where Jy(ρ) is
still defined by Jy(ρ) = ρm−1. As the algorithms turn out to depend only on the invariant
Jacobian factor Jy(ρ), and not on Jy(η), our results for the radial transformation can be
extended to any transformation of the form described above.

2.2 Adaptive radial-based Metropolis-Hastings sampling (ARMS)

We start by defining the radial-based Metropolis-Hastings algorithm (RMS), which is based
on a candidate generating density that is taken to be multivariate normal with parameters
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µ and Σ. Next, we illustrate the algorithm for a bimodal target density. Finally, we define
the adaptive RMS algorithm (ARMS), where µ and Σ are updated using the sample of draws
from a previous round of the RMS algorithm.

2.2.1 Definition of radial-based Metropolis-Hastings sampling (RMS)

RMS is based on an independence chain MH algorithm. It uses draws from a N(µ, Σ) can-
didate where hopefully µ and Σ provide good approximations to the unknown mean and
covariance matrix of the target distribution, see below. We note that normality of the candi-
date density is only relevant to the extent that drawings should be generated from a member
of the class of elliptical distributions; see also Remark 1 below. In contrast with the MH algo-
rithm, the drawings are not used for construction of a Markov chain in the original parameter
space. Instead, a composite transformation is made. For expository purpose we treat this
transformation explicitly in two steps.

The first step is a location-scale transformation of a realization x to a realization y. This
transformation aims at standardizing the candidate density with respect to the location, scale,
and correlations of the target (posterior) density, denoted by p(x). It is given by2

y = y(x|µ, Σ) = Σ−1/2(x − µ), (12)

with inverse transformation

x = x(y|µ, Σ) = µ + Σ1/2y, (13)

and Jacobian

Jx(y) = det(Σ1/2). (14)

The second key step is the radial transformation, which is defined by (5) and (6), with
inverse transformation given by (7) and (8), and Jacobian (9).

Combining the two transformations, one obtains the composite transformation





ρ

η



=





ρ(x|µ, Σ)

η(x|µ, Σ)



=





ρ(y(x|µ, Σ))

η(y(x|µ, Σ))



 (15)

with inverse transformation

x = x(ρ, η|µ, Σ) = x(y(ρ, η)|µ, Σ) (16)

and Jacobian

Jx(ρ, η) = Jy(ρ, η)Jx(y) = Jy(ρ)Jy(η)det(Σ1/2). (17)

Applying the two transformations to a candidate realization x∗
i from N(µ, Σ) yields a

distance ρ∗i and a vector of directions η∗
i (hereafter referred to as a ‘direction’).3 Ignoring

2Σ1/2 denotes the Cholesky decomposition of Σ, and Σ−1/2 denotes the inverse matrix of Σ1/2.
3Henceforth, the index i (in x∗

i , η∗

i ...) does not indicate the i-th element of the corresponding vector, but
indicates the number of the draw in a sequence of successive draws.
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the distance, the candidate direction is either accepted or rejected in a MH step, that is, the
direction becomes

ηi =







η∗i with probability α(ηi−1, η
∗
i )

ηi−1 with probability 1 − α(ηi−1, η
∗
i )

(18)

for some acceptance probability α(ηi−1, η
∗
i ), which is given in Proposition 1 below. An itera-

tion of RMS is completed by drawing from the target distribution on the line defined by the
direction ηi. This can be done as follows. First, one draws a distance ρi from the transformed
target distribution for given direction ηi using the numerical inverse transformation method,
see Proposition 1. Next, ρi and ηi are transformed to the original space by inverting the
radial transformation and the location-scale transformation. In Table 1, we summarize the
steps of one iteration of RMS.

Table 1: One iteration of RMS

1. Generate x∗
i from N(µ, Σ)

2. Transform x∗
i to y∗i = Σ−1/2(x∗

i − µ)
3. Transform y∗i to ρ∗i and η∗i , using (5) and (6)
4. Apply MH step to ηi, see (18)
5. Generate ρi from p(ρ|ηi) by inverting numerically its cdf
6. Transform ρi and ηi to yi, using (7) and (8)

7. Transform yi to xi = µ + Σ1/2yi

Note that steps 1 and 2 amount to generating y∗

i from N(0, Im). We want to
make explicit the dependence on µ and Σ.

Step 4 of a RMS iteration requires the acceptance probability α(ηi−1, η
∗
i ), and step 5

requires the distribution of the distance ρ conditional on the direction ηi. They are given in
the next proposition.

Proposition 1 For all elliptically contoured candidate distributions with mean µ and covari-

ance matrix Σ, the acceptance probability of step 4 of the RMS algorithm, summarized in Table

1, depends only on the generated direction and not on the functional form of the candidate

density. The value of α(ηi−1, η
∗
i ) is given by

α(ηi−1, η
∗
i ) = min

{

I(η∗i )

I(ηi−1)
, 1

}

, (19)

where

I(η) =

∫ ∞

−∞
κ(ρ|η) dρ, (20)

and where κ(ρ|η) is a kernel of the the conditional density p(ρ|η) of step 5, defined by

p(ρ|η) ∝ κ(ρ|η) = p(x(ρ, η|µ, Σ)) |Jy(ρ)|. (21)
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Proof: See the Appendix. �
Remark 1: A noteworthy property is that the acceptance probability does not depend on
the functional form of the candidate density under the condition that this candidate density
is of the form f

(

(x − µ)′Σ−1(x − µ)
)

, i.e. an elliptically-contoured density. However, the
acceptance probability depends on the generated direction η and thus on the location and
scaling matrix of the candidate density.

