Table of Contents

Chapter 1 – Introduction
1.1 General Introduction 7
1.2 Cell Biology of Neurons 9
 1.2.1 Neuronal cultures as a model for how the brain works 10
 1.2.2 Development of neurons in culture 11
 1.2.3 Techniques – transfection, staining, and imaging of cultured neurons 12
1.3. Axon Growth, Guidance, and Targeting 13
 1.3.1 Growth cones 14
 1.3.2 The cytoskeleton and axon growth 14
 1.3.3 Directed axon growth and guidance cues 15
1.4. Dendrite Development 16
 1.4.1 Dendritic growth and branching 16
 1.4.2 Dendritic spines 17
1.5. Formation and Function of Synapses 17
 1.5.1 Synaptic cell adhesion molecules 17
 1.5.2 Synaptic scaffolding and signaling proteins 18
 1.5.3 Synaptic vesicles and receptors 19
1.6. Maintenance and Plasticity of Synapses 20
 1.6.1 Protein turnover 20
 1.6.2 Modification of synapses in response to activity 21
 1.6.3 Learning and memory 21
1.7. Scope of the Thesis 22

Chapter 2 - The Liprin-α Family of Proteins
2.1. The Liprin-α Family of Proteins 23
2.2. Liprin-α and Presynaptic Development 25
2.3. Liprin-α and Postsynaptic Development 27
2.4. Liprin-α and Neurotransmitter Release 27
2.5. Neuroanatomical Expression Patterns of Liprin-α Proteins 29
 2.5.1 Generation and specificity of anti-liprin antibodies 31
 2.5.2 Nervous system expression of liprin proteins 31

Chapter 3 – LAR Controls Axon Growth and Branching via Interaction with Liprin-α and Cortactin
3.1. Introduction 35
3.2. Results 37
 3.2.1 LAR-RPTP controls axon growth and branching 38
 3.2.2 The LAR intracellular domain is associated with liprin-α, p140Cap, and cortactin 39
 3.2.3 LAR and cortactin co-cluster independently of liprin-α in neurons 43
 3.2.4 Liprin-α2 and p140Cap are necessary for axon growth 44
 3.2.5 Cortactin is responsible for promoting axon branching 46
3.3. Discussion

3.3.1 LAR controls MT and axon growth via liprin-α2, p140Cap, and EB3

3.3.2 LAR inhibits axon branching through cortactin

Chapter 4 – Liprin-α1 Degradation by Calcium/Calmodulin-Dependent Protein Kinase II Regulates LAR Receptor Tyrosine Phosphatase Distribution and Dendrite Development

4.1. Introduction 51

4.2. Results

4.2.1 Downregulation of liprin-α in hippocampal neurons by CaMKII and proteasome-mediated degradation 55

4.2.2 RNAi knockdown of APC increases liprin-α 56

4.2.3 CaMKIIα/β knockdown by RNAi increases liprin-α in hippocampal neurons 58

4.2.4 Active CaMKII decreases liprin-α1 protein level in COS-7 cells 61

4.2.5 C-terminus and PEST motif are essential for CaMKII dependent liprin-α1 degradation 63

4.2.6 Proteasome is not involved in CaMKII dependent liprin-α1 degradation in COS-7 cells 68

4.2.7 Interaction of CaMKII and liprin-α1 in vitro and in vivo 68

4.2.8 Liprin-α1ΔPESTΔC and liprin-α1ΔPEST/S-A inhibit dendrite morphogenesis and reduce synapse density 71

4.2.9 LAR-liprin interfering constructs and LAR shRNA inhibit dendrite morphogenesis 72

4.2.10 Liprin-α1 increases surface expression and clustering of LAR receptors 75

4.2.11 CaMKII-non-degradable liprin-α1 mutants impair dendritic targeting of LAR 77

4.3. Discussion

4.3.1 Activity-dependent regulation of liprin-α1 by two mechanisms: CaMKII and proteasome 78

4.3.2 Importance of CaMKII degradation of liprin-α1 for dendrite morphogenesis 80

Chapter 5 – Regulation of Presynaptic Composition and Function by Distinct Liprin-α Family Proteins

5.1. Introduction 85

5.2. Results

5.2.1 Liprin-α2 is abundant at synapses in the hippocampus 86

5.2.2 Presynaptic localization of liprin-α2 does not depend on other scaffold proteins 87

5.2.3 Liprin-α1 and liprin-α2 differentially regulate presynaptic function 90
5.2.4 Liprin-α1 and liprin-α2 selectively interact with different presynaptic proteins

5.2.5 Liprin-α2 recruits CASK to presynaptic boutons

5.2.6 Liprin-α1 reduces bassoon and piccolo localization at presynaptic boutons

5.2.7 Liprin-α1 competes with bassoon for binding to presynaptic CAST

5.2.8 CAST is critical for bassoon localization at membrane structures

5.3. Discussion

5.3.1 Liprin-α2 is a molecular organizer of hippocampal presynapses

5.3.2 Liprin-α1 negatively regulates SV recycling

5.3.3 Liprin-α family proteins are not functionally redundant

Chapter 6 – Materials and Methods

Chapter 7 – Discussion

7.1 Liprin-α in Axon Growth, Guidance, and Targeting

7.2 Liprin-α in Dendrite Development

7.3 Liprin-α in Formation and Function of Synapses

7.4 Liprin-α in Maintenance and Plasticity of Synapses

7.5 Liprins in the Rest of the Brain – Future Directions

References
Summary
Samenvatting
Curriculum Vitae
List of Publications
Portfolio
Acknowledgements