

Table of Contents

Chapter 1 – Introduction	7
1.1 General Introduction	9
1.2 Cell Biology of Neurons	9
1.2.1 Neuronal cultures as a model for how the brain works	10
1.2.2 Development of neurons in culture	11
1.2.3 Techniques – transfection, staining, and imaging of	
cultured neurons	12
1.3. Axon Growth, Guidance, and Targeting	13
1.3.1 Growth cones	14
1.3.2 The cytoskeleton and axon growth	14
1.3.3 Directed axon growth and guidance cues	15
1.4. Dendrite Development	16
1.4.1 Dendritic growth and branching	16
1.4.2 Dendritic spines	17
1.5. Formation and Function of Synapses	17
1.5.1 Synaptic cell adhesion molecules	17
1.5.2 Synaptic scaffolding and signaling proteins	18
1.5.3 Synaptic vesicles and receptors	19
1.6. Maintenance and Plasticity of Synapses	20
1.6.1 Protein turnover	20
1.6.2 Modification of synapses in response to activity	21
1.6.3 Learning and memory	21
1.7. Scope of the Thesis	22
Chapter 2 - The Liprin-α Family of Proteins	23
2.1. The Liprin-α Family of Proteins	25
2.2. Liprin-α and Presynaptic Development	25
2.3. Liprin-α and Postsynaptic Development	27
2.4. Liprin-α and Neurotransmitter Release	27
2.5. Neuroanatomical Expression Patterns of Liprin-α Proteins	29
2.5.1 Generation and specificity of anti-liprin antibodies	31
2.5.2 Nervous system expression of liprin proteins	31
Chapter 3 – LAR Controls Axon Growth and Branching via Interaction	
with Liprin- α and Cortactin	35
3.1. Introduction	37
3.2. Results	38
3.2.1 LAR-RPTP controls axon growth and branching	38
3.2.2 The LAR intracellular domain is associated with	50
liprin-a, p140Cap, and cortactin	39
3.2.3 LAR and cortactin co-cluster independently of liprin- α .	37
in neurons	43
3.2.4 Liprin-0.2 and p140Cap are necessary for axon growth	44
3.2.5 Cortactin is responsible for promoting axon branching	46

3.3. Discussion	47
3.3.1 LAR controls MT and axon growth via liprin- α 2,	
p140Cap, and EB3	47
3.3.2 LAR inhibits axon branching through cortactin	47
Chapter 4 – Liprin-α1 Degradation by Calcium/Calmodulin-Dependent	
Protein Kinase II Regulates LAR Receptor Tyrosine Phosphatase	
Distribution and Dendrite Development	49
4.1. Introduction	51
4.2. Results	55
4.2.1 Downregulation of liprin-\alpha in hippocampal neurons by	3.
CaMKII and proteasome-mediated degradation	55
4.2.2 RNAi knockdown of APC increases liprin-a	56
4.2.3 CaMKIIα/β knockdown by RNAi increases liprin-α in	5.0
hippocampal neurons	58
4.2.4 Active CaMKII decreases liprin-\alpha.1 protein level in COS-7	
cells	61
4.2.5 C-terminus and PEST motif are essential for CaMKII	
dependent liprin-0.1 degradation	63
4.2.6 Proteasome is not involved in CaMKIIa dependent	
liprin- αl degradation in COS-7 cells	68
4.2.7 Interaction of CaMKII and liprin- $\alpha 1$ in vitro and in vivo	68
4.2.8 Liprin- $\alpha I\Delta PEST\Delta C$ and liprin- $\alpha I\Delta PEST/S$ -A inhibit	
dendrite morphogenesis and reduce synapse density	71
4.2.9 LAR-liprin interfering constructs and LAR shRNA inhibit	
dendrite morphogenesis	72
4.2.10 Liprin-α1 increases surface expression and clustering of	
LAR receptors	75
4.2.11 CaMKII-non-degradable liprin-α.1 mutants impair	, .
dendritic targeting of LAR	77
4.3. Discussion	78
4.3.1 Activity-dependent regulation of liprin- α 1 by two	70
mechanisms: CaMKII and proteasome	78
	/ 0
4.3.2 Importance of CaMKII degradation of liprin-αl for	0.0
dendrite morphogenesis	80
Chantan 5 Degulation of Programmatic Composition and Function by	
Chapter 5 – Regulation of Presynaptic Composition and Function by	01
Distinct Liprin-α Family Proteins	83
5.1. Introduction	85
5.2. Results	86
5.2.1 Liprin- α 2 is abundant at synapses in the hippocampus	86
5.2.2 Presynaptic localization of liprin-α2 does not depend on	
other scaffold proteins	87
5.2.3 Liprin- αl and liprin- $\alpha 2$ differentially regulate presynaptic	
function	90

5.2.4 Liprin- $\alpha 1$ and liprin- $\alpha 2$ selectively interact with different	
presynaptic proteins	97
5.2.5 Liprin-\alpha2 recruits CASK to presynaptic boutons	99
5.2.6 Liprin-0.1 reduces bassoon and piccolo localization at	
presynaptic boutons	101
5.2.7 Liprin-\alpha I competes with bassoon for binding to presynaptic	
CAST	101
5.2.8 CAST is critical for bassoon localization at membrane	
structures	102
5.3. Discussion	104
5.3.1 Liprin-0.2 is a molecular organizer of hippocampal	
presynapses	104
5.3.2 Liprin-a.1 negatively regulates SV recycling	105
5.3.3 Liprin- α family proteins are not functionally redundant	107
Chapter 6 – Materials and Methods	109
•	
Chapter 7 – Discussion	123
7.1 Liprin- α in Axon Growth, Guidance, and Targeting	125
7.2 Liprin- α in Dendrite Development	127
7.3 Liprin- α in Formation and Function of Synapses	128
7.4 Liprin- α in Maintenance and Plasticity of Synapses	129
7.5 Liprins in the Rest of the Brain – Future Directions	133
References	135
Summary	143
Samenvatting	144
Curriculum Vitae	145
List of Publications	146
Portfolio	147
Acknowledgements	149