Remark 2: In order to obtain the acceptance probability α(ηi−1, η
∗
i ), the integral I(η) defined

by (20) can be computed by a deterministic integration rule. Since the density of ρ conditional
on η is proportional to the integrand of I(η), evaluations of the integrand, gathered during
the deterministic integration phase, can be used in order to construct a grid for p(ρ|η). Using
the numerical inverse transformation method, sampling the distance ρ conditional on the
direction η, that is, step 5 of a RMS iteration, is straightforward.

Remark 3: The integral I(η) has infinite integration bounds. However, in practice we use
finite integration bounds for its numerical evaluation. Of course it is important to take these
bounds such that practically all density mass of ρ given η is included, but for the sake of
efficiency it is also desirable that the integration interval is as small as possible. In order to
obtain bounds for the distance ρ we impose minimum and maximum values for each element
of x in the original space. It is often possible to find sensible bounds by either theory and/or
common sense, and in the applications below we will explicity report the considered bounds.
More generally, by imposing bounds on the values of x we impose linear inequality conditions
on the original parameter space. These restrictions are of the form c′jx ≤ bj , where j indi-
cates the number of the restriction. The conditions imposed on the original space translate
to bounds ρmin and ρmax for ρ through the relationships ρmin = maxj{ρj : ρj < 0} and

ρmax = minj{ρj : ρj > 0}, where ρj =
bj−cj

′µ
cj

′(x̃−µ) with x̃ = x(ρ = 1, η|µ, Σ). As additional linear

restrictions might reduce the integration interval for I(η), making the evaluation of I(η) more
efficient, they do not put a burden on the algorithm, but they might result in an efficiency gain.

2.2.2 Convergence

RMS is a combination of a Metropolis-Hastings sampler for the directions η and the inverse
transformation method for generating the distance ρ. The MH step on the directions intro-
duces dependence on past drawings. Hence, the transition kernel of RMS is just the transition
kernel of the MH step. The following theorem provides a sufficient condition for convergence
of RMS.

Proposition 2 If for every η ∈ {η ∈ IRm−1 : η′η < 1} in the support of the target density

p(η) the candidate density q(η) is non-null and continuous, then the sampled RMS chain

converges in distribution to the target distribution.

In the Appendix it is shown that for an elliptically contoured candidate, the density q(η)
is given by q(η) ∝ Jy(η) = (1 − η′η)−1/2. As q(η) is clearly positive and continuous on
{η ∈ Rm−1 : η′η < 1}, the sufficient condition in Proposition 2 is satisfied.

In practice, convergence should always be checked using diagnostics. One can monitor the
sequential values of posterior moments, the acceptance rates, and the (tail) distribution and
variance of the importance weights.
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Figure 2: Adaptive radial-based direction sampling: target density in original space (above),
target density after location-scale transformation (middle) and target density after radial
transformation (below).

Remark 4: In practice we reduce the computational effort by generating several drawings
of ρ for each drawing of η, i.e. we capitalize on the construction of the grid for p(ρ|η) (see
Remark 2). We emphasize that the computed integrals (MC estimators) still converge to the
theoretical integrals. The main point is that although the generated drawings of y and x are
dependent, the computed integrals are consistent estimates of the theoretical values of the
integrals that one is interested in, see Geweke (1999) (p 44) and the references cited there.

2.2.3 Illustration

Figure 2 illustrates RMS for a bivariate bimodal target distribution. The upper two graphs
display the target density in the original space. A point, representing a realization from the
normal candidate distribution N(µ, Σ), is visible in the contour plot. If µ and Σ coincide
with the mean and the covariance matrix of the target distribution, then the location-scale
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Figure 3: The marginal target density p(η), the marginal candidate density q(η), and the
weight function p(η)/q(η) (up to scaling constants). The original target density is the same
as in the previous figure.

transformation would lead to the target density that is depicted in the middle graphs. The
gain of the location-scale transformation is clear: the density mass is better located around
the origin in the sense that a line through the origin, defined by some direction η, ‘hits
the density mass’ more easily. Since RMS precisely considers such lines, the location-scale
transformation may lead to a substantial improvement for appropriate µ and Σ. The target
density after applying the radial transformation is depicted in the bottom two graphs.

Seven steps are distinguished in an iteration of RMS, see Table 1. The visualization of
these steps in Figure 2 is as follows. In step 1, the point in the upper contour plot is drawn
from N(µ, Σ). This point is transformed in step 2 to the point in the middle contour plot.
Step 3 results in the point in the bottom contour plot. In step 4, the direction η, that is the
horizontal position of the point in the bottom contour plot, is either accepted or rejected.
If we assume for expository purpose that η is accepted, step 5 consists of drawing one (or
several) distance(s) ρ on the vertical line through the point. Step 6 can be represented by the
transformation of points generated on the line in the bottom contour plot to points generated
on the line in the middle contour plot. Similarly, step 7 results in points generated on the
line in the upper contour plot. In sum, RMS amounts to drawing from the exact target
density on lines which are obtained through a MH acceptance-rejection mechanism. This
acceptance-rejection mechanism takes into account the shape of the target density.

Figure 3 shows the marginal target density p(η) that would result from the bottom two
graphs in Figure 2. It looks quite ill behaved. However, similar to the relationship between
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standard independence chain MH and standard importance sampling, it is not directly the
target density that matters for the MH step in RMS. What matters is the ratio of the target
density and the candidate density of η, that is p(η)/q(η) ∝ I(η) where q(η) denotes the
marginal candidate density and I(η) has been defined in Proposition 1, see the Appendix for
details. It is seen from Figure 3 that, although the target density p(η) is ill behaved, the
weight function p(η)/q(η) is quite well behaved in the sense that variation in its values is only
moderate. We further note from the bottom two graphs in Figure 2 that the transformed
target density is bimodal (ill behaved) with respect to the distance ρ. However, this is not a
problem, as a grid for p(ρ|η) can always be constructed easily, see also Remark 2.

2.2.4 Adaptive radial-based Metropolis-Hastings sampling (ARMS)

For implementation of RMS, the mean µ and the covariance matrix Σ of the normal candidate
distribution have to be specified. Good enough initial approximations are usually the posterior
mode and minus the inverse Hessian of the log posterior evaluated at the mode. Heuristically,
convergence of RMS should improve if µ and Σ are close to, rather than far from, the target
mean and covariance matrix, respectively. Actually, if the target density is (approximately)
normal, the acceptance probability should be (approximately) equal to 1 for appropriate µ and
Σ. ARMS considers a sequential adaptive approach. Given a generated sample x1, x2, . . . , xn

from a previous run of the algorithm, µ and Σ are replaced by the Monte Carlo estimates of
the posterior mean and variance, which are given by

µ̂ =
1

n

n
∑

i=1

xi, (22)

Σ̂ =
1

n

n
∑

i=1

(xi − µ̂)(xi − µ̂)′, (23)

respectively. Using these estimates, one can proceed with a new sampling round. This pro-
cess can be repeated any number of times. We note that information, coming from a ‘wrong’
sample, may have a misleading effect and may worsen convergence. Thus, convergence should
be monitored by usual tools, see Van Dijk and Kloek (1980) and Oh and Berger (1992). How-
ever, since only the direction η, and not the distance ρ, depends on the candidate distribution,
the risk of collecting a ‘wrong’ sample is reduced. ARMS should be quite robust, as the dis-
tance ρ conditional on the direction η immediately comes from the target distribution, that
is, sampling on a given line mimics exactly the target density.

In order to monitor convergence over sampling rounds, we find the Mahalanobis distance
particularly useful. It is defined as MAHj = (µ̂(j) − µ̂(j−1))′[Σ̂(j)]−1(µ̂(j) − µ̂(j−1)), where j
indicates the sampling round. The Mahalanobis distance measures the extent to which the
estimated posterior mean changes between successive sampling rounds, while accounting for
parameter uncertainty and the underlying correlation structure. In the applications below we
will use the Mahalanobis distance extensively.

2.3 Adaptive radial-based importance sampling (ARIS)

Radial-based importance sampling (RIS) replaces the MH step of RMS for the direction η
by an importance sampling step. So, step 4 of a RMS iteration (see Table 1) changes. In
RIS, every sampled direction ηi is kept, a distance ρi is sampled conditional on it, and the

10



resulting radial coordinates are transformed to a draw xi in the original space, which is
weighted according to the appropriate importance weight w(ηi). This importance weight is
given by

w(ηi) =
p(ηi)

q(ηi)
∝ I(ηi), (24)

where I(η) is defined by (20), see the Appendix.
An interpretation of RIS is that one samples from the target distribution on lines with

directions being derived from the elliptically contoured candidate distribution. Each line
receives a weight, indicating the importance of the underlying direction. The weight of a
line is carried over to any realization on that line. Alternatively, one may interpret RIS as
just a special case of standard importance sampling. A realization x in the original space
is a function of a realization (ρ, η) in the transformed space, see (16), implying that the
importance weight of (ρ, η) is also the importance weight of x. Taken together, step 1 to
step 5 of a RIS iteration can be regarded as yielding a realization (ρi, ηi) from a candidate
distribution with density

qimp(ρ, η) = q(η)p(ρ|η), (25)

and providing the importance weight

w(ρ, η) =
p(ρ, η)

qimp(ρ, η)
=

p(η)p(ρ|η)

q(η)p(ρ|η)
=

p(η)

q(η)
, (26)

which coincides with (24). We note that the importance function qimp takes into account
the shape of the target density through p(ρ|η). This is not the case in standard importance
sampling with importance function q(η)q(ρ|η) in the transformed space, which explains that
the importance function of RIS should be more efficient than the importance function in
standard IS with a normal or Student t candidate density. As RIS can be interpreted as
a special case of importance sampling, convergence properties of RIS follow directly from
those for the latter method. The distribution of the weights w(η), in particular, a (bounded)
variance of w(η), are important diagnostics. For details, see Geweke (1989).

Similar to ARMS, the parameters µ and Σ of the location-scale transformation can be
updated by replacing them by their Monte Carlo estimates. These estimates are given by

µ̂w =

∑n
i=1 w(ηi)xi
∑n

i=1 w(ηi)
, (27)

Σ̂w =

∑n
i=1 w(ηi)(xi − µ̂w)(xi − µ̂w)′

∑n
i=1 w(ηi)

, (28)

where x1, x2, . . . , xn is the collected sample, and w(η1), w(η2), . . . , w(ηn) are the corresponding
importance weights.

2.4 On related methods and a classification

The polar transformation is the basis of the well known method of Box and Muller (1958) for
generating normal random variables. Consider the angle θ formed by the y1-axis and a line
passing through the origin. In polar coordinates, a point is described by this angle θ and its
Euclidean distance from the origin. In the Box-Muller method, an angle (therefore a direction
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η) is generated from a uniform distribution on the interval (0, 2π), and a squared distance is
generated from an exponential distribution. See e.g. Rubinstein (1981) (p. 86-87). In radial
coordinates, the point is described by the radial coordinate η and the signed distance ρ, see
(1) and (2). The ARDS method extends the Box-Muller algorithm by generating directions η
using an MH or IS step, where the candidate density is compared with a target density. Given
a generated candidate direction η, distances ρ are generated from a very accurate numerical
approximation to the target distribution of the distances. Note that this exact distribution is
model specific. If the normal candidate density in the original space is a good approximation
to the target density in that space then the probability of acceptance in the MH step is close
to one and the weight in the IS step is relatively constant. Non-normality can be evaluated
using the weights computed in the one-dimensional integration step; see Hop and Van Dijk
(1992) and Monahan and Genz (1997).

It is also of interest to compare ARDS with the class of adaptive direction sampling (ADS)
algorithms, see Gilks, Roberts, and George (1994). Two well known members of ADS are
the hit and run algorithm of Schmaiser and Chen (1991) and the snooker algorithm of Gilks,
Roberts, and George (1994). In ADS, directions are sampled in the original parameter space.
Only information on the shape of the target density is used. In ARDS, we generalize ADS in
two ways. Firstly, use is made of a MH or IS step where candidate and target are compared
to generate a direction. Secondly, one generates a distance ρ from a numerically very accurate
approximation to the target distribution. This step is not always spelled out in ADS. Since
ARMS and ARIS are members of the MH and IS class of Monte Carlo methods, convergence
properties of these methods are well established. This is not so transparant for the ADS
methods.

We emphasize again that within ARDS one can make use of any candidate that belongs
to the family of elliptical distributions. The advantage of the normal density is its simplicity
and parsimony of parameters: location and scale determine the distribution. A good estimate
of the location and scale is important for efficient generation of directions, that is, directions
that generate lines which cover the region where the target has substantial probability mass,
see e.g. the line in Figure 2. We note that Monahan and Genz (1997) use the terminology
radial based integration in this context.

The ARDS class comprises several algorithms. One may distinguish between rejection
sampling, importance sampling and Metropolis-Hastings sampling as Monte Carlo integration
methods. So far, we have experimented with ARMS and ARIS. However, one may also define
a radial-based rejection sampling algorithm (ARRES): the sampled direction is accepted if
w(η) > cu (and rejected otherwise), where u is uniformly drawn in (0, 1), and c is a constant
such that the importance function envelopes the target function. For such an algorithm,
formulas (22) and (23) apply to the accepted transformed draws. Consider next the case
where generating random drawings of ρ is replaced by only evaluating the unidimensional
integral. We name this case deterministic integration with respect to ρ. One can combine this
deterministic integration with respect to ρ with rejection sampling, importance sampling or
Metropolis-Hastings sampling with respect to η and evaluate posterior moments and densities.
For the case of importance sampling this has been done in the so-called mixed integration
method of Van Dijk, Kloek, and Boender (1985), compare also Monahan and Genz (1997),
who use the term spherical radial integration. Thus these methods are special cases of the
ARDS class where the step of generating random drawings of ρ is reduced to evaluating only
a unidimensional integral. The limitation of deterministic integration with respect to ρ is
that one has to compute a different unidimensional integral for each moment of the target
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distribution, see Hop and Van Dijk (1992). When one needs only to compute first and second-
order posterior moments, one may use the mixed integration methods efficiently. We have
summarized the six algorithms in Table 2.

We emphasize that the ARDS sampling methods can be applied to target densities where
the region of integration is bounded by several inequality conditions. Linear inequality con-
ditions play an important role in several econometric and statistical applications.

Table 2: Members of the ARDS class of algorithms

η \ ρ Stochastic generation of ρ Deterministic integration of ρ

Rejection sampling ARRES MIXRES
Importance sampling ARIS MIXIS
M-H sampling ARMS MIXMS

3 Applications

In this section, a set of models are used to illustrate the versatility of radial-based algorithms.
We do not claim that the algorithms are necessarily the most efficient ones for the analyzed
models and data, since careful analysis of the posterior density may help to design a more
efficient algorithm (actually, the radial-based algorithms can also be useful in this perspective).
We compare ARMS and ARIS to the (independence chain) Metropolis-Hastings algorithm
and importance sampling. In all examples, MH and importance sampling use the Student t
distribution with 5 degrees of freedom as the candidate. We start with two artificial examples
involving mixtures of normal distributions in the parameter space. The experiments with
these mixtures feature multimodality, skewness and high correlation. Next, we analyze two
empirical examples that are used in the literature for illustrative purposes. The first example
involves a regression model with scale contamination in order to investigate a study from Justel
and Peña (1996) concerning the oxidation of nitric acid in a plant. Secondly, we consider a
mixture model as in Frühwirth-Schnatter (2001) for the analysis of economic growth in the
USA. We note that in these examples the mixture process refers to the data space. However,
it is noteworthy that such mixture processes may give rise to bimodality, extreme correlation
and skewness in the parameter space. Of course, when the sample of data is very large and
the model is regular such ill behaviour of the posterior density will be less likely. The issue is
that a researcher does not know this before the posterior analysis of a model.

We emphasize that all numerical results reported below depend on the design of the
experiments and on the initial values. Different initial values (seed of the random number
generator and starting values of the location and scale) may give different numerical results
for the given number of drawings. However, the central message from the results reported
below turns out to be quite robust.
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3.1 The bimodal density from the illustration

As a first experiment we consider the bivariate bimodal density which was used in the illus-
tration of RMS (see Figures 2 and 3). The distribution is given by
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We compute the first and second moments using RMS, RIS, MH and importance sampling
with three different Student t candidate densities. The candidates differ in their location and
scaling parameters. They are given by
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We note that for RMS and RIS a normal candidate would give exactly the same results, as the
only requirement is that the candidate density is elliptically contoured, see Remark 1. The
first candidate has the location and scaling parameters of the true target density. Only the
correlation parameter is incorrect. The second candidate density has incorrect location but
also a relatively large scale so that MH and importance sampling consider candidate drawings
over a sufficiently large region. The third candidate density coincides with the first mode of
the target density, so that the scale is too small. For each method, the moment estimates are
based on 1000 drawings. In RMS and MH, these drawings are preceded by a burn-in period
of 100 drawings. In RMS and RIS, we set the minimum and maximum bounds at respectively
-10 and 10 for both components.

The estimated first and second moments and the true values for these moments are re-
ported in Table 3. Furthermore, Figure 4 displays the underlying RMS and MH samples. The
main findings are as follows. For the first two candidates (a) and (b), all four methods come
up with good estimates for the scaling parameters and the correlation parameter, although
the estimates from RMS and RIS are slightly more accurate. However, the location param-
eters estimated using RMS and RIS are much more accurate than those obtained from MH
and importance sampling. The reason for this is illustrated in Figure 4. The RMS plots con-
cerning the candidate densities (a) and (b) display much more points than the corresponding
MH plots, indicating that the acceptance rates for the RMS samples are much higher than
the acceptance rates for the MH samples. This leads to a higher accuracy. Finally, it is seen
for the third candidate (c) that MH and importance sampling fail to deliver a representative
sample. They only find one mode and miss the other mode completely. This is in contrast
to RMS and RIS, which still succeed to come up with good moment estimates. In sum, this
example demonstrates that, given the same number of drawings, ARDS algorithms should
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Table 3: Sampling results for the bimodal density considered in the illustration of RMS.

RMS RIS MH IS true

(a) mean(x1) 2.83 2.96 2.70 3.35 3.00

mean(x2) -1.16 -1.05 -1.37 -0.71 -1.00

stdev(x1) 3.15 3.16 2.98 3.09 3.16

stdev(x2) 3.15 3.17 3.21 3.28 3.16

corr(x1, x2) 0.91 0.91 0.87 0.91 0.90

(b) mean(x1) 2.94 2.97 2.41 2.21 3.00

mean(x2) -1.01 -1.01 -1.59 -1.59 -1.00

stdev(x1) 3.12 3.15 3.11 3.06 3.16

stdev(x2) 3.17 3.21 3.21 3.16 3.16

corr(x1, x2) 0.89 0.91 0.93 0.91 0.90

(c) mean(x1) 2.90 3.19 0.01 0.02 3.00

mean(x2) -1.14 -0.82 -4.02 -4.00 -1.00

stdev(x1) 3.11 3.11 1.04 1.02 3.16

stdev(x2) 3.15 3.18 1.04 1.01 3.16

corr(x1, x2) 0.90 0.91 -0.03 0.00 0.90
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Figure 4: Samples obtained for the bimodal density considered in the illustration of RMS.
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at least result in more accurate estimates than MH and importance sampling. Further, the
example illustrates that ARDS algorithms should be more robust in the sense that the risk
of overlooking density regions with nontrivial density mass (i.e. missing complete modes) is
reduced. In this example, we conditioned on the number of drawings. However, as obtaining
drawings from RMS or RIS is more time consuming than obtaining drawings from the other
two methods, we will make the computing times comparable in the next example.

3.2 A trimodal mixture distribution

In this second example, we consider an 8-dimensional trimodal mixture distribution featuring
skewness, some high correlations (varying between -0.95 and 0.90) and multimodality. It is
given by

p1 N(µ1, Σ1) + p2 N(µ2, Σ2) + p3 N(µ3, Σ3),

where

µ1 = 1.5 (1, 2, 3, 4, 5, 6, 7, 8)′,

µ2 = 1.5 (5, 6, 7, 8, 1, 2, 3, 4)′,

µ3 = 1.5 (8, 7, 6, 5, 4, 3, 2, 1)′,

Σ1 = Σ2 = Σ3 = I8,

p1 = p2 = p3 = 1/3.

The marginal densities4 for the eight components are displayed in Figure 5. It is seen that
the target density is very ill behaved. We estimate the mean and the covariance matrix for
this distribution using ARMS, ARIS, MH and importance sampling. This is done in several
sampling rounds. In our adaptive approach, additional sampling rounds are considered as
long as the Mahalanobis distance is larger than 0.02. However, we allow for at most 8 rounds.
In any round, ARMS and ARIS sample 5000 directions and 5 distances per direction, resulting
in a sample of size 25000. In order to make the computing times comparable, the MH and
importance sampling algorithms are allowed to collect a larger sample of size 250000. The
mean for the initial candidate is set at 6 for all eight components. Furthermore, the scale
is taken sufficiently large so that MH and importance sampling can initially cover the whole
density mass.

The estimates for the location and scale parameters are reported in Table 4. Furthermore,
the table also contains the “true” parameter values, obtained from 250000 directly sampled
drawings. It is seen that ARMS and ARIS do a very good job, whereas MH and importance
sampling fail. ARIS only needs 5 iterations to reach convergence (according to our definition),
whereas the other three algorithms need the maximum number of rounds. However, after eight
rounds also ARMS has converged whereas the other two algorithms clearly have not, see the
reported Mahalanobis distances which concern the final sampling round. We note that the
average computing times per sampling round for the four algorithms are comparable.

The acceptance rates for ARMS and MH (reported for the final round) show a large differ-
ence in values. Furthermore, it is seen that the moment estimates, obtained from importance
sampling, are almost completely determined (99.7%) by only 5% of the drawings. In contrast,
in ARIS the 5% most influential drawings only have about 30% of the total weight.

4These marginal densities were constructed using 250000 directly sampled drawings.
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Table 4: Sampling results for the trimodal mixture distribution.

bounds ARDS initialization ARMS ARIS MH IS true

min. max. mean s.d. mean s.d. mean s.d. mean s.d. mean s.d. mean s.d.

x1 -20.00 20.00 6.00 10.00 7.03 4.41 7.07 4.40 1.83 0.04 7.44 0.11 7.00 4.42

x2 -20.00 20.00 6.00 10.00 7.54 3.38 7.52 3.43 2.57 0.04 8.10 0.15 7.50 3.40

x3 -20.00 20.00 6.00 10.00 8.03 2.73 7.98 2.70 4.09 0.35 10.21 0.08 8.00 2.74

x4 -20.00 20.00 6.00 10.00 8.54 2.70 8.47 2.73 6.01 0.39 11.21 0.40 8.50 2.74

x5 -20.00 20.00 6.00 10.00 4.99 2.71 5.06 2.70 6.13 0.45 2.96 0.91 5.00 2.74

x6 -20.00 20.00 6.00 10.00 5.44 2.77 5.49 2.72 8.91 0.62 2.14 0.61 5.50 2.74

x7 -20.00 20.00 6.00 10.00 6.07 3.38 5.96 3.41 10.21 0.32 4.24 0.48 6.00 3.40

x8 -20.00 20.00 6.00 10.00 6.48 4.39 6.44 4.46 12.01 1.18 5.14 0.85 6.50 4.42

drawings per iteration (η × ρ) 5000×5 5000×5 250000 250000

number of iterations 8 5 8 8

average time per iteration (in s) 112.9 82.0 110.4 93.9

Mahalanobis distance 0.01 0.01 1.57 10.68

acceptance rate (in %) 27.8 0.1

5% most influential weights (in %) 29.2 99.7
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Figure 5: Marginal densities for the trimodal mixture distribution.
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In order to see whether the favourable results are merely a coincidence, we repeat the
experiment above 10 times for different seeds of the random number generator. The results
are robust: ARMS succeeds 9 times and ARIS even succeeds for all 10 repetitions, whereas
MH and importance sampling only have success rates of 30%, making the outcome of the
latter two methods very unreliable.

3.3 Scale contamination

In Justel and Peña (1996), the authors investigate a data set from Brownlee (1965, pp. 491–
500) concerning the oxidation of ammonia to nitric acid in a plant. The data set incorporates
21 daily observations on four variables. The stack loss rate y, that is the proportion of
ingoing ammonia to the plant that escapes unabsorbed, is related to the amount of air flow
x1 (representing the rate of operation of the plant), the temperature of the cooling water
x2, and the concentration of the circulating acid x3. In several investigations it was found
that several observations might be classified as outliers, and therefore care should be taken
in the analysis to allow for this. In a regression setting, it is sufficient to allow for scale
contamination, as in the model

yi = β1x1i + β2x2i + β3x3i + εi

εi ∼ N(0, σ2
i )

σi =







σ with probability 1 − p

κσ with probability p

For identification of the two variance regimes, we impose that κ > 1. The prior for the
parameter vector (β1, β2, β3, σ, κ, p)′ is chosen proportional to [(1 − p)σ + pκσ]−1 within the
parameter bounds reported in Table 5. The prior density is zero outside these bounds.

The six model parameters are sampled using ARMS, ARIS, MH and importance sam-
pling. The sampling setup is the same as in the previous example. So, we consider an
adaptive approach in which additional sampling rounds are considered as long as the Maha-
lanobis distance is larger than 0.02 with a maximum of 8 rounds. In any round, ARMS and
ARIS sample 5000 directions and 5 distances per direction, whereas the MH and importance
sampling algorithms collect a sample of size 250000.

The parameter estimates are reported in Table 5, together with the corresponding large
sample values (computed from 250000 ARMS drawings). It is seen that all four methods
trace back the response parameters β1, β2 and β3 accurately. However, this is not the case for
the remaining three parameters. In particular, MH and importance sampling underestimate
the left mode of the bimodal marginal density for σ, resulting in an overestimation of the
mean of σ. This is also illustrated in Figure 6 in which the large sample marginal densities
(250000 ARMS drawings) and the estimated densities from 25000 ARMS drawings and from
250000 MH drawings are shown. Furthermore, it is seen that MH and importance sampling
underestimate the right mode of the bimodal marginal density for the mixture probability p,
resulting in an underestimation of the mean of p. We note from Table 5 that the average
times per sampling round are comparable for the four considered algorithms, and that they
have all converged within 4 or 5 rounds.

The difference between the acceptance rates of ARMS and MH is striking. The acceptance
rate of the former is about five times as high as the acceptance rate of the latter. Further,
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Table 5: Sampling results for the scale contamination model.

bounds ARDS initialization ARMS ARIS MH IS large sample

min. max. mean s.d. mean s.d. mean s.d. mean s.d. mean s.d. mean s.d.

β1 -10.00 10.00 0.00 2.00 0.81 0.19 0.81 0.19 0.81 0.20 0.81 0.20 0.81 0.19

β2 -10.00 10.00 0.00 2.00 1.01 0.52 1.00 0.55 1.01 0.58 1.02 0.57 1.01 0.54

β3 -10.00 10.00 0.00 2.00 -0.61 0.09 -0.61 0.10 -0.61 0.10 -0.61 0.10 -0.61 0.10

σ 0.00 10.00 5.00 2.00 2.84 1.32 2.77 1.38 3.06 1.38 3.09 1.39 2.82 1.36

κ 1.00 10.00 5.00 2.00 3.40 2.35 3.48 2.39 3.60 2.48 3.70 2.58 3.48 2.40

p 0.00 1.00 0.50 0.20 0.47 0.34 0.51 0.34 0.43 0.34 0.43 0.34 0.49 0.34

drawings per iteration (η × ρ) 5000×5 5000×5 250000 250000

number of iterations 5 4 4 4

average time per iteration (in s) 39.8 37.6 43.1 47.0

Mahalanobis distance 0.02 0.00 0.01 0.01

acceptance rate (in %) 58.2 11.4

5% most influential weights (in %) 19.6 62.8
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Figure 6: Marginal densities for the scale contamination model.
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the distribution of the importance weights for ARIS is much more uniform than the weight
distribution for importance sampling. In the last round of the importance sampling procedure,
the 5% most influential drawings have 63% of the total weight, whereas this is only about
20% in ARIS. Again, this demonstrates the accuracy of the ARDS algoritms.
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Figure 7: Real GNP of the United States in billions of dollars (above), and its quarterly
growth rate in % (below).

3.4 A mixture model for the U.S. GNP growth rate

In models for the growth rate of the gross national product, great advances have been made
by allowing for separate regimes in periods of recession and expansion. However, these models
give rise to difficulties with respect to convergence of sampling methods due to multiple modes.
As an illustration of our algorithms we consider a mixture model with two AR(1) regimes
for real GNP growth. This model is similar to the model considered in Frühwirth-Schnatter
(2001) where another recent sampling method is discussed.5 The model reads:

yt =







β11 + β12yt−1 + εt with probability p

β21 + β22yt−1 + εt with probability 1 − p

εt ∼ N(0, σ2) (29)

where yt denotes the quarterly growth rate. We investigate data concerning U.S. real GNP
(source: Economagic). The data consists of observations from the first quarter of 1959 to the
last quarter of 2001. Figure 7 displays both the real GNP level and the quarterly growth rate

5Actually, Frühwirth-Schnatter (2001) also allows the variances to differ between regimes.
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Table 6: Sampling results for the two-regime mixture model for U.S. real GNP.

bounds ARDS initialization ARMS ARIS MH IS large sample

min. max. mean s.d. mean s.d. mean s.d. mean s.d. mean s.d. mean s.d.

β11 -4.00 4.00 0.00 0.50 0.11 0.64 0.10 0.59 -0.14 0.88 0.01 0.72 0.07 0.70

β12 -1.00 1.00 0.00 0.50 0.45 0.24 0.45 0.25 0.42 0.28 0.40 0.28 0.41 0.27

β21 -4.00 4.00 1.00 0.50 1.32 0.74 1.27 0.78 1.22 0.83 1.28 0.85 1.30 0.79

β22 -1.00 1.00 0.00 0.50 -0.07 0.39 -0.02 0.38 0.05 0.39 0.01 0.40 -0.04 0.41

σ 0.00 2.00 1.00 0.50 0.82 0.05 0.82 0.06 0.82 0.06 0.82 0.06 0.82 0.06

p 0.00 1.00 0.50 0.20 0.59 0.38 0.53 0.38 0.48 0.39 0.52 0.39 0.55 0.38

drawings per iteration (η × ρ) 5000×5 5000×5 250000 250000

number of iterations 8 5 8 8

average time per iteration (in s) 81.4 82.9 89.6 85.1

Mahalanobis distance 0.04 0.02 0.20 0.15

acceptance rate (in %) 17.6 1.2

5% most influential weights (in %) 57.9 99.7
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Figure 8: Marginal densities for the two-regime mixture model for U.S. real GNP.
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(defined as 100 times the first difference of the logarithm). The priors for β11, β12, β21, β22

and p are chosen uniform, and the prior for σ is taken proportional to 1/σ. For identification,
it is imposed that β11 < β21. Again parameter bounds apply, see Table 6. The sampling
setup is identical to the setup in the previously considered scale contamination example.

The parameter estimates are reported in Table 6, together with the corresponding large
sample values (computed from 250000 ARMS drawings). Further, Figure 8 shows the large
sample marginal densities, and the densities estimated from 25000 ARMS drawings and from
250000 MH drawings. It is seen that the large sample densities (obtained from 250000 ARMS
drawings) are smooth, while this is not always the case for the “small sample” densities.
However, we note that the “small sample” MH densities have been constructed from the
same number of drawings as the large sample ARMS densities. In general, it is seen that the
ARMS, ARIS and importance sampling estimates are quite close to each other, but the MH
estimates are sometimes quite different. In particular, this is illustrated in the density of the
mixture probability p: MH overestimates the left mode and underestimates the right mode.
The average times per sampling round are comparable for the four considered algorithms, but
only ARIS converged within 8 rounds, although the Mahalanobis distance for ARMS is also
quite small. The acceptance rates (ARMS and MH) and the total weights of the 5% most
influential drawings (ARIS and importance sampling) again provide support for the ARDS
algorithms.

4 Conclusions

We have extended the Metropolis-Hastings and importance sampling methods by applying
a radial transformation to the parameter space of the posterior (or target) density. Sam-
pling does not take place in the m-dimensional parameter space directly, but in an (m − 1)-
dimensional subspace of directions. The final dimension, which corresponds to a distance
measure, is sampled exactly from the target density (conditional on the directions), using the
inverse transformation method. In this way the shape of the posterior density is taken into
account perfectly along the sampled directions. For a given number of draws, this approach
requires more functional evaluations of the posterior density than a traditional MH or IS algo-
rithm. The usual type of tradeoff occurs: with a more sophisticated algorithm, one can hope
to get ‘correct’ results with less draws than with a less sophisticated algorithm. It may also
happen that a simple method cannot deliver reliable results. It would however be surprising
when ARDS cannot deliver good results while the simpler, less computer intensive methods,
can. This is confirmed by the (empirical) illustrations in Section 3. Moreover, a possible use
of the ARDS algorithms is as a preliminary step to explore the posterior distribution and
prepare a more sophisticated method.

We emphasize that there is no claim that ARDS algorithms are superior in theory to other
kinds of algorithms (such a claim would make no sense). We believe that for any model/data
combination, a sufficient research effort will usually allow to find a specific algorithm that
performs better than ARDS or other algorithms. However, this is not necessarily guaranteed,
and the specific algorithm may not be better even for a different data set (with the same
model).

An interesting extension of this paper would be to embed ARMS in a Gibbs algorithm,
where a subset of the parameters can be directly simulated from their conditional distribution,
while the remaining parameters cannot. In this framework, special care should be given to
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start sampling with sufficiently good initial guesses of the location and scale of the conditional
distribution to be simulated. Examples where such an algorithm may be of great potential
efficiency are in the Bayesian analysis of a linear simultaneous equation model, where the
so-called simultaneity parameters induce a very nonelliptical shape of the posterior; a cointe-
gration model, and a state space model as in Koop and Van Dijk (2000).

Appendix: Proof of Proposition 1

First, given (16) and (17), the target density p(x) in terms of ρ and η is given by

p(ρ, η) = p(x(ρ, η|µ, Σ)) |Jx(ρ, η)| = p(x(ρ, η|µ, Σ)) |Jy(ρ)| Jy(η) det(Σ1/2), (30)

implying that

p(η) =

∫ ∞

−∞
p(ρ, η) dρ =

∫ ∞

−∞
p(x(ρ, η|µ, Σ)) |Jy(ρ)| Jy(η) det(Σ1/2) dρ

∝ Jy(η)

∫ ∞

−∞
p(x(ρ, η|µ, Σ)) |Jy(ρ)| dρ (31)

(the last expression being a kernel of the marginal target density of η). Second, the normal
candidate density, denoted by q(x), becomes the following function in terms of ρ and η:

q(ρ, η) = q(x(y(ρ, η)|µ, Σ)) |Jx(ρ, η)|

∝ exp

(

− 1

2
ρ2

)

|Jy(ρ)| Jy(η), (32)

so that6

q(η) ∝ Jy(η). (33)

It follows from (31) and (33) that the acceptance probability α(ηi−1, η
∗
i ), defined for an

independence chain as

α(ηi−1, η
∗
i ) = min

{ p(η∗

i )
q(η∗

i )

p(ηi−1)
q(ηi−1)

, 1

}

, (34)

simplifies to the expression in (19). Further, it follows from (30) that the density of ρ condi-
tional on η, that is p(ρ|η) ∝ p(ρ, η), is given by (21).
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